1
|
Liu Y, Wang XQ, Zhang P, Haghparast A, He WB, Zhang JJ. Research progress of DNA methylation on the regulation of substance use disorders and the mechanisms. Front Cell Neurosci 2025; 19:1566001. [PMID: 40230379 PMCID: PMC11994631 DOI: 10.3389/fncel.2025.1566001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Drug abuse can damage the central nervous system and lead to substance use disorder (SUD). SUD is influenced by both genetic and environmental factors. Genes determine an individual's susceptibility to drug, while the dysregulation of epigenome drives the abnormal transcription processes, promoting the development of SUD. One of the most widely studied epigenetic mechanisms is DNA methylation, which can be inherited stably. In ontogeny, DNA methylation pattern is dynamic. DNA dysmethylation is prevalent in drug-related psychiatric disorders, resulting in local hypermethylation and transcriptional silencing of related genes. In this review, we summarize the role and regulatory mechanisms of DNA methylation in cocaine, opioids, and methamphetamine in terms of drug exposure, addiction memory, withdrawal relapse, intergenerational inheritance, and focus on cell-specific aspects of the studies with a view to suggesting possible therapeutic regimens for targeting methylation in both human and animal research.
Collapse
Affiliation(s)
- Ya Liu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiao-Qian Wang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Peng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Abbas Haghparast
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Wen-Bin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jian-Jun Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
2
|
Liu M, Si Z. An update: epigenetic mechanisms underlying methamphetamine addiction. Front Cell Dev Biol 2024; 12:1494557. [PMID: 39650725 PMCID: PMC11621221 DOI: 10.3389/fcell.2024.1494557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 12/11/2024] Open
Abstract
Methamphetamine (METH) is one of the most widely abused illicit drugs globally. Despite its widespread abuse, the effects of methamphetamine on the brain and the precise mechanisms underlying addiction remain poorly understood. Elucidating these biological mechanisms and developing effective treatments is of utmost importance. Researchers have adopted a multi-faceted approach, combining studies at the genetic, molecular, organ, and individual levels, to explore the epigenetic changes that methamphetamine use brings to an organism from both micro and macro perspectives. They utilize a comparative analysis of experimental animal data and clinical cases to ascertain differences and identify potential targets for translating METH addiction research from the experimental to the clinical setting. Recent studies have demonstrated that epigenetic regulation plays a pivotal role in neural mechanisms, encompassing DNA methylation, histone modifications (such as acetylation and methylation), ubiquitination, phosphorylation, and the regulation of non-coding RNA. These epigenetic factors influence an individual's susceptibility and response to methamphetamine addiction by regulating the expression of specific genes. Specifically, methamphetamine use has been observed to cause alterations in DNA methylation status, which in turn affects the expression of genes associated with neuroreward pathways, leading to alterations in brain function and structure. Furthermore, histone modifications have significant implications for the neurotoxicity associated with methamphetamine addiction. For instance, the methylation and acetylation of histone H3 modify chromatin structure, consequently influencing the transcriptional activity of genes. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), also play a pivotal role in methamphetamine addiction by interacting with messenger RNAs (mRNAs) and regulating gene expression. To further advance our understanding, researchers employ advanced technologies such as high-throughput sequencing, chromatin immunoprecipitation sequencing (ChIP-seq), and RNA sequencing (RNA-seq) to comprehensively analyze epigenetic changes in both animal models and human subjects. These technologies enable researchers to identify specific epigenetic markers associated with methamphetamine addiction and to explore their functional consequences. This article reviews the role of these epigenetic mechanisms in methamphetamine addiction and discusses their potential implications for future clinical treatment strategies, particularly in the development of drugs targeting methamphetamine addiction. By deepening our comprehension of these epigenetic regulatory mechanisms, it is anticipated that targeted therapeutic strategies may be devised to reverse the gene expression alterations associated with methamphetamine addiction, thus enhancing the efficacy of addiction treatment and paving the way for future research in this domain.
Collapse
Affiliation(s)
| | - Zizhen Si
- Department of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Nohesara S, Mostafavi Abdolmaleky H, Thiagalingam S. Substance-Induced Psychiatric Disorders, Epigenetic and Microbiome Alterations, and Potential for Therapeutic Interventions. Brain Sci 2024; 14:769. [PMID: 39199463 PMCID: PMC11352452 DOI: 10.3390/brainsci14080769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Substance use disorders (SUDs) are complex biopsychosocial diseases that cause neurocognitive deficits and neurological impairments by altering the gene expression in reward-related brain areas. Repeated drug use gives rise to alterations in DNA methylation, histone modifications, and the expression of microRNAs in several brain areas that may be associated with the development of psychotic symptoms. The first section of this review discusses how substance use contributes to the development of psychotic symptoms via epigenetic alterations. Then, we present more evidence about the link between SUDs and brain epigenetic alterations. The next section presents associations between paternal and maternal exposure to substances and epigenetic alterations in the brains of offspring and the role of maternal diet in preventing substance-induced neurological impairments. Then, we introduce potential therapeutic agents/approaches such as methyl-rich diets to modify epigenetic alterations for alleviating psychotic symptoms or depression in SUDs. Next, we discuss how substance use-gut microbiome interactions contribute to the development of neurological impairments through epigenetic alterations and how gut microbiome-derived metabolites may become new therapeutics for normalizing epigenetic aberrations. Finally, we address possible challenges and future perspectives for alleviating psychotic symptoms and depression in patients with SUDs by modulating diets, the epigenome, and gut microbiome.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Mental Health Research Center, Psychosocial Health Research Institute, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Department of Surgery, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
4
|
Zheng Y, Liu D, Guo H, Chen W, Liu Z, Li Z, Hu T, Zhang Y, Li X, Zhao Z, Cai Q, Ge F, Fan Y, Guan X. Paternal methamphetamine exposure induces higher sensitivity to methamphetamine in male offspring through driving ADRB1 on CaMKII-positive neurons in mPFC. Transl Psychiatry 2023; 13:324. [PMID: 37857642 PMCID: PMC10587075 DOI: 10.1038/s41398-023-02624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Paternal abuse of drugs, such as methamphetamine (METH), elevates the risk of developing addiction in subsequent generations, however, its underlying molecular mechanism remains poorly understood. Male adult mice (F0) were exposed to METH for 30 days, followed by mating with naïve female mice to create the first-generation mice (F1). When growing to adulthood, F1 were subjected to conditioned place preference (CPP) test. Subthreshold dose of METH (sd-METH), insufficient to induce CPP normally, were used in F1. Selective antagonist (betaxolol) for β1-adrenergic receptor (ADRB1) or its knocking-down virus were administrated into mPFC to regulate ADRB1 function and expression on CaMKII-positive neurons. METH-sired male F1 acquired sd-METH-induced CPP, indicating that paternal METH exposure induce higher sensitivity to METH in male F1. Compared with saline (SAL)-sired male F1, CaMKII-positive neuronal activity was normal without sd-METH, but strongly evoked after sd-METH treatment in METH-sired male F1 during adulthood. METH-sired male F1 had higher ADRB1 levels without sd-METH, which was kept at higher levels after sd-METH treatment in mPFC. Either inhibiting ADRB1 function with betaxolol, or knocking-down ADRB1 level on CaMKII-positive neurons (ADRB1CaMKII) with virus transfection efficiently suppressed sd-METH -evoked mPFC activation, and ultimately blocked sd-METH-induced CPP in METH-sired male F1. In the process, the p-ERK1/2 and ΔFosB may be potential subsequent signals of mPFC ADRB1CaMKII. The mPFC ADRB1CaMKII mediates paternal METH exposure-induced higher sensitivity to drug addiction in male offspring, raising a promising pharmacological target for predicting or treating transgenerational addiction.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Guo
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenwen Chen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhaoyu Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhaosu Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Hu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziheng Zhao
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Miao B, Xing X, Bazylianska V, Madden P, Moszczynska A, Zhang B. Methamphetamine-induced region-specific transcriptomic and epigenetic changes in the brain of male rats. Commun Biol 2023; 6:991. [PMID: 37758941 PMCID: PMC10533900 DOI: 10.1038/s42003-023-05355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Psychostimulant methamphetamine (METH) is neurotoxic to the brain and, therefore, its misuse leads to neurological and psychiatric disorders. The gene regulatory network (GRN) response to neurotoxic METH binge remains unclear in most brain regions. Here we examined the effects of binge METH on the GRN in the nucleus accumbens, dentate gyrus, Ammon's horn, and subventricular zone in male rats. At 24 h after METH, ~16% of genes displayed altered expression and over a quarter of previously open chromatin regions - parts of the genome where genes are typically active - showed shifts in their accessibility. Intriguingly, most changes were unique to each area studied, and independent regulation between transcriptome and chromatin accessibility was observed. Unexpectedly, METH differentially impacted gene activity and chromatin accessibility within the dentate gyrus and Ammon's horn. Around 70% of the affected chromatin-accessible regions in the rat brain have conserved DNA sequences in the human genome. These regions frequently act as enhancers, ramping up the activity of nearby genes, and contain mutations linked to various neurological conditions. By sketching out the gene regulatory networks associated with binge METH in specific brain regions, our study offers fresh insights into how METH can trigger profound, region-specific molecular shifts.
