1
|
Alzheimer's disease pathology and the unfolded protein response: prospective pathways and therapeutic targets. Behav Pharmacol 2018; 28:161-178. [PMID: 28252521 DOI: 10.1097/fbp.0000000000000299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many vital interdependent cellular functions including proteostasis, lipogenesis and Ca homeostasis are executed by the endoplasmic reticulum (ER). Exogenous insults can impair ER performance: this must be rapidly corrected or cell death will ensue. Protective adaptations can boost the functional capacity of the ER and form the basis of the unfolded protein response (UPR). Activated in response to the accumulation of misfolded proteins, the UPR can halt protein translation while increasing protein-handling chaperones and the degradation of erroneous proteins through a conserved three-tier molecular cascade. However, prolonged activation of the UPR can result in the maladaptation of the system, resulting in the activation of inflammatory and apoptotic effectors. Recently, UPR and its involvement in neurodegenerative disease has attracted much interest and numerous potentially 'drugable' points of crosstalk are now emerging. Here, we summarize the functions of the ER and UPR, and highlight evidence for its potential role in the pathogenesis of Alzheimer's disease, before discussing several key targets with therapeutic potential.
Collapse
|
2
|
de Los Rios C, Cano-Abad MF, Villarroya M, López MG. Chromaffin cells as a model to evaluate mechanisms of cell death and neuroprotective compounds. Pflugers Arch 2017; 470:187-198. [PMID: 28823085 DOI: 10.1007/s00424-017-2044-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
In this review, we show how chromaffin cells have contributed to evaluate neuroprotective compounds with diverse mechanisms of action. Chromaffin cells are considered paraneurons, as they share many common features with neurons: (i) they synthesize, store, and release neurotransmitters upon stimulation and (ii) they express voltage-dependent calcium, sodium, and potassium channels, in addition to a wide variety of receptors. All these characteristics, together with the fact that primary cultures from bovine adrenal glands or chromaffin cells from the tumor pheochromocytoma cell line PC12 are easy to culture, make them an ideal model to study neurotoxic mechanisms and neuroprotective drugs. In the first part of this review, we will analyze the different cytotoxicity models related to calcium dyshomeostasis and neurodegenerative disorders like Alzheimer's or Parkinson's. Along the second part of the review, we describe how different classes of drugs have been evaluated in chromaffin cells to determine their neuroprotective profile in different neurodegenerative-related models.
Collapse
Affiliation(s)
- Cristobal de Los Rios
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria F Cano-Abad
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuela G López
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain. .,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain. .,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
The Chondroprotective Role of TMF in PGE2-Induced Apoptosis Associating with Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:297423. [PMID: 26435723 PMCID: PMC4576019 DOI: 10.1155/2015/297423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/21/2015] [Accepted: 08/25/2015] [Indexed: 12/23/2022]
Abstract
Endoplasmic reticulum stress (ERS) has been demonstrated to exhibit a critical role in osteoarthritic chondrocytes. Whether 5,7,3′,4′-tetramethoxyflavone (TMF) plays the chondroprotective role in inhibition of PGE2-induced chondrocytes apoptosis associating with ERS has not been reported. To investigate this, the activation of PERK, ATF6, and IRE1 signaling pathways in ERS in chondrocytes pretreated with PGE2 was studied. By treatment with PGE2, the chondrocytes apoptosis was significantly increased, the proapoptotic CHOP and JNK were upregulated, the prosurvival GRP78 and XBP1 were downregulated, and GSK-3β was also upregulated. However, TMF exhibited the effectively protective functions via counteracting these detrimental effects of PGE2. Finally, the inflammatory cytokine PGE2 can activate ERS signaling and promote chondrocytes apoptosis, which might be associated with upregulation of GSK-3β. TMF exhibits a chondroprotective role in inhibiting PGE2-induced ERS and GSK-3β.
