1
|
Watamura N, Kakiya N, Fujioka R, Kamano N, Takahashi M, Nilsson P, Saito T, Iwata N, Fujisawa S, Saido TC. The dopaminergic system promotes neprilysin-mediated degradation of amyloid-β in the brain. Sci Signal 2024; 17:eadk1822. [PMID: 39106321 DOI: 10.1126/scisignal.adk1822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/21/2024] [Accepted: 07/01/2024] [Indexed: 08/09/2024]
Abstract
Deposition of amyloid-β (Aβ) in the brain can impair neuronal function and contribute to cognitive decline in Alzheimer's disease (AD). Here, we found that dopamine and the dopamine precursor levodopa (also called l-DOPA) induced Aβ degradation in the brain. Chemogenetic approaches in mice revealed that the activation of dopamine release from ventral tegmental area (VTA) neurons increased the abundance and activity of the Aβ-degrading enzyme neprilysin and reduced the amount of Aβ deposits in the prefrontal cortex in a neprilysin-dependent manner. Aged mice had less dopamine and neprilysin in the anterior cortex, a decrease that was accentuated in AD model mice. Treating AD model mice with levodopa reduced Aβ deposition and improved cognitive function. These observations demonstrate that dopamine promotes brain region-specific, neprilysin-dependent degradation of Aβ, suggesting that dopamine-associated strategies have the potential to treat this aspect of AD pathology.
Collapse
Affiliation(s)
- Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naomasa Kakiya
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mika Takahashi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division for Neurogeriatrics, Karolinska Institutet, 171 64, Solna, Sweden
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Nobuhisa Iwata
- Department of Genome-based Drug Discovery & Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Shigeyoshi Fujisawa
- Laboratory for Systems Neurophysiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Du X, Lv J, Feng J, Li X, Gao Y, Wang X, Zhao W, Ren Z, Zhang R, Cao X, Liu S, Xu Y. Plasma exosomes lncRNA-miRNA-mRNA network construction and its diagnostic efficacy identification in first-episode schizophrenia. BMC Psychiatry 2023; 23:611. [PMID: 37605121 PMCID: PMC10441745 DOI: 10.1186/s12888-023-05052-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND The exosomal lncRNA-miRNA-mRNA networks in first episode schizophrenia (FOS) have not reported yet. This study examined the lncRNA, miRNA and mRNA expression level in exosome derived from first episode schizophrenia (FOS) patients, and explored the the potential of exosomes as biomarkers for schizophrenia. METHODS We recruited 10 FOS patients and healthy controls (HCs) respectively, examined the lncRNA, miRNA and mRNA expression level of plasma exosome by high throughput sequencing, constructed lncRNA-miRNA-mRNA network, and performed correlation analysis, GO and KEGG pathway analysis, PPI network construction and ROC analysis. RESULTS There were 746 differently expressed lncRNA, 22 differently expressed miRNA, and 2637 differently expressed mRNA in plasma exosome in FOS compared with HCs. Then we constructed ceRNA network consisting of 8 down-regulated lncRNA, 7 up-regulated miRNA and 65 down-regulated mRNA, and 1 up-regulated lncRNA, 1 down-regulated miRNA and 4 up-regulated mRNA. The expression level of 1 lncRNA and 7 mRNA in exosomal network were correlated with PANSS score. GO and KEGG pathway analysis showed that 4 up-regulated mRNAs were enriched in neuropsychiatric system function. Down-regulated mRNA EZH2 and SIRT1 were identified as hub gene. Finally, we detected the ROC curve of ENSG00000251562, miR-26a-5p, EZH2, miR-22-3p, SIRT1, ENSG00000251562-miR-26a-5p-EZH2, ENSG00000251562-miR-22-3p-SIRT1, and found that the AUC of ceRNA network was higher than lncRNA, miRNA and mRNA alone. CONCLUSION We constructed the lncRNA-miRNA-mRNA network in exosome derived from FOS plasma, and found that lncRNA-miRNA-mRNA network has potential as biomarkers for FOS.
