1
|
Differentiation of Human Embryonic Stem Cells to Sympathetic Neurons: A Potential Model for Understanding Neuroblastoma Pathogenesis. Stem Cells Int 2018; 2018:4391641. [PMID: 30515222 PMCID: PMC6236576 DOI: 10.1155/2018/4391641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/17/2018] [Accepted: 09/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background and Aims Previous studies modelling human neural crest differentiation from stem cells have resulted in a low yield of sympathetic neurons. Our aim was to optimise a method for the differentiation of human embryonic stem cells (hESCs) to sympathetic neuron-like cells (SN) to model normal human SNS development. Results Using stromal-derived inducing activity (SDIA) of PA6 cells plus BMP4 and B27 supplements, the H9 hESC line was differentiated to neural crest stem-like cells and SN-like cells. After 7 days of PA6 cell coculture, mRNA expression of SNAIL and SOX-9 neural crest specifier genes and the neural marker peripherin (PRPH) increased. Expression of the pluripotency marker OCT 4 decreased, whereas TP53 and LIN28B expression remained high at levels similar to SHSY5Y and IMR32 neuroblastoma cell lines. A 5-fold increase in the expression of the catecholaminergic marker tyrosine hydroxylase (TH) and the noradrenergic marker dopamine betahydroxylase (DBH) was observed by day 7 of differentiation. Fluorescence-activated cell sorting for the neural crest marker p75, enriched for cells expressing p75, DBH, TH, and PRPH, was more specific than p75 neural crest stem cell (NCSC) microbeads. On day 28 post p75 sorting, dual immunofluorescence identified sympathetic neurons by PRPH and TH copositivity cells in 20% of the cell population. Noradrenergic sympathetic neurons, identified by copositivity for both PHOX2B and DBH, were present in 9.4% ± 5.5% of cells. Conclusions We have optimised a method for noradrenergic SNS development using the H9 hESC line to improve our understanding of normal human SNS development and, in a future work, the pathogenesis of neuroblastoma.
Collapse
|
2
|
Neurotrophin Responsiveness of Sympathetic Neurons Is Regulated by Rapid Mobilization of the p75 Receptor to the Cell Surface through TrkA Activation of Arf6. J Neurosci 2018; 38:5606-5619. [PMID: 29789375 DOI: 10.1523/jneurosci.0788-16.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/24/2018] [Accepted: 05/13/2018] [Indexed: 12/23/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR) plays an integral role in patterning the sympathetic nervous system during development. Initially, p75NTR is expressed at low levels as sympathetic axons project toward their targets, which enables neurotrophin-3 (NT3) to activate TrkA receptors and promote growth. Upon reaching nerve growth factor (NGF) producing tissues, p75NTR is upregulated, resulting in formation of TrkA-p75 complexes, which are high-affinity binding sites selective for NGF, thereby blunting NT3 signaling. The level of p75NTR expressed on the neuron surface is instrumental in regulating trophic factor response; however, the mechanisms by which p75NTR expression is regulated are poorly understood. Here, we demonstrate a rapid, translation independent increase in surface expression of p75NTR in response to NGF in rat sympathetic neurons. p75NTR was mobilized to the neuron surface from GGA3-postitive vesicles through activation of the GTPase Arf6, which was stimulated by NGF, but not NT3 binding to TrkA. Arf6 activation required PI3 kinase activity and was prevented by an inhibitor of the cytohesin family of Arf6 guanine nucleotide exchange factors. Overexpression of a constitutively active Arf6 mutant (Q67L) was sufficient to significantly increase surface expression of p75NTR even in the absence of NGF. Functionally, expression of active Arf6 markedly attenuated the ability of NT3 to promote neuronal survival and neurite outgrowth, whereas the NGF response was unaltered. These data suggest that NGF activation of Arf6 through TrkA is critical for the increase in p75NTR surface expression that enables the switch in neurotrophin responsiveness during development in the sympathetic nervous system.SIGNIFICANCE STATEMENT p75NTR is instrumental in the regulation of neuronal survival and apoptosis during development and is also implicated as a contributor to aberrant neurodegeneration in numerous conditions. Therefore, a better understanding of the mechanisms that mediate p75NTR surface availability may provide insight into how and why neurodegenerative processes manifest and reveal new therapeutic targets. Results from this study indicate a novel mechanism by which p75NTR can be rapidly shuttled to the cell surface from existing intracellular pools and explores a unique pathway by which NGF regulates the sympathetic innervation of target tissues, which has profound consequences for the function of these organs.
