1
|
Zhang Z, Chen T, Liu Y, Wang C, Zhao K, Liu CH, Fu X. Decoding the temporal representation of facial expression in face-selective regions. Neuroimage 2023; 283:120442. [PMID: 37926217 DOI: 10.1016/j.neuroimage.2023.120442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
The ability of humans to discern facial expressions in a timely manner typically relies on distributed face-selective regions for rapid neural computations. To study the time course in regions of interest for this process, we used magnetoencephalography (MEG) to measure neural responses participants viewed facial expressions depicting seven types of emotions (happiness, sadness, anger, disgust, fear, surprise, and neutral). Analysis of the time-resolved decoding of neural responses in face-selective sources within the inferior parietal cortex (IP-faces), lateral occipital cortex (LO-faces), fusiform gyrus (FG-faces), and posterior superior temporal sulcus (pSTS-faces) revealed that facial expressions were successfully classified starting from ∼100 to 150 ms after stimulus onset. Interestingly, the LO-faces and IP-faces showed greater accuracy than FG-faces and pSTS-faces. To examine the nature of the information processed in these face-selective regions, we entered with facial expression stimuli into a convolutional neural network (CNN) to perform similarity analyses against human neural responses. The results showed that neural responses in the LO-faces and IP-faces, starting ∼100 ms after the stimuli, were more strongly correlated with deep representations of emotional categories than with image level information from the input images. Additionally, we observed a relationship between the behavioral performance and the neural responses in the LO-faces and IP-faces, but not in the FG-faces and lpSTS-faces. Together, these results provided a comprehensive picture of the time course and nature of information involved in facial expression discrimination across multiple face-selective regions, which advances our understanding of how the human brain processes facial expressions.
Collapse
Affiliation(s)
- Zhihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Chongqing Key Laboratory of Non-Linear Circuit and Intelligent Information Processing, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing 400715, China
| | - Ye Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongyang Wang
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Ke Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chang Hong Liu
- Department of Psychology, Bournemouth University, Dorset, United Kingdom
| | - Xiaolan Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Nikel L, Sliwinska MW, Kucuk E, Ungerleider LG, Pitcher D. Measuring the response to visually presented faces in the human lateral prefrontal cortex. Cereb Cortex Commun 2022; 3:tgac036. [PMID: 36159205 PMCID: PMC9491845 DOI: 10.1093/texcom/tgac036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/04/2022] Open
Abstract
Neuroimaging studies identify multiple face-selective areas in the human brain. In the current study, we compared the functional response of the face area in the lateral prefrontal cortex to that of other face-selective areas. In Experiment 1, participants (n = 32) were scanned viewing videos containing faces, bodies, scenes, objects, and scrambled objects. We identified a face-selective area in the right inferior frontal gyrus (rIFG). In Experiment 2, participants (n = 24) viewed the same videos or static images. Results showed that the rIFG, right posterior superior temporal sulcus (rpSTS), and right occipital face area (rOFA) exhibited a greater response to moving than static faces. In Experiment 3, participants (n = 18) viewed face videos in the contralateral and ipsilateral visual fields. Results showed that the rIFG and rpSTS showed no visual field bias, while the rOFA and right fusiform face area (rFFA) showed a contralateral bias. These experiments suggest two conclusions; firstly, in all three experiments, the face area in the IFG was not as reliably identified as face areas in the occipitotemporal cortex. Secondly, the similarity of the response profiles in the IFG and pSTS suggests the areas may perform similar cognitive functions, a conclusion consistent with prior neuroanatomical and functional connectivity evidence.
Collapse
Affiliation(s)
- Lara Nikel
- Department of Psychology, University of York, Heslington , York YO10 5DD , UK
| | | | - Emel Kucuk
- Department of Psychology, University of York, Heslington , York YO10 5DD , UK
| | - Leslie G Ungerleider
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health , Bethesda, MD, 20892 , USA
| | - David Pitcher
- Department of Psychology, University of York, Heslington , York YO10 5DD , UK
| |
Collapse
|
3
|
Thome I, Hohmann DM, Zimmermann KM, Smith ML, Kessler R, Jansen A. "I Spy with my Little Eye, Something that is a Face…": A Brain Network for Illusory Face Detection. Cereb Cortex 2021; 32:137-157. [PMID: 34322712 DOI: 10.1093/cercor/bhab199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 11/12/2022] Open
Abstract
The most basic aspect of face perception is simply detecting the presence of a face, which requires the extraction of features that it has in common with other faces. Putatively, it is caused by matching high-dimensional sensory input with internal face templates, achieved through a top-down mediated coupling between prefrontal regions and brain areas in the occipito-temporal cortex ("core system of face perception"). Illusory face detection tasks can be used to study these top-down influences. In the present functional magnetic resonance imaging study, we showed that illusory face perception activated just as real faces the core system, albeit with atypical left-lateralization of the occipital face area. The core system was coupled with two distinct brain regions in the lateral prefrontal (inferior frontal gyrus, IFG) and orbitofrontal cortex (OFC). A dynamic causal modeling (DCM) analysis revealed that activity in the core system during illusory face detection was upregulated by a modulatory face-specific influence of the IFG, not as previously assumed by the OFC. Based on these findings, we were able to develop the most comprehensive neuroanatomical framework of illusory face detection until now.
Collapse
Affiliation(s)
- Ina Thome
- Department of Psychiatry, Laboratory for Multimodal Neuroimaging, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Daniela M Hohmann
- Department of Psychiatry, Laboratory for Multimodal Neuroimaging, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Kristin M Zimmermann
- Department of Psychiatry, Laboratory for Multimodal Neuroimaging, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.,Department of Neurology and Neurorehabilitation, Hospital zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Düsseldorf, Kempen, Germany
| | - Marie L Smith
- Department of Psychological Sciences, Birkbeck College, University of London, London, UK
| | - Roman Kessler
- Department of Psychiatry, Laboratory for Multimodal Neuroimaging, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry, Laboratory for Multimodal Neuroimaging, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.,Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| |
Collapse
|
4
|
Atypical development of emotional face processing networks in autism spectrum disorder from childhood through to adulthood. Dev Cogn Neurosci 2021; 51:101003. [PMID: 34416703 PMCID: PMC8377538 DOI: 10.1016/j.dcn.2021.101003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 11/12/2022] Open
Abstract
MEG connectivity to emotional faces in ASD and typical controls 6–39 years of age was investigated. Distinct age-related changes in connectivity were observed in the groups to happy and angry faces. Age-related between-group differences in functional connectivity were found in gamma band. Emotion-specific age-related between-group differences were seen in beta. Findings highlight specific neurodevelopmental trajectories to emotional faces in ASD vs. TD.
Impairments in social functioning are hallmarks of autism spectrum disorder (ASD) and atypical functional connectivity may underlie these difficulties. Emotion processing networks typically undergo protracted maturational changes, however, those with ASD show either hyper- or hypo-connectivity with little consensus on the functional connectivity underpinning emotion processing. Magnetoencephalography was used to investigate age-related changes in whole-brain functional connectivity of eight regions of interest during happy and angry face processing in 190 children, adolescents and adults (6–39 years) with and without ASD. Findings revealed age-related changes from child- through to mid-adulthood in functional connectivity in controls and in ASD in theta, as well as age-related between-group differences across emotions, with connectivity decreasing in ASD, but increasing for controls, in gamma. Greater connectivity to angry faces was observed across groups in gamma. Emotion-specific age-related between-group differences in beta were also found, that showed opposite trends with age for happy and angry in ASD. Our results establish altered, frequency-specific developmental trajectories of functional connectivity in ASD, across distributed networks and a broad age range, which may finally help explain the heterogeneity in the literature.