Collapse
Affiliation(s)
- Benpeng Miao
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Viktoriia Bazylianska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Kaplan G, Xu H, Abreu K, Feng J. DNA Epigenetics in Addiction Susceptibility. Front Genet 2022; 13:806685. [PMID: 35145550 PMCID: PMC8821887 DOI: 10.3389/fgene.2022.806685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Addiction is a chronically relapsing neuropsychiatric disease that occurs in some, but not all, individuals who use substances of abuse. Relatively little is known about the mechanisms which contribute to individual differences in susceptibility to addiction. Neural gene expression regulation underlies the pathogenesis of addiction, which is mediated by epigenetic mechanisms, such as DNA modifications. A growing body of work has demonstrated distinct DNA epigenetic signatures in brain reward regions that may be associated with addiction susceptibility. Furthermore, factors that influence addiction susceptibility are also known to have a DNA epigenetic basis. In the present review, we discuss the notion that addiction susceptibility has an underlying DNA epigenetic basis. We focus on major phenotypes of addiction susceptibility and review evidence of cell type-specific, time dependent, and sex biased effects of drug use. We highlight the role of DNA epigenetics in these diverse processes and propose its contribution to addiction susceptibility differences. Given the prevalence and lack of effective treatments for addiction, elucidating the DNA epigenetic mechanism of addiction vulnerability may represent an expeditious approach to relieving the addiction disease burden.
Collapse
|
7
|
Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes (Basel) 2021; 12:genes12101614. [PMID: 34681009 PMCID: PMC8535492 DOI: 10.3390/genes12101614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Methamphetamine (METH)-use disorder (MUD) is a very serious, potentially lethal, biopsychosocial disease. Exposure to METH causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug-seeking and drug-taking behavior that can remain a lifelong struggle. It is crucial to elucidate underlying mechanisms by which exposure to METH leads to molecular neuroadaptive changes at transcriptional and translational levels. Changes in gene expression are controlled by post-translational modifications via chromatin remodeling. This review article focuses on the brain-region specific combinatorial or distinct epigenetic modifications that lead to METH-induced changes in gene expression.
Collapse
|
8
|
Epigenetics of addiction. Neurochem Int 2021; 147:105069. [PMID: 33992741 DOI: 10.1016/j.neuint.2021.105069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
Substance use disorders are complex biopsychosocial disorders that have substantial negative neurocognitive impact in various patient populations. These diseases involve the compulsive use of licit or illicit substances despite adverse medicolegal consequences and appear to be secondary to long-lasting epigenetic and transcriptional adaptations in brain reward and non-reward circuits. The accumulated evidence supports the notion that repeated drug use causes changes in post-translational histone modifications and in DNA methylation/hydroxymethylation processes in several brain regions. This review provides an overview of epigenetic changes reported in models of cocaine, methamphetamine, and opioid use disorders. The accumulated data suggest that future therapeutic interventions should focus on the development of epigenetic drugs against addictive diseases.
Collapse
|
9
|
Maldonado R, Calvé P, García-Blanco A, Domingo-Rodriguez L, Senabre E, Martín-García E. Genomics and epigenomics of addiction. Am J Med Genet B Neuropsychiatr Genet 2021; 186:128-139. [PMID: 33819378 DOI: 10.1002/ajmg.b.32843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
Recent progress in the genomics and epigenomics of addiction has contributed to improving our understanding of this complex mental disorder's etiology, filling the gap between genes, environment, and behavior. We review the behavioral genetic studies reporting gene and environment interactions that explain the polygenetic contribution to the resilience and vulnerability to develop addiction. We discuss the evidence of polymorphic candidate genes that confer susceptibility to develop addiction as well as the studies of specific epigenetic marks that contribute to vulnerability and resilience to addictive-like behavior. A particular emphasis has been devoted to the miRNA changes that are considered potential biomarkers. The increasing knowledge about the technology required to alter miRNA expression may provide promising novel therapeutic tools. Finally, we give future directions for the field's progress in disentangling the connection between genes, environment, and behavior.
Collapse
Affiliation(s)
- Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Pablo Calvé
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alejandra García-Blanco
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Domingo-Rodriguez
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eric Senabre
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
10
|
Hong Q, Xu W, Lin Z, Liu J, Chen W, Zhu H, Lai M, Zhuang D, Xu Z, Fu D, Zhou W, Liu H. Role of GABRD Gene Methylation in the Nucleus Accumbens in Heroin-Seeking Behavior in Rats. Front Pharmacol 2021; 11:612200. [PMID: 33551813 PMCID: PMC7859445 DOI: 10.3389/fphar.2020.612200] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifications such as DNA methylation play important roles in regulating gene expression and may mediate neuroplasticity and lead to drug-induced aberrant behaviors. Although several brain regions and neurobiological mechanisms have been suggested to be involved in these processes, there is remarkably little known about the effects of DNA methylation on heroin-seeking behavior. Using a Sprague-Dawley rat model, we show that heroin self-administration resulted in gamma-aminobutyric acid type A receptor subunit delta (GABRD) gene hypomethylation, which was associated with transcriptional upregulation of GABRD in the nucleus accumbens (NAc). Systemic l-methionine (MET) administration significantly strengthened the reinstatement of heroin-seeking behavior induced by heroin priming, whereas intra-NAc injections of the DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza-dC) had the opposite effect on heroin-seeking. Meanwhile, 5-Aza-dC treatment decreased DNA methylation and upregulated the expression of GABRD in the NAc, whereas MET had the opposite effect. Our results also reveal that 5-Aza-dC might alter the methylation landscape of the GABRD gene by directly repressing DNMT1 and DNMT3A expression. Furthermore, reinstatement of heroin-seeking behavior was significantly inhibited by directly overexpressing GABRD and remarkably reinforced by GABRD gene silencing in the NAc. Collectively, these results suggest that targeting the GABRD gene and its methylation might represent a novel pharmacological strategy for treating heroin addiction and relapse.
Collapse
Affiliation(s)
- Qingxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Wenjin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Zi Lin
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
| | - Jing Liu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
| | - Weisheng Chen
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Huaqiang Zhu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Miaojun Lai
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Dingding Zhuang
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Zemin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Dan Fu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| |
Collapse
|
11
|
Varela RB, Resende WR, Dal-Pont GC, Gava FF, Nadas GB, Tye SJ, Andersen ML, Quevedo J, Valvassori SS. Role of epigenetic regulatory enzymes in animal models of mania induced by amphetamine and paradoxical sleep deprivation. Eur J Neurosci 2020; 53:649-662. [PMID: 32735698 DOI: 10.1111/ejn.14922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 01/22/2023]
Abstract
It is known that bipolar disorder has a multifactorial aetiology where the interaction between genetic and environmental factors is responsible for its development. Because of this, epigenetics has been largely studied in psychiatric disorders. The present study aims to evaluate the effects of histone deacetylase inhibitors on epigenetic enzyme alterations in rats or mice submitted to animal models of mania induced by dextro-amphetamine or sleep deprivation, respectively. Adult male Wistar rats were subjected to 14 days of dextro-amphetamine administration, and from the eighth to the fourteenth day, the animals were treated with valproate and sodium butyrate in addition to dextro-amphetamine injections. Adult C57BL/6 mice received 7 days of valproate or sodium butyrate administration, being sleep deprived at the last 36 hr of the protocol. Locomotor and exploratory activities of rats and mice were evaluated in the open-field test, and histone deacetylase, DNA methyltransferase, and histone acetyltransferase activities were assessed in the frontal cortex, hippocampus, and striatum. Dextro-amphetamine and sleep deprivation induced hyperactivity and increased histone deacetylase and DNA methyltransferase activities in the animal's brain. Valproate and sodium butyrate were able to reverse hyperlocomotion induced by both animal models, as well as the alterations on histone deacetylase and DNA methyltransferase activities. There was a positive correlation between enzyme activities and number of crossings for both models. Histone deacetylase and DNA methyltransferase activities also presented a positive correlation between theirselves. These results suggest that epigenetics can play an important role in BD pathophysiology as well as in its treatment.
Collapse
Affiliation(s)
- Roger B Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriella B Nadas
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
12
|
Salehzadeh SA, Mohammadian A, Salimi F. Effect of chronic methamphetamine injection on levels of BDNF mRNA and its CpG island methylation in prefrontal cortex of rats. Asian J Psychiatr 2020; 48:101884. [PMID: 31830601 DOI: 10.1016/j.ajp.2019.101884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/16/2023]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant. Its abuse causes problems in cognition, attention, or psychiatric conditions such as psychosis. Prefrontal cortex is involved in many aspects of drug addiction and in mental disorders similar to those triggered by METH. Brain-derived neurotrophic factor (BDNF), plays important roles in modulating different aspects of addiction, and is implicated in psychiatric conditions reminiscent of those suffered by METH-abusers. Male Wistar rats were intra-peritoneally injected with METH (8 mg/kg/day) for 14 days while control group received normal saline. After extraction of prefrontal cortices, expression of BDNF IV splice variant and methylation level of its CpG island were evaluated. The relative expression of BDNF IV in METH-treated group was 2.15 fold higher than the control group. Seven out of 29 CpG sites were significantly hypomethylated in the METH group, although none survived Bonferroni adjustment. However, the overall methylation level of the 29 CpGs was significantly lower in METH cases than in controls. We discuss the importance of our results and its implications in detail.
