1
|
Plaza A, Merino B, Ruiz-Gayo M. Cholecystokinin promotes functional expression of the aquaglycerol channel aquaporin 7 in adipocytes. Br J Pharmacol 2022; 179:4092-4106. [PMID: 35366004 DOI: 10.1111/bph.15848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Cholecystokinin (CCK) promotes triglyceride storage and adiponectin production in white adipose tissue (WAT), suggesting that CCK modulates WAT homeostasis. Our goal was to investigate the role of CCK in regulating the expression and function of the aquaglycerol channel aquaporin 7 (AQP7), a protein that is pivotal for maintaining adipocyte homeostasis and preserving insulin responsiveness. EXPERIMENTAL APPROACH The effect of the bioactive fragment of CCK, CCK-8, in regulating adipose AQP7 expression and glycerol efflux was assessed in rats as well as in pre-adipocytes. Moreover, the involvement of insulin receptors in the effects of CCK-8 was characterized in pre-adipocytes lacking insulin receptors. KEY RESULTS CCK-8 induced AQP7 gene expression in rat WAT, concomitantly increasing plasma glycerol concentration. In isolated pre-adipocytes, CCK-8 also enhanced both AQP7 expression and glycerol leakage. The effect of CCK-8 was independent of the lipolysis rate, as CCK-8 failed to promote fatty acid release by adipocytes. In addition, CCK-8 did not enhance hormone sensitive lipase phosphorylation, which is the rate-limiting step of lipolysis. Moreover, the effects of CCK-8 were dependent on the activation of protein kinase B and PPARγ. Silencing insulin receptor (IR) expression inhibited CCK-8-induced Aqp7 expression in pre-adipocytes. Furthermore, insulin enhanceded the effect of CCK-8. CONCLUSIONS AND IMPLICATIONS CCK regulates AQP7 expression and function, and this effect is dependent on insulin. Accordingly, CCK receptor agonists could be suitable for preserving and improving insulin responsiveness in WAT.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la Salud. Facultad de Farmacia. Universidad CEU - San Pablo. CEU Universities, Madrid, Spain.,Laboratory of Bioactive Products and Metabolic Syndrome, IMDEA Food Institute, Madrid, Spain
| | - Beatriz Merino
- Departamento de Ciencias Farmacéuticas y de la Salud. Facultad de Farmacia. Universidad CEU - San Pablo. CEU Universities, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud. Facultad de Farmacia. Universidad CEU - San Pablo. CEU Universities, Madrid, Spain
| |
Collapse
|
2
|
Plaza A, Merino B, Del Olmo N, Ruiz-Gayo M. The cholecystokinin receptor agonist, CCK-8, induces adiponectin production in rat white adipose tissue. Br J Pharmacol 2019; 176:2678-2690. [PMID: 31012948 DOI: 10.1111/bph.14690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE A cholecystokinin (CCK) system has been identified in white adipose tissue (WAT). Nevertheless, the endocrine actions of CCK on WAT remain unknown. Our goal was to investigate the role of CCK in regulating the production of adiponectin, an adipokine expressed in WAT, which is pivotal in preserving energy homeostasis. EXPERIMENTAL APPROACH The effect of the bioactive CCK fragment CCK-8 on adiponectin production was studied both in vivo and in vitro. CCK-8 effects were characterized in rats treated with selective CCK1 and CCK2 receptor antagonists as well as in pre-adipocytes carrying the selective silencing of either CCK1 or CCK2 receptors. The influence of insulin on CCK-8 responses was also analysed. KEY RESULTS In WAT, CCK-8 increased plasma adiponectin levels and the expression of the adiponectin gene (Adipoq). In pre-adipocytes, CCK-8 up-regulated adiponectin production. CCK-8 effects were abolished by L-365,260, a selective CCK2 receptor antagonist. CCK2 receptor knockdown also abolished the effects of CCK-8 in pre-adipocytes. Moreover, in vitro CCK-8 effects were blocked by triciribine, a specific inhibitor of protein kinase B (Akt) and by the PPARγ antagonist T0070907. Silencing the expression of the insulin receptor inhibited CCK-8-induced Adipoq expression in pre-adipocytes. Furthermore, insulin potentiated the effect of CCK-8. CONCLUSION AND IMPLICATIONS CCK-8 stimulates adiponectin production in WAT by acting on CCK2 receptors, through a mechanism involving both Akt and PPARγ. Moreover, CCK-8 actions are only observed in the presence of insulin. Our results could have translational value in the design of new insulin-sensitizing therapies.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Beatriz Merino
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| |
Collapse
|
3
|
Plaza A, Merino B, Cano V, Domínguez G, Pérez-Castells J, Fernández-Alfonso MS, Sengenès C, Chowen JA, Ruiz-Gayo M. Cholecystokinin is involved in triglyceride fatty acid uptake by rat adipose tissue. J Endocrinol 2018; 236:137-150. [PMID: 29339381 DOI: 10.1530/joe-17-0580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/16/2018] [Indexed: 11/08/2022]
Abstract
The incorporation of plasma triglyceride (TG) fatty acids to white adipose tissue (WAT) depends on lipoprotein lipase (LPL), which is regulated by angiopoietin-like protein-4 (ANGPTL-4), an unfolding molecular chaperone that converts active LPL dimers into inactive monomers. The production of ANGPTL-4 is promoted by fasting and repressed by feeding. We hypothesized that the postprandial hormone cholecystokinin (CCK) facilitates the storage of dietary TG fatty acids in WAT by regulating the activity of the LPL/ANGPTL-4 axis and that it does so by acting directly on CCK receptors in adipocytes. We report that administration of CCK-8 (a bioactive fragment of CCK) to rats: (i) reduces plasma ANGTPL-4 levels; (ii) represses Angptl-4 expression in WAT and (iii) simultaneously enhances LPL activity in this tissue without inducing Lpl expression. In vivo CCK-8 effects are specifically antagonized by the CCK-2 receptor (CCK-2R) antagonist, L-365,260. Moreover, CCK-8 downregulates Angptl-4 expression in wild-type pre-adipocytes, an effect that is not observed in engineered pre-adipocytes lacking CCK-2R. These effects have functional consequences as CCK-8 was found to promote the uptake of dietary fatty acids by WAT, as demonstrated by means of proton nuclear magnetic resonance (1H-NMR). The efficacy of acute CCK-8 administration was not reduced after chronic CCK-8 treatment. Moreover, the effects of CCK-8 on WAT were not associated to the increase of circulating insulin. Our results show that cholecystokinin promotes lipid storage in WAT by acting on adipocyte CCK-2R, suggesting a pivotal role for CCK in TG homeostasis.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Beatriz Merino