Collapse
|
5
|
Salge JH, Pollmann S, Reeder RR. Anomalous visual experience is linked to perceptual uncertainty and visual imagery vividness. PSYCHOLOGICAL RESEARCH 2021; 85:1848-1865. [PMID: 32476064 PMCID: PMC8289756 DOI: 10.1007/s00426-020-01364-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/20/2020] [Indexed: 11/29/2022]
Abstract
An imbalance between top-down and bottom-up processing on perception (specifically, over-reliance on top-down processing) can lead to anomalous perception, such as illusions. One factor that may be involved in anomalous perception is visual mental imagery, which is the experience of "seeing" with the mind's eye. There are vast individual differences in self-reported imagery vividness, and more vivid imagery is linked to a more sensory-like experience. We, therefore, hypothesized that susceptibility to anomalous perception is linked to individual imagery vividness. To investigate this, we adopted a paradigm that is known to elicit the perception of faces in pure visual noise (pareidolia). In four experiments, we explored how imagery vividness contributes to this experience under different response instructions and environments. We found strong evidence that people with more vivid imagery were more likely to see faces in the noise, although removing suggestive instructions weakened this relationship. Analyses from the first two experiments led us to explore confidence as another factor in pareidolia proneness. We, therefore, modulated environment noise and added a confidence rating in a novel design. We found strong evidence that pareidolia proneness is correlated with uncertainty about real percepts. Decreasing perceptual ambiguity abolished the relationship between pareidolia proneness and both imagery vividness and confidence. The results cannot be explained by incidental face-like patterns in the noise, individual variations in response bias, perceptual sensitivity, subjective perceptual thresholds, viewing distance, testing environments, motivation, gender, or prosopagnosia. This indicates a critical role of mental imagery vividness and perceptual uncertainty in anomalous perceptual experience.
Collapse
Affiliation(s)
- Johannes H Salge
- Department of Experimental Psychology, Institute of Psychology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Stefan Pollmann
- Department of Experimental Psychology, Institute of Psychology, Otto-Von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| | - Reshanne R Reeder
- Department of Experimental Psychology, Institute of Psychology, Otto-Von-Guericke University, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
6
|
Frontoparietal microstructural damage mediates age-dependent working memory decline in face and body information processing: Evidence for dichotomic hemispheric bias mechanisms. Neuropsychologia 2020; 151:107726. [PMID: 33321120 DOI: 10.1016/j.neuropsychologia.2020.107726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/28/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022]
Abstract
Age-associated damage in the microstructure of frontally-based connections (e.g. genu of the corpus callosum and superior longitudinal fasciculus) is believed to lead to impairments in processing speed and executive function. Using mediation analysis, we tested the potential contribution of callosal and frontoparietal association tracts to age-dependent effects on cognition/executive function as measured with 1-back working memory tasks for visual stimulus categories (i.e. faces and non-emotional bodies) in a group of 55 healthy adults (age range 23-79 years). Constrained spherical deconvolution-based tractography was employed to reconstruct the genu/prefrontal section of the corpus callosum (GCC) and the central/second branch of the superior longitudinal fasciculus (CB-SLF). Age was associated with (i) reductions in fractional anisotropy (FA) in the GCC and in the right and left CB-SLF and (iii) decline in visual object category processing. Mediation analysis revealed that microstructural damage in right hemispheric CB-SLF is associated with age-dependent decline in face processing likely reflecting the stimulus-specific/holistic nature of face processing within dedicated/specialized frontoparietal routes. By contrast, microstructural damage in left hemispheric CB-SLF associated with age-dependent decline in non-emotional body processing, consistent with the more abstract nature of non-emotional body categories. In sum, our findings suggest that frontoparietal microstructural damage mediates age-dependent decline in face and body information processing in a manner that reflects the hemispheric bias of holistic vs. abstract nature of face and non-emotional body category processing.
Collapse
|
7
|
Nunes AS, Mamashli F, Kozhemiako N, Khan S, McGuiggan NM, Losh A, Joseph RM, Ahveninen J, Doesburg SM, Hämäläinen MS, Kenet T. Classification of evoked responses to inverted faces reveals both spatial and temporal cortical response abnormalities in Autism spectrum disorder. Neuroimage Clin 2020; 29:102501. [PMID: 33310630 PMCID: PMC7734307 DOI: 10.1016/j.nicl.2020.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 11/23/2022]
Abstract
The neurophysiology of face processing has been studied extensively in the context of social impairments associated with autism spectrum disorder (ASD), but the existing studies have concentrated mainly on univariate analyses of responses to upright faces, and, less frequently, inverted faces. The small number of existing studies on neurophysiological responses to inverted face in ASD have used univariate approaches, with divergent results. Here, we used a data-driven, classification-based, multivariate machine learning decoding approach to investigate the temporal and spatial properties of the neurophysiological evoked response for upright and inverted faces, relative to the neurophysiological evoked response for houses, a neutral stimulus. 21 (2 females) ASD and 29 (4 females) TD participants ages 7 to 19 took part in this study. Group level classification accuracies were obtained for each condition, using first the temporal domain of the evoked responses, and then the spatial distribution of the evoked responses on the cortical surface, each separately. We found that classification of responses to inverted neutral faces vs. houses was less accurate in ASD compared to TD, in both the temporal and spatial domains. In contrast, there were no group differences in the classification of evoked responses to upright neutral faces relative to houses. Using the classification in the temporal domain, lower decoding accuracies in ASD were found around 120 ms and 170 ms, corresponding the known components of the evoked responses to faces. Using the classification in the spatial domain, lower decoding accuracies in ASD were found in the right superior marginal gyrus (SMG), intra-parietal sulcus (IPS) and posterior superior temporal sulcus (pSTS), but not in core face processing areas. Importantly, individual classification accuracies from both the temporal and spatial classifiers correlated with ASD severity, confirming the relevance of the results to the ASD phenotype.
Collapse
Affiliation(s)
- Adonay S Nunes
- Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Fahimeh Mamashli
- Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA
| | - Nataliia Kozhemiako
- Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Sheraz Khan
- Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA
| | - Nicole M McGuiggan
- Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA
| | - Ainsley Losh
- Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA
| | | | - Jyrki Ahveninen
- Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada; Behavioural and Cognitive Neuroscience Institute, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Matti S Hämäläinen
- Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Tal Kenet
- Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, USA.
| |
Collapse
|
8
|
Stanković M. A conceptual critique of brain lateralization models in emotional face perception: Toward a hemispheric functional-equivalence (HFE) model. Int J Psychophysiol 2020; 160:57-70. [PMID: 33186657 DOI: 10.1016/j.ijpsycho.2020.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/15/2020] [Accepted: 11/04/2020] [Indexed: 01/21/2023]
Abstract
The present review proposes a novel dynamic model of brain lateralization of emotional (happy, surprised, fearful, sad, angry, and disgusted) and neutral face perception. Evidence to date suggests that emotional face perception is lateralized in the brain. At least five prominent hypotheses of the lateralization of emotional face perception have been previously proposed; the right-hemisphere hypothesis; the valence-specific hypothesis; the modified valence-specific hypothesis; the motivational hypothesis; and behavioral activation/inhibition system hypothesis. However, a growing number of recent replication studies exploring those hypotheses frequently provide inconsistent or even contradictory results. The latest neuroimaging and behavioral studies strongly demonstrate the functional capacity of both hemispheres to process emotions relatively successfully. Moreover, the flexibility of emotional brain-networks in both hemispheres is functionally high even to the extent of a possible reversed asymmetry of the left and the right hemisphere performance under altered neurophysiological and psychological conditions. The present review aims to a) provide a critical conceptual analysis of prior and current hypotheses of brain lateralization of emotional and neutral face perception; b) propose an integrative introduction of a novel hemispheric functional-equivalence (HFE) model in emotional and neutral face perception based on the evaluation of theoretical considerations, behavioral and neuroimaging studies: the brain is initially right-biased in emotional and neutral face perception by default; however, altered psychophysiological conditions (e.g., acute stress, a demanding emotional task) activate a distributed brain-network of both hemispheres toward functional equivalence that results in relatively equalized behavioral performance in emotional and neutral face perception. The proposed novel model may provide a practical tool in further experimental investigation of brain lateralization of emotional face perception.
Collapse
Affiliation(s)
- Miloš Stanković
- General and Experimental Psychology, Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
9
|
Cropper SJ, McCauley A, Gwinn OS, Bartlett M, Nicholls MER. Flowers in the Attic: Lateralization of the detection of meaning in visual noise. J Vis 2020; 20:11. [PMID: 33027510 PMCID: PMC7545083 DOI: 10.1167/jov.20.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/03/2020] [Indexed: 12/03/2022] Open
Abstract
The brain is a slave to sense; we see and hear things that are not there and engage in ongoing correction of these illusory experiences, commonly termed pareidolia. The current study investigates whether the predisposition to see meaning in noise is lateralized to one hemisphere or the other and how this predisposition to visual false-alarms is related to personality. Stimuli consisted of images of faces or flowers embedded in pink (1/f) noise generated through a novel process and presented in a divided-field paradigm. Right-handed undergraduates participated in a forced-choice signal-detection task where they determined whether a face or flower signal was present in a single-interval trial. Experiment 1 involved an equal ratio of signal-to-noise trials; experiment 2 provided more potential for illusionary perception with 25% signal and 75% noise trials. There was no asymmetry in the ability to discriminate signal from noise trials (measured using d') for either faces and flowers, although the response criterion (c) suggested a stronger predisposition to visual false alarms in the right visual field, and this was negatively correlated to the unusual experiences dimension of schizotypy. Counter to expectations, changing the signal-image to noise-image proportion in Experiment 2 did not change the number of false alarms for either faces and flowers, although a stronger bias was seen to the right visual field; sensitivity remained the same in both hemifields but there was a moderate positive correlation between cognitive disorganization and the bias (c) for "flower" judgements. Overall, these results were consistent with a rapid evidence-accumulation process of the kind described by a diffusion decision model mediating the task lateralized to the left-hemisphere.