Collapse
Affiliation(s)
- Seyed Ahmad Salehzadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammadian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fatemeh Salimi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Anderson EM, Penrod RD, Barry SM, Hughes BW, Taniguchi M, Cowan CW. It is a complex issue: emerging connections between epigenetic regulators in drug addiction. Eur J Neurosci 2019; 50:2477-2491. [PMID: 30251397 DOI: 10.1111/ejn.14170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Drug use leads to addiction in some individuals, but the underlying brain mechanisms that control the transition from casual drug use to an intractable substance use disorder (SUD) are not well understood. Gene x environment interactions such as the frequency of drug use and the type of substance used likely to promote maladaptive plastic changes in brain regions that are critical for controlling addiction-related behavior. Epigenetics encompasses a broad spectrum of mechanisms important for regulating gene transcription that are not dependent on changes in DNA base pair sequences. This review focuses on the proteins and complexes contributing to epigenetic modifications in the nucleus accumbens (NAc) following drug experience. We discuss in detail the three major mechanisms: histone acetylation and deacetylation, histone methylation, and DNA methylation. We discuss how drug use alters the regulation of the associated proteins regulating these processes and highlight how experimental manipulations of these proteins in the NAc can alter drug-related behaviors. Finally, we discuss the ways that histone modifications and DNA methylation coordinate actions by recruiting large epigenetic enzyme complexes to aid in transcriptional repression. Targeting these multiprotein epigenetic enzyme complexes - and the individual proteins that comprise them - might lead to effective therapeutics to reverse or treat SUDs in patients.
Collapse
Affiliation(s)
- Ethan M Anderson
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Rachel D Penrod
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Sarah M Barry
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Brandon W Hughes
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Makoto Taniguchi
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Christopher W Cowan
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| |
Collapse
|
14
|
Jaric I, Rocks D, Cham H, Herchek A, Kundakovic M. Sex and Estrous Cycle Effects on Anxiety- and Depression-Related Phenotypes in a Two-Hit Developmental Stress Model. Front Mol Neurosci 2019; 12:74. [PMID: 31031589 PMCID: PMC6470284 DOI: 10.3389/fnmol.2019.00074] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Stress during sensitive developmental periods can adversely affect physical and psychological development and contribute to later-life mental disorders. In particular, adverse experiences during childhood dramatically increase the risk for the development of depression and anxiety disorders. Although women of reproductive age are twice as likely to develop anxiety and depression than men of the corresponding age, little is known about sex-specific factors that promote or protect against the development of psychopathology. To examine potential developmental mechanisms driving sex disparity in risk for anxiety and depression, we established a two-hit developmental stress model including maternal separation in early life followed by social isolation in adolescence. Our study shows complex interactions between early-life and adolescent stress, between stress and sex, and between stress and female estrogen status in shaping behavioral phenotypes of adult animals. In general, increased locomotor activity and body weight reduction were the only two phenotypes where two stressors showed synergistic activity. In terms of anxiety- and depression-related phenotypes, single exposure to early-life stress had the most significant impact and was female-specific. We show that early-life stress disrupts the protective role of estrogen in females, and promotes female vulnerability to anxiety- and depression-related phenotypes associated with the low-estrogenic state. We found plausible transcriptional and epigenetic alterations in psychiatric risk genes, Nr3c1 and Cacna1c, that likely contributed to the stress-induced behavioral effects. In addition, two general transcriptional regulators, Egr1 and Dnmt1, were found to be dysregulated in maternally-separated females and in animals exposed to both stressors, respectively, providing insights into possible transcriptional mechanisms that underlie behavioral phenotypes. Our findings provide a novel insight into developmental risk factors and biological mechanisms driving sex differences in depression and anxiety disorders, facilitating the search for more effective, sex-specific treatments for these disorders.
Collapse
Affiliation(s)
- Ivana Jaric
- Department of Biological Sciences, Fordham University, Bronx, NY, United States
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, United States
| | - Heining Cham
- Department of Psychology, Fordham University, Bronx, NY, United States
| | - Alice Herchek
- Department of Biological Sciences, Fordham University, Bronx, NY, United States
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, United States
| |
Collapse
|
15
|
Methamphetamine (MA) Use Induces Specific Changes in LINE-1 Partial Methylation Patterns, Which Are Associated with MA-Induced Paranoia: a Multivariate and Neuronal Network Study. Mol Neurobiol 2018; 56:4258-4272. [PMID: 30302724 DOI: 10.1007/s12035-018-1371-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022]
Abstract
The use of psychoactive substances, including methamphetamine (MA) may cause changes in DNA methylation. The aim of this study was to examine the effects of MA use on long interspersed element-1 (LINE-1) methylation patterns in association with MA-induced paranoia. This study recruited 123 normal controls and 974 MA users, 302 with and 672 without MA-induced paranoia. The Semi-Structured Assessment for Drug Dependence and Alcoholism was used to assess demographic and substance use variables. Patterns of LINE-1 methylation were assessed in peripheral blood mononuclear cells and a combined bisulfite restriction analysis (COBRA) was used to estimate overall LINE-1 methylation (mC) while COBRA classified LINE-alleles into four patterns based on the methylation status of two CpG dinucleotides on each strand from 5' to 3', namely two methylated (mCmC) and two unmethylated (uCuC) CpGs and two types of partially methylated loci (mCuC that is 5'm with 3'u and uCmC that is 5'u with 3'm CpGs). MA users showed higher % mCuC and % mCuC + uCmC levels than controls. Use of solvents and opioids, but not cannabis and alcohol dependence, significantly lowered % uCmC levels, while current smoking significantly increased % uCuC levels. MA-induced paranoia was strongly associated with changes in LINE-1 partial methylation patterns (lowered % uCmC), heavy MA use, lower age at onset of MA use, and alcohol dependence. Women who took contraceptives showed significantly lower LINE-1 % mC and % mCmC and higher % uCuC levels than women without contraceptive use and men. The results show that MA-induced changes in LINE-1 partial methylation patterns are associated with MA-induced paranoia and could explain in part the pathophysiology of this type of psychosis. It is argued that MA-induced neuro-oxidative pathways may have altered LINE-1 partial methylation patterns, which in turn may regulate neuro-oxidative and immune pathways, which may increase risk to develop MA-induced paranoia.
Collapse
|
16
|
Rudzinskas SA, Mong JA. Methamphetamine alters DNMT and HDAC activity in the posterior dorsal medial amygdala in an ovarian steroid-dependent manner. Neurosci Lett 2018; 683:125-130. [PMID: 29944893 PMCID: PMC6102075 DOI: 10.1016/j.neulet.2018.06.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/14/2018] [Accepted: 06/22/2018] [Indexed: 11/18/2022]
Abstract
Methamphetamine (Meth) is a psychomotor stimulant associated with increased sexual drive and risky sexual behaviors in both men and women. Females are comparatively understudied, despite the fact that are just as likely as men to use methamphetamine. Importantly, Meth-associated sexual behaviors put female-users at a greater risk for unplanned pregnancies, and increase the risk of psychiatric co-morbidities such as depression. Our work in a rodent model has demonstrated that in the presence of the ovarian steroids, estradiol (EB) and progesterone (P), methamphetamine facilitates the activation of neurons of in the Medial Amygdala (MePD) and Ventromedial Nucleus of the Hypothalamus (VMN), nuclei that are integral to female sexual behavior. As methamphetamine has been previously associated with epigenetic changes in males, we hypothesized that methamphetamine may facilitate sexual motivation in females by modulating the amount of epigenetic enzymatic activity in the VMN and MePD. To test this hypothesis, histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity was quantitated in both the VMN and MePD in the presence and absence of methamphetamine in femalerats who were ovariectomized (OVX), or OVXed and hormone replaced with EB + P. DMNT1 and DNMT3B protein levels were also assessed. Our results show that methamphetamine alters DNMT and HDAC activity in the MePD in an ovarian steroid-dependent fashion. Both methamphetamine alone and EB + P alone significantly reduce DNMT enzymatic activity in an OVX female, but do not further decrease activity when both are given in combination. In contrast, no changes in HDAC or DNMT activity were seen in the VMN regardless of treatment, but the amount of DNMT3b after methamphetamine was significantly altered depending on the presence or absence of ovarian steroids. Taken together, these results support the hypothesis that methamphetamine induces change on an epigenetic level in female rats in both a hormone and nucleus dependent manner, and suggests epigenetic changes may play a role in methamphetamine's mechanism to facilitate the sexual motivation.
Collapse
Affiliation(s)
- Sarah A Rudzinskas
- Program in Neuroscience, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, 21201, United States; Department of Pharmacology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, 21201, United States.
| | - Jessica A Mong
- Program in Neuroscience, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, 21201, United States; Department of Pharmacology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, 21201, United States
| |
Collapse
|
17
|
Epigenetic Effects Induced by Methamphetamine and Methamphetamine-Dependent Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4982453. [PMID: 30140365 PMCID: PMC6081569 DOI: 10.1155/2018/4982453] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
Abstract
Methamphetamine is a widely abused drug, which possesses neurotoxic activity and powerful addictive effects. Understanding methamphetamine toxicity is key beyond the field of drug abuse since it allows getting an insight into the molecular mechanisms which operate in a variety of neuropsychiatric disorders. In fact, key alterations produced by methamphetamine involve dopamine neurotransmission in a way, which is reminiscent of spontaneous neurodegeneration and psychiatric schizophrenia. Thus, understanding the molecular mechanisms operated by methamphetamine represents a wide window to understand both the addicted brain and a variety of neuropsychiatric disorders. This overlapping, which is already present when looking at the molecular and cellular events promoted immediately after methamphetamine intake, becomes impressive when plastic changes induced in the brain of methamphetamine-addicted patients are considered. Thus, the present manuscript is an attempt to encompass all the molecular events starting at the presynaptic dopamine terminals to reach the nucleus of postsynaptic neurons to explain how specific neurotransmitters and signaling cascades produce persistent genetic modifications, which shift neuronal phenotype and induce behavioral alterations. A special emphasis is posed on disclosing those early and delayed molecular events, which translate an altered neurotransmitter function into epigenetic events, which are derived from the translation of postsynaptic noncanonical signaling into altered gene regulation. All epigenetic effects are considered in light of their persistent changes induced in the postsynaptic neurons including sensitization and desensitization, priming, and shift of neuronal phenotype.
