1
|
Liao W, Wang M, Wu Y, Du J, Li Y, Su A, Zhong L, Xie Z, Gong M, Liang J, Wang P, Liu Z, Wang L. The mechanisms of Huangqi Guizhi Wuwu decoction in treating ischaemic stroke based on network pharmacology and experiment verification. PHARMACEUTICAL BIOLOGY 2023; 61:1014-1029. [PMID: 37410583 DOI: 10.1080/13880209.2023.2230477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
CONTEXT Huangqi Guizhi Wuwu Decoction (HGWD) is effective in treating ischaemic stroke (IS). However, its mechanism of action is still unclear. OBJECTIVE Network pharmacology integrated with in vivo experiments were used to clarify the underlying mechanisms of HGWD for treating IS. MATERIALS AND METHODS TCMSP, GeneCards, OMIM and STRING were used to retrieve and construct visual protein interaction networks for the key targets. The AutoDock tool was used for molecular docking between key targets and active compounds. The neuroprotective effect of HGWD were verified in a middle cerebral artery occlusion (MCAO) model rat. The Sprague-Dawley (SD) rats were divided into sham, model, low-dose (5 g/kg, i.g.), high-dose (20 g/kg, i.g.), and nimodipine (20 mg/kg, i.g.) groups once daily for 7 days. The neurological scores, brain infarct volumes, lipid peroxidation, inflammatory cytokines, Nissl bodies, apoptotic neurons, and signalling pathways were all investigated and evaluated in vivo. RESULTS Network pharmacology identified 117 HGWD targets related to IS and 36 candidate compounds. GO and KEGG analyses showed that HGWD anti-IS effects were mainly associated with PI3K-Akt and HIF-1 signalling pathways. HGWD effectively reduced the cerebral infarct volumes (19.19%), the number of apoptotic neurons (16.78%), and the release of inflammatory cytokines, etc. in MCAO rats. Furthermore, HGWD decreased the levels of HIF-1A, VEGFA, Bax, cleaved caspase-3, p-MAPK1, and p-c-Jun while increasing the expression of p-PI3K, p-AKT1, and Bcl-2. DISCUSSION AND CONCLUSION This study initially elucidated the mechanism of HGWD anti-IS, which contributed to the further promotion and secondary development of HGWD in clinical practice.
Collapse
Affiliation(s)
- Weiguo Liao
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Minchun Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Wu
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinyan Du
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yaxin Li
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Anyu Su
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lanying Zhong
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zi Xie
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mingyu Gong
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Junhui Liang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Pengcheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zai Liu
- Pharmacy Department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, China
| | - Lisheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Gao Y, Wu Y, Huan T, Wang X, Xu J, Xu Q, Yu F, Shi H. The application of oncolytic viruses in cancer therapy. Biotechnol Lett 2021; 43:1945-1954. [PMID: 34448096 DOI: 10.1007/s10529-021-03173-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Oncolytic therapy is a treatment method used to directly combat tumor cells by modifying the genes of naturally occurring low pathogenic viruses to form "rhizobia" virus. By taking the advantage of abnormal signal pathways in cancer cells, it selectively replicates in tumor cells leading to tumor cell lysis and death. At present, clinical studies widely employ biomolecular technology to transform oncolytic viruses to exert stronger oncolytic effects and reduce their adverse reactions. This review summarizes the current progresses and the molecular mechanism of oncolytic viruses towards tumor treatment and management.
Collapse
Affiliation(s)
- Yang Gao
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | - Yan Wu
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | - Tian Huan
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiaoyan Wang
- Department of Gastroenterology, The First People's Hospital of Suqian, Suqian, Jiangsu, People's Republic of China
| | - Jun Xu
- Department of Cognitive Neurology, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tian Tan Hospital, Affiliated to Capital Medical University, Beijing, People's Republic of China
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Xin WQ, Wei W, Pan YL, Cui BL, Yang XY, Bähr M, Doeppner TR. Modulating poststroke inflammatory mechanisms: Novel aspects of mesenchymal stem cells, extracellular vesicles and microglia. World J Stem Cells 2021; 13:1030-1048. [PMID: 34567423 PMCID: PMC8422926 DOI: 10.4252/wjsc.v13.i8.1030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation plays an important role in the pathological process of ischemic stroke, and systemic inflammation affects patient prognosis. As resident immune cells in the brain, microglia are significantly involved in immune defense and tissue repair under various pathological conditions, including cerebral ischemia. Although the differentiation of M1 and M2 microglia is certainly oversimplified, changing the activation state of microglia appears to be an intriguing therapeutic strategy for cerebral ischemia. Recent evidence indicates that both mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) regulate inflammation and modify tissue repair under preclinical stroke conditions. However, the precise mechanisms of these signaling pathways, especially in the context of the mutual interaction between MSCs or MSC-derived EVs and resident microglia, have not been sufficiently unveiled. Hence, this review summarizes the state-of-the-art knowledge on MSC- and MSC-EV-mediated regulation of microglial activity under ischemic stroke conditions with respect to various signaling pathways, including cytokines, neurotrophic factors, transcription factors, and microRNAs.
Collapse
Affiliation(s)
- Wen-Qiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Yong-Li Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Bao-Long Cui
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Xin-Yu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| |
Collapse
|
4
|
Amalia L, Sadeli HA, Parwati I, Rizal A, Panigoro R. Hypoxia-inducible factor-1α in acute ischemic stroke: neuroprotection for better clinical outcome. Heliyon 2020; 6:e04286. [PMID: 32637689 PMCID: PMC7327744 DOI: 10.1016/j.heliyon.2020.e04286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/01/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor which maintains cellular homeostasis in response to hypoxia. It can trigger apoptosis while stimulating angiogenesis process and decrease neurological deficit after an ischemic stroke. Up until now, this protein complex has not been widely investigated especially in stroke patient. Objective Here, we examined the potential of HIF-1α as a marker for neuroplasticity process after ischemic stroke. Methods Serum HIF-1α were measured in acute ischemic stroke patients. National Institute of Health Stroke Scale (NIHSS) were assessed on the admission and discharge day (between days 7 and 14). Ischemic stroke divided into 2 groups: large vessel disease (LVD, n = 31) and small vessel disease (SVD, n = 27). Statistical significances were calculated with Spearman rank test. Results A total of 58 patients, 31 with large artery atherosclerosis LVD and 27 with small vessel disease (SVD) were included in this study. HIF-1α level in LVD group was 0.5225 ± 0.2459 ng/mL and in SVD group was 0.3815 ± 0.121 ng/mL. HIF-1α was higher (p = 0.004) in LVD group than in SVD group. The initial NIHSS score in LVD group was 15.46 ± 2.61 and discharge NIHSS score was 13.31 ± 3.449. Initial NIHSS score in SVD group was 6.07 ± 1.82 and the discharge NIHSS was 5.703 ± 1.7055. In both SVD and LVD group, HIF-1α were significantly correlated with initial NIHSS (both p < 0.001) and discharge NIHSS (p < 0.0383 r = 0.94, p < 0.001, r = 0.93, respectively). Conclusions HIF-1α has a strong correlation with NIHSS and it may be used as predictor in acute ischemic stroke outcome.