Collapse
Affiliation(s)
- Xinzhe Du
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinzhi Lv
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jianping Feng
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao Wang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wentao Zhao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhiyong Ren
- Female Department of Schizophrenia, Shanxi Province Mental Health Center/Taiyuan Psychiatric Hospital, Taiyuan, China
| | - Ruifang Zhang
- Female Department of Schizophrenia, Shanxi Province Mental Health Center/Taiyuan Psychiatric Hospital, Taiyuan, China
| | - Xiaohua Cao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.
- Department of Psychiatry, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
3
|
Griffin SM, Pickard MR, Hawkins CP, Williams AC, Fricker RA. Nicotinamide restricts neural precursor proliferation to enhance catecholaminergic neuronal subtype differentiation from mouse embryonic stem cells. PLoS One 2020; 15:e0233477. [PMID: 32925933 PMCID: PMC7489539 DOI: 10.1371/journal.pone.0233477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/28/2020] [Indexed: 11/19/2022] Open
Abstract
Emerging evidence indicates that a strong relationship exists between brain regenerative therapies and nutrition. Early life nutrition plays an important role during embryonic brain development, and there are clear consequences to an imbalance in nutritional factors on both the production and survival of mature neuronal populations and the infant’s risk of diseases in later life. Our research and that of others suggest that vitamins play a fundamental role in the formation of neurons and their survival. There is a growing body of evidence that nicotinamide, the water-soluble amide form of vitamin B3, is implicated in the conversion of pluripotent stem cells to clinically relevant cells for regenerative therapies. This study investigated the ability of nicotinamide to promote the development of mature catecholaminergic neuronal populations (associated with Parkinson’s disease) from mouse embryonic stem cells, as well as investigating the underlying mechanisms of nicotinamide’s action. Nicotinamide selectively enhanced the production of tyrosine hydroxylase-expressing neurons and serotonergic neurons from mouse embryonic stem cell cultures (Sox1GFP knock-in 46C cell line). A 5-Ethynyl-2´-deoxyuridine (EdU) assay ascertained that nicotinamide, when added in the initial phase, reduced cell proliferation. Nicotinamide drove tyrosine hydroxylase-expressing neuron differentiation as effectively as an established cocktail of signalling factors, reducing the proliferation of neural progenitors and accelerating neuronal maturation, neurite outgrowth and neurotransmitter expression. These novel findings show that nicotinamide enhanced and enriched catecholaminergic differentiation and inhibited cell proliferation by directing cell cycle arrest in mouse embryonic stem cell cultures, thus driving a critical neural proliferation-to-differentiation switch from neural progenitors to neurons. Further research into the role of vitamin metabolites in embryogenesis will significantly advance cell-based regenerative medicine, and help realize their role as crucial developmental signalling molecules in brain development.