Collapse
Affiliation(s)
- Simon J Cropper
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Ashlan McCauley
- School of Psychology, Flinders University, Adelaide, Australia
| | - O Scott Gwinn
- School of Psychology, Flinders University, Adelaide, Australia
| | - Megan Bartlett
- School of Psychology, Flinders University, Adelaide, Australia
| | | |
Collapse
|
10
|
Grady CL, Rieck JR, Nichol D, Garrett DD. Functional Connectivity within and beyond the Face Network Is Related to Reduced Discrimination of Degraded Faces in Young and Older Adults. Cereb Cortex 2020; 30:6206-6223. [DOI: 10.1093/cercor/bhaa179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Degrading face stimuli reduces face discrimination in both young and older adults, but the brain correlates of this decline in performance are not fully understood. We used functional magnetic resonance imaging to examine the effects of degraded face stimuli on face and nonface brain networks and tested whether these changes would predict the linear declines seen in performance. We found decreased activity in the face network (FN) and a decrease in the similarity of functional connectivity (FC) in the FN across conditions as degradation increased but no effect of age. FC in whole-brain networks also changed with increasing degradation, including increasing FC between the visual network and cognitive control networks. Older adults showed reduced modulation of this whole-brain FC pattern. The strongest predictors of within-participant decline in accuracy were changes in whole-brain network FC and FC similarity of the FN. There was no influence of age on these brain-behavior relations. These results suggest that a systems-level approach beyond the FN is required to understand the brain correlates of performance decline when faces are obscured with noise. In addition, the association between brain and behavior changes was maintained into older age, despite the dampened FC response to face degradation seen in older adults.
Collapse
Affiliation(s)
- Cheryl L Grady
- Rotman Research Institute, Baycrest, Toronto, ON M6A2E1, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| | - Jenny R Rieck
- Rotman Research Institute, Baycrest, Toronto, ON M6A2E1, Canada
| | - Daniel Nichol
- Rotman Research Institute, Baycrest, Toronto, ON M6A2E1, Canada
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
11
|
Cohen AL, Soussand L, Corrow SL, Martinaud O, Barton JJS, Fox MD. Looking beyond the face area: lesion network mapping of prosopagnosia. Brain 2019; 142:3975-3990. [PMID: 31740940 PMCID: PMC6906597 DOI: 10.1093/brain/awz332] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022] Open
Abstract
Damage to the right fusiform face area can disrupt the ability to recognize faces, a classic example of how damage to a specialized brain region can disrupt a specialized brain function. However, similar symptoms can arise from damage to other brain regions, and face recognition is now thought to depend on a distributed brain network. The extent of this network and which regions are critical for facial recognition remains unclear. Here, we derive this network empirically based on lesion locations causing clinically significant impairments in facial recognition. Cases of acquired prosopagnosia were identified through a systematic literature search and lesion locations were mapped to a common brain atlas. The network of brain regions connected to each lesion location was identified using resting state functional connectivity from healthy participants (n = 1000), a technique termed lesion network mapping. Lesion networks were overlapped to identify connections common to lesions causing prosopagnosia. Reproducibility was assessed using split-half replication. Specificity was assessed through comparison with non-specific control lesions (n = 135) and with control lesions associated with symptoms other than prosopagnosia (n = 155). Finally, we tested whether our facial recognition network derived from clinically evident cases of prosopagnosia could predict subclinical facial agnosia in an independent lesion cohort (n = 31). Our systematic literature search identified 44 lesions causing prosopagnosia, only 29 of which intersected the right fusiform face area. However, all 44 lesion locations fell within a single brain network defined by connectivity to the right fusiform face area. Less consistent connectivity was found to other face-selective regions. Surprisingly, all 44 lesion locations were also functionally connected, through negative correlation, with regions in the left frontal cortex. This connectivity pattern was highly reproducible and specific to lesions causing prosopagnosia. Positive connectivity to the right fusiform face area and negative connectivity to left frontal regions were independent predictors of prosopagnosia and predicted subclinical facial agnosia in an independent lesion cohort. We conclude that lesions causing prosopagnosia localize to a single functionally connected brain network defined by connectivity to the right fusiform face area and to left frontal regions. Implications of these findings for models of facial recognition deficits are discussed.
Collapse
Affiliation(s)
- Alexander L Cohen
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Louis Soussand
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Olivier Martinaud
- Department of Neurology Neuropsychology and Imaging of Human Memory, Caen-Normandy University, PSL Research University, EPHE, INSERM, Caen University Hospital, Caen, France
| | - Jason J S Barton
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Canada
| | - Michael D Fox
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Oxytocin reduces a chemosensory-induced stress bias in social perception. Neuropsychopharmacology 2019; 44:281-288. [PMID: 29703998 PMCID: PMC6300531 DOI: 10.1038/s41386-018-0063-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023]
Abstract
Social transmission of fear is not restricted to visual or auditory cues, but extends to the phylogenetically more ancient olfactory domain. Anxious individuals exhibit heightened sensitivity towards chemosensory stress signals in sweat; however, it is still unknown whether endogenous neuromodulators such as the peptide hormone oxytocin (OXT) influence the chemosensory communication of stress. Here, we investigated whether OXT selectively diminishes behavioral and neural responses to social chemosensory stress cues utilizing a randomized, double-blind, placebo (PLC)-controlled, within-subject functional MRI study design. Axillary sweat was obtained from 30 healthy male donors undergoing the Trier Social Stress Test (stress) and bicycle ergometer training (sport). Subsequently, 58 healthy participants (30 females) completed a forced-choice emotional face recognition task with stimuli of varying intensities (neutral to fearful) while they were exposed to both sweat stimuli and a non-social control odor following intranasal OXT or PLC administration, respectively. OXT diminished stress-induced recognition accuracy and response time biases towards fear. On the neural level, OXT reduced stress-evoked responses in the amygdala in both sexes, the anterior cingulate cortex (ACC) in females, and the hippocampus in males. Furthermore, OXT reinstated the functional connectivity between the ACC and the fusiform face area that was disrupted by stress odors under PLC. Our findings reveal a new role for OXT signaling in the modulation of chemosensory communication of stress in humans. Mechanistically, this effect appears to be rooted in a downregulation of stress-induced limbic activations and concomitant strengthening of top-down control descending from the ACC to the fusiform face area.
Collapse
|
13
|
Akdeniz G, Toker S, Atli I. Neural mechanisms underlying visual pareidolia processing: An fMRI study. Pak J Med Sci 2018; 34:1560-1566. [PMID: 30559823 PMCID: PMC6290235 DOI: 10.12669/pjms.346.16140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives Pareidolia is the interpretation of previously unseen and unrelated objects as familiar due to previous learning. The present study aimed to determine the specific brain areas that exhibited activation during real-face and face-pareidolia processing. Methods Functional Magnetic Resonance Imaging (fMRI) scans were performed on 20 healthy subjects under real-face and face-pareidolia conditions in National Magnetic Resonance Research Center (UMRAM), Ankara, Turkey from April 2016 to January 2017. FSL software was used to conduct a FEAT higher level (group) analysis to identify the brain areas activated during real-face and face-pareidolia processing. Results Under both the real-face and face-pareidolia conditions, activation was observed in the Prefrontal Cortex (PFCX), occipital cortex V1, occipital cortex V2, and inferior temporal regions. Also under both conditions, the same degree of activation was observed in the right Fusiform Face Area (FFA) and the right PFCX. On the other hand, PFCX activation was not evident under the real-face versus face scrambled or face-pareidolia versus pareidolia scrambled conditions. Conclusions The present findings suggest that, as in real-face perception, face-pareidolia requires interaction between top-down and bottom-up brain regions including the FFA and frontal and occipitotemporal areas. Additionally, whole-brain analyses revealed that the right PFCX played an important role in processing real faces and in face pareidolia (illusory face perception), as did the FFA.