Collapse
Affiliation(s)
- Lisda Amalia
- Department of Neurology, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital Bandung, Indonesia
| | - Henny Anggraini Sadeli
- Department of Neurology, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital Bandung, Indonesia
| | - Ida Parwati
- Department of Clinical Pathology Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital Bandung, Indonesia
| | - Ahmad Rizal
- Department of Neurology, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital Bandung, Indonesia
| | - Ramdan Panigoro
- Department of Biomedical Science Faculty of Medicine, Universitas Padjadjaran, Indonesia
| |
Collapse
|
5
|
Li F, Geng X, Huber C, Stone C, Ding Y. In Search of a Dose: The Functional and Molecular Effects of Exercise on Post-stroke Rehabilitation in Rats. Front Cell Neurosci 2020; 14:186. [PMID: 32670026 PMCID: PMC7330054 DOI: 10.3389/fncel.2020.00186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Although physical exercise has been demonstrated to augment recovery of the post-stroke brain, the question of what level of exercise intensity optimizes neurological outcomes of post-stroke rehabilitation remains unsettled. In this study, we aim to clarify the mechanisms underlying the intensity-dependent effect of exercise on neurologic function, and thereby to help direct the clinical application of exercise-based neurorehabilitation. To do this, we used a well-established rat model of ischemic stroke consisting of cerebral ischemia induction through middle cerebral artery occlusion (MCAO). Ischemic rats were subsequently assigned either to a control group entailing post-stroke rest or to one of two exercise groups distinguished by the intensity of their accompanying treadmill regimens. After 24 h of reperfusion, exercise was initiated. Infarct volume, apoptotic cell death, and neurological defects were quantified in all groups at 3 days, and motor and cognitive functions were tracked up to day-28. Additionally, Western blotting was used to assess the influence of our interventions on several proteins related to synaptogenesis and neuroplasticity (growth-associated protein 43, a microtubule-associated protein, postsynaptic density-95, synapsin I, hypoxia-inducible factor-1α, brain-derived neurotrophic factor, nerve growth factor, tyrosine kinase B, and cAMP response element-binding protein). Our results were in equal parts encouraging and surprising. Both mild and intense exercise significantly decreased infarct volume, cell death, and neurological deficits. Motor and cognitive function, as determined using an array of tests such as beam balance, forelimb placing, and the Morris water maze, were also significantly improved by both exercise protocols. Interestingly, while an obvious enhancement of neuroplasticity proteins was shown in both exercise groups, mild exercise rats demonstrated a stronger effect on the expressions of Tau (p < 0.01), brain-derived neurotrophic factor (p < 0.01), and tyrosine kinase B (p < 0.05). These findings contribute to the growing body of literature regarding the positive effects of both mild and intense long-term treadmill exercise on brain injury, functional outcome, and neuroplasticity. Additionally, the results may provide a base for our future study regarding the regulation of HIF-1α on the BDNF/TrkB/CREB pathway in the biochemical processes underlying post-stroke synaptic plasticity.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christian Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, MI, United States
| |
Collapse
|
6
|
AAV-Syn-BDNF-EGFP Virus Construct Exerts Neuroprotective Action on the Hippocampal Neural Network during Hypoxia In Vitro. Int J Mol Sci 2018; 19:ijms19082295. [PMID: 30081596 PMCID: PMC6121472 DOI: 10.3390/ijms19082295] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the key signaling molecules that supports the viability of neural cells in various brain pathologies, and can be considered a potential therapeutic agent. However, several methodological difficulties, such as overcoming the blood–brain barrier and the short half-life period, challenge the potential use of BDNF in clinical practice. Gene therapy could overcome these limitations. Investigating the influence of viral vectors on the neural network level is of particular interest because viral overexpression affects different aspects of cell metabolism and interactions between neurons. The present work aimed to investigate the influence of the adeno-associated virus (AAV)-Syn-BDNF-EGFP virus construct on neural network activity parameters in an acute hypobaric hypoxia model in vitro. Materials and methods. An adeno-associated virus vector carrying the BDNF gene was constructed using the following plasmids: AAV-Syn-EGFP, pDP5, DJvector, and pHelper. The developed virus vector was then tested on primary hippocampal cultures obtained from C57BL/6 mouse embryos (E18). Acute hypobaric hypoxia was induced on day 21 in vitro. Spontaneous bioelectrical and calcium activity of neural networks in primary cultures and viability tests were analysed during normoxia and during the posthypoxic period. Results. BDNF overexpression by AAV-Syn-BDNF-EGFP does not affect cell viability or the main parameters of spontaneous bioelectrical activity in normoxia. Application of the developed virus construct partially eliminates the negative hypoxic consequences by preserving cell viability and maintaining spontaneous bioelectrical activity in the cultures. Moreover, the internal functional structure, including the activation pattern of network bursts, the number of hubs, and the number of connections within network elements, is also partially preserved. BDNF overexpression prevents a decrease in the number of cells exhibiting calcium activity and maintains the frequency of calcium oscillations. Conclusion. This study revealed the pronounced antihypoxic and neuroprotective effects of AAV-Syn-BDNF-EGFP virus transduction in an acute normobaric hypoxia model.