Collapse
Affiliation(s)
- Síle M. Griffin
- Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, England, United Kingdom
- * E-mail:
| | - Mark R. Pickard
- Chester Medical School, University Centre Shrewsbury, University of Chester, Shrewsbury, England, United Kingdom
| | - Clive P. Hawkins
- Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, England, United Kingdom
- Department of Neurology, Royal Stoke University Hospital, Stoke-on-Trent, Staffordshire, England, United Kingdom
| | - Adrian C. Williams
- Department of Neurosciences, University of Birmingham, Birmingham, England, United Kingdom
| | - Rosemary A. Fricker
- Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, England, United Kingdom
| |
Collapse
|
4
|
Williams AC, Hill LJ. Nicotinamide and Demographic and Disease transitions: Moderation is Best. Int J Tryptophan Res 2019; 12:1178646919855940. [PMID: 31320805 PMCID: PMC6610439 DOI: 10.1177/1178646919855940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Good health and rapid progress depend on an optimal dose of nicotinamide. Too little meat triggers the neurodegenerative condition pellagra and tolerance of symbionts such as tuberculosis (TB), risking dysbioses and impaired resistance to acute infections. Nicotinamide deficiency is an overlooked diagnosis in poor cereal-dependant economies masquerading as 'environmental enteropathy' or physical and cognitive stunting. Too much meat (and supplements) may precipitate immune intolerance and autoimmune and allergic disease, with relative infertility and longevity, via the tryptophan-nicotinamide pathway. This switch favours a dearth of regulatory T (Treg) and an excess of T helper cells. High nicotinamide intake is implicated in cancer and Parkinson's disease. Pro-fertility genes, evolved to counteract high-nicotinamide-induced infertility, may now be risk factors for degenerative disease. Moderation of the dose of nicotinamide could prevent some common diseases and personalised doses at times of stress or, depending on genetic background or age, may treat some other conditions.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Experimental and theoretical study on the interactions between dopamine hydrochloride and nicotinamide. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Marin C, Langdon C, Alobid I, Fuentes M, Bonastre M, Mullol J. Recovery of Olfactory Function After Excitotoxic Lesion of the Olfactory Bulbs Is Associated with Increases in Bulbar SIRT1 and SIRT4 Expressions. Mol Neurobiol 2019; 56:5643-5653. [DOI: 10.1007/s12035-019-1472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022]
|
7
|
Hood S, Amir S. Biological Clocks and Rhythms of Anger and Aggression. Front Behav Neurosci 2018; 12:4. [PMID: 29410618 PMCID: PMC5787107 DOI: 10.3389/fnbeh.2018.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
The body’s internal timekeeping system is an under-recognized but highly influential force in behaviors and emotions including anger and reactive aggression. Predictable cycles or rhythms in behavior are expressed on several different time scales such as circadian (circa diem, or approximately 24-h rhythms) and infradian (exceeding 24 h, such as monthly or seasonal cycles). The circadian timekeeping system underlying rhythmic behaviors in mammals is constituted by a network of clocks distributed throughout the brain and body, the activity of which synchronizes to a central pacemaker, or master clock. Our daily experiences with the external environment including social activity strongly influence the exact timing of this network. In the present review, we examine evidence from a number of species and propose that anger and reactive aggression interact in multiple ways with circadian clocks. Specifically, we argue that: (i) there are predictable rhythms in the expression of aggression and anger; (ii) disruptions of the normal functioning of the circadian system increase the likelihood of aggressive behaviors; and (iii) conversely, chronic expression of anger can disrupt normal rhythmic cycles of physiological activities and create conditions for pathologies such as cardiovascular disease to develop. Taken together, these observations suggest that a comprehensive perspective on anger and reactive aggression must incorporate an understanding of the role of the circadian timing system in these intense affective states.