Collapse
Affiliation(s)
- Gulsum Akdeniz
- Dr. Gulsum Akdeniz Assistant Professor Ankara Yildirim Beyazit University, Medicine Faculty, Electroneurophysiology Lab, and Yenimahalle Training and Research Hospital, Ankara, Turkey
| | - Sila Toker
- Sila Toker Clinical Psychologist MSc foundations of Clinical Psychology, Department of Psychology, Bournemouth University, Talbot Campus, Bournemouth, Dorset, United Kingdom
| | - Ibrahim Atli
- Ibrahim Atli, PhD. Ankara Yildirim Beyazit University, Engineering and Natural Sciences, Ankara, Turkey
| |
Collapse
|
14
|
Mamashli F, Khan S, Bharadwaj H, Losh A, Pawlyszyn SM, Hämäläinen MS, Kenet T. Maturational trajectories of local and long-range functional connectivity in autism during face processing. Hum Brain Mapp 2018; 39:4094-4104. [PMID: 29947148 DOI: 10.1002/hbm.24234] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized neurophysiologically by, among other things, functional connectivity abnormalities in the brain. Recent evidence suggests that the nature of these functional connectivity abnormalities might not be uniform throughout maturation. Comparing between adolescents and young adults (ages 14-21) with ASD and age- and IQ-matched typically developing (TD) individuals, we previously documented, using magnetoencephalography (MEG) data, that local functional connectivity in the fusiform face areas (FFA) and long-range functional connectivity between FFA and three higher order cortical areas were all reduced in ASD. Given the findings on abnormal maturation trajectories in ASD, we tested whether these results extend to preadolescent children (ages 7-13). We found that both local and long-range functional connectivity were in fact normal in this younger age group in ASD. Combining the two age groups, we found that local and long-range functional connectivity measures were positively correlated with age in TD, but negatively correlated with age in ASD. Last, we showed that local functional connectivity was the primary feature in predicting age in ASD group, but not in the TD group. Furthermore, local functional connectivity was only correlated with ASD severity in the older group. These results suggest that the direction of maturation of functional connectivity for processing of faces from childhood to young adulthood is itself abnormal in ASD, and that during the processing of faces, these trajectory abnormalities are more pronounced for local functional connectivity measures than they are for long-range functional connectivity measures.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts
| | - Sheraz Khan
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts
| | - Hari Bharadwaj
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts
| | - Ainsley Losh
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts
| | | | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts.,Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Tal Kenet
- Department of Neurology, MGH, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, Massachusetts
| |
Collapse
|
15
|
Network Configurations in the Human Brain Reflect Choice Bias during Rapid Face Processing. J Neurosci 2017; 37:12226-12237. [PMID: 29118108 DOI: 10.1523/jneurosci.1677-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 01/28/2023] Open
Abstract
Network interactions are likely to be instrumental in processes underlying rapid perception and cognition. Specifically, high-level and perceptual regions must interact to balance pre-existing models of the environment with new incoming stimuli. Simultaneous electroencephalography (EEG) and fMRI (EEG/fMRI) enables temporal characterization of brain-network interactions combined with improved anatomical localization of regional activity. In this paper, we use simultaneous EEG/fMRI and multivariate dynamical systems (MDS) analysis to characterize network relationships between constitute brain areas that reflect a subject's choice for a face versus nonface categorization task. Our simultaneous EEG and fMRI analysis on 21 human subjects (12 males, 9 females) identifies early perceptual and late frontal subsystems that are selective to the categorical choice of faces versus nonfaces. We analyze the interactions between these subsystems using an MDS in the space of the BOLD signal. Our main findings show that differences between face-choice and house-choice networks are seen in the network interactions between the early and late subsystems, and that the magnitude of the difference in network interaction positively correlates with the behavioral false-positive rate of face choices. We interpret this to reflect the role of saliency and expectations likely encoded in frontal "late" regions on perceptual processes occurring in "early" perceptual regions.SIGNIFICANCE STATEMENT Our choices are affected by our biases. In visual perception and cognition such biases can be commonplace and quite curious-e.g., we see a human face when staring up at a cloud formation or down at a piece of toast at the breakfast table. Here we use multimodal neuroimaging and dynamical systems analysis to measure whole-brain spatiotemporal dynamics while subjects make decisions regarding the type of object they see in rapidly flashed images. We find that the degree of interaction in these networks accounts for a substantial fraction of our bias to see faces. In general, our findings illustrate how the properties of spatiotemporal networks yield insight into the mechanisms of how we form decisions.
Collapse
|
16
|
Mapping structural covariance networks of facial emotion recognition in early psychosis: A pilot study. Schizophr Res 2017; 189:146-152. [PMID: 28169088 DOI: 10.1016/j.schres.2017.01.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 12/12/2022]
Abstract
People with psychosis show deficits recognizing facial emotions and disrupted activation in the underlying neural circuitry. We evaluated associations between facial emotion recognition and cortical thickness using a correlation-based approach to map structural covariance networks across the brain. Fifteen people with an early psychosis provided magnetic resonance scans and completed the Penn Emotion Recognition and Differentiation tasks. Fifteen historical controls provided magnetic resonance scans. Cortical thickness was computed using CIVET and analyzed with linear models. Seed-based structural covariance analysis was done using the mapping anatomical correlations across the cerebral cortex methodology. To map structural covariance networks involved in facial emotion recognition, the right somatosensory cortex and bilateral fusiform face areas were selected as seeds. Statistics were run in SurfStat. Findings showed increased cortical covariance between the right fusiform face region seed and right orbitofrontal cortex in controls than early psychosis subjects. Facial emotion recognition scores were not significantly associated with thickness in any region. A negative effect of Penn Differentiation scores on cortical covariance was seen between the left fusiform face area seed and right superior parietal lobule in early psychosis subjects. Results suggest that facial emotion recognition ability is related to covariance in a temporal-parietal network in early psychosis.
Collapse
|
17
|
Neural functional correlates of empathic face processing. Neurosci Lett 2017; 655:68-75. [PMID: 28673832 DOI: 10.1016/j.neulet.2017.06.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/19/2017] [Accepted: 06/30/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Empathy is a human trait related to the ability to share someone else's feelings, and emotional face processing is one of its measures. Functional Magnetic Resonance Imaging (fMRI) studies showed significant neural correlates of empathic face processing. We aimed to identify those brain areas most consistently involved in empathy for emotional faces. METHODS We carried ALE meta-analysis of whole-brain data from fMRI studies during empathic face-processing tasks. We included 23 studies conducted on a total of 568 participants (247 males and 321 females, mean age 32.2 years). RESULTS Emotional vs. control faces processing significantly correlated with activations of the left anterior cingulate cortex (BA 32), right precentral gyrus (BA 6), left amygdala, right superior frontal gyrus (BA 9), left middle occipital gyrus (BA 37), right insula (BA 13), left putamen, and left posterior cingulate cortex (BA 31). CONCLUSIONS Empathy is a complex process correlating with bi-hemispheric cortico-limbic activations involved in emotional cue processing, self-other/same-different discrimination, perspective-taking, theory of mind, emotional arousal, and decision-making.
Collapse
|
18
|
Yaple ZA, Vakhrushev R. Investigating Emotional Top Down Modulation of Ambiguous Faces by Single Pulse TMS on Early Visual Cortices. Front Neurosci 2016; 10:305. [PMID: 27445674 PMCID: PMC4928532 DOI: 10.3389/fnins.2016.00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/16/2016] [Indexed: 11/25/2022] Open
Abstract
Top-down processing is a mechanism in which memory, context and expectation are used to perceive stimuli. For this study we investigated how emotion content, induced by music mood, influences perception of happy and sad emoticons. Using single pulse TMS we stimulated right occipital face area (rOFA), primary visual cortex (V1) and vertex while subjects performed a face-detection task and listened to happy and sad music. At baseline, incongruent audio-visual pairings decreased performance, demonstrating dependence of emotion while perceiving ambiguous faces. However, performance of face identification decreased during rOFA stimulation regardless of emotional content. No effects were found between Cz and V1 stimulation. These results suggest that while rOFA is important for processing faces regardless of emotion, V1 stimulation had no effect. Our findings suggest that early visual cortex activity may not integrate emotional auditory information with visual information during emotion top-down modulation of faces.