Collapse
|
7
|
Gao J, Bai H, Li Q, Li J, Wan F, Tian M, Li Y, Song Y, Zhang J, Si Y. In vitro investigation of the mechanism underlying the effect of ginsenoside on the proliferation and differentiation of neural stem cells subjected to oxygen-glucose deprivation/reperfusion. Int J Mol Med 2017; 41:353-363. [PMID: 29138802 PMCID: PMC5746305 DOI: 10.3892/ijmm.2017.3253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/01/2017] [Indexed: 01/19/2023] Open
Abstract
The present study comprised a series of experiments to investigate the mechanism underlying the effect of ginsenoside on the self-renewal, proliferation and differentiation of neural stem cells (NSCs) undergoing oxygen-glucose deprivation/reperfusion (OGD/R) in vitro. The NSCs, which were isolated from the hippocampus of embryonic day 17 embryo rats, were subjected to OGD/R to establish an in vitro model of brain ischemia-reperfusion, following which different doses of ginsenoside were administered to the model. The proliferation of the NSCs was determined using MTT colorimetry and nestin/bromodeoxyuridine (BrdU) immunofluorescent double-labeling. The NSCs were identified by measuring the expression of nestin, and the differentiation of NSCs was assessed through the immunofluorescent double-labeling of nestin/vimentin and nestin/neuron-specific class III β-tubulin (tuj-1). The protein levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were detected to investigate the function and mechanism of ginsenoside on ischemic stroke using an enzyme-linked immunosorbent assay. Marked increases in the optical density, area density and numbers of nestin/BrdU-, nestin/vimentin- and nestin/tuj-1-positive cells were found in the ginsenoside-treated group. Compared with the control group, enhanced expression levels of BrdU, tuj-1 and vimentin were found in the ginsenoside-treated group, suggesting that ginsenoside may significantly promote the proliferation and differentiation of NSCs. The results of the present study also showed that ginsenoside significantly increased the protein level of HIF-1α (P<0.05) in the NSCs exposed to OGD/R. These results indicated that ginsenoside may maintain NSC replication, promote NSC proliferation and promote NSC differentiation into neurons and astrocytes. Ginsenoside may initiate the expression of downstream VEGF, which is involved in promoting the survival, self-renewal and differentiation of NSCs.
Collapse
Affiliation(s)
- Jian Gao
- Department of Anatomy, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Huajing Bai
- Department of Anatomy, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jian Li
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Feng Wan
- Department of Anatomy, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Mo Tian
- Department of Anatomy, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yuanyuan Li
- Department of Anatomy, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yilun Song
- International School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jianping Zhang
- Department of Anatomy, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yinchu Si
- Department of Anatomy, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| |
Collapse
|
8
|
Li H, Lv B, Kong L, Xia J, Zhu M, Hu L, Zhen D, Wu Y, Jia X, Zhu S, Cui H. Nova1 mediates resistance of rat pheochromocytoma cells to hypoxia-induced apoptosis via the Bax/Bcl-2/caspase-3 pathway. Int J Mol Med 2017; 40:1125-1133. [PMID: 28791345 PMCID: PMC5593465 DOI: 10.3892/ijmm.2017.3089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Neuro-oncological ventral antigen 1 (Nova1) is a well known brain-specific splicing factor. Several studies have identified Nova1 as a regulatory protein at the top of a hierarchical network. However, the function of Nova1 during hypoxia remains poorly understood. This study aimed to investigate the protective effect of Nova1 against cell hypoxia and to further explore the Bax/Bcl-2/caspase-3 pathway as a potential mechanism. During hypoxia, the survival rate of pheochromocytoma PC12 cells was gradually decreased and the apoptosis rate was gradually increased, peaking at 48 h of hypoxia. At 48 h after transfection of PC12 cells with pCMV-Myc-Nova1, the expression of Nova1 was significantly increased, with wide distribution in the cytoplasm and nucleus. Moreover, the survival rate was significantly increased and the apoptosis rate was significantly decreased. Additionally, the mRNA and protein expression levels of Bax and caspase-3 were significantly increased in the pCMV-Myc group and significantly decreased in the pCMV-Myc-Nova1 group, whereas that of Bcl-2 was significantly decreased in the pCMV-Myc group and significantly increased in the pCMV-Myc-Nova1 group. This study indicated that Nova1 could be linked to resistance to the hypoxia-induced apoptosis of PC12 cells via the Bax/Bcl-2/caspase-3 pathway, and this finding may be of significance for exploring novel mechanisms of hypoxia and the treatment of hypoxia-associated diseases.
Collapse
Affiliation(s)
- Hualing Li
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Bei Lv
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ling Kong
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jing Xia
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ming Zhu
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Lijuan Hu
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Danyang Zhen
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yifan Wu
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaoqin Jia
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Sujuan Zhu
- Department of Biochemistry, Biosciences and Biotechnology College of Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Hengmi Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
9
|
Alhusban A, Kozak A, Pillai B, Ahmed H, Sayed MA, Johnson MH, Ishrat T, Ergul A, Fagan SC. Mechanisms of acute neurovascular protection with AT1 blockade after stroke: Effect of prestroke hypertension. PLoS One 2017; 12:e0178867. [PMID: 28640888 PMCID: PMC5480858 DOI: 10.1371/journal.pone.0178867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/19/2017] [Indexed: 01/13/2023] Open
Abstract
Stroke is a leading cause of adult disability worldwide. Improving stroke outcome requires an orchestrated interplay that involves up regulation of pro-survival pathways and a concomitant suppression of pro-apoptotic mediators. In this investigation, we assessed the involvement of eNOS in the AT1 blocker-mediated protective and pro-recovery effects in animals with hypertension. We also evaluated the effect of acute eNOS inhibition in hypertensive animals. To achieve these goals, spontaneously hypertensive rats (SHR) were implanted with blood pressure transmitters, and randomized to receive either an eNOS inhibitor (L-NIO) or saline one hour before cerebral ischemia induction. After 3 hours of ischemia, animals were further randomized to receive either candesartan or saline at the time of reperfusion and sacrificed either 24 hours or 7 days later. Candesartan induced an early protective effect that was independent of eNOS inhibition (50% improvement in motor function). However, the protective effect of candesartan was associated with about five fold up regulation of BDNF expression and about three fold reduction in ER stress markers, in an eNOS dependent manner. The early benefit of a single dose of candesartan, present at 24 hours after stroke, was diminished at 7 days, perhaps due to a failure to induce an angiogenic response in these hypertensive animals. In conclusion, our findings demonstrate an early prorecovery effect of candesartan at both functional and molecular levels. Candesartan induced prorecovery signaling was mediated through eNOS. This effect was not maintained at 7 days after experimental ischemia.