Collapse
Affiliation(s)
- Suzanne Hood
- Department of Psychology, Bishop's University, Sherbrooke, QC, Canada
| | - Shimon Amir
- Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
8
|
Griffin SM, Pickard MR, Orme RP, Hawkins CP, Williams AC, Fricker RA. Nicotinamide alone accelerates the conversion of mouse embryonic stem cells into mature neuronal populations. PLoS One 2017; 12:e0183358. [PMID: 28817722 PMCID: PMC5560552 DOI: 10.1371/journal.pone.0183358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/02/2017] [Indexed: 01/26/2023] Open
Abstract
Introduction Vitamin B3 has been shown to play an important role during embryogenesis. Specifically, there is growing evidence that nicotinamide, the biologically active form of vitamin B3, plays a critical role as a morphogen in the differentiation of stem cells to mature cell phenotypes, including those of the central nervous system (CNS). Detailed knowledge of the action of small molecules during neuronal differentiation is not only critical for uncovering mechanisms underlying lineage-specification, but also to establish more effective differentiation protocols to obtain clinically relevant cells for regenerative therapies for neurodegenerative conditions such as Huntington’s disease (HD). Thus, this study aimed to investigate the potential of nicotinamide to promote the conversion of stem cells to mature CNS neurons. Methods Nicotinamide was applied to differentiating mouse embryonic stem cells (mESC; Sox1GFP knock-in 46C cell line) during their conversion towards a neural fate. Cells were assessed for changes in their proliferation, differentiation and maturation; using immunocytochemistry and morphometric analysis methods. Results Results presented indicate that 10 mM nicotinamide, when added at the initial stages of differentiation, promoted accelerated progression of ESCs to a neural lineage in adherent monolayer cultures. By 14 days in vitro (DIV), early exposure to nicotinamide was shown to increase the numbers of differentiated βIII-tubulin-positive neurons. Nicotinamide decreased the proportion of pluripotent stem cells, concomitantly increasing numbers of neural progenitors at 4 DIV. These progenitors then underwent rapid conversion to neurons, observed by a reduction in Sox 1 expression and decreased numbers of neural progenitors in the cultures at 14 DIV. Furthermore, GABAergic neurons generated in the presence of nicotinamide showed increased maturity and complexity of neurites at 14 DIV. Therefore, addition of nicotinamide alone caused an accelerated passage of pluripotent cells through lineage specification and further to non-dividing mature neurons. Conclusions Our results show that, within an optimal dose range, nicotinamide is able to singly and selectively direct the conversion of embryonic stem cells to mature neurons, and therefore may be a critical factor for normal brain development, thus supporting previous evidence of the fundamental role of vitamins and their metabolites during early CNS development. In addition, nicotinamide may offer a simple effective supplement to enhance the conversion of stem cells to clinically relevant neurons.
Collapse
Affiliation(s)
- Síle M. Griffin
- Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, England, United Kingdom
| | - Mark R. Pickard
- Chester Centre for Stress Research, Institute of Medicine, University of Chester, Chester, United Kingdom
| | - Rowan P. Orme
- Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, England, United Kingdom
| | - Clive P. Hawkins
- Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, England, United Kingdom
- Department of Neurology, University Hospital of North Staffordshire, Stoke-on-Trent, Staffordshire, England, United Kingdom
| | - Adrian C. Williams
- Department of Neurosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rosemary A. Fricker
- Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, England, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Chang H, Yan Q, Tang J, Huang J, Zhang Y, Ma Y, Ye X, Tang L, Wu L, Wu C, Yu Y. Possible association between SIRT1 single nucleotide polymorphisms and predisposition to antisocial personality traits in Chinese adolescents. Sci Rep 2017; 7:1099. [PMID: 28439078 PMCID: PMC5430697 DOI: 10.1038/s41598-017-01208-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/20/2017] [Indexed: 01/02/2023] Open
Abstract
Accumulating evidence suggests an association between the SIRT1 gene and human psychiatric disorders. The aim of the study was to investigate the association between SIRT1 and predisposition to antisocial personality traits (ASP) in Chinese adolescents. Participants consisted of 327 controls and 261 juvenile offenders who were diagnosed with predisposition to ASP according to the Personality Diagnostic Questionnaire. Four tag single nucleotide polymorphisms (tagSNPs) of SIRT1, namely rs12778366, rs7896005, rs10823112, and rs4746720, were genotyped. Association analysis between individual SNPs and ASP risk revealed the CC genotype of rs4746720 to be significantly associated with reduced risk of ASP (OR = 0.51, 95% CI = 0.33-0.77, adjusted P = 0.007). Haplotype analysis showed the TAAC haplotype was associated with reduced susceptibility to ASP (OR = 0.72, 95% CI = 0.57-0.91, P = 0.005). Moreover, rs4746720 variants were found to not only have a direct impact on ASP susceptibility but also modulate the effect of alcohol consumption (Y = 0.022X + 0.431 vs. Y = -0.066X + 0.387). The present study is the first to report a significant association between SIRT1 polymorphisms and ASP in adolescents. This finding is expected to aid in the development of effective interventions for this socially and personally costly disorder.