Collapse
Affiliation(s)
- Zachary A Yaple
- Centre for Cognition and Decision Making, National Research University Higher School of EconomicsMoscow, Russia; Department of Experimental Psychology, University of GroningenGroningen, Netherlands
| | - Roman Vakhrushev
- Department of Psychology, National Research University Higher School of Economics Moscow, Russia
| |
Collapse
|
19
|
Doruyter A, Lochner C, Jordaan GP, Stein DJ, Dupont P, Warwick JM. Resting functional connectivity in social anxiety disorder and the effect of pharmacotherapy. Psychiatry Res Neuroimaging 2016; 251:34-44. [PMID: 27111811 DOI: 10.1016/j.pscychresns.2016.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/11/2016] [Accepted: 04/14/2016] [Indexed: 11/28/2022]
Abstract
Neuroimaging research has reported differences in resting-state functional connectivity (RFC) between social anxiety disorder (SAD) patients and healthy controls (HCs). Limited research has examined the effect of treatment on RFC in SAD. We performed a study to identify differences in RFC between SAD and HC groups, and to investigate the effect of pharmacotherapy on RFC in SAD. Seed-based RFC analysis was performed on technetium-99m hexamethylpropylene amine oxime (Tc-99m HMPAO) SPECT scans using a cross-subject approach in SPM-12. Seeds were chosen to represent regions in a recently published network model of SAD. A second-level regression analysis was performed to further characterize the underlying relationships identified in the group contrasts. Twenty-three SAD participants were included, of which 18 underwent follow-up measures after an 8-week course of citalopram or moclobemide. Fifteen healthy control (HC) scans were included. SAD participants at baseline demonstrated several significant connectivity disturbances consistent with the existing network model as well as one previously unreported finding (increased connectivity between cerebellum and posterior cingulate cortex). After therapy, the SAD group demonstrated significant increases in connectivity with dorsal anterior cingulate cortex which may explain therapy-induced modifications in how SAD sufferers interpret emotions in others and improvements in self-related and emotional processing.
Collapse
Affiliation(s)
- Alexander Doruyter
- Division of Nuclear Medicine, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Christine Lochner
- US/UCT MRC Unit for Stress and Anxiety Disorders, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard P Jordaan
- Department of Psychiatry, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Dan J Stein
- US/UCT MRC Unit for Stress and Anxiety Disorders, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Patrick Dupont
- Laboratory for Cognitive Neurology and Medical Imaging Centre, KU Leuven, Leuven, Belgium
| | - James M Warwick
- Division of Nuclear Medicine, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
20
|
Li J, Dong M, Ren A, Ren J, Zhang J, Huang L. Structural attributes of the temporal lobe predict face recognition ability in youth. Neuropsychologia 2016; 84:1-6. [PMID: 26802942 DOI: 10.1016/j.neuropsychologia.2016.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 11/16/2022]
Abstract
The face recognition ability varies across individuals. However, it remains elusive how brain anatomical structure is related to the face recognition ability in healthy subjects. In this study, we adopted voxel-based morphometry analysis and machine learning approach to investigate the neural basis of individual face recognition ability using anatomical magnetic resonance imaging. We demonstrated that the gray matter volume (GMV) of the right ventral anterior temporal lobe (vATL), an area sensitive to face identity, is significant positively correlated with the subject's face recognition ability which was measured by the Cambridge face memory test (CFMT) score. Furthermore, the predictive model established by the balanced cross-validation combined with linear regression method revealed that the right vATL GMV can predict subjects' face ability. However, the subjects' Cambridge face memory test scores cannot be predicted by the GMV of the face processing network core brain regions including the right occipital face area (OFA) and the right face fusion area (FFA). Our results suggest that the right vATL may play an important role in face recognition and might provide insight into the neural mechanisms underlying face recognition deficits in patients with pathophysiological conditions such as prosopagnosia.
Collapse
Affiliation(s)
- Jun Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Minghao Dong
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Aifeng Ren
- School of Electronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
| | - Junchan Ren
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jinsong Zhang
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| |
Collapse
|
21
|
Jordan TR, Sheen M, Abedipour L, Paterson KB. Seeing Inscriptions on the Shroud of Turin: The Role of Psychological Influences in the Perception of Writing. PLoS One 2015; 10:e0136860. [PMID: 26509503 PMCID: PMC4624961 DOI: 10.1371/journal.pone.0136860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
The Shroud of Turin (hereafter the Shroud) is one of the most widely known and widely studied artifacts in existence, with enormous historical and religious significance. For years, the Shroud has inspired worldwide interest in images on its fabric which appear to be of the body and face of a man executed in a manner consistent with crucifixion, and many believe that these images were formed in the Shroud's fibers during the Resurrection of Jesus of Nazareth. But, more recently, other reports have suggested that the Shroud also contains evidence of inscriptions, and these reports have been used to add crucial support to the view that the Shroud is the burial cloth of Jesus. Unfortunately, these reports of inscriptions are based on marks that are barely visible on the Shroud, even when images are enhanced, and the actual existence of writing on the Shroud is still a matter of considerable debate. Here we discuss previous evidence concerning the psychological processes involved generally in the perception of writing, and especially when letters and words are indistinct. We then report two experiments in which the influence of religious context on perception of inscriptions was addressed specifically, using an image of woven fabric (modern linen) containing no writing and with no religious provenance. This image was viewed in two different contexts: in the Religious Context, participants were informed that the image was of a linen artifact that was important to the Christian faith whereas, in the non-religious Neutral Context, participants were informed that the image was of a simple piece of linen. Both groups were told that the image may contain faint words and were asked to report any words they could see. All participants detected words on the image, and indicated that these words were visible and were able to trace on the image the words they detected. In each experiment, more religious words were detected in the Religious Context condition than in the Neutral Context condition whereas the two contexts showed no effect on the number of non-religious words detected, indicating that religious context had a specific effect on the perception of illusory writing. Indeed, in the Neutral Context condition, no religious words at all were reported in either experiment. These findings suggest that images of woven material, like linen, inspire illusory perceptions of writing and that the nature of these perceptions is influenced considerably by the religious expectations of observers. As a consequence, the normal psychological processes underlying perception of writing, and the tendency of these processes to produce illusory perceptions, should be an essential consideration when addressing the existence of religious inscriptions on religious artifacts such as the Shroud of Turin.
Collapse
Affiliation(s)
| | | | - Lily Abedipour
- School of Psychology, University of Leicester, Leicester, United Kingdom
| | - Kevin B. Paterson
- School of Psychology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
22
|
Bortolon C, Capdevielle D, Raffard S. Face recognition in schizophrenia disorder: A comprehensive review of behavioral, neuroimaging and neurophysiological studies. Neurosci Biobehav Rev 2015; 53:79-107. [PMID: 25800172 DOI: 10.1016/j.neubiorev.2015.03.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 02/11/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022]
Abstract
Facial emotion processing has been extensively studied in schizophrenia patients while general face processing has received less attention. The already published reviews do not address the current scientific literature in a complete manner. Therefore, here we tried to answer some questions that remain to be clarified, particularly: are the non-emotional aspects of facial processing in fact impaired in schizophrenia patients? At the behavioral level, our key conclusions are that visual perception deficit in schizophrenia patients: are not specific to faces; are most often present when the cognitive (e.g. attention) and perceptual demands of the tasks are important; and seems to worsen with the illness chronification. Although, currently evidence suggests impaired second order configural processing, more studies are necessary to determine whether or not holistic processing is impaired in schizophrenia patients. Neural and neurophysiological evidence suggests impaired earlier levels of visual processing, which might involve the deficits in interaction of the magnocellular and parvocellular pathways impacting on further processing. These deficits seem to be present even before the disorder out-set. Although evidence suggests that this deficit may be not specific to faces, further evidence on this question is necessary, in particularly more ecological studies including context and body processing.