Collapse
Affiliation(s)
- Ahmed Alhusban
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
- College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Anna Kozak
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Bindu Pillai
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Heba Ahmed
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Mohammed A. Sayed
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Maribeth H. Johnson
- Departments of Biostatistics, Medical College of Georgia, Augusta University, Augusta, Georgia, Unites States of America
| | - Tauheed Ishrat
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Susan C. Fagan
- Departments of Biostatistics, Medical College of Georgia, Augusta University, Augusta, Georgia, Unites States of America
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
10
|
Fujita K, Nishiguchi KM, Shiga Y, Nakazawa T. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:130-141. [PMID: 28480312 PMCID: PMC5415330 DOI: 10.1016/j.omtm.2017.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/12/2017] [Indexed: 02/03/2023]
Abstract
Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.
Collapse
Affiliation(s)
- Kosuke Fujita
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toru Nakazawa
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
11
|
CB2 cannabinoid receptors modulate HIF-1α and TIM-3 expression in a hypoxia-ischemia mouse model. Eur Neuropsychopharmacol 2016; 26:1972-1988. [PMID: 28253997 DOI: 10.1016/j.euroneuro.2016.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/21/2016] [Accepted: 10/15/2016] [Indexed: 11/22/2022]
Abstract
The role of CB2 cannabinoid receptors (CB2R) in global brain lesions induced by hypoxia-ischemia (HI) insult is still unresolved. The aim of this study was to evaluate the involvement of CB2R in the behavioural and biochemical underpinnings related to brain damage induced by HI in adult mice, and the mechanisms involved. CB2R knockout (KO) mice and wild-type littermates (WT) underwent permanent ligation of the left common carotid artery and hypoxia. Behavioural measurements in the rotarod, beam walking, object recognition, open field, and Irwin tests were carried out 24h, 72h and 7 days. In KO mice, more extensive brain injury was observed. Behavioural deficits in the Irwin test were observed in both genotypes; while WT mice showed progressive recovery by day 7, KO mice did not. Only KO mice showed alterations in motor learning, coordination and balance, and did not recover over time. A higher expression of microglia and astrocytes was observed in several brain areas of lesioned WT and KO mice. The possible alteration of the inflammatory-related factors HIF-1α and TIM-3 was evaluated in these animals. In both genotypes, HIF-1α and TIM-3 expression was observed in lesioned areas associated with activated microglia. However, the expression levels of these proteins were exacerbated in KO mice in several lesioned and non-lesioned brain structures. Our results indicate that CB2R may have a crucial neuroprotective role following HI insult through the modulation of the inflammatory-related HIF-1α/TIM-3 signalling pathway in microglia.
Collapse
|
12
|
Zhorne R, Dudley-Javoroski S, Shields RK. Skeletal muscle activity and CNS neuro-plasticity. Neural Regen Res 2016; 11:69-70. [PMID: 26981083 PMCID: PMC4774230 DOI: 10.4103/1673-5374.169623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rachel Zhorne
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, IA, USA
| | - Shauna Dudley-Javoroski
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, IA, USA
| | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, IA, USA
| |
Collapse
|
13
|
Systematic review of survival time in experimental mouse stroke with impact on reliability of infarct estimation. J Neurosci Methods 2016; 261:10-8. [PMID: 26620203 DOI: 10.1016/j.jneumeth.2015.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/24/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Stroke is the second most common cause of death worldwide. Only one treatment for acute ischemic stroke is currently available, thrombolysis with rt-PA, but it is limited in its use. Many efforts have been invested in order to find additive treatments, without success. A multitude of reasons for the translational problems from mouse experimental stroke to clinical trials probably exists, including infarct size estimations around the peak time of edema formation. Furthermore, edema is a more prominent feature of stroke in mice than in humans, because of the tendency to produce larger infarcts with more substantial edema. PURPOSE This paper will give an overview of previous studies of experimental mouse stroke, and correlate survival time to peak time of edema formation. Furthermore, investigations of whether the included studies corrected the infarct measurements for edema and a comparison of correction methods will be discussed. METHOD Relevant terms were searched in the National Library of Medicine PubMed database. A method for classification of infarct measurement methods was made using a naming convention. CONCLUSION Our study shows that infarct size estimations are often performed around the peak time of edema, with a median of 24h. Most studies do consider edema formation, however, there is no consensus on what method to use to correct for edema. Furthermore, investigations into neuroprotective drugs should use longer survival times to ensure completion of the investigated process. Our findings indicate a need for more research in this area, and establishment of common correction methodology.
Collapse
|
14
|
Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters' impact on mortality and variability in mouse stroke experiments: a meta-analysis. Sci Rep 2016; 6:21086. [PMID: 26876353 PMCID: PMC4753409 DOI: 10.1038/srep21086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Although hundreds of promising substances have been tested in clinical trials,
thrombolysis currently remains the only specific pharmacological treatment for
ischemic stroke. Poor quality, e.g. low statistical power, in the preclinical
studies has been suggested to play an important role in these failures. Therefore,
it would be attractive to use animal models optimized to minimize unnecessary
mortality and outcome variability, or at least to be able to power studies more
exactly by predicting variability and mortality given a certain experimental setup.
The possible combinations of methodological parameters are innumerous, and an
experimental comparison of them all is therefore not feasible. As an alternative
approach, we extracted data from 334 experimental mouse stroke articles and, using a
hypothesis-driven meta-analysis, investigated the method parameters’
impact on infarct size variability and mortality. The use of Swiss and C57BL6 mice
as well as permanent occlusion of the middle cerebral artery rendered the lowest
variability of the infarct size while the emboli methods increased variability. The
use of Swiss mice increased mortality. Our study offers guidance for researchers
striving to optimize mouse stroke models.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Hua Dock
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Sweden
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
15
|
Yu QJ, Tao H, Wang X, Li MC. Targeting brain microvascular endothelial cells: a therapeutic approach to neuroprotection against stroke. Neural Regen Res 2016; 10:1882-91. [PMID: 26807131 PMCID: PMC4705808 DOI: 10.4103/1673-5374.170324] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Brain microvascular endothelial cells form the interface between nervous tissue and circulating blood, and regulate central nervous system homeostasis. Brain microvascular endothelial cells differ from peripheral endothelial cells with regards expression of specific ion transporters and receptors, and contain fewer fenestrations and pinocytotic vesicles. Brain microvascular endothelial cells also synthesize several factors that influence blood vessel function. This review describes the morphological characteristics and functions of brain microvascular endothelial cells, and summarizes current knowledge regarding changes in brain microvascular endothelial cells during stroke progression and therapies. Future studies should focus on identifying mechanisms underlying such changes and developing possible neuroprotective therapeutic interventions.