Collapse
|
4
|
Balogh A, Németh M, Koloszár I, Markó L, Przybyl L, Jinno K, Szigeti C, Heffer M, Gebhardt M, Szeberényi J, Müller DN, Sétáló G, Pap M. Overexpression of CREB protein protects from tunicamycin-induced apoptosis in various rat cell types. Apoptosis 2015; 19:1080-98. [PMID: 24722832 DOI: 10.1007/s10495-014-0986-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endoplasmic reticulum (ER) stress plays an essential role in unfolded protein response induced apoptosis contributing to several pathological conditions. Glycogen synthase kinase-3β (GSK-3β) plays a central role in several apoptotic signaling, including ER stress, as the active form of GSK-3β induces apoptosis. The phosphorylation of cAMP responsive element (CRE) binding protein (CREB) Ser-133 (S133) residue is the end-point of various signaling pathways, like growth factor signaling, while the Ser-129 (S129) residue is phosphorylated by GSK-3β. The significance of the ubiquitously expressed transcription factor CREB is demonstrated in prolonged, tunicamycin (TM)-induced ER stress in this study. In the experiments wild-type (wt) CREB, S129Ala, S133Ala or S129Ala-S133Ala mutant CREB expressing PC12 rat pheochromocytoma cell lines showed increased survival under TM-evoked prolonged ER stress compared to wtPC12 cells. After TM treatment ER stress was activated in all PC12 cell types. Lithium and SB-216763, the selective, well-known inhibitors of GSK-3β, decreased TM-induced apoptosis and promoted cell survival. The proapoptotic BH3-only Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim) level was decreased in the different CREB overexpressing PC12 cells as a result of TM treatment. CREB overexpression also inhibited the sequestration of Bim protein from tubulin molecules, as it was demonstrated in wtPC12 cells. Transient expression of wtCREB diminished TM-induced apoptosis in wtPC12, Rat-1 and primary rat vascular smooth muscle cells. These findings demonstrate a novel role of CREB in different cell types as a potent protector against ER stress.
Collapse
Affiliation(s)
- András Balogh
- Department of Medical Biology, University of Pécs Medical School, Szigeti 12, Pecs, 7624, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Endoplasmic Reticulum Stress-Activated Glycogen Synthase Kinase 3β Aggravates Liver Inflammation and Hepatotoxicity in Mice with Acute Liver Failure. Inflammation 2015; 38:1151-65. [DOI: 10.1007/s10753-014-0080-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Röttinger E, Dahlin P, Martindale MQ. A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling. PLoS Genet 2012; 8:e1003164. [PMID: 23300467 PMCID: PMC3531958 DOI: 10.1371/journal.pgen.1003164] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/27/2012] [Indexed: 12/03/2022] Open
Abstract
Understanding the functional relationship between intracellular factors and
extracellular signals is required for reconstructing gene regulatory networks
(GRN) involved in complex biological processes. One of the best-studied
bilaterian GRNs describes endomesoderm specification and predicts that both
mesoderm and endoderm arose from a common GRN early in animal evolution.
Compelling molecular, genomic, developmental, and evolutionary evidence supports
the hypothesis that the bifunctional gastrodermis of the cnidarian-bilaterian
ancestor is derived from the same evolutionary precursor of both endodermal and
mesodermal germ layers in all other triploblastic bilaterian animals. We have
begun to establish the framework of a provisional cnidarian
“endomesodermal” gene regulatory network in the sea anemone,
Nematostella vectensis, by using a genome-wide microarray
analysis on embryos in which the canonical Wnt/ß-catenin pathway was
ectopically targeted for activation by two distinct pharmaceutical agents
(lithium chloride and 1-azakenpaullone) to identify potential targets of
endomesoderm specification. We characterized 51 endomesodermally expressed
transcription factors and signaling molecule genes (including 18 newly
identified) with fine-scale temporal (qPCR) and spatial (in
situ) analysis to define distinct co-expression domains within the
animal plate of the embryo and clustered genes based on their earliest zygotic
expression. Finally, we determined the input of the canonical
Wnt/ß-catenin pathway into the cnidarian endomesodermal GRN using
morpholino and mRNA overexpression experiments to show that NvTcf/canonical Wnt
signaling is required to pattern both the future endomesodermal and ectodermal
domains prior to gastrulation, and that both BMP and FGF (but not Notch)
pathways play important roles in germ layer specification in this animal. We
show both evolutionary conserved as well as profound differences in
endomesodermal GRN structure compared to bilaterians that may provide
fundamental insight into how GRN subcircuits have been adopted, rewired, or
co-opted in various animal lineages that give rise to specialized endomesodermal
cell types. Cnidarians (anemones, corals, and “jellyfish”) are an animal group
whose adults possess derivatives of only two germ layers: ectoderm and a
bifunctional (absorptive and contractile) gastrodermal (gut) layer. Cnidarians
are the closest living relatives to bilaterally symmetrical animals that possess
all three germ layers (ecto, meso, and endoderm); and compelling molecular,
genomic, developmental, and evolutionary evidence exists to demonstrate that the
cnidarian gastrodermis is evolutionarily related to both endodermal and
mesodermal germ layers in all other triploblastic bilaterian animals. Little is
known about endomesoderm specification in cnidarians. In this study, we
constructed the framework of a cnidarian endomesodermal gene regulatory network
in the sea anemone, Nematostella vectensis, using a combination
of experimental approaches. We identified and characterized by both qPCR and
in situ hybridization 51 genes expressed in defined domains
within the presumptive endomesoderm. In addition, we functionally demonstrate
that Wnt/Tcf signaling is crucial for regionalized expression of a defined
subset of these genes prior to gut formation and endomesoderm maintenance. Our
results support the idea of an ancient gene regulatory network underlying
endomesoderm specification that involves inputs from multiple signaling pathways
(Wnt, FGF, BMP, but not Notch) early in development, that are temporarily
uncoupled in bilaterian animals.