Collapse
Affiliation(s)
- Catherine Bortolon
- Epsylon Laboratory, EA 4556 Montpellier, France; University Department of Adult Psychiatry, CHU Montpellier, Montpellier, France.
| | - Delphine Capdevielle
- University Department of Adult Psychiatry, CHU Montpellier, Montpellier, France; French National Institute of Health and Medical Research (INSERM), U1061 Pathologies of the Nervous System: Epidemiological and Clinical Research, La Colombiere Hospital, 34093 Montpellier Cedex 5, France
| | - Stéphane Raffard
- Epsylon Laboratory, EA 4556 Montpellier, France; University Department of Adult Psychiatry, CHU Montpellier, Montpellier, France
| |
Collapse
|
23
|
Liu J, Li J, Feng L, Li L, Tian J, Lee K. Seeing Jesus in toast: neural and behavioral correlates of face pareidolia. Cortex 2014; 53:60-77. [PMID: 24583223 DOI: 10.1016/j.cortex.2014.01.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/05/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Face pareidolia is the illusory perception of non-existent faces. The present study, for the first time, contrasted behavioral and neural responses of face pareidolia with those of letter pareidolia to explore face-specific behavioral and neural responses during illusory face processing. Participants were shown pure-noise images but were led to believe that 50% of them contained either faces or letters; they reported seeing faces or letters illusorily 34% and 38% of the time, respectively. The right fusiform face area (rFFA) showed a specific response when participants "saw" faces as opposed to letters in the pure-noise images. Behavioral responses during face pareidolia produced a classification image (CI) that resembled a face, whereas those during letter pareidolia produced a CI that was letter-like. Further, the extent to which such behavioral CIs resembled faces was directly related to the level of face-specific activations in the rFFA. This finding suggests that the rFFA plays a specific role not only in processing of real faces but also in illusory face perception, perhaps serving to facilitate the interaction between bottom-up information from the primary visual cortex and top-down signals from the prefrontal cortex (PFC). Whole brain analyses revealed a network specialized in face pareidolia, including both the frontal and occipitotemporal regions. Our findings suggest that human face processing has a strong top-down component whereby sensory input with even the slightest suggestion of a face can result in the interpretation of a face.
Collapse
Affiliation(s)
- Jiangang Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China; Dr. Eric Jackman Institute of Child Study, University of Toronto, Toronto, Canada
| | - Jun Li
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Lu Feng
- Institute of Automation Chinese Academy of Sciences, Beijing, China
| | - Ling Li
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an, China; Institute of Automation Chinese Academy of Sciences, Beijing, China.
| | - Kang Lee
- Dr. Eric Jackman Institute of Child Study, University of Toronto, Toronto, Canada.
| |
Collapse
|
24
|
Nestor A, Vettel JM, Tarr MJ. Internal representations for face detection: an application of noise-based image classification to BOLD responses. Hum Brain Mapp 2013; 34:3101-15. [PMID: 22711230 PMCID: PMC4204487 DOI: 10.1002/hbm.22128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/22/2012] [Accepted: 04/23/2012] [Indexed: 11/10/2022] Open
Abstract
What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations.
Collapse
Affiliation(s)
- Adrian Nestor
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
25
|
Villalta-Gil V, Meléndez-Pérez I, Russell T, Surguladze S, Radua J, Fusté M, Stephan-Otto C, Haro JM. Functional similarity of facial emotion processing between people with a first episode of psychosis and healthy subjects. Schizophr Res 2013; 149:35-41. [PMID: 23830857 DOI: 10.1016/j.schres.2013.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/08/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Neurofunctional and behavioral abnormalities in facial emotion processing (FEmoP) have been consistently found in schizophrenia patients, but studies assessing brain functioning in early phases are scarce and the variety of experimental paradigms in current literature make comparisons difficult. The present work focuses on assessing FEmoP in people experiencing a psychotic episode for the first time with different experimental paradigm approaches. METHODS Twenty-two patients with a first psychotic episode (FPe) (13 males) took part in a functional magnetic resonance imaging study (1.5T) examining neural responses to explicit and implicit processing of fearful and happy facial expressions presented at two different intensities: 50% and 100%. Their brain activation was compared to that of 31 healthy subjects (15 males). RESULTS Control subjects show differential patterns of brain activation regarding the task demands (implicit or explicit processing), the emotional content (happy or fear) and the intensities of the emotion (50% or 100%); such differences are not found in participants with a first psychotic episode (FPe). No interaction or group effects are seen between control and FPe participants with any of the emotional tasks assessed, although FPe subjects show worse behavioral performance. CONCLUSIONS No brain areas recruited for FEmoP emerge as significantly different between people with a FPe and healthy subjects, independently on the demands of the task, the emotion processed, or the intensity of the emotion; but FPe participants show a limited recruitment of differential brain regions that could be associated with poor emotional processing in the short term. Our results outline the need of investigating the underlying processes that lead FPe participants to worse FEmoP performance.
Collapse
Affiliation(s)
- Victoria Villalta-Gil
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Centro de Investigación Biomédica en Red (CIBERSAM), Sant Boi de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Virani K, Jesso S, Kertesz A, Mitchell D, Finger E. Functional neural correlates of emotional expression processing deficits in behavioural variant frontotemporal dementia. J Psychiatry Neurosci 2013; 38:174-82. [PMID: 23031250 PMCID: PMC3633710 DOI: 10.1503/jpn.120008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a neurodegenerative disorder resulting in social-cognitive deficits partially attributed to abnormalities processing social cues, such as facial expressions. However, to our knowledge, the functional neuroanatomy of deficient social cue processing in individuals with FTD has not been examined. The objective of this study was to delineate the functional abnormalities under lying altered facial expression processing in individuals with FTD using functional magnetic resonance imaging (fMRI). METHODS Patients meeting Neary criteria for behavioural variant FTD (bvFTD) with supportive neuroimaging and 18 age-matched healthy controls completed an implicit facial expression task during fMRI. We conducted volumetric brain morphometry to correct functional imaging data for volume differences. RESULTS We included 20 patients with bvFTD and 18 controls in our study. The results demonstrate emotion-specific functional abnormalities in frontal and limbic regions in patients with bvFTD. Patients also showed decreased activity in posterior ventral visual regions, specifically the fusiform cortex, possibly reflecting reduced afferent input from limbic regions. Finally, bvFTD was associated with increased activity in posterior regions, including the inferior parietal cortex. LIMITATIONS Autopsy validation of frontotemporal dementia is not yet available for this cohort. CONCLUSION Together, these findings suggest that fMRI combined with tasks targeting social-cognitive deficits is a powerful technique to objectively measure neural systems involved in emotion processing in individuals with bvFTD. As viewing emotional expressions is known to engage many of the same neural systems that are active when experiencing the emotion itself, fMRI during expression processing provides a novel window into the emotions of patients with FTD.
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth Finger
- Correspondence to: E. Finger, Department of Clinical Neurological Sciences, University of Western Ontario, B10-004, 339 Windermere Rd., London ON N6A 5A5;
| |
Collapse
|
27
|
Renzi C, Schiavi S, Carbon CC, Vecchi T, Silvanto J, Cattaneo Z. Processing of featural and configural aspects of faces is lateralized in dorsolateral prefrontal cortex: a TMS study. Neuroimage 2013; 74:45-51. [PMID: 23435211 DOI: 10.1016/j.neuroimage.2013.02.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/22/2013] [Accepted: 02/02/2013] [Indexed: 11/29/2022] Open
Abstract
Facial recognition relies on distinct and parallel types of processing: featural processing focuses on the individual components of a face (e.g., the shape or the size of the eyes), whereas configural (or "relational") processing considers the spatial interrelationships among the single facial components (e.g., distance of the mouth from the nose). Previous neuroimaging evidence has suggested that featural and configural processes may rely on different brain circuits. By using rTMS, here we show for the first time a double dissociation in dorsolateral prefrontal cortex for different aspects of face processing: in particular, TMS over the left middle frontal gyrus (BA8) selectively disrupted featural processing, whereas TMS over the right inferior frontal gyrus (BA44) selectively interfered with configural processing of faces. By establishing a causal link between activation in left and right prefrontal areas and different modes of face processing, our data extend previous neuroimaging evidence and may have important implications in the study of face-processing deficits, such as those manifested in prosopagnosia and autistic spectrum disorders.