Collapse
Affiliation(s)
- Hongjuan Chang
- The Department of Child, Adolescence and Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuge Yan
- The Department of Child, Adolescence and Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Tang
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Juan Huang
- The Department of Child, Adolescence and Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Zhang
- The Department of Child, Adolescence and Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqiao Ma
- The Department of Child, Adolescence and Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhou Ye
- The Department of Child, Adolescence and Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Tang
- The Department of Child, Adolescence and Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linguo Wu
- The Department of Child, Adolescence and Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxia Wu
- The Department of Child, Adolescence and Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhen Yu
- The Department of Child, Adolescence and Woman Health Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Muñoz-Castañeda R, Díaz D, Avila-Zarza CA, Alonso JR, Weruaga E. Sex-influence of nicotine and nitric oxide on motor coordination and anxiety-related neurophysiological responses. Psychopharmacology (Berl) 2014; 231:695-706. [PMID: 24081550 DOI: 10.1007/s00213-013-3284-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Nitric oxide (NO) is a messenger synthesized in both the neuronal and glial populations by nitric oxide synthase type 1 (NOS1). Nicotine regulates NO production in a sex-dependent manner, both molecules being involved in motor function. OBJECTIVE The present study evaluates sex differences in motor coordination, general movement, and anxiety-related responses resulting from both constant and continuous nicotine treatment and the genetic depletion of NOS1 activity. METHODS Male and female mice were analyzed with the open-field and the rotarod tests. To understand the role of NO, knockout mice for NOS1 (NOS1-/-) were analyzed. Nicotine was administered continuously at a dose of 24 mg/kg/day via osmotic mini-pumps over 14 days because the behavioral effects elicited are similar to those observed with discontinuous administration. RESULTS Data analyses revealed noteworthy sex differences derived from NOS1 depletion. Control NOS1-/- males exhibited an exacerbated anxiety-related response in relation to control NOS1-/- females and control wild-type (WT) males; these differences disappeared in the nicotine-administered NOS1-/- males. Additionally, nicotine administration differentially affected the horizontal movements of NOS1-/- females with respect to WT animals. NO depletion affected male but not female motor coordination improvement along the test days. However, the drug affected female motor coordination only at the end of the administration period. CONCLUSIONS We show for the first time that NO affects motor and anxiety behaviors in a sex-dependent manner. Moreover, the behavioral effects of constant nicotine administration are dimorphic and dependent on NO production.
Collapse
Affiliation(s)
- Rodrigo Muñoz-Castañeda
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007, Salamanca, Spain
| | | | | | | | | |
Collapse
|
11
|
In S, Lee DS, Choi B, Kim MJ. Nicotinamide induces male-specific body weight loss in the postnatal period through molecular regulation of the hypothalamus and liver. Neurosci Lett 2012; 530:166-71. [PMID: 23043891 DOI: 10.1016/j.neulet.2012.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/13/2012] [Accepted: 09/27/2012] [Indexed: 11/24/2022]
Abstract
Molecular mechanisms of body weight control have been discovered recently and much research focuses on the hypothalamic regulation of food intake and the hepatic regulation of glucose utility. We previously reported that postnatal nicotinamide treatment reduced brain dopamine and body weight. To further investigate the differential effects of nicotinamide-mediated body weight loss, nicotinamide (i.p. 100mg/kg) was injected into postnatal and adult mice twice a week for 4 weeks. Interestingly, following nicotinamide treatment, male postnatal mice displayed reduced body weight and spontaneous motor activity. No significant changes were observed in adult and postnatal female mice or adult male mice following nicotinamide treatment. In male postnatal mice, hypothalamic agouti-related peptide (AGRP) and proopiomelanocortin (POMC) levels were increased in the arcuate nucleus following nicotinamide treatment. Neuropeptide Y (NPY) levels were unchanged in both male and female mice. Additionally, nicotinamide-injected male postnatal mice had increased glucose 6-phosphatase (G6Pase) and decreased phosphoenolpyruvate carboxykinase (PEPCK) expression in liver. These results indicate that hypothalamic POMC and hepatic PEPCK are important molecules that mediate nicotinamide-induced weight loss in postnatal male mice.