Collapse
Affiliation(s)
- Eric Röttinger
- Kewalo Marine Laboratory, Pacific Biosciences Research Center,
University of Hawai'i, Honolulu, Hawai'i, United States of
America
| | - Paul Dahlin
- Kewalo Marine Laboratory, Pacific Biosciences Research Center,
University of Hawai'i, Honolulu, Hawai'i, United States of
America
| | - Mark Q. Martindale
- Kewalo Marine Laboratory, Pacific Biosciences Research Center,
University of Hawai'i, Honolulu, Hawai'i, United States of
America
- * E-mail:
| |
Collapse
|
7
|
Chen L, Ren F, Zhang H, Wen T, Piao Z, Zhou L, Zheng S, Zhang J, Chen Y, Han Y, Duan Z, Ma Y. Inhibition of glycogen synthase kinase 3β ameliorates D-GalN/LPS-induced liver injury by reducing endoplasmic reticulum stress-triggered apoptosis. PLoS One 2012; 7:e45202. [PMID: 23028846 PMCID: PMC3461002 DOI: 10.1371/journal.pone.0045202] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 08/17/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Glycogen synthase kinase 3β(GSK3β) is a ubiquitous serine-threonine protein kinase that participates in numerous cellular processes and disease pathophysiology. We aimed to determine therapeutic potential of GSK3β inhibition and its mechanism in a well-characterized model of lipopolysaccharide (LPS)-induced model of acute liver failure (ALF). METHODOLOGY In a murine ALF model induced by D-GalN(700 mg/kg)/LPS(10 µg/kg), we analyzed GSK3β mechanisms using a specific chemical inhibitor, SB216763, and detected the role of endoplasmic reticulum stress (ERS). Mice were administered SB216763 at 2 h before or after D-GalN/LPS injection, respectively, and then sacrificed 6 h after D-GalN/LPS treatment to evaluate its prophylactic and therapeutic function. The lethality rate, liver damage, ERS, cytokine expression, MAP kinase, hepatocyte apoptosis and expression of TLR 4 were evaluated, respectively. Whether the inhibition of GSK3β activation protected hepatocyte from ERS-induced apoptosis was investigated in vitro. PRINCIPAL FINDINGS GSK3β became quickly activated (dephosphorylated) upon D-GalN/LPS exposure. Administration of SB216763 not only ameliorated liver injury, as evidenced by reduced transaminase levels, and well-preserved liver architecture, but also decreased lethality. Moreover, GSK3β inhibition resulted in down-regulation of pro-apoptotic proteins C/EBP-homologous protein(CHOP) and caspase-12, which are related to ERS. To further demonstrate the role of ERS, we found that GSK3β inhibition protected hepatocyte from ERS-induced cell death. GSK3β inhibition down-regulated the MAPK pathways, reduced expression of inflammatory cytokines and decreased expression of TLR4. CONCLUSIONS Our findings demonstrate the key function of GSK3β signaling in the pathophysiology of ALF, especially in regulating the ERS, and provide a rationale for targeting GSK3β as a potential therapeutic strategy to ameliorate ALF.