Collapse
Affiliation(s)
- Chiara Renzi
- Brain Connectivity Center, IRCCS Mondino, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Increased phase synchronization during continuous face integration measured simultaneously with EEG and fMRI. Clin Neurophysiol 2012; 123:1536-48. [PMID: 22305306 DOI: 10.1016/j.clinph.2011.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/30/2011] [Accepted: 12/21/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Gamma zero-lag phase synchronization has been measured in the animal brain during visual binding. Human scalp EEG studies used a phase locking factor (trial-to-trial phase-shift consistency) or gamma amplitude to measure binding but did not analyze common-phase signals so far. This study introduces a method to identify networks oscillating with near zero-lag phase synchronization in human subjects. METHODS We presented unpredictably moving face parts (NOFACE) which - during some periods - produced a complete schematic face (FACE). The amount of zero-lag phase synchronization was measured using global field synchronization (GFS). GFS provides global information on the amount of instantaneous coincidences in specific frequencies throughout the brain. RESULTS Gamma GFS was increased during the FACE condition. To localize the underlying areas, we correlated gamma GFS with simultaneously recorded BOLD responses. Positive correlates comprised the bilateral middle fusiform gyrus and the left precuneus. CONCLUSIONS These areas may form a network of areas transiently synchronized during face integration, including face-specific as well as binding-specific regions and regions for visual processing in general. SIGNIFICANCE Thus, the amount of zero-lag phase synchronization between remote regions of the human visual system can be measured with simultaneously acquired EEG/fMRI.
Collapse
|
29
|
Rieth CA, Lee K, Lui J, Tian J, Huber DE. Faces in the mist: illusory face and letter detection. Iperception 2011; 2:458-76. [PMID: 23145238 PMCID: PMC3485785 DOI: 10.1068/i0421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/26/2011] [Indexed: 10/29/2022] Open
Abstract
We report three behavioral experiments on the spatial characteristics evoking illusory face and letter detection. False detections made to pure noise images were analyzed using a modified reverse correlation method in which hundreds of observers rated a modest number of noise images (480) during a single session. This method was originally developed for brain imaging research, and has been used in a number of fMRI publications, but this is the first report of the behavioral classification images. In Experiment 1 illusory face detection occurred in response to scattered dark patches throughout the images, with a bias to the left visual field. This occurred despite the use of a fixation cross and expectations that faces would be centered. In contrast, illusory letter detection (Experiment 2) occurred in response to centrally positioned dark patches. Experiment 3 included an oval in all displays to spatially constrain illusory face detection. With the addition of this oval the classification image revealed an eyes/nose/mouth pattern. These results suggest that face detection is triggered by a minimal face-like pattern even when these features are not centered in visual focus.
Collapse
Affiliation(s)
- Cory A Rieth
- Department of Psychology, University of California, San Diego, La Jolla, CA 92093-0109, USA; e-mail:
| | | | | | | | | |
Collapse
|
30
|
Oblak AL, Rosene DL, Kemper TL, Bauman ML, Blatt GJ. Altered posterior cingulate cortical cyctoarchitecture, but normal density of neurons and interneurons in the posterior cingulate cortex and fusiform gyrus in autism. Autism Res 2011; 4:200-11. [PMID: 21360830 PMCID: PMC3110607 DOI: 10.1002/aur.188] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 01/07/2011] [Indexed: 01/11/2023]
Abstract
Autism is a developmental disorder with prenatal origins, currently estimated to affect 1 in 91 children in the United States. Social-emotional deficits are a hallmark of autism and early neuropathology studies have indicated involvement of the limbic system. Imaging studies demonstrate abnormal activation of the posterior cingulate cortex (PCC), a component of the limbic system. Abnormal activation has also been noted in the fusiform gyrus (FFG), a region important for facial recognition and a key element in social interaction. A potential imbalance between excitatory and inhibitory interneurons in the cortex may contribute to altered information processing in autism. Furthermore, reduced numbers of GABA receptors have previously been reported in the autistic brain. Thionin-stained sections were used to qualitatively assess cytoarchitectonic patterning and quantitatively determine the density of neurons and immunohistochemistry was used to determine the densities of a subset of GABAergic interneurons utilizing parvalbumin-and calbindin-immunoreactivity. In autism, the PCC displayed altered cytoarchitecture with irregularly distributed neurons, poorly demarcated layers IV and V, and increased presence of white matter neurons. In contrast, no neuropathology was observed in the FFG. There was no significant difference in the density of thionin, parvalbumin, or calbindin interneurons in either region and there was a trend towards a reduced density of calbindin neurons in the PCC. This study highlights the presence of abnormal findings in the PCC, which appear to be developmental in nature and could affect the local processing of social-emotional behaviors as well as functioning of interrelated areas.
Collapse
Affiliation(s)
- Adrian L Oblak
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | |
Collapse
|
31
|
Schulte T, Müller-Oehring EM, Sullivan EV, Pfefferbaum A. Disruption of emotion and conflict processing in HIV infection with and without alcoholism comorbidity. J Int Neuropsychol Soc 2011; 17:537-50. [PMID: 21418720 PMCID: PMC3537849 DOI: 10.1017/s1355617711000348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Alcoholism and HIV-1 infection each affect components of selective attention and cognitive control that may contribute to deficits in emotion processing based on closely interacting fronto-parietal attention and frontal-subcortical emotion systems. Here, we investigated whether patients with alcoholism, HIV-1 infection, or both diseases have greater difficulty than healthy controls in resolving conflict from emotional words with different valences. Accordingly, patients with alcoholism (ALC, n = 20), HIV-1 infection (HIV, n = 20), ALC + HIV comorbidity (n = 22), and controls (CTL, n = 16) performed an emotional Stroop Match-to-Sample task, which assessed the contribution of emotion (happy, angry) to cognitive control (Stroop conflict processing). ALC + HIV showed greater Stroop effects than HIV, ALC, or CTL for negative (ANGRY) but not for positive (HAPPY) words, and also when the cue color did not match the Stroop stimulus color; the comorbid group performed similarly to the others when cue and word colors matched. Furthermore, emotionally salient face cues prolonged color-matching responses in all groups. HIV alone, compared with the other three groups, showed disproportionately slowed color-matching time when trials featured angry faces. The enhanced Stroop effects prominent in ALC + HIV suggest difficulty in exercising attentional top-down control on processes that consume attentional capacity, especially when cognitive effort is required to ignore negative emotions.
Collapse
Affiliation(s)
- Tilman Schulte
- SRI International, Neuroscience Program, Menlo Park, California
| | - Eva M. Müller-Oehring
- SRI International, Neuroscience Program, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | | | - Adolf Pfefferbaum
- SRI International, Neuroscience Program, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| |
Collapse
|
32
|
Samson F, Mottron L, Soulières I, Zeffiro TA. Enhanced visual functioning in autism: an ALE meta-analysis. Hum Brain Mapp 2011; 33:1553-81. [PMID: 21465627 DOI: 10.1002/hbm.21307] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 01/12/2011] [Accepted: 02/18/2011] [Indexed: 11/11/2022] Open
Abstract
Autistics often exhibit enhanced perceptual abilities when engaged in visual search, visual discrimination, and embedded figure detection. In similar fashion, while performing a range of perceptual or cognitive tasks, autistics display stronger physiological engagement of the visual system than do non-autistics. To account for these findings, the Enhanced Perceptual Functioning Model proposes that enhanced autistic performance in basic perceptual tasks results from stronger engagement of sensory processing mechanisms, a situation that may facilitate an atypically prominent role for perceptual mechanisms in supporting cognition. Using quantitative meta-analysis of published functional imaging studies from which Activation Likelihood Estimation maps were computed, we asked whether autism is associated with enhanced task-related activity for a broad range of visual tasks. To determine whether atypical engagement of visual processing is a general or domain-specific phenomenon, we examined three different visual processing domains: faces, objects, and words. Overall, we observed more activity in autistics compared to non-autistics in temporal, occipital, and parietal regions. In contrast, autistics exhibited less activity in frontal cortex. The spatial distribution of the observed differential between-group patterns varied across processing domains. Autism may be characterized by enhanced functional resource allocation in regions associated with visual processing and expertise. Atypical adult organizational patterns may reflect underlying differences in developmental neural plasticity that can result in aspects of the autistic phenotype, including enhanced visual skills, atypical face processing, and hyperlexia.
Collapse
Affiliation(s)
- Fabienne Samson
- Centre d'Excellence en Troubles Envahissants du Développement de l'Université de Montréal (CETEDUM), Montréal, QC, Canada
| | | | | | | |
Collapse
|
33
|
Liu J, Li J, Rieth CA, Huber DE, Tian J, Lee K. A dynamic causal modeling analysis of the effective connectivities underlying top-down letter processing. Neuropsychologia 2011; 49:1177-1186. [PMID: 21237182 DOI: 10.1016/j.neuropsychologia.2011.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/09/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
The present study employed dynamic causal modeling to investigate the effective functional connectivity between regions of the neural network involved in top-down letter processing. We used an illusory letter detection paradigm in which participants detected letters while viewing pure noise images. When participants detected letters, the response of the right middle occipital gyrus (MOG) in the visual cortex was enhanced by increased feed-backward connectivity from the left inferior frontal gyrus (IFG). In addition, illusory letter detection increased feed-forward connectivity from the right MOG to the left inferior parietal lobules. Originating in the left IFG, this top-down letter processing network may facilitate the detection of letters by activating letter processing areas within the visual cortex. This activation in turns may highlight the visual features of letters and send letter information to activate the associated phonological representations in the identified parietal region.