Collapse
Affiliation(s)
- Sua In
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 200-702, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr Gerontol Geriatr Res 2012; 2012:302875. [PMID: 22536229 PMCID: PMC3318212 DOI: 10.1155/2012/302875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/19/2011] [Indexed: 01/22/2023] Open
Abstract
Compartmentalized redox faults are common to ageing diseases. Dietary constituents are catabolized to NAD(H) donating electrons producing proton-based bioenergy in coevolved, cross-species and cross-organ networks. Nicotinamide and NAD deficiency from poor diet or high expenditure causes pellagra, an ageing and dementing disorder with lost robustness to infection and stress. Nicotinamide and stress induce Nicotinamide-N-methyltransferase (NNMT) improving choline retention but consume methyl groups. High NNMT activity is linked to Parkinson's, cancers, and diseases of affluence. Optimising nicotinamide and choline/methyl group availability is important for brain development and increased during our evolution raising metabolic and methylome ceilings through dietary/metabolic symbiotic means but strict energy constraints remain and life-history tradeoffs are the rule. An optimal energy, NAD and methyl group supply, avoiding hypo and hyper-vitaminoses nicotinamide and choline, is important to healthy ageing and avoids utilising double-edged symbionts or uncontrolled autophagy or reversions to fermentation reactions in inflammatory and cancerous tissue that all redistribute NAD(P)(H), but incur high allostatic costs.
Collapse
|
13
|
Kishi T, Fukuo Y, Okochi T, Kitajima T, Ujike H, Inada T, Yamada M, Uchimura N, Sora I, Iyo M, Ozaki N, Correll CU, Iwata N. No significant association between SIRT1 gene and methamphetamine-induced psychosis in the Japanese population. Hum Psychopharmacol 2011; 26:445-50. [PMID: 21882241 DOI: 10.1002/hup.1223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/19/2011] [Indexed: 11/09/2022]
Abstract
OBJECTIVES We previously showed that the sirtuin 1 gene (SIRT1 gene), one of the clock genes, was associated with schizophrenia in a Japanese patient population. Because the symptoms of methamphetamine (METH)-induced psychosis are similar to those of paranoid type schizophrenia and because not every METH user develops psychosis, it is conceivable that METH-induced psychosis and schizophrenia have common susceptibility genes. Therefore, we conducted an analysis of the association of SIRT1 gene with METH-induced psychosis, hypothesizing a significant relationship. METHODS This paper presents a case-control study of the SIRT1 gene in 515 Japanese individuals (197 with METH-induced psychosis and 318 age-matched and sex-matched controls) with four tagging single nucleotide polymorphisms (rs12778366, rs2273773, rs4746720, and rs10997875), selected a priori using the HapMap database. RESULTS rs10997875 (located in the 3' flanking region) was associated with METH-induced psychosis (unadjusted p(genotype) = 0.0203). However, these results became non-significant after Bonferroni correction (corrected p(genotype) = 0.0812). In the all-marker haplotype analysis, the SIRT1 gene was not associated with METH-induced psychosis (p = 0.146). CONCLUSION Our findings suggest that SIRT1 gene does not contribute to the development of METH-induced psychosis in the Japanese population. However, a replication study using larger samples should be conducted to obtain conclusive results.