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Victoria Cano
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Gema Domínguez
- Departamento de Química y BioquímicaFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Javier Pérez-Castells
- Departamento de Química y BioquímicaFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Coralie Sengenès
- STROMALabUniversité de Toulouse, CNRS ERL5311, EFS, INP-ENVT, Inserm U1031, UPS, Toulouse, France
| | - Julie A Chowen
- Departamento de EndocrinologíaHospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria Princesa, CIBEROBN Instituto Carlos III, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|
4
|
Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017; 187:1057-1089. [DOI: 10.1007/s00360-017-1094-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
|
5
|
Derous D, Mitchell SE, Green CL, Chen L, Han JJ, Wang Y, Promislow DE, Lusseau D, Speakman JR, Douglas A. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways. Aging (Albany NY) 2016; 8:642-63. [PMID: 26945906 PMCID: PMC4925820 DOI: 10.18632/aging.100895] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/20/2016] [Indexed: 01/03/2023]
Abstract
Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti-ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin-like growth factor 1 (IGF-1), insulin, and tumor necrosis factor alpha (TNF-α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF-α, leptin and IGF-1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.
Collapse
Affiliation(s)
- Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, Scotland, AB24 3RL, UK
| | - Sharon E. Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - Cara L. Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - Luonan Chen
- Key laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing‐Dong J. Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences‐Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingchun Wang
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Daniel E.L. Promislow
- Department of Pathology and Department of Biology, University of Washington at Seattle, Seattle, WA 98195, USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, Scotland, AB24 3RL, UK
| |
Collapse
|
6
|
Liu Y, Zhang Y, Gu Z, Hao L, Du J, Yang Q, Li S, Wang L, Gong S. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells. Neural Regen Res 2014; 9:1402-8. [PMID: 25221599 PMCID: PMC4160873 DOI: 10.4103/1673-5374.137596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2014] [Indexed: 11/13/2022] Open
Abstract
Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Yueling Zhang
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Zhaohui Gu
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Lina Hao
- Department of Ophthalmology, Hebei Province People's Hospital, Shijiazhuang, Hebei Province, China
| | - Juan Du
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Qian Yang
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Suping Li
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Liying Wang
- Department of Ophthalmology, First Central Hospital of Baoding, Baoding, Hebei Province, China
| | - Shilei Gong
- Department of Endoscope Room, First Central Hospital of Baoding, Baoding, Hebei Province, China
| |
Collapse
|
7
|
Tinoco AB, Nisembaum LG, de Pedro N, Delgado MJ, Isorna E. Leptin expression is rhythmic in brain and liver of goldfish (Carassius auratus). Role of feeding time. Gen Comp Endocrinol 2014; 204:239-47. [PMID: 24932715 DOI: 10.1016/j.ygcen.2014.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/28/2014] [Accepted: 06/05/2014] [Indexed: 12/01/2022]
Abstract
Daily rhythms of feeding regulators are currently arousing research interest due to the relevance of the temporal harmony of endocrine regulators for growth and welfare in vertebrates. However, it is unknown the leptin circadian pattern in fish. The aim of this study is to investigate if leptin (gLep-aI and gLep-aII) expression is rhythmic in goldfish (Carassius auratus) liver and brain, and if such rhythms are driven by feeding time through a food entrainable oscillator. Fish maintained under 12-h light:12-h dark photoperiod and a scheduled feeding time showed 24-h locomotor activity and glycaemia rhythms. Moreover, hepatic gLep-aI and brain gLep-aI and gLep-aII expression were rhythmic with different daily profiles, showing a postprandial increase of leptin expression in the liver but not in the brain. Under constant light and different feeding regimes (scheduled fed at 10:00, 22:00 or randomly fed), feeding time synchronized daily rhythms in locomotor activity, glycaemia and clock gene expression (gPer1a, gPer3 and gCry3), but the rhythmic expression of hepatic gLep-aI and brain gLep-aII only remained in fed fish at 10:00. In summary, daily rhythms of leptin expression in goldfish are differently regulated at central and peripheral level, and they are not directly driven by clock genes. The role of food entrained oscillators on leptin expression rhythms in fish remains to be demonstrated.