Collapse
|
18
|
Sen S, Maulik U. Recent advancement toward significant association between disordered transcripts and virus-infected diseases: a survey. Brief Funct Genomics 2018; 17:458-470. [DOI: 10.1093/bfgp/ely021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sagnik Sen
- Department of Computer Science and Engineering, Jadavpur University, Kolkata-700032, India
| | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
19
|
Mahna D, Puri S, Sharma S. DNA methylation signatures: Biomarkers of drug and alcohol abuse. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:19-28. [DOI: 10.1016/j.mrrev.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/22/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023]
|
20
|
Jayanthi S, Gonzalez B, McCoy MT, Ladenheim B, Bisagno V, Cadet JL. Methamphetamine Induces TET1- and TET3-Dependent DNA Hydroxymethylation of Crh and Avp Genes in the Rat Nucleus Accumbens. Mol Neurobiol 2018; 55:5154-5166. [PMID: 28842817 PMCID: PMC5948251 DOI: 10.1007/s12035-017-0750-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/15/2017] [Indexed: 12/30/2022]
Abstract
Methamphetamine (METH) addiction is a biopsychosocial disorder that is accompanied by multiple relapses even after prolonged abstinence, suggesting the possibilities of long-lasting maladaptive epigenetic changes in the brain. Here, we show that METH administration produced time-dependent increases in the expression of corticotropin-releasing hormone (Crh/Crf), arginine vasopressin (Avp), and cocaine- and amphetamine-regulated transcript prepropeptide (Cartpt) mRNAs in the rat nucleus accumbens (NAc). Chromatin immunoprecipitation (ChIP) assays revealed that METH increased the abundance of phosphorylated CREB (pCREB) at the promoter of Cartpt but not at Avp or Crh DNA sequences. In contrast, METH produced DNA hypomethylation at sites near the Crh transcription start site (TSS) and at intragenic Avp sequences. METH also increased DNA hydroxymethylation at the Crh TSS and at intragenic Avp sites. In addition, METH increased the protein expression of ten-eleven-translocation enzymes that catalyze DNA hydroxymethylation. Importantly, METH increased TET1 binding at the Crh promoter and increased TET3 binding at Avp intragenic regions. We further tested the role of TET enzymes in METH-induced changes in gene expression by using the TET inhibitor, 1,5-isoquinolinediol (IQD), and found that IQD blocked METH-induced increases in Crh and Avp mRNA expression. Together, these results indicate that METH produced changes in neuropeptide transcription by both activation of the cAMP/CREB pathway and stimulation of TET-dependent DNA hydroxymethylation. These results provide molecular evidence for epigenetic controls of METH-induced changes in the expression of neuropeptides.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Betina Gonzalez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Veronica Bisagno
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA.
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA IRP, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
21
|
Grassi D, Franz H, Vezzali R, Bovio P, Heidrich S, Dehghanian F, Lagunas N, Belzung C, Krieglstein K, Vogel T. Neuronal Activity, TGFβ-Signaling and Unpredictable Chronic Stress Modulate Transcription of Gadd45 Family Members and DNA Methylation in the Hippocampus. Cereb Cortex 2018; 27:4166-4181. [PMID: 28444170 DOI: 10.1093/cercor/bhx095] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
Neuronal activity is altered in several neurological and psychiatric diseases. Upon depolarization not only neurotransmitters are released but also cytokines and other activators of signaling cascades. Unraveling their complex implication in transcriptional control in receiving cells will contribute to understand specific central nervous system (CNS) pathologies and will be of therapeutically interest. In this study we depolarized mature hippocampal neurons in vitro using KCl and revealed increased release not only of brain-derived neurotrophic factor (BDNF) but also of transforming growth factor beta (TGFB). Neuronal activity together with BDNF and TGFB controls transcription of DNA modifying enzymes specifically members of the DNA-damage-inducible (Gadd) family, Gadd45a, Gadd45b, and Gadd45g. MeDIP followed by massive parallel sequencing and transcriptome analyses revealed less DNA methylation upon KCl treatment. Psychiatric disorder-related genes, namely Tshz1, Foxn3, Jarid2, Per1, Map3k5, and Arc are transcriptionally activated and demethylated upon neuronal activation. To analyze whether misexpression of Gadd45 family members are associated with psychiatric diseases, we applied unpredictable chronic mild stress (UCMS) as established model for depression to mice. UCMS led to reduced expression of Gadd45 family members. Taken together, our data demonstrate that Gadd45 family members are new putative targets for UCMS treatments.
Collapse
Affiliation(s)
- Daniela Grassi
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Department of Basic Biomedical Sciences, Faculty of Biomedical Science and Health, Universidad Europea de Madrid, Madrid, Spain
| | - Henriette Franz
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Riccardo Vezzali
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Patrick Bovio
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stefanie Heidrich
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Fariba Dehghanian
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Natalia Lagunas
- Inserm U 930, Université François Rabelais, 37200 Tours, France
| | | | - Kerstin Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
22
|
Liu C, Jiao C, Wang K, Yuan N. DNA Methylation and Psychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:175-232. [PMID: 29933950 DOI: 10.1016/bs.pmbts.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA methylation has been an important area of research in the study of molecular mechanism to psychiatric disorders. Recent evidence has suggested that abnormalities in global methylation, methylation of genes, and pathways could play a role in the etiology of many forms of mental illness. In this article, we review the mechanisms of DNA methylation, including the genetic and environmental factors affecting methylation changes. We report and discuss major findings regarding DNA methylation in psychiatric patients, both within the context of global methylation studies and gene-specific methylation studies. Finally, we discuss issues surrounding data quality improvement, the limitations of current methylation analysis methods, and the possibility of using DNA methylation-based treatment for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Chunyu Liu
- University of Illinois, Chicago, IL, United States; School of Life Science, Central South University, Changsha, China.
| | - Chuan Jiao
- School of Life Science, Central South University, Changsha, China
| | - Kangli Wang
- School of Life Science, Central South University, Changsha, China
| | - Ning Yuan
- Hunan Brain Hospital, Changsha, China
| |
Collapse
|
23
|
Cross-talk between the epigenome and neural circuits in drug addiction. PROGRESS IN BRAIN RESEARCH 2017; 235:19-63. [PMID: 29054289 DOI: 10.1016/bs.pbr.2017.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug addiction is a behavioral disorder characterized by dysregulated learning about drugs and associated cues that result in compulsive drug seeking and relapse. Learning about drug rewards and predictive cues is a complex process controlled by a computational network of neural connections interacting with transcriptional and molecular mechanisms within each cell to precisely guide behavior. The interplay between rapid, temporally specific neuronal activation, and longer-term changes in transcription is of critical importance in the expression of appropriate, or in the case of drug addiction, inappropriate behaviors. Thus, these factors and their interactions must be considered together, especially in the context of treatment. Understanding the complex interplay between epigenetic gene regulation and circuit connectivity will allow us to formulate novel therapies to normalize maladaptive reward behaviors, with a goal of modulating addictive behaviors, while leaving natural reward-associated behavior unaffected.
Collapse
|
24
|
Orcholski ME, Khurshudyan A, Shamskhou EA, Yuan K, Chen IY, Kodani SD, Morisseau C, Hammock BD, Hong EM, Alexandrova L, Alastalo TP, Berry G, Zamanian RT, de Jesus Perez VA. Reduced carboxylesterase 1 is associated with endothelial injury in methamphetamine-induced pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2017; 313:L252-L266. [PMID: 28473326 DOI: 10.1152/ajplung.00453.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 01/08/2023] Open
Abstract
Pulmonary arterial hypertension is a complication of methamphetamine use (METH-PAH), but the pathogenic mechanisms are unknown. Given that cytochrome P450 2D6 (CYP2D6) and carboxylesterase 1 (CES1) are involved in metabolism of METH and other amphetamine-like compounds, we postulated that loss of function variants could contribute to METH-PAH. Although no difference in CYP2D6 expression was seen by lung immunofluorescence, CES1 expression was significantly reduced in endothelium of METH-PAH microvessels. Mass spectrometry analysis showed that healthy pulmonary microvascular endothelial cells (PMVECs) have the capacity to both internalize and metabolize METH. Furthermore, whole exome sequencing data from 18 METH-PAH patients revealed that 94.4% of METH-PAH patients were heterozygous carriers of a single nucleotide variant (SNV; rs115629050) predicted to reduce CES1 activity. PMVECs transfected with this CES1 variant demonstrated significantly higher rates of METH-induced apoptosis. METH exposure results in increased formation of reactive oxygen species (ROS) and a compensatory autophagy response. Compared with healthy cells, CES1-deficient PMVECs lack a robust autophagy response despite higher ROS, which correlates with increased apoptosis. We propose that reduced CES1 expression/activity could promote development of METH-PAH by increasing PMVEC apoptosis and small vessel loss.