Collapse
|
3
|
Girard BM, Malley SE, Mathews MM, May V, Vizzard MA. Intravesical PAC1 Receptor Antagonist, PACAP(6-38), Reduces Urinary Bladder Frequency and Pelvic Sensitivity in NGF-OE Mice. J Mol Neurosci 2016; 59:290-9. [PMID: 27146136 DOI: 10.1007/s12031-016-0764-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Chronic NGF overexpression (OE) in the urothelium, achieved through the use of a highly urothelium-specific uroplakin II promoter, stimulates neuronal sprouting in the urinary bladder, produces increased voiding frequency and non-voiding contractions, and referred somatic sensitivity. Additional NGF-mediated pleiotropic changes might contribute to increased voiding frequency and pelvic hypersensitivity in NGF-OE mice such as neuropeptide/receptor systems including PACAP(Adcyap1) and PAC1 receptor (Adcyap1r1). Given the presence of PAC1-immunoreactive fibers and the expression of PAC1 receptor expression in bladder tissues, and PACAP-facilitated detrusor contraction, whether PACAP/receptor signaling contributes to increased voiding frequency and somatic sensitivity was evaluated in NGF-OE mice. Intravesical administration of the PAC1 receptor antagonist, PACAP(6-38) (300 nM), significantly (p ≤ 0.01) increased intercontraction interval (2.0-fold) and void volume (2.5-fold) in NGF-OE mice. Intravesical instillation of PACAP(6-38) also decreased baseline bladder pressure in NGF-OE mice. PACAP(6-38) had no effects on bladder function in WT mice. Intravesical administration of PACAP(6-38) (300 nM) significantly (p ≤ 0.01) reduced pelvic sensitivity in NGF-OE mice but was without effect in WT mice. PACAP/receptor signaling contributes to the increased voiding frequency and pelvic sensitivity observed in NGF-OE mice.
Collapse
Affiliation(s)
- Beatrice M Girard
- Department of Neurological Sciences, College of Medicine, University of Vermont, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Susan E Malley
- Department of Neurological Sciences, College of Medicine, University of Vermont, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Morgan M Mathews
- Department of Neurological Sciences, College of Medicine, University of Vermont, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Victor May
- Department of Neurological Sciences, College of Medicine, University of Vermont, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Margaret A Vizzard
- Department of Neurological Sciences, College of Medicine, University of Vermont, D405A Given Research Building, Burlington, VT, 05405, USA.
| |
Collapse
|
4
|
The transcription factor Hmx1 and growth factor receptor activities control sympathetic neurons diversification. EMBO J 2013; 32:1613-25. [PMID: 23591430 DOI: 10.1038/emboj.2013.85] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/15/2013] [Indexed: 01/17/2023] Open
Abstract
The sympathetic nervous system relies on distinct populations of neurons that use noradrenaline or acetylcholine as neurotransmitter. We show that fating of the sympathetic lineage at early stages results in hybrid precursors from which, genetic cell-lineage tracing reveals, all types progressively emerge by principal mechanisms of maintenance, repression and induction of phenotypes. The homeobox transcription factor HMX1 represses Tlx3 and Ret, induces TrkA and maintains tyrosine hydroxylase (Th) expression in precursors, thus driving segregation of the noradrenergic sympathetic fate. Cholinergic sympathetic neurons develop through cross-regulatory interactions between TRKC and RET in precursors, which lead to Hmx1 repression and sustained Tlx3 expression, thereby resulting in failure of TrkA induction and loss of maintenance of Th expression. Our results provide direct evidence for a model in which diversification of noradrenergic and cholinergic sympathetic neurons is based on a principle of cross-repressive functions in which the specific cell fates are directed by an active suppression of the expression of transcription factors and receptors that direct the alternative fate.
Collapse
|
5
|
Bhatt S, Diaz R, Trainor PA. Signals and switches in Mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol 2013; 5:5/2/a008326. [PMID: 23378583 DOI: 10.1101/cshperspect.a008326] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neural crest cells (NCCs) comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types during vertebrate development. These include cartilage and bone, tendons, and connective tissue, as well as neurons, glia, melanocytes, and endocrine and adipose cells; this remarkable lineage potential persists into adult life. Taken together with a limited capacity for self-renewal, neural crest cells bear the hallmarks of stem and progenitor cells and are considered to be synonymous with vertebrate evolution. The neural crest has provided a system for exploring the mechanisms that govern developmental processes such as morphogenetic induction, cell migration, and fate determination. Today, much of the focus on neural crest cells revolves around their stem cell-like characteristics and potential for use in regenerative medicine. A thorough understanding of the signals and switches that govern mammalian neural crest patterning is central to potential therapeutic application of these cells and better appreciation of the role that neural crest cells play in vertebrate evolution, development, and disease.
Collapse
Affiliation(s)
- Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
6
|
Kim MW, Chung YC, Jung HC, Park MS, Han YM, Chung YA, Maeng LS, Park SI, Lim J, Im WS, Chung JY, Kim M, Mook I, Kim M. Electroacupuncture enhances motor recovery performance with brain-derived neurotrophic factor expression in rats with cerebral infarction. Acupunct Med 2012; 30:222-6. [PMID: 22729070 DOI: 10.1136/acupmed-2011-010126] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Electroacupuncture (EA) is a traditional medicine in patients with post-stroke rehabilitation. Brain-derived neurotrophic factor (BDNF) is a potent growth factor involved in recovery following cerebral injury. The aim of the present study was to investigate whether EA increases BDNF levels and facilitates functional recovery. METHODS Occlusion of the middle cerebral artery was performed in rats (N=12) followed by reperfusion. EA was applied at the GV20 (Baihui) acupoint. Motor and sensory functions were monitored on the Garcia scale for 2 weeks. Expressions of BDNF and receptor tyrosine kinase B (trkB) were determined by immunoblotting and immunohistochemistry. RESULTS Improvement of Garcia scores, particularly in motor performance, were noted in the group with EA stimulation (p<0.05). With EA application, BDNF was elevated in the ischaemic hemisphere with increased numbers of BDNF(+) cells. Increased expression of trkB was also detected. CONCLUSION These results indicate that EA at GV20 improves motor recovery and stimulates BDNF/trkB expression in rats with cerebral ischaemia.