Collapse
Affiliation(s)
- Ana B Tinoco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laura G Nisembaum
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Nuria de Pedro
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Esther Isorna
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Rodriguez-Zas SL, Southey BR, Shemesh Y, Rubin EB, Cohen M, Robinson GE, Bloch G. Microarray analysis of natural socially regulated plasticity in circadian rhythms of honey bees. J Biol Rhythms 2012; 27:12-24. [PMID: 22306970 DOI: 10.1177/0748730411431404] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Honey bee workers care for ("nurse") the brood around the clock without circadian rhythmicity, but then they forage outside with strong circadian rhythms and a consolidated nightly rest. This chronobiological plasticity is associated with variation in the expression of the canonical "clock genes" that regulate the circadian clock: nurse bees show no brain rhythms of expression, while foragers do. These results suggest that the circadian system is organized differently in nurses and foragers. Nurses switch to activity with circadian rhythms shortly after being removed from the hive, suggesting that at least some clock cells in their brain continue to measure time while in the hive. We performed a microarray genome-wide survey to determine general patterns of brain gene expression in nurses and foragers sampled around the clock. We found 160 and 541 transcripts that exhibited significant sinusoidal oscillations in nurses and foragers, respectively, with peaks of expression distributed throughout the day in both task groups. Consistent with earlier studies, transcripts of genes involved in circadian rhythms, including Clockwork Orange that has not been studied before in bees, oscillated in foragers but not in nurses. The oscillating transcripts also were enriched for genes involved in the visual system, "development" and "response to stimuli" (foragers), "muscle contraction" and "microfilament motor gene expression" (nurses), and "generation of precursor metabolites" and "energy" (both). Transcripts of genes encoding P450 enzymes oscillated in both nurses and foragers but with a different phase. This study identified new putative clock-controlled genes in the honey bee and suggests that some brain functions show circadian rhythmicity even in nurse bees that are active around the clock.
Collapse
|
9
|
Vivas Y, Azpeleta C, Feliciano A, Velarde E, Isorna E, Delgado MJ, De Pedro N. Time-dependent effects of leptin on food intake and locomotor activity in goldfish. Peptides 2011; 32:989-95. [PMID: 21291931 DOI: 10.1016/j.peptides.2011.01.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 01/21/2023]
Abstract
The present study investigates the possible circadian dependence of leptin effects on food intake, locomotor activity, glycemia and plasma cortisol levels in goldfish (Carassius auratus). Fish were maintained under 12L:12D photoperiod and subjected to two different feeding schedules, one group fed during photophase (10:00) and the other one during scotophase (22:00). Leptin or saline were intraperitoneally injected at two different times (10:00 or 22:00), coincident or not with the meal time. To eliminate the entraining effect of the light/dark cycle, goldfish maintained under 24h light (LL) were fed and leptin-injected at 10:00. A reduction in food intake and locomotor activity and an increase in glycemia were found in goldfish fed and leptin-injected at 10:00. No significant changes in circulating cortisol were observed. Those effects were not observed when leptin was administered during the scotophase, regardless the feeding schedule; neither in fish maintained under LL, suggesting that a day/night cycle would be necessary to observe the actions of leptin administered during the photophase. Changes in locomotor activity and glycemia were only observed in goldfish when leptin was injected at daytime, coincident with the feeding schedule, suggesting that these leptin actions could be dependent on the feeding time as zeitgeber. In view of these results it appears that the circadian dependence of leptin actions in goldfish can be determined by the combination of both zeitgebers, light/dark cycle and food. Our results point out the relevance of the administration time when investigating regulatory functions of hormones.
Collapse
Affiliation(s)
- Y Vivas
- Dpto Fisiología, Fisiología Animal II, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|