Collapse
Affiliation(s)
- Taro Kishi
- Department of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, New York 11004, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Wake neurons in the basal forebrain and brainstem provide critical inputs to optimize alertness and attention. These neurons, however, evidence heightened vulnerability to a diverse array of metabolic challenges, including aging. SIRT1 is an nicotinamide adenine dinucleotide responsive deacetylase serving diverse adaptive responses to metabolic challenges, yet this metabolic rheostat may be downregulated under conditions of significant oxidative stress. We hypothesized that SIRT1 might serve as a critical neuroprotectant for wake neurons in young animals but that this protectant would be lost upon aging, rendering the neurons more vulnerable to metabolic insults. In this collection of studies, we first established the presence of nuclear SIRT1 in wake neurons throughout the forebrain and brainstem. Supporting functional and behavioral roles for SIRT1 in wake-active neurons, transgenic whole animal, and conditional loss of brain SIRT1 in the adult mouse impart selective impairments in wakefulness, without disrupting non-rapid eye movement or rapid eye movement sleep. Populations of wake neurons, including the orexinergic, locus ceruleus, mesopontine cholinergic, and dopaminergic wake neurons, evidence loss of dendrites and neurotransmitter synthesis enzymes and develop accelerated accumulation of lipofuscin, consistent with a senescence-like phenotype in wake neurons. Normal aging results in a progressive loss of SIRT1 in wake-active neurons, temporally coinciding with lipofuscin accumulation. SIRT1 is a critical age-sensitive neuroprotectant for wake neurons, and its deficiency results in impaired wakefulness.
Collapse
|
15
|
Kishi T, Fukuo Y, Kitajima T, Okochi T, Yamanouchi Y, Kinoshita Y, Kawashima K, Inada T, Kunugi H, Kato T, Yoshikawa T, Ujike H, Ozaki N, Iwata N. SIRT1 gene, schizophrenia and bipolar disorder in the Japanese population: an association study. GENES BRAIN AND BEHAVIOR 2010; 10:257-63. [DOI: 10.1111/j.1601-183x.2010.00661.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Kishi T, Yoshimura R, Kitajima T, Okochi T, Okumura T, Tsunoka T, Yamanouchi Y, Kinoshita Y, Kawashima K, Fukuo Y, Naitoh H, Umene-Nakano W, Inada T, Nakamura J, Ozaki N, Iwata N. SIRT1 gene is associated with major depressive disorder in the Japanese population. J Affect Disord 2010; 126:167-73. [PMID: 20451257 DOI: 10.1016/j.jad.2010.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/08/2010] [Accepted: 04/09/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Many studies including our previous ones as to PROKR2 and CLOCK have suggested that circadian genes may be involved in the mechanisms of mood disorders and their treatment responses. Also several recent investigations have reported that SIRT1 plays an important role in the circadian system as conventional circadian clock genes, and also have some relation to dopaminergic metabolism. So we considered the SIRT1 gene to be a good candidate gene for the pathophysiology for MDD and SSRI responses in MDD, and conducted a case-control study using four tagging SNPs (450 MDD patients, including 261 patients treated by SSRIs and 766 controls). METHOD The MDD patients in this study had scores of 12 or higher on the 17 items of the Structured Interview Guide for Hamilton Rating Scale for Depression (SIGH-D). We defined a clinical response as a decrease of more than 50% in baseline SIGH-D within 8 weeks, and clinical remission as an SIGH-D score of less than 7 at 8 weeks. Marker-trait association analysis was used to evaluate allele and genotype association with the chi-square test, and haplotype association analysis was evaluated with a likelihood ratio test. RESULT We found an association between rs10997875 in SIRT1 gene and MDD in the allele/genotype analysis. In addition, this significance of these associations survived Bonferroni correction. However, we did not find any association between SIRT1 gene and SSRI therapeutic response in MDD in the allele/genotype analysis or haplotype analysis. LIMITATIONS A replication study using larger samples may be required for conclusive results, since our sample size was small. CONCLUSIONS Our results suggest that rs10997875 in SIRT1 gene may play a role in the pathophysiology of MDD in the Japanese population.
Collapse
Affiliation(s)
- Taro Kishi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|