Collapse
Affiliation(s)
- Qi-Jin Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hong Tao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ming-Chang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
16
|
Heme Oxygenase-1 Protects Neurons from Ischemic Damage by Upregulating Expression of Cu,Zn-Superoxide Dismutase, Catalase, and Brain-Derived Neurotrophic Factor in the Rabbit Spinal Cord. Neurochem Res 2015; 41:869-79. [DOI: 10.1007/s11064-015-1764-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/19/2015] [Accepted: 11/05/2015] [Indexed: 12/31/2022]
|
17
|
Kanninen KM, Pomeshchik Y, Leinonen H, Malm T, Koistinaho J, Levonen AL. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic Biol Med 2015; 88:350-361. [PMID: 26164630 DOI: 10.1016/j.freeradbiomed.2015.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023]
Abstract
Oxidative stress has been implicated to play a role in a number of acute and chronic diseases including acute injuries of the central nervous system, neurodegenerative and cardiovascular diseases, and cancer. The redox-activated transcription factor Nrf2 has been shown to protect many different cell types and organs from a variety of toxic insults, whereas in many cancers, unchecked Nrf2 activity increases the expression of cytoprotective genes and, consequently, provides growth advantage to cancerous cells. Herein, we discuss current preclinical gene therapy approaches to either increase or decrease Nrf2 activity with a special reference to neurological diseases and cancer. In addition, we discuss the role of Nrf2 in stem cell therapy for neurological disorders.
Collapse
Affiliation(s)
- Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
18
|
Guo Z, Wang L. Electroacupuncture stimulation of the brachial plexus trunk on the healthy side promotes brain-derived neurotrophic factor mRNA expression in the ischemic cerebral cortex of a rat model of cerebral ischemia/reperfusion injury. Neural Regen Res 2015; 7:1618-23. [PMID: 25657701 PMCID: PMC4308763 DOI: 10.3969/j.issn.1673-5374.2012.21.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/14/2012] [Indexed: 12/03/2022] Open
Abstract
A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2–6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.
Collapse
Affiliation(s)
- Zongjun Guo
- Department of Special Health Care, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Lumin Wang
- Department of Emergency Treatment, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| |
Collapse
|
19
|
Zhang Q, Guo P, Wang J, Yang M, Kong L. Gender-specific metabolic responses in focal cerebral ischemia of rats and Huang-Lian-Jie-Du decoction treatment. RSC Adv 2015. [DOI: 10.1039/c5ra19934d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1H NMR based metabolomics approach combined with biochemical, histological and immunohistochemistry observations was successfully applied to explore gender-specific metabolic differences in ischemic stroke and the protective effect of HLJDD.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Pingping Guo
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Junsong Wang
- Center for Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing 210094
- PR China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| |
Collapse
|
20
|
Mitić T, Caporali A, Floris I, Meloni M, Marchetti M, Urrutia R, Angelini GD, Emanueli C. EZH2 modulates angiogenesis in vitro and in a mouse model of limb ischemia. Mol Ther 2014; 23:32-42. [PMID: 25189741 PMCID: PMC4426795 DOI: 10.1038/mt.2014.163] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/23/2014] [Indexed: 12/14/2022] Open
Abstract
Epigenetic mechanisms may regulate the expression of pro-angiogenic genes, thus affecting reparative angiogenesis in ischemic limbs. The enhancer of zest homolog-2 (EZH2) induces thtrimethylation of lysine 27 on histone H3 (H3K27me3), which represses gene transcription. We explored (i) if EZH2 expression is regulated by hypoxia and ischemia; (ii) the impact of EZH2 on the expression of two pro-angiogenic genes: eNOS and BDNF; (iii) the functional effect of EZH2 inhibition on cultured endothelial cells (ECs); (iv) the therapeutic potential of EZH2 inhibition in a mouse model of limb ischemia (LI). EZH2 expression was increased in cultured ECs exposed to hypoxia (control: normoxia) and in ECs extracted from mouse ischemic limb muscles (control: absence of ischemia). EZH2 increased the H3K27me3 abundance onto regulatory regions of eNOS and BDNF promoters. In vitro RNA silencing or pharmacological inhibition by 3-deazaneplanocin (DZNep) of EZH2 increased eNOS and BDNF mRNA and protein levels and enhanced functional capacities (migration, angiogenesis) of ECs under either normoxia or hypoxia. In mice with experimentally induced LI, DZNep increased angiogenesis in ischaemic muscles, the circulating levels of pro-angiogenic hematopoietic cells and blood flow recovery. Targeting EZH2 for inhibition may open new therapeutic avenues for patients with limb ischemia.