Collapse
Affiliation(s)
- Mark E Orcholski
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| | | | - Elya A Shamskhou
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| | - Ian Y Chen
- Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| | - Sean D Kodani
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Ellen M Hong
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| | - Ludmila Alexandrova
- The Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, California
| | - Tero-Pekka Alastalo
- Children's Hospital Helsinki, University of Helsinki, Helsinki, Finland; and
| | - Gerald Berry
- Department of Pathology, Stanford University Medical Center, Stanford, California
| | - Roham T Zamanian
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California; .,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| |
Collapse
|
25
|
Neurotoxic Doses of Chronic Methamphetamine Trigger Retrotransposition of the Identifier Element in Rat Dorsal Dentate Gyrus. Genes (Basel) 2017; 8:genes8030096. [PMID: 28272323 PMCID: PMC5368700 DOI: 10.3390/genes8030096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 12/16/2022] Open
Abstract
Short interspersed elements (SINEs) are typically silenced by DNA hypermethylation in somatic cells, but can retrotranspose in proliferating cells during adult neurogenesis. Hypomethylation caused by disease pathology or genotoxic stress leads to genomic instability of SINEs. The goal of the present investigation was to determine whether neurotoxic doses of binge or chronic methamphetamine (METH) trigger retrotransposition of the identifier (ID) element, a member of the rat SINE family, in the dentate gyrus genomic DNA. Adult male Sprague-Dawley rats were treated with saline or high doses of binge or chronic METH and sacrificed at three different time points thereafter. DNA methylation analysis, immunohistochemistry and next-generation sequencing (NGS) were performed on the dorsal dentate gyrus samples. Binge METH triggered hypomethylation, while chronic METH triggered hypermethylation of the CpG-2 site. Both METH regimens were associated with increased intensities in poly(A)-binding protein 1 (PABP1, a SINE regulatory protein)-like immunohistochemical staining in the dentate gyrus. The amplification of several ID element sequences was significantly higher in the chronic METH group than in the control group a week after METH, and they mapped to genes coding for proteins regulating cell growth and proliferation, transcription, protein function as well as for a variety of transporters. The results suggest that chronic METH induces ID element retrotransposition in the dorsal dentate gyrus and may affect hippocampal neurogenesis.
Collapse
|
26
|
Nohesara S, Ghadirivasfi M, Barati M, Ghasemzadeh MR, Narimani S, Mousavi-Behbahani Z, Joghataei M, Soleimani M, Taban M, Mehrabi S, Thiagalingam S, Abdolmaleky HM. Methamphetamine-induced psychosis is associated with DNA hypomethylation and increased expression of AKT1 and key dopaminergic genes. Am J Med Genet B Neuropsychiatr Genet 2016; 171:1180-1189. [PMID: 27753212 PMCID: PMC7115129 DOI: 10.1002/ajmg.b.32506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/03/2016] [Indexed: 12/31/2022]
Abstract
Methamphetamine, one of the most frequently used illicit drugs worldwide, can induce psychosis in a large fraction of abusers and it is becoming a major problem for the health care institutions. There is some evidence that genetic and epigenetic factors may play roles in methamphetamine psychosis. In this study, we examined methamphetamine-induced epigenetic and expression changes of several key genes involved in psychosis. RNA and DNA extracted from the saliva samples of patients with methamphetamine dependency with and without psychosis as well as control subjects (each group 25) were analyzed for expression and promoter DNA methylation status of DRD1, DRD2, DRD3, DRD4, MB-COMT, GAD1, and AKT1 using qRT-PCR and q-MSP, respectively. We found statistically significant DNA hypomethylation of the promoter regions of DRD3 (P = 0.032), DRD4 (P = 0.05), MB-COMT (P = 0.009), and AKT1 (P = 0.0008) associated with increased expression of the corresponding genes in patients with methamphetamine psychosis (P = 0.022, P = 0.034, P = 0.035, P = 0.038, respectively), and to a lesser degree in some of the candidate genes in non-psychotic patients versus the control subjects. In general, methamphetamine dependency is associated with reduced DNA methylation and corresponding increase in expression of several key genes involved in the pathogenesis of psychotic disorders. While these epigenetic changes can be useful diagnostic biomarkers for psychosis in methamphetamine abusers, it is also consistent with the use of methyl rich diet for prevention or suppression of psychosis in these patients. However, this needs to be confirmed in future studies. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Mental Health Research Center and Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghadirivasfi
- Mental Health Research Center and Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemzadeh
- Mental Health Research Center and Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Narimani
- Mental Health Research Center and Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Mousavi-Behbahani
- Mental Health Research Center and Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadtaghi Joghataei
- Faculty of Medicine, Department of Anatomy and Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Faculty of Medicine, Department of Anatomy and Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Taban
- Mental Health Research Center and Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts,Correspondence to: Sam Thiagalingam and Hamid Mostafavi Abdolmaleky, Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118., (S.T.); (H.M.A.)
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts,Correspondence to: Sam Thiagalingam and Hamid Mostafavi Abdolmaleky, Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118., (S.T.); (H.M.A.)
| |
Collapse
|
27
|
Xu X, Ji H, Liu G, Wang Q, Liu H, Shen W, Li L, Xie X, Zhou W, Duan S. A significant association between BDNF promoter methylation and the risk of drug addiction. Gene 2016; 584:54-59. [DOI: 10.1016/j.gene.2016.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/19/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
|
28
|
Godino A, Jayanthi S, Cadet JL. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics 2016; 10:574-80. [PMID: 26023847 PMCID: PMC4622560 DOI: 10.1080/15592294.2015.1055441] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Amphetamine and methamphetamine addiction is described by specific behavioral alterations, suggesting long-lasting changes in gene and protein expression within specific brain subregions involved in the reward circuitry. Given the persistence of the addiction phenotype at both behavioral and transcriptional levels, several studies have been conducted to elucidate the epigenetic landscape associated with persistent effects of drug use on the mammalian brain. This review discusses recent advances in our comprehension of epigenetic mechanisms underlying amphetamine- or methamphetamine-induced behavioral, transcriptional, and synaptic plasticity. Accumulating evidence demonstrated that drug exposure induces major epigenetic modifications-histone acetylation and methylation, DNA methylation-in a very complex manner. In rare instances, however, the regulation of a specific target gene can be correlated to both epigenetic alterations and behavioral abnormalities. Work is now needed to clarify and validate an epigenetic model of addiction to amphetamines. Investigations that include genome-wide approaches will accelerate the speed of discovery in the field of addiction.
Collapse
Key Words
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- AMPH, amphetamine
- AP1, activator protein 1
- ATF2, activating transcription factor 2
- BASP1, brain abundant signal protein 1
- BDNF, brain derived neurotrophic factor
- CCR2, C‒C chemokine receptor 2
- CPP, conditioned place preference
- CREB, cAMP response element binding protein
- ChIP, chromatin immunoprecipitation
- CoREST, restrictive element 1 silencing transcription factor corepressor
- Cp60, compound 60
- DNA methylation
- DNMT, DNA methyltransferase
- FOS, Finkel–Biskis–Jinkins murine osteosarcoma viral oncogene
- GABA, γ-aminobutyric acid
- GLUA1, glutamate receptor subunit A1
- GLUA2, glutamate receptor subunit A2
- GLUN1, glutamate receptor subunit N1
- H2Bac, pan-acetylation of histone 2B
- H3, histone 3
- H3K14Ac, acetylation of histone 3 at lysine 14
- H3K18, lysine 18 of histone 3
- H3K4, lysine 4 of histone 3
- H3K4me3, trimethylation of histone 3 at lysine 4
- H3K9, lysine 9 of histone 3
- H3K9Ac, acetylation of histone 3 at lysine 9
- H3K9me3, trimethylation of histone 3 at lysine 9
- H4, histone 4
- H4Ac, pan-acetylation of histone 4
- H4K12Ac, acetylation of histone 4 at lysine 12
- H4K16, lysine 16 of histone 4
- H4K5, lysine 5 of histone 4
- H4K8, lysine 8 of histone 4
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- HDM, histone demethylase
- HMT, histone methyltransferase
- IP, intra-peritoneal
- JUN, jun proto-oncogene
- KDM, lysine demethylase
- KLF10, Kruppel-like factor 10
- KMT, lysine methyltransferase
- METH, methamphetamine
- MeCP2, methyl-CpG binding protein 2
- NAc, nucleus accumbens
- NMDA, N-methyl-D-aspartate
- NaB, sodium butyrate
- OfC, orbitofrontal cortex
- PfC, prefrontal cortex
- REST, restrictive element 1 silencing transcription factor
- RNAi, RNA interference
- Ser241, serine 241
- Sin3A, SIN3 transcription regulator family member A
- TSS, transcription start site
- VPA, valproic acid
- WT1, Wilms tumor protein 1.
- amphetamine
- histone acetylation
- histone methylation
- methamphetamine
- siRNA, silencing RNA
Collapse
Affiliation(s)
- Arthur Godino
- a Département de Biologie; École Normale Supérieure de Lyon ; Lyon , France
| | | | | |
Collapse
|
29
|
Cadet JL, McCoy MT, Jayanthi S. Epigenetics and addiction. Clin Pharmacol Ther 2016; 99:502-11. [PMID: 26841306 DOI: 10.1002/cpt.345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 12/13/2022]
Abstract
Addictions are public health menaces. However, despite advances in addiction research, the cellular or molecular mechanisms that cause transition from recreational use to addiction remain to be elucidated. We have recently suggested that addiction may be secondary to long-term epigenetic modifications that determine the clinical course of substance use disorders. A better understanding of epigenetic mechanisms in animal models that mimic human conditions should help to usher in a new area of drug development against addiction.