Collapse
Affiliation(s)
- Jiangang Liu
- Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Jun Li
- School of Life Sciences and Technology, Xidian University, Xi'an 710071, China
| | | | | | - Jie Tian
- School of Life Sciences and Technology, Xidian University, Xi'an 710071, China; Institute of Automation, Chinese Academy of Sciences, P.O. Box 2728, Beijing 100190, China.
| | - Kang Lee
- University of California, San Diego, CA, USA; University of Toronto, Canada.
| |
Collapse
|
34
|
The power of imagination — How anticipatory mental imagery alters perceptual processing of fearful facial expressions. Neuroimage 2011; 54:1703-14. [DOI: 10.1016/j.neuroimage.2010.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 11/23/2022] Open
|
35
|
Frühholz S, Godde B, Lewicki P, Herzmann C, Herrmann M. Face recognition under ambiguous visual stimulation: fMRI correlates of "encoding styles". Hum Brain Mapp 2010; 32:1750-61. [PMID: 20886578 DOI: 10.1002/hbm.21144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 06/05/2010] [Accepted: 07/12/2010] [Indexed: 11/05/2022] Open
Abstract
Object categorization during ambiguous sensory stimulation generally depends on the activity of extrastriate sensory areas as well as top-down information. Both reflect internal representations of prototypical object knowledge against which incoming sensory information is compared. However, besides these general mechanisms, individuals might differ in their readiness to impose internal representations onto incoming ambiguous information. These individual differences might be based on what was referred to as "Schema Instantiation Threshold" (SIT; Lewicki et al. [1992]: Am Pshycol 47:796-801), defining a continuum from very rapid (low threshold) to a rather controlled application of internal representations (high threshold). We collected fMRI scans while subjects with low SIT ("internal encoders") and subjects with high SIT ("external encoders") made gender categorizations of ambiguous facial images. Internal encoders made faster gender decisions during high sensory ambiguity, showed higher fusiform activity, and had faster BOLD responses in the fusiform (FFA) and occipital face area (OFA) indicating a faster and stronger application of face-gender representations due to a low SIT threshold. External encoders made slower gender decisions and showed increased medial frontal activity, indicating a more controlled strategy during gender categorizations and increased decisional uncertainties. Internal encoders showed higher functional connectivity of the orbito-frontal cortex (OFC) to seed activity in the FFA which might indicate both more readily generated predictive classificatory guesses and the subjective impressions of accurate classifications. Taken together, an "internal encoding style" is characterized by the fast, unsupervised and unverified application of primary object representations, whereas the opposite seems evident for subjects with an "external encoding style".
Collapse
Affiliation(s)
- Sascha Frühholz
- Department of Neuropsychology and Behavioral Neurobiology, Bremen University, Bremen, Germany.
| | | | | | | | | |
Collapse
|
36
|
Inversion effect in the visual processing of Chinese character: An fMRI study. Neurosci Lett 2010; 478:107-11. [DOI: 10.1016/j.neulet.2010.04.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/20/2010] [Accepted: 04/30/2010] [Indexed: 11/17/2022]
|
37
|
Förster S, Teipel S, Zach C, Rominger A, Cumming P, Fougere CL, Yakushev I, Haslbeck M, Hampel H, Bartenstein P, Bürger K. FDG-PET mapping the brain substrates of visuo-constructive processing in Alzheimer's disease. J Psychiatr Res 2010; 44:462-9. [PMID: 19875130 DOI: 10.1016/j.jpsychires.2009.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/24/2009] [Accepted: 09/30/2009] [Indexed: 11/30/2022]
Abstract
The anatomical basis of visuo-constructive impairment in AD is widely unexplored. FDG-PET can be used to determine functional neuronal networks underlying specific cognitive performance in the human brain. In the present study, we determined the pattern of cortical metabolism that was associated with visuo-constructive performance in AD. We employed two widely used visuo-constructive tests that differ in their demand on visual perception and processing capacity. Resting state FDG-PET scans were obtained in 29 probable AD patients, and cognitive tests were administered. We made a voxel-based regression analysis of FDG uptake to scores in visual test performance, using the SPM5 software. Performance in the CERAD Drawing test correlated with FDG uptake in the bilateral inferior temporal gyri, bilateral precuneus, right cuneus, right supramarginal gyrus and right middle temporal gyrus covering areas of dorsal and ventral visual streams. In contrast, performance in the more complex RBANS Figure Copy test correlated with FDG uptake in the bilateral fusiform gyri, right inferior temporal gyrus, left anterior cingulate gyrus, left parahippocampal gyrus, right middle temporal gyrus and right insula, encompassing the ventral visual stream and areas of higher-level visual processing. The study revealed neuronal networks underlying impaired visual test performance in AD. The extent of involvement of visual and higher order association cortex increased with greater test complexity. From a clinical point of view, both of these widely used visual tests evaluate the integrity of complementary cortical networks and may contribute complementary information on the integrity of visual processing in AD.
Collapse
Affiliation(s)
- Stefan Förster
- Department of Nuclear Medicine, Ludwig-Maximilian University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Li J, Liu J, Liang J, Zhang H, Zhao J, Rieth CA, Huber DE, Li W, Shi G, Ai L, Tian J, Lee K. Effective connectivities of cortical regions for top-down face processing: a dynamic causal modeling study. Brain Res 2010; 1340:40-51. [PMID: 20423709 DOI: 10.1016/j.brainres.2010.04.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/18/2010] [Accepted: 04/18/2010] [Indexed: 11/30/2022]
Abstract
To study top-down face processing, the present study used an experimental paradigm in which participants detected non-existent faces in pure noise images. Conventional BOLD signal analysis identified three regions involved in this illusory face detection. These regions included the left orbitofrontal cortex (OFC) in addition to the right fusiform face area (FFA) and right occipital face area (OFA), both of which were previously known to be involved in both top-down and bottom-up processing of faces. We used Dynamic Causal Modeling (DCM) and Bayesian model selection to further analyze the data, revealing both intrinsic and modulatory effective connectivities among these three cortical regions. Specifically, our results support the claim that the orbitofrontal cortex plays a crucial role in the top-down processing of faces by regulating the activities of the occipital face area, and the occipital face area in turn detects the illusory face features in the visual stimuli and then provides this information to the fusiform face area for further analysis.
Collapse
Affiliation(s)
- Jun Li
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi'an 710071, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu J, Li J, Zhang H, Rieth CA, Huber DE, Lee K, Tian J. Neural correlates of top-down letter processing. Neuropsychologia 2010; 48:636-41. [PMID: 19883666 PMCID: PMC2814001 DOI: 10.1016/j.neuropsychologia.2009.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/16/2009] [Accepted: 10/22/2009] [Indexed: 11/28/2022]
Abstract
This fMRI study investigated top-down letter processing with an illusory letter detection task. Participants responded whether one of a number of different possible letters was present in a very noisy image. After initial training that became increasingly difficult, they continued to detect letters even though the images consisted of pure noise, which eliminated contamination from strong bottom-up input. For illusory letter detection, greater fMRI activation was observed in several cortical regions. These regions included the precuneus, an area generally involved in top-down processing of objects, and the left superior parietal lobule, an area previously identified with the processing of valid letter and word stimuli. In addition, top-down letter detection also activated the left inferior frontal gyrus, an area that may be involved in the integration of general top-down processing and letter-specific bottom-up processing. These findings suggest that these regions may play a significant role in top-down as well as bottom-up processing of letters and words, and are likely to have reciprocal functional connections to more posterior regions in the word and letter processing network.
Collapse
Affiliation(s)
- Jiangang Liu
- Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Jun Li
- Life Science Research Center, Xidian University, Xi'an, Shaanxi 710071, P.R. China
| | | | | | | | - Kang Lee
- University of California, San Diego, USA
- University of Toronto, Canada
| | - Jie Tian
- Life Science Research Center, Xidian University, Xi'an, Shaanxi 710071, P.R. China
- Institute of Automation Chinese Academy of Sciences, P. O. Box 2728, Beijing, 100190, China
| |
Collapse
|