Collapse
Affiliation(s)
- Tijana Mitić
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK
| | - Andrea Caporali
- 1] Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK [2] Center for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Ilaria Floris
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK
| | - Marco Meloni
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK
| | - Micol Marchetti
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Mayo Clinic, Rochester, Minnesota, USA
| | - Gianni D Angelini
- 1] Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK [2] National Heart and Lung Institute, Hammersmith Campus, Imperial College of London, London, England, UK
| | - Costanza Emanueli
- 1] Bristol Heart Institute, School of Clinical Sciences, University of Bristol, England, UK [2] National Heart and Lung Institute, Hammersmith Campus, Imperial College of London, London, England, UK
| |
Collapse
|
21
|
Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 2014; 66:815-68. [PMID: 24958636 PMCID: PMC4081729 DOI: 10.1124/pr.113.007757] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Dong-Gyu Jo
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Daeui Park
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Mark P Mattson
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| |
Collapse
|
22
|
Guo Z, Cao G, Yang H, Zhou H, Li L, Cao Z, Yu B, Kou J. A combination of four active compounds alleviates cerebral ischemia-reperfusion injury in correlation with inhibition of autophagy and modulation of AMPK/mTOR and JNK pathways. J Neurosci Res 2014; 92:1295-306. [PMID: 24801159 DOI: 10.1002/jnr.23400] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 03/30/2014] [Indexed: 01/10/2023]
Abstract
SMXZF is a combination of Rb1, Rg1, schizandrin, and DT-13 (6:9:5:4) derived from Sheng-mai San, a widely used Chinese traditional medicine for the treatment of cardiovascular and cerebral diseases. The present study explores the inhibitory effects and signaling pathways of SMXZF on autophagy induced by cerebral ischemia-reperfusion injury. Male C57BL/6 mice were subjected to ischemia-reperfusion insult by right middle cerebral artery occlusion (MCAO) for 1 hr with subsequent 24 hr reperfusion. Three doses of SMXZF (4.5, 9, and 18 mg/kg) were administered intraperitoneally (i.p.) after ischemia for 1 hr. An autophagic inhibitor, 3-methyladenine (3-MA; 300 μg/kg), was administered i.p. 20 min before ischemia as a positive drug. We found that SMXZF significantly increased cerebral blood flow and reduced the infarct volume, brain water content, and the neurological deficits in a dose-dependent manner. Similar to the positive control, SMXZF at 18 mg/kg also significantly inhibited autophagosome formation. Immunofluorescence staining and Western blotting demonstrated that SMXZF could significantly decrease the expression levels of beclin1 and microtubule-associated protein 1 light chain 3. SMXZF also remarkably inhibited the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) as well as the expression of c-Jun N-terminal kinase (JNK) and its phosphorylation induced by 24 hr reperfusion. Finally, we demonstrated that the optimal administration time of SMXZF was at the early period of reperfusion. This study reveals that SMXZF displays neuroprotective effect against focal ischemia-reperfusion injury, possibly associated with autophagy inactivation through AMPK/mTOR and JNK pathways.
Collapse
Affiliation(s)
- Zhongshun Guo
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gao J, Yang H, Chen J, Fang J, Chen C, Liang R, Yang G, Wu H, Wu C, Li S. Analysis of serum metabolites for the discovery of amino acid biomarkers and the effect of galangin on cerebral ischemia. MOLECULAR BIOSYSTEMS 2014; 9:2311-21. [PMID: 23793526 DOI: 10.1039/c3mb70040b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ischemic stroke, a devastating disease with a complex pathophysiology, is a leading cause of death and disability worldwide. In our previous study, we reported that galangin provided direct protection against ischemic injury and acted as a potential neuroprotective agent. However, its associated neuroprotective mechanism has not yet been clarified. In this paper, we explored the potential AA biomarkers in the acute phase of cerebral ischemia and the effect of galangin on those potential biomarkers. In our study, 12 AAs were quantified in rat serum and found to be impaired by middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. Using partial least squares discriminate analysis (PLS-DA), we identified the following amino acids as potential biomarkers of cerebral ischemia: glutamic acid (Glu), homocysteine (Hcy), methionine (Met), tryptophan (Trp), aspartic acid (Asp), alanine (Ala) and tyrosine (Tyr). Moreover, four amino acids (Hcy, Met, Glu and Trp) showed significant change in galangin-treated (100 and 50 mg kg(-1)) groups compared to vehicle groups. Furthermore, we identified three pathway-related enzymes tyrosine aminotransferase (TAT), glutamine synthetase (GLUL) and monocarboxylate transporter (SLC16A10) by multiplex interactions with Glu and Hcy, which have been previously reported to be closely related to cerebral ischemia. Through an analysis of the metabolite-protein network analysis, we identified 16 proteins that were associated with two amino acids by multiple interactions with three enzymes; five of them may become potential biomarkers of galangin for acute ischemic stroke as the result of molecule docking. Our results may help develop novel strategies to explore the mechanism of cerebral ischemia, discover potential targets for drug candidates and elucidate the related regulatory signal network.
Collapse
Affiliation(s)
- Jian Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Serghides L, McDonald CR, Lu Z, Friedel M, Cui C, Ho KT, Mount HTJ, Sled JG, Kain KC. PPARγ agonists improve survival and neurocognitive outcomes in experimental cerebral malaria and induce neuroprotective pathways in human malaria. PLoS Pathog 2014; 10:e1003980. [PMID: 24603727 PMCID: PMC3946361 DOI: 10.1371/journal.ppat.1003980] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 01/22/2014] [Indexed: 01/11/2023] Open
Abstract
Cerebral malaria (CM) is associated with a high mortality rate, and long-term neurocognitive impairment in approximately one third of survivors. Adjunctive therapies that modify the pathophysiological processes involved in CM may improve outcome over anti-malarial therapy alone. PPARγ agonists have been reported to have immunomodulatory effects in a variety of disease models. Here we report that adjunctive therapy with PPARγ agonists improved survival and long-term neurocognitive outcomes in the Plasmodium berghei ANKA experimental model of CM. Compared to anti-malarial therapy alone, PPARγ adjunctive therapy administered to mice at the onset of CM signs, was associated with reduced endothelial activation, and enhanced expression of the anti-oxidant enzymes SOD-1 and catalase and the neurotrophic factors brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brains of infected mice. Two months following infection, mice that were treated with anti-malarials alone demonstrated cognitive dysfunction, while mice that received PPARγ adjunctive therapy were completely protected from neurocognitive impairment and from PbA-infection induced brain atrophy. In humans with P. falciparum malaria, PPARγ therapy was associated with reduced endothelial activation and with induction of neuroprotective pathways, such as BDNF. These findings provide insight into mechanisms conferring improved survival and preventing neurocognitive injury in CM, and support the evaluation of PPARγ agonists in human CM. Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that is associated with long-term neurocognitive impairment in about a third of survivors even when optimal anti-malarial therapy is used. Since both the parasite and the host immune response to infection play a role in the development of CM, adjunctive therapies that modulate the host response, given in conjunction with anti-parasitic therapy, may improve survival and prevent neurocognitive injury. Here we examine the effects of PPARγ agonists on neurocongitive injury using a mouse model of CM. We demonstrate that PPARγ agonists, when administered with anti-malarials, protected mice from developing brain atrophy and neurocognitive impairment. This was associated with induction of anti-oxidant and neuroprotective pathways in the brains of infected mice. We also observed the same neuroprotective pathways induced in patients with falciparum malaria that received PPARγ adjunctive therapy. Our findings suggest that PPARγ agonists may be valuable in the treatment and prevention of CM-induced neurocognitive injury, and support the testing of PPARγ agonists in patients with CM.