Collapse
Affiliation(s)
- J L Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - M T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - S Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Cadet JL. Epigenetics of Stress, Addiction, and Resilience: Therapeutic Implications. Mol Neurobiol 2016; 53:545-560. [PMID: 25502297 PMCID: PMC4703633 DOI: 10.1007/s12035-014-9040-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/30/2014] [Indexed: 12/12/2022]
Abstract
Substance use disorders (SUDs) are highly prevalent. SUDs involve vicious cycles of binges followed by occasional periods of abstinence with recurrent relapses despite treatment and adverse medical and psychosocial consequences. There is convincing evidence that early and adult stressful life events are risks factors for the development of addiction and serve as cues that trigger relapses. Nevertheless, the fact that not all individuals who face traumatic events develop addiction to licit or illicit drugs suggests the existence of individual and/or familial resilient factors that protect these mentally healthy individuals. Here, I give a brief overview of the epigenetic bases of responses to stressful events and of epigenetic changes associated with the administration of drugs of abuse. I also discuss the psychobiology of resilience and alterations in epigenetic markers that have been observed in models of resilience. Finally, I suggest the possibility that treatment of addiction should involve cognitive and pharmacological approaches that enhance resilience in at risk individuals. Similar approaches should also be used with patients who have already succumbed to the nefarious effects of addictive substances.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
31
|
Cheng MC, Hsu SH, Chen CH. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain. Brain Res 2015; 1629:126-34. [PMID: 26496011 DOI: 10.1016/j.brainres.2015.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 01/11/2023]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that may cause long-lasting synaptic dysfunction and abnormal gene expression. We aimed to explore the differential expression of synaptic plasticity genes in chronic METH-treated mouse brain. We used the RT(2) Profiler PCR Array and the real-time quantitative PCR to characterize differentially expressed synaptic plasticity genes in the frontal cortex and the hippocampus of chronic METH-treated mice compared with normal saline-treated mice. We further used pyrosequencing to assess DNA methylation changes in the CpG region of the five immediate early genes (IEGs) in chronic METH-treated mouse brain. We detected six downregulated genes in the frontal cortex and the hippocampus of chronic METH-treated mice, including five IEGs (Arc, Egr2, Fos, Klf10, and Nr4a1) and one neuronal receptor gene (Grm1), compared with normal saline-treated group, but only four genes (Arc, Egr2, Fos, and Nr4a1) were confirmed to be different. Furthermore, we found several CpG sites of the Arc and the Fos that had significant changes in DNA methylation status in the frontal cortex of chronic METH-treated mice, while the klf10 and the Nr4a1 that had significant changes in the hippocampus. Our results show that chronic administration of METH may lead to significant downregulation of the IEGs expression in both the frontal cortex and the hippocampus, which may partly account for the molecular mechanism of the action of METH. Furthermore, the changes in DNA methylation status of the IEGs in the brain indicate that an epigenetic mechanism-dependent transcriptional regulation may contribute to METH addiction, which warrants additional study.
Collapse
Affiliation(s)
- Min-Chih Cheng
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan; Center for General Education, St. Mary׳s Junior College of Medicine, Nursing and Management, Yilan County, Taiwan.
| | - Shih-Hsin Hsu
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Department and Graduate school of Biomedical Sciences Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
32
|
Bosch PJ, Benton MC, Macartney-Coxson D, Kivell BM. mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats. BMC Neurosci 2015; 16:43. [PMID: 26188473 PMCID: PMC4506769 DOI: 10.1186/s12868-015-0186-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/14/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Methamphetamine is a highly addictive central nervous system stimulant with increasing levels of abuse worldwide. Alterations to mRNA and miRNA expression within the mesolimbic system can affect addiction-like behaviors and thus play a role in the development of drug addiction. While many studies have investigated the effects of high-dose methamphetamine, and identified neurotoxic effects, few have looked at the role that persistent changes in gene regulation play following methamphetamine self-administration. Therefore, the aim of this study was to identify RNA changes in the ventral tegmental area following methamphetamine self-administration. We performed microarray analyses on RNA extracted from the ventral tegmental area of Sprague-Dawley rats following methamphetamine self-administration training (2 h/day) and 14 days of abstinence. RESULTS We identified 78 miRNA and 150 mRNA transcripts that were differentially expressed (fdr adjusted p < 0.05, absolute log2 fold change >0.5); these included genes not previously associated with addiction (miR-125a-5p, miR-145 and Foxa1), loci encoding receptors related to drug addiction behaviors and genes with previously recognized roles in addiction such as miR-124, miR-181a, DAT and Ret. CONCLUSION This study provides insight into the effects of methamphetamine on RNA expression in a key brain region associated with addiction, highlighting the possibility that persistent changes in the expression of genes with both known and previously unknown roles in addiction occur.
Collapse
Affiliation(s)
- P J Bosch
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, PO Box 600, Wellington, 6140, New Zealand.
| | - M C Benton
- Institute of Environmental Science and Research, Wellington, New Zealand.
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - D Macartney-Coxson
- Institute of Environmental Science and Research, Wellington, New Zealand.
| | - B M Kivell
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, PO Box 600, Wellington, 6140, New Zealand.
| |
Collapse
|
33
|
Wright KN, Hollis F, Duclot F, Dossat AM, Strong CE, Francis TC, Mercer R, Feng J, Dietz DM, Lobo MK, Nestler EJ, Kabbaj M. Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner. J Neurosci 2015; 35:8948-58. [PMID: 26063926 PMCID: PMC4461693 DOI: 10.1523/jneurosci.5227-14.2015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022] Open
Abstract
Epigenetic mechanisms, such as histone modifications, regulate responsiveness to drugs of abuse, such as cocaine, but relatively little is known about the regulation of addictive-like behaviors by DNA methylation. To investigate the influence of DNA methylation on the locomotor-activating effects of cocaine and on drug-seeking behavior, rats receiving methyl supplementation via chronic l-methionine (MET) underwent either a sensitization regimen of intermittent cocaine injections or intravenous self-administration of cocaine, followed by cue-induced and drug-primed reinstatement. MET blocked sensitization to the locomotor-activating effects of cocaine and attenuated drug-primed reinstatement, with no effect on cue-induced reinstatement or sucrose self-administration and reinstatement. Furthermore, upregulation of DNA methyltransferase 3a and 3b and global DNA hypomethylation were observed in the nucleus accumbens core (NAc), but not in the medial prefrontal cortex (mPFC), of cocaine-pretreated rats. Glutamatergic projections from the mPFC to the NAc are critically involved in the regulation of cocaine-primed reinstatement, and activation of both brain regions is seen in human addicts when reexposed to the drug. When compared with vehicle-pretreated rats, the immediate early gene c-Fos (a marker of neuronal activation) was upregulated in the NAc and mPFC of cocaine-pretreated rats after cocaine-primed reinstatement, and chronic MET treatment blocked its induction in both regions. Cocaine-induced c-Fos expression in the NAc was associated with reduced methylation at CpG dinucleotides in the c-Fos gene promoter, effects reversed by MET treatment. Overall, these data suggest that drug-seeking behaviors are, in part, attributable to a DNA methylation-dependent process, likely occurring at specific gene loci (e.g., c-Fos) in the reward pathway.
Collapse
Affiliation(s)
- Katherine N Wright
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Fiona Hollis
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Florian Duclot
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Amanda M Dossat
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Caroline E Strong
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - T Chase Francis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Roger Mercer
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306
| | - Jian Feng
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| | - David M Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| | - Mohamed Kabbaj
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306,
| |
Collapse
|
34
|
Abstract
Amphetamine (AMPH) is a psychostimulant and the most prescribed drug to treat attention deficit hyperactive disorder (ADHD). Although therapeutically used doses are generally well tolerated, numerous side effects are still known to occur, such as jitteriness, loss of appetite and psychosis. Moreover, AMPH is liable to be abused by users looking for increased alertness, weight loss or athletic performance. A growing body of evidence indicates that drugs of abuse, including AMPH, control gene expression through chromatin modifications. However, while numerous studies have investigated the molecular mechanisms of AMPH action, only a small number of studies have explored changes in gene expression caused by AMPH. This review examines the epigenetic changes induced by chronic and acute treatments with AMPH and includes, where relevant, data obtained with other psychostimulants such as methamphetamine and cocaine.
Collapse
Affiliation(s)
- Talus J McCowan
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Archana Dhasarathy
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Lucia Carvelli
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
35
|
Epigenetic alterations in the brain associated with HIV-1 infection and methamphetamine dependence. PLoS One 2014; 9:e102555. [PMID: 25054922 PMCID: PMC4108358 DOI: 10.1371/journal.pone.0102555] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/19/2014] [Indexed: 12/18/2022] Open
Abstract
HIV involvement of the CNS continues to be a significant problem despite successful use of combination antiretroviral therapy (cART). Drugs of abuse can act in concert with HIV proteins to damage glia and neurons, worsening the neurotoxicity caused by HIV alone. Methamphetamine (METH) is a highly addictive psychostimulant drug, abuse of which has reached epidemic proportions and is associated with high-risk sexual behavior, increased HIV transmission, and development of drug resistance. HIV infection and METH dependence can have synergistic pathological effects, with preferential involvement of frontostriatal circuits. At the molecular level, epigenetic alterations have been reported for both HIV-1 infection and drug abuse, but the neuropathological pathways triggered by their combined effects are less known. We investigated epigenetic changes in the brain associated with HIV and METH. We analyzed postmortem frontal cortex tissue from 27 HIV seropositive individuals, 13 of which had a history of METH dependence, in comparison to 14 cases who never used METH. We detected changes in the expression of DNMT1, at mRNA and protein levels, that resulted in the increase of global DNA methylation. Genome-wide profiling of DNA methylation in a subset of cases, showed differential methylation on genes related to neurodegeneration; dopamine metabolism and transport; and oxidative phosphorylation. We provide evidence for the synergy of HIV and METH dependence on the patterns of DNA methylation on the host brain, which results in a distinctive landscape for the comorbid condition. Importantly, we identified new epigenetic targets that might aid in understanding the aggravated neurodegenerative, cognitive, motor and behavioral symptoms observed in persons living with HIV and addictions.