Collapse
Affiliation(s)
- Min-Wook Kim
- Institute of Catholic Integrative Medicine, Incheon St. Mary’s Hospital, Catholic University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Giannakopoulou D, Daguin-Nerrière V, Mitsacos A, Kouvelas ED, Neveu I, Giompres P, Brachet P. Ectopic expression of TrKA in the adult rat basal ganglia induces both nerve growth factor-dependent and -independent neuronal responses. J Neurosci Res 2012; 90:1507-21. [DOI: 10.1002/jnr.23031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/16/2011] [Accepted: 12/27/2011] [Indexed: 12/30/2022]
|
8
|
Harrington AW, St Hillaire C, Zweifel LS, Glebova NO, Philippidou P, Halegoua S, Ginty DD. Recruitment of actin modifiers to TrkA endosomes governs retrograde NGF signaling and survival. Cell 2011; 146:421-34. [PMID: 21816277 DOI: 10.1016/j.cell.2011.07.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/02/2011] [Accepted: 07/09/2011] [Indexed: 12/15/2022]
Abstract
The neurotrophins NGF and NT3 collaborate to support development of sympathetic neurons. Although both promote axonal extension via the TrkA receptor, only NGF activates retrograde transport of TrkA endosomes to support neuronal survival. Here, we report that actin depolymerization is essential for initiation of NGF/TrkA endosome trafficking and that a Rac1-cofilin signaling module associated with TrkA early endosomes supports their maturation to retrograde transport-competent endosomes. These actin-regulatory endosomal components are absent from NT3/TrkA endosomes, explaining the failure of NT3 to support retrograde TrkA transport and survival. The inability of NT3 to activate Rac1-GTP-cofilin signaling is likely due to the labile nature of NT3/TrkA complexes within the acidic environment of TrkA early endosomes. Thus, TrkA endosomes associate with actin-modulatory proteins to promote F-actin disassembly, enabling their maturation into transport-competent signaling endosomes. Differential control of this process explains how NGF but not NT3 supports retrograde survival of sympathetic neurons.
Collapse
Affiliation(s)
- Anthony W Harrington
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Leiser Y, Silverstein N, Blumenfeld A, Shilo D, Haze A, Rosenfeld E, Shay B, Tabakman R, Lecht S, Lazarovici P, Deutsch D. The induction of tuftelin expression in PC12 cell line during hypoxia and NGF-induced differentiation. J Cell Physiol 2010; 226:165-72. [DOI: 10.1002/jcp.22318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
PACAP/VIP and receptor characterization in micturition pathways in mice with overexpression of NGF in urothelium. J Mol Neurosci 2010; 42:378-89. [PMID: 20449688 DOI: 10.1007/s12031-010-9384-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/23/2010] [Indexed: 12/11/2022]
Abstract
Urothelium-specific overexpression of nerve growth factor (NGF) in the urinary bladder of transgenic mice stimulates neuronal sprouting or proliferation in the urinary bladder, produces urinary bladder hyperreflexia, and results in increased referred somatic hypersensitivity. Additional NGF-mediated changes might contribute to the urinary bladder hyperreflexia and pelvic hypersensitivity observed in these transgenic mice such as upregulation of neuropeptide/receptor systems. Chronic overexpression of NGF in the urothelium was achieved through the use of a highly urothelium-specific, uroplakin II promoter. In the present study, we examined pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), and associated receptor (PAC1, VPAC1, VPAC2) transcripts or protein expression in urothelium and detrusor smooth muscle and lumbosacral dorsal root ganglia in NGF-overexpressing and littermate wildtype mice using real-time quantitative reverse transcription-polymerase chain reaction and immunohistochemical approaches. Results demonstrate upregulation of PAC1 receptor transcript and PAC1-immunoreactivity in urothelium of NGF-OE mice whereas PACAP transcript and PACAP-immunoreactivity were decreased in urothelium of NGF-OE mice. In contrast, VPAC1 receptor transcript was decreased in both urothelium and detrusor smooth muscle of NGF-OE mice. VIP transcript expression and immunostaining was not altered in urinary bladder of NGF-OE mice. Changes in PACAP, VIP, and associated receptor transcripts and protein expression in micturition pathways resemble some, but not all, changes observed after induction of urinary bladder inflammation known to involve NGF production.
Collapse
|