Collapse
Affiliation(s)
- Lena Serghides
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- SA Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- * E-mail:
| | - Chloe R. McDonald
- SA Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ziyue Lu
- SA Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Miriam Friedel
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cheryl Cui
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Keith T. Ho
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Howard T. J. Mount
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John G. Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kevin C. Kain
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- SA Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Bell MT, Puskas F, Bennett DT, Herson PS, Quillinan N, Fullerton DA, Reece TB. Dexmedetomidine, an α-2a adrenergic agonist, promotes ischemic tolerance in a murine model of spinal cord ischemia-reperfusion. J Thorac Cardiovasc Surg 2014; 147:500-6. [DOI: 10.1016/j.jtcvs.2013.07.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/14/2013] [Accepted: 07/18/2013] [Indexed: 11/24/2022]
|
26
|
Radenovic L, Selakovic V, Olivan S, Calvo AC, Rando A, Janac B, Osta R. Neuroprotective efficiency of tetanus toxin C fragment in model of global cerebral ischemia in Mongolian gerbils. Brain Res Bull 2013; 101:37-44. [PMID: 24365489 DOI: 10.1016/j.brainresbull.2013.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/07/2013] [Accepted: 11/21/2013] [Indexed: 11/26/2022]
Abstract
The tetanus toxin C (TTC) fragment capacity of being transported in a retrograde way through motoneurons and its nontoxic nature opens the door to a new promising therapeutic strategy for neurodegenerative diseases. In this study, the TTC effect was tested for the first time in animal model of global cerebral ischemia induced by 10-min occlusion of both common carotid arteries. The aim was to evaluate the effect of TTC gene therapy treatment on the development and expression of global cerebral ischemia/reperfusion-induced oxidative stress and motor hyperactivity in Mongolian gerbils. Several oxidative stress and motor behavioral parameters were investigated between 2 h and 14 days after reperfusion. Neuroprotective efficiency of TTC was observed in the forebrain cortex, striatum, hippocampus, and cerebellum at the level of each examined oxidative stress parameter (nitric oxide level, superoxide production, superoxide dismutase activity, and index of lipid peroxidation). Additionally, TTC significantly decreased ischemia-induced motor hyperactivity based on tested parameters (locomotion, stereotypy, and rotations). As judged by biochemical as well as behavioral data, treatment with TTC for the first time showed neuroprotective efficiency by reduction of ischemia-induced oxidative stress and motor hyperactivity and can be a promising strategy for ischemia-induced neuronal damage treatment.
Collapse
Affiliation(s)
- Lidija Radenovic
- Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Serbia.
| | | | - Sara Olivan
- Laboratory of Genetics and Biochemistry, LAGENBIO, Faculty of Veterinary, University of Zaragoza, Spain
| | - Ana Cristina Calvo
- Laboratory of Genetics and Biochemistry, LAGENBIO, Faculty of Veterinary, University of Zaragoza, Spain
| | - Amaya Rando
- Laboratory of Genetics and Biochemistry, LAGENBIO, Faculty of Veterinary, University of Zaragoza, Spain
| | - Branka Janac
- Institute for Biological Research, University of Belgrade, Serbia
| | - Rosario Osta
- Laboratory of Genetics and Biochemistry, LAGENBIO, Faculty of Veterinary, University of Zaragoza, Spain
| |
Collapse
|
27
|
Cells as state machines: Cell behavior patterns arise during capillary formation as a function of BDNF and VEGF. J Theor Biol 2013; 326:43-57. [DOI: 10.1016/j.jtbi.2012.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 10/17/2012] [Accepted: 11/28/2012] [Indexed: 01/15/2023]
|
28
|
Zheng J, Zhang P, Li X, Lei S, Li W, He X, Zhang J, Wang N, Qi C, Chen X, Lu H, Liu Y. Post-stroke estradiol treatment enhances neurogenesis in the subventricular zone of rats after permanent focal cerebral ischemia. Neuroscience 2013; 231:82-90. [DOI: 10.1016/j.neuroscience.2012.11.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
|
29
|
Combination treatment with progesterone and vitamin D hormone is more effective than monotherapy in ischemic stroke: the role of BDNF/TrkB/Erk1/2 signaling in neuroprotection. Neuropharmacology 2012; 67:78-87. [PMID: 23154302 DOI: 10.1016/j.neuropharm.2012.10.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/04/2012] [Accepted: 10/09/2012] [Indexed: 02/03/2023]
Abstract
We investigated whether combinatorial post-injury treatment with progesterone (P4) and vitamin D hormone (VDH) would reduce ischemic injury more effectively than P4 alone in an oxygen glucose deprivation (OGD) model in primary cortical neurons and in a transient middle cerebral artery occlusion (tMCAO) model in rats. In the OGD model, P4 and VDH each showed neuroprotection individually, but combination of the "best" doses did not show substantial efficacy; instead, the lower dose of VDH in combination with P4 was the most effective. In the tMCAO model, P4 and VDH were given alone or in combination at different times post-occlusion for 7 days. In vivo data confirmed the in vitro findings and showed better infarct reduction at day 7 and functional outcomes (at 3, 5 and 7 days post-occlusion) after combinatorial treatment than when either agent was given alone. VDH, but not P4, upregulated heme oxygenase-1, suggesting a pathway for the neuroprotective effects of VDH differing from that of P4. The combination of P4 and VDH activated brain-derived neurotrophic factor and its specific receptor, tyrosine kinase receptor-B. Under specific conditions VDH potentiates P4's neuroprotective efficacy and should be considered as a potential partner of P4 in a low-cost, safe and effective combinatorial treatment for stroke.