Collapse
|
36
|
Lukowiak K, Heckler B, Bennett TE, Schriner EK, Wyrick K, Jewett C, Todd RP, Sorg BA. Enhanced memory persistence is blocked by a DNA methyltransferase inhibitor in the snail Lymnaea stagnalis. ACTA ACUST UNITED AC 2014; 217:2920-9. [PMID: 24902747 DOI: 10.1242/jeb.106765] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lymnaea stagnalis provides an excellent model system for studying memory because these snails have a well-described set of neurons, a single one of which controls expression of long-term memory of operantly conditioned respiratory behavior. We have shown that several different manipulations, including pre-training exposure to serotonin (5-HT) or methamphetamine, submersion of snails after training to prevent memory interference, and exposure to effluent from predatory crayfish (CE), enhance memory persistence. Changes in DNA methylation underlie formation of strong memories in mammals and 5-HT-enhanced long-term facilitation in Aplysia. Here we determined the impact of the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-AZA; 87 μmol l(-1)), on enhanced memory persistence by all four manipulations. We found that 5-HT (100 μmol l(-1)) enhanced memory persistence, which was blocked by 5-AZA pretreatment. Snails pre-exposed to 3.3 μmol l(-1) Meth 4 h prior to training demonstrated memory 72 h later, which was not present in controls. This memory-enhancing effect was blocked by pre-treatment with 87 μmol l(-1) 5-AZA. Similarly, submersion to prevent interference learning as well as training in CE produced memory that was not present in controls, and these effects were blocked by pre-treatment with 87 μmol l(-1) 5-AZA. In contrast, 5-AZA injection did not alter expression of normal (non-enhanced) memory, suggesting that these four stimuli enhance memory persistence by increasing DNA methyltransferase activity, which, in turn, increases expression of memory-enhancing genes and/or inhibits memory suppressor genes. These studies lay important groundwork for delineating gene methylation changes that are common to persistent memory produced by different stimuli.
Collapse
Affiliation(s)
- Ken Lukowiak
- Cumming School of Medicine, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Benjamin Heckler
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Thomas E Bennett
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Ellen K Schriner
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Kathryn Wyrick
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Cynthia Jewett
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Ryan P Todd
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Barbara A Sorg
- Alcohol and Drug Abuse Research Program and Translational Addiction Research Center, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| |
Collapse
|
37
|
|
38
|
Gavin DP, Floreani C. Epigenetics of schizophrenia: an open and shut case. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 115:155-201. [PMID: 25131545 DOI: 10.1016/b978-0-12-801311-3.00005-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the last decade and a half, there has been an explosion of data regarding epigenetic changes in schizophrenia. Most initial studies have suggested that schizophrenia is characterized by an overly restrictive chromatin state based on increases in transcription silencing histone modifications and DNA methylation at schizophrenia candidate gene promoters and increases in the expression of enzymes that catalyze their formation. However, recent studies indicate that the pathology is more complex. This complexity may greatly impact pharmacological approaches directed at targeting epigenetic abnormalities in schizophrenia. The current review explores epigenetic studies of schizophrenia and what this can tell us about the underlying pathophysiology. We hypothesize based on recent studies that it is also plausible that drugs that further restrict chromatin may be efficacious.
Collapse
Affiliation(s)
- David P Gavin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.
| | - Christina Floreani
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
39
|
Mitchell A, Roussos P, Peter C, Tsankova N, Akbarian S. The future of neuroepigenetics in the human brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 128:199-228. [PMID: 25410546 DOI: 10.1016/b978-0-12-800977-2.00008-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complex mechanisms shape the genome of brain cells into transcriptional units, clusters of condensed chromatin, and many other features that distinguish between various cell types and developmental stages sharing the same genetic material. Only a few years ago, the field's focus was almost entirely on a single mark, CpG methylation; the emerging complexity of neuronal and glial epigenomes now includes multiple types of DNA cytosine methylation, more than 100 residue-specific posttranslational histone modifications and histone variants, all of which superimposed by a dynamic and highly regulated three-dimensional organization of the chromosomal material inside the cell nucleus. Here, we provide an update on the most innovative approaches in neuroepigenetics and their potential contributions to approach cognitive functions and disorders unique to human. We propose that comprehensive, cell type-specific mappings of DNA and histone modifications, chromatin-associated RNAs, and chromosomal "loopings" and other determinants of three-dimensional genome organization will critically advance insight into the pathophysiology of the disease. For example, superimposing the epigenetic landscapes of neuronal and glial genomes onto genetic maps for complex disorders, ranging from Alzheimer's disease to schizophrenia, could provide important clues about neurological function for some of the risk-associated noncoding sequences in the human genome.
Collapse
Affiliation(s)
- Amanda Mitchell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Cyril Peter
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nadejda Tsankova
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
40
|
Mantri CK, Mantri JV, Pandhare J, Dash C. Methamphetamine inhibits HIV-1 replication in CD4+ T cells by modulating anti-HIV-1 miRNA expression. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:92-100. [PMID: 24434277 DOI: 10.1016/j.ajpath.2013.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 11/28/2022]
Abstract
Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamphetamine on HIV-1 replication in human CD4(+) T cells that serve as the primary targets of infection in vivo are not clearly understood. Therefore, we examined HIV-1 replication in primary CD4(+) T cells in the presence of methamphetamine in a dose-dependent manner. Our results demonstrate that methamphetamine had a minimal effect on HIV-1 replication at concentrations of 1 to 50 μmol/L. However, at concentrations >100 μmol/L, it inhibited HIV-1 replication in a dose-dependent manner. We also discovered that methamphetamine up-regulated the cellular anti-HIV-1 microRNAs (miR-125b, miR-150, and miR-28-5p) in CD4(+) T cells. Knockdown experiments illustrated that up-regulation of the anti-HIV miRNAs inhibited HIV-1 replication. These results are contrary to the paradigm that methamphetamine accentuates HIV-1 pathogenesis by increasing HIV-1 replication. Therefore, our findings underline the complex interaction between drug use and HIV-1 and necessitate comprehensive understanding of the effects of methamphetamine on HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Chinmay K Mantri
- Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Vanderbilt-Meharry Center for AIDS Research, Nashville, Tennessee
| | - Jyoti V Mantri
- Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Vanderbilt-Meharry Center for AIDS Research, Nashville, Tennessee
| | - Jui Pandhare
- Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Vanderbilt-Meharry Center for AIDS Research, Nashville, Tennessee
| | - Chandravanu Dash
- Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Vanderbilt-Meharry Center for AIDS Research, Nashville, Tennessee; Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee; Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
41
|
Schmidt HD, McGinty JF, West AE, Sadri-Vakili G. Epigenetics and psychostimulant addiction. Cold Spring Harb Perspect Med 2013; 3:a012047. [PMID: 23359110 DOI: 10.1101/cshperspect.a012047] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic drug exposure alters gene expression in the brain and produces long-term changes in neural networks that underlie compulsive drug taking and seeking. Exactly how drug-induced changes in synaptic plasticity and subsequent gene expression are translated into persistent neuroadaptations remains unclear. Emerging evidence suggests that complex drug-induced neuroadaptations in the brain are mediated by highly synchronized and dynamic patterns of gene regulation. Recently, it has become clear that epigenetic mechanisms contribute to drug-induced structural, synaptic, and behavioral plasticity by regulating expression of gene networks. Here we review how alterations in histone modifications, DNA methylation, and microRNAs regulate gene expression and contribute to psychostimulant addiction with a focus on the epigenetic mechanisms that regulate brain-derived neurotrophic factor (BDNF) expression following chronic cocaine exposure. Identifying epigenetic signatures that define psychostimulant addiction may lead to novel, efficacious treatments for drug craving and relapse.
Collapse
Affiliation(s)
- Heath D Schmidt
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
Many cellular constituents in the human brain permanently exit from the cell cycle during pre- or early postnatal development, but little is known about epigenetic regulation of neuronal and glial epigenomes during maturation and aging, including changes in mood and psychosis spectrum disorders and other cognitive or emotional disease. Here, we summarize the current knowledge base as it pertains to genome organization in the human brain, including the regulation of DNA cytosine methylation and hydroxymethylation, and a subset of (altogether >100) residue-specific histone modifications associated with gene expression, and silencing and various other functional chromatin states. We propose that high-resolution mapping of epigenetic markings in postmortem brain tissue or neural cultures derived from induced pluripotent cells (iPS), in conjunction with transcriptome profiling and whole-genome sequencing, will increasingly be used to define the molecular pathology of specific cases diagnosed with depression, schizophrenia, autism, or other major psychiatric disease. We predict that these highly integrative explorations of genome organization and function will provide an important alternative to conventional approaches in human brain studies, which mainly are aimed at uncovering group effects by diagnosis but generally face limitations because of cohort size.