Collapse
Affiliation(s)
- Liyan Chen
- The 2nd Department of Infectious Diseases, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Feng Ren
- Beijing Institute of Liver Diseases, Capital Medical University, Beijing, People’s Republic of China
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Haiyan Zhang
- Beijing Institute of Liver Diseases, Capital Medical University, Beijing, People’s Republic of China
| | - Tao Wen
- Beijing Institute of Liver Diseases, Capital Medical University, Beijing, People’s Republic of China
| | - Zhengfu Piao
- Beijing Institute of Liver Diseases, Capital Medical University, Beijing, People’s Republic of China
| | - Li Zhou
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Sujun Zheng
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jing Zhang
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yu Chen
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yuanping Han
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhongping Duan
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yingji Ma
- The Department of Infectious Diseases, The 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
| |
Collapse
|
8
|
Joyner PM, Cichewicz RH. Bringing natural products into the fold – exploring the therapeutic lead potential of secondary metabolites for the treatment of protein-misfolding-related neurodegenerative diseases. Nat Prod Rep 2011; 28:26-47. [DOI: 10.1039/c0np00017e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Specific regulation of JNK signalling by the novel rat MKK7gamma1 isoform. Cell Signal 2010; 22:1761-72. [PMID: 20633641 DOI: 10.1016/j.cellsig.2010.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 01/20/2023]
Abstract
The c-Jun N-terminal kinases (JNKs) mediate a diversity of physiological and pathophysiological effects. Apart from isoform-specific JNK activation, upstream kinases are supposed to be the relevant regulators, which are involved in the context- and signalosome-depending functions. In the present study we report the cloning and characterization of the novel rat MKK7gamma1, a splice variant of MKK7 with an additional exon in the N-terminal region, in the neuronal pheochromocytoma cell line PC12. Transfected MKK7gamma1 increased basal JNK activity, in particular phosphorylation of JNK2. Consequently, JNK signalling was changed in mRNA-, protein- and activation-levels of JNK targets, such as transcription factors (c-Jun, p53, c-Myc), cell cycle regulators (p21, CyclinD1) and apoptotic proteins (Fas, Bim, Bcl-2, Bcl-xl). These alterations promote the sensitivity of MKK7gamma1-transfected cells towards cell death and repress cell proliferation under normal cell growth conditions. Complexes of JIP-1, MKK7 and JNK2 were the major JNK signalosomes under basal conditions. After stimulation with taxol (5muM) and tunicamycin (1.4mug/ml), MKK7gamma1- but not MKK7beta1-transfection, reduced cell death and even increased cell proliferation. Cellular stress also led to an increased phosphorylation of JNK1 and the almost complete abrogation of complexes of JIP-1, MKK7 and JNK2 in MKK7gamma1-transfected PC12 cells. Summarizing, MKK7gamma1 affects the function and activity of individual JNK isoforms and the formation of their signalosomes. This study demonstrates for the first time that one splice-variant of MKK7 tightly controls JNK signalling and effectively adapts JNK functions to the cellular context.
Collapse
|
10
|
Son TG, Kim SJ, Kim K, Kim MS, Chung HY, Lee J. Cytoprotective roles of senescence marker protein 30 against intracellular calcium elevation and oxidative stress. Arch Pharm Res 2008; 31:872-7. [PMID: 18704329 DOI: 10.1007/s12272-001-1240-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/17/2008] [Accepted: 05/19/2008] [Indexed: 11/26/2022]
Abstract
Senescence marker protein 30 (SMP30) is identified as an important aging marker molecule and known to play multifunctional roles as an intracellular calcium regulatory protein in the signaling process. To elucidate the functional significance of SMP30, we established the stably transfected P19 cell line with SMP30 expression vector. Overexpression of SMP30 slightly suppressed the proliferation of P19 cells. However, SMP30 overexpression was cytoprotective against calcium-mediated stress such as calcium ionophore (A23187), and thapsigargin. We found that SMP30 overexpression reduced the elevated intracellular calcium levels induced by A23187, but not by thapsigargin. In addition, SMP30 transfected P19 cells were more protective to tert-butylhydroperoxide induced cytotoxicity, indicating the antioxidative properties of SMP30. Taken together, our results suggest that external calcium regulation and antioxidant properties are involved in the cytoprotective mechanism of SMP30.