Collapse
|
30
|
Pan R, Rong Z, She Y, Cao Y, Chang LW, Lee WH. Sodium pyruvate reduces hypoxic-ischemic injury to neonatal rat brain. Pediatr Res 2012; 72:479-89. [PMID: 22885415 PMCID: PMC3596790 DOI: 10.1038/pr.2012.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neonatal hypoxia-ischemia (HI) remains a major cause of severe brain damage and is often associated with high mortality and lifelong disability. Immature brains are extremely sensitive to HI, shown as prolonged mitochondrial neuronal death. Sodium pyruvate (SP), a substrate of the tricarboxylic acid cycle and an extracellular antioxidant, has been considered as a potential treatment for hypoxic-ischemic encephalopathy, but its effects have not been evaluated in appropriate animal models for hypoxic-ischemic encephalopathy. METHODS This investigation used primary cortical neuron cultures derived from neonatal rats subjected to oxygen and glucose deprivation (OGD) and a well-established neonatal rat HI model. RESULTS HI caused brain tissue loss and impaired sensorimotor function and spatial memory whereas SP significantly reduced brain damage and improved neurological performance. These neuroprotective effects of SP are likely the result of improved cerebral metabolism as demonstrated by maintaining adenosine triphosphate (ATP) levels and preventing an increase in intracellular reactive oxygen species (ROS) levels. SP treatment also decreased levels of Bax, a death signal for immature neurons, blocked caspase-3 activation, and activated a key survival signaling kinase, Akt, both in vitro and in vivo. CONCLUSION SP protected neonatal brain from hypoxic-ischemic injury through maintaining cerebral metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Rui Pan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430030
| | - Zhihui Rong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430030
| | - Yun She
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yuan Cao
- Department of General Surgery, Pu Ai Hospital of Wuhan City, Hubei, China 430033
| | - Li-Wen Chang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430030
| | - Wei-Hua Lee
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
31
|
Yousuf S, Atif F, Sayeed I, Wang J, Stein DG. Post-stroke infections exacerbate ischemic brain injury in middle-aged rats: immunomodulation and neuroprotection by progesterone. Neuroscience 2012; 239:92-102. [PMID: 23079632 DOI: 10.1016/j.neuroscience.2012.10.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/26/2012] [Accepted: 10/05/2012] [Indexed: 01/22/2023]
Abstract
We investigated the effect of delayed, prolonged systemic inflammation on stroke outcomes and progesterone (P4) neuroprotection in middle-aged rats. After transient middle cerebral artery occlusion/reperfusion (MCAO) surgery, rats received P4 (8 or 16 mg/kg) or vehicle injections at 2h, 6h and every 24h until day 7 post-occlusion. At 24h post-injury systemic inflammation was induced by giving three doses of lipopolysaccharide (LPS; 50 μg/kg, at 4h intervals) to model post-stroke infections. We measured serum brain-derived neurotrophic factor (BDNF), pro-inflammatory cytokines, and behavioral parameters at multiple times. Serum BDNF levels decreased more in the vehicle+LPS group compared to vehicle-alone at 3 and 7 days post-injury (P<0.05). Vehicle-alone showed a significant increase in interleukin-1β, interleukin-6, and tumor necrosis factor alpha levels at different times following stroke and these levels were further elevated in the vehicle+LPS group. P4 at both doses produced a significant (P<0.05) decline in cytokine levels compared to vehicle and vehicle+LPS. P4 restored BDNF levels at 3 and 7 days post-stroke (P<0.05). Behavioral assessment (rotarod, grip strength, sensory neglect and locomotor activity tests) at 3, 5 and 7 days post-stroke revealed that the vehicle group had significant (P<0.05) deficits in all tests compared to intact controls, and performance was worse in the vehicle+LPS group. P4 at both doses produced significant functional improvement on all tests. Systemic inflammation did not show an additive effect on infarct volume but P4 at both doses showed significant infarct reduction. We suggest that post-stroke infection exacerbates stroke outcomes and P4 exerts neuroprotective/modulatory effects through its systemic anti-inflammatory and BDNF regulatory actions.
Collapse
Affiliation(s)
- S Yousuf
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
32
|
Li J, Wu RG, Meng FY, Wang Z, Wang CM, Wang YY, Zhang ZJ. Synergism and rules from combination of Baicalin, Jasminoidin and Desoxycholic acid in refined Qing Kai Ling for treat ischemic stroke mice model. PLoS One 2012; 7:e45811. [PMID: 23049867 PMCID: PMC3458908 DOI: 10.1371/journal.pone.0045811] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 08/22/2012] [Indexed: 12/31/2022] Open
Abstract
Refined Qing-Kai-Ling (QKL), a modified Chinese medicine, consists of three main ingredients (Baicalin, Jasminoidin and Desoxycholic acid), plays a synergistic effect on the treatment of the acute stage of ischemic stroke. However, the rules of the combination and synergism are still unknown. Based on the ischemic stroke mice model, all different kinds of combination of Baicalin, Jasminoidin, and Desoxycholic acid were investigated by the methods of neurological examination, microarray, and genomics analysis. As a result, it confirmed that the combination of three drugs offered a better therapeutical effect on ischemic stroke than monotherapy of each drug. Additionally, we used Ingenuity pathway Analysis (IPA) and principal component analysis (PCA) to extract the dominant information of expression changes in 373 ischemia-related genes. The results suggested that 5 principal components (PC1-5) could account for more than 95% energy in the gene data. Moreover, 3 clusters (PC1, PC2+PC5, and PC3+PC4) were addressed with cluster analysis. Furthermore, we matched PCs on the drug-target networks, the findings demonstrated that Baicalin related with PC1 that played the leading role in the combination; Jasminoidin related with PC2+PC5 that played a compensatory role; while Desoxycholic acid had the least performance alone which could relate with PC3+PC4 that played a compatible role. These manifestations were accorded with the principle of herbal formulae of Traditional Chinese Medicine (TCM), emperor-minister-adjuvant-courier. In conclusion, we firstly provided scientific evidence to the classic theory of TCM formulae, an initiating holistic viewpoint of combination therapy of TCM. This study also illustrated that PCA might be an applicable method to analyze the complicated data of drug combination.
Collapse
Affiliation(s)
- Jian Li
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Run-guo Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Fan-yun Meng
- School of Resources Science & Technology, Beijing Normal University, Beijing, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Chang-ming Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yong-yan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Zhan-jun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
33
|
ZHANG JUNFENG, SHI QINDONG, CHEN XINLIN, YANG PENGBO, QI CUNFANG, ZHANG JIANSHUI, LU HAIXIA, LIU JIANXIN, JIAO QIAN, ZHAO LINGYU, ZHAO BINGQIAO, ZHENG PING, LIU YONG. Hypoxia-regulated neurotrophin-3 expression by multicopy hypoxia response elements reduces apoptosis