Collapse
|
43
|
Nakatome M, Orii M, Hamajima M, Hirata Y, Uemura M, Hirayama S, Isobe I. Methylation analysis of circadian clock gene promoters in forensic autopsy specimens. Leg Med (Tokyo) 2011; 13:205-9. [PMID: 21596611 DOI: 10.1016/j.legalmed.2011.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 12/31/2022]
Abstract
DNA methylation in gene promoter regions influences gene expression. Circadian clock genes play an important role in the formation of a biological clock and aberrant methylation of these genes contributes to several disorders. In this study, we examined forensic autopsy specimens to determine whether DNA methylation status in the promoter regions of nine circadian clock genes (Per1, Per2, Per3, Cry1, Cry2, Bmal1, Clock, Tim, and Ck1e) is related to a change in acquired diathesis and/or causes of death. Methylation-specific PCR and direct sequencing methods revealed that the promoters of Per1, Cry2, Bmal1, Clock, and Ck1e were unmethylated in all the forensic autopsy specimens, while the promoters of Per2, Per3, Cry1, and Tim were partially methylated. Methylation status varied between individuals and between tissues in the same patient. A detailed analysis of methylation patterns in the Cry1 promoter region revealed that the patterns also varied between individuals and the Cry1 promoter had highly methylated patterns in two cases that had been exposed to methamphetamine. These results suggest that the methylation status of clock gene promoters varies between individuals. Methamphetamine use may influence methylation in the Cry1 gene promoter region and disturb circadian rhythmicity.
Collapse
Affiliation(s)
- Masato Nakatome
- Department of Legal Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Purohit V, Rapaka RS, Schnur P, Shurtleff D. Potential impact of drugs of abuse on mother-to-child transmission (MTCT) of HIV in the era of highly active antiretroviral therapy (HAART). Life Sci 2011; 88:909-16. [DOI: 10.1016/j.lfs.2011.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/19/2011] [Indexed: 11/16/2022]
|
45
|
Abstract
Addiction is a debilitating psychiatric disorder, with a complex aetiology involving the interaction of inherited predispositions and environmental factors. Emerging evidence suggests that epigenetic alterations to the genome, including DNA methylation and histone modifications, are important mechanisms underlying addiction and the neurobiological response to addictive substances. In this review, we introduce the reader to epigenetic mechanisms and describe a potential role for dynamic epigenetic changes in mediating addictive behaviours via long-lasting changes in gene expression. We summarize recent findings from both molecular and behavioural experiments elucidating the role of epigenetic changes in mediating the addictive potential of various drugs of abuse, including cocaine, amphetamine and alcohol. The implications of these findings for molecular studies of addiction and the future development of novel therapeutic interventions are also discussed.
Collapse
Affiliation(s)
- Chloe C Y Wong
- Institute of Psychiatry, SGDP Research Centre, King's College London, De Crespigny Park, Denmark Hill, UK
| | | | | |
Collapse
|
46
|
Yu NK, Baek SH, Kaang BK. DNA methylation-mediated control of learning and memory. Mol Brain 2011; 4:5. [PMID: 21247469 PMCID: PMC3033800 DOI: 10.1186/1756-6606-4-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/19/2011] [Indexed: 12/20/2022] Open
Abstract
Animals constantly receive and respond to external or internal stimuli, and these experiences are learned and memorized in their brains. In animals, this is a crucial feature for survival, by making it possible for them to adapt their behavioral patterns to the ever-changing environment. For this learning and memory process, nerve cells in the brain undergo enormous molecular and cellular changes, not only in the input-output-related local subcellular compartments but also in the central nucleus. Interestingly, the DNA methylation pattern, which is normally stable in a terminally differentiated cell and defines the cell type identity, is emerging as an important regulatory mechanism of behavioral plasticity. The elucidation of how this covalent modification of DNA, which is known to be the most stable epigenetic mark, contributes to the complex orchestration of animal behavior is a fascinating new research area. We will overview the current understanding of the mechanism of modifying the methyl code on DNA and its impact on learning and memory.
Collapse
Affiliation(s)
- Nam-Kyung Yu
- National Creative Research Initiative Center for Memory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
47
|
Bredy TW, Sun YE, Kobor MS. How the epigenome contributes to the development of psychiatric disorders. Dev Psychobiol 2010; 52:331-42. [PMID: 20127889 DOI: 10.1002/dev.20424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epigenetics commonly refers to the developmental process by which cellular traits are established and inherited without a change in DNA sequence. These mechanisms of cellular memory also orchestrate gene expression in the adult brain and recent evidence suggests that the "epigenome" represents a critical interface between environmental signals, activation, repression and maintenance of genomic responses, and persistent behavior. We here review the current state of knowledge regarding the contribution of the epigenome toward the development of psychiatric disorders.
Collapse
Affiliation(s)
- Timothy W Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, QC 4072, Australia.
| | | | | |
Collapse
|
48
|
Han J, Li Y, Wang D, Wei C, Yang X, Sui N. Effect of 5-aza-2-deoxycytidine microinjecting into hippocampus and prelimbic cortex on acquisition and retrieval of cocaine-induced place preference in C57BL/6 mice. Eur J Pharmacol 2010; 642:93-8. [PMID: 20550947 DOI: 10.1016/j.ejphar.2010.05.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/29/2010] [Accepted: 05/31/2010] [Indexed: 01/20/2023]
Abstract
The long lasting addiction-related abnormal memory is one of the most important foundations for relapse. DNA methylation may be a possible mechanism for persistence of such memory. Here we injected the DNA methyltransferases (DNMTs) inhibitor, 5-aza-2-deoxycytidine (5-aza) into hippocampus CA1 area and prelimbic cortex during the stages of acquisition and expression of cocaine-induced place preference in C57BL/6 mice. Results showed that in CA1 DNA methylation inhibitors could restrain acquisition but had no impact on expression of the cocaine-induced conditioned place preference (CPP). On the contrary, in prelimbic cortex, 5-aza had no effect on acquisition but blocked expression. Our results indicated that DNA methylation in hippocampus is required for learning; while DNA methylation in prelimbic cortex is necessary for memory retrieval. The present finding is consistent with the role of the hippocampus as a structure contributing to cocaine-induced memory acquisition, and prelimbic cortex, a part of prefrontal cortex as an area responsible for cocaine-induced memory retrieval. In conclusion, DNA methylation does play an important role in drug-induced learning and memory although the detailed effect still calls for further research.
Collapse
Affiliation(s)
- Jin Han
- Key lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | | | | | | | | | | |
Collapse
|
49
|
Carouge D, Host L, Aunis D, Zwiller J, Anglard P. CDKL5 is a brain MeCP2 target gene regulated by DNA methylation. Neurobiol Dis 2010; 38:414-24. [PMID: 20211261 DOI: 10.1016/j.nbd.2010.02.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/21/2010] [Accepted: 02/27/2010] [Indexed: 02/08/2023] Open
Abstract
Rett syndrome and its "early-onset seizure" variant are severe neurodevelopmental disorders associated with mutations within the MECP2 and the CDKL5 genes. Antidepressants and drugs of abuse induce the expression of the epigenetic factor MeCP2, thereby influencing chromatin remodeling. We show that increased MeCP2 levels resulted in the repression of Cdkl5 in rat brain structures in response to cocaine, as well as in cells exposed to serotonin, or overexpressing MeCP2. In contrast, Cdkl5 was induced by siRNA-mediated knockdown of Mecp2 and by DNA-methyltransferase inhibitors, demonstrating its regulation by MeCP2 and by DNA methylation. Cdkl5 gene methylation and its methylation-dependent binding to MeCP2 were increased in the striatum of cocaine-treated rats. Our data demonstrate that Cdkl5 is a MeCP2-repressed target gene providing a link between genes the mutation of which generates overlapping symptoms. They highlight DNA methylation changes as a potential mechanism participating in the long-term plasticity triggered by pharmacological agents.
Collapse
Affiliation(s)
- Delphine Carouge
- INSERM, U575, Université de Strasbourg, Centre de Neurochimie, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
50
|
Abstract
Epigenetic regulators of gene expression including DNA cytosine methylation and posttranslational histone modifications could play a role for some of the molecular alterations associated with schizophrenia. For example, in prefrontal cortex of subjects with schizophrenia, abnormal DNA or histone methylation at sites of specific genes and promoters is associated with changes in RNA expression. These findings are of interest from a neurodevelopmental perspective because there is increasing evidence that epigenetic markings for a substantial portion of genes and loci are highly regulated during the first years of life. Furthermore, there is circumstantial evidence that a subset of antipsychotic drugs, including the atypical, Clozapine, interfere with chromatin remodeling mechanisms. Challenges for the field include (1) no clear consensus yet regarding disease-associated changes, (2) the lack of cell-specific chromatin assays which makes it difficult to ascribe epigenetic alterations to specific cell populations, and (3) lack of knowledge about the stability or turnover of epigenetic markings at specific loci in (brain) chromatin. Despite these shortcomings, the study of DNA and histone modifications in chromatin extracted from diseased and control brain tissue is likely to provide valuable insight into the genomic risk architecture of schizophrenia, particularly in the large majority of cases for which a straightforward genetic cause still remains elusive,
Collapse
Affiliation(s)
- Schahram Akbarian
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA.
| |
Collapse
|