Collapse
Affiliation(s)
- Tae Gen Son
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Longevity Life Science and Technology Institutes, Pusan National University, Busan, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Resende R, Ferreiro E, Pereira C, Oliveira CR. ER stress is involved in Aβ‐induced GSK‐3β activation and tau phosphorylation. J Neurosci Res 2008; 86:2091-9. [DOI: 10.1002/jnr.21648] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Adell T, Marsal M, Saló E. Planarian GSK3s are involved in neural regeneration. Dev Genes Evol 2008; 218:89-103. [PMID: 18202849 DOI: 10.1007/s00427-007-0199-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 12/10/2007] [Indexed: 01/18/2023]
Abstract
Glycogen synthase kinase-3 (GSK3) is a key element in several signaling cascades that is known to be involved in both patterning and neuronal organization. It is, therefore, a good candidate to play a role in neural regeneration in planarians. We report the characterization of three GSK3 genes in Schmidtea mediterranea. Phylogenetic analysis shows that Smed-GSK3.1 is highly conserved compared to GSK3 sequences from other species, whereas Smed-GSK3.2 and Smed-GSK3.3 are more divergent. Treatment of regenerating planarians with 1-azakenpaullone, a synthetic GSK3 inhibitor, suggests that planarian GSK3s are essential for normal differentiation and morphogenesis of the nervous system. Cephalic ganglia appear smaller and disconnected in 1-azakenpaullone-treated animals, whereas visual axons are ectopically projected, and the pharynx does not regenerate properly. This phenotype is consistent with a role for Smed-GSK3s in neuronal polarization and axonal growth.
Collapse
Affiliation(s)
- Teresa Adell
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
| | | | | |
Collapse
|
13
|
HSP105 interacts with GRP78 and GSK3 and promotes ER stress-induced caspase-3 activation. Cell Signal 2007; 20:347-58. [PMID: 18083346 DOI: 10.1016/j.cellsig.2007.10.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/27/2007] [Accepted: 10/29/2007] [Indexed: 11/20/2022]
Abstract
Stress of the endoplasmic reticulum (ER stress) is caused by the accumulation of misfolded proteins, which occurs in many neurodegenerative diseases. ER stress can lead to adaptive responses or apoptosis, both of which follow activation of the unfolded protein response (UPR). Heat shock proteins (HSP) support the folding and function of many proteins, and are important components of the ER stress response, but little is known about the role of one of the major large HSPs, HSP105. We identified several new partners of HSP105, including glycogen synthase kinase-3 (GSK3), a promoter of ER stress-induced apoptosis, and GRP78, a key component of the UPR. Knockdown of HSP105 did not alter UPR signaling after ER stress, but blocked caspase-3 activation after ER stress. In contrast, caspase-3 activation induced by genotoxic stress was unaffected by knockdown of HSP105, suggesting ER stress-specificity in the apoptotic action of HSP105. However, knockdown of HSP105 did not alter cell survival after ER stress, but instead diverted signaling to a caspase-3-independent cell death pathway, indicating that HSP105 is necessary for apoptotic signaling after UPR activation by ER stress. Thus, HSP105 appears to chaperone the responses to ER stress through its interactions with GRP78 and GSK3, and without HSP105 cell death following ER stress proceeds by a non-caspase-3-dependent process.
Collapse
|
14
|
Takadera T, Fujibayashi M, Kaniyu H, Sakota N, Ohyashiki T. Caspase-dependent apoptosis induced by thapsigargin was prevented by glycogen synthase kinase-3 inhibitors in cultured rat cortical neurons. Neurochem Res 2007; 32:1336-42. [PMID: 17401651 DOI: 10.1007/s11064-007-9310-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
Calcium ion is essential for cellular functions including signal transduction. Uncontrolled calcium stress has been linked causally to a variety of neurodegenerative diseases. Thapsigargin, which inhibits Ca(2+)-ATPase in the endoplasmic reticulum (ER) and blocks the sequestration of calcium by the ER, induced apoptotic cell death (chromatin condensation and nuclear fragmentation) accompanied by GRP78 protein expression and caspase-3 activation in rat fetal cortical neurons (days in vitro 9-10). Blockade of N-methyl-D-aspartate (NMDA) receptors with NMDA antagonists induced apoptosis without GRP78 protein expression. Apoptosis accompanied both caspase-9 and caspase-3 activation. We then examined whether GSK-3 is involved in thapsigargin-induced cell death by using GSK-3 inhibitors. We assayed the effects of selective GSK-3 inhibitors, SB216763, alsterpaullone and 1-azakenpaullone, on thapsigargin-induced apoptosis. These inhibitors completely protected cells from thapsigargin-induced apoptosis. In addition, GSK-3 inhibitors inhibited caspase-9 and caspase-3 activation accompanied by thapsigargin-induced apoptosis. These results suggest that thapsigargin induces caspase-dependent apoptosis mediated through GSK-3beta activation in rat cortical neurons.
Collapse
Affiliation(s)
- Tsuneo Takadera
- Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan.
| | | | | | | | | |
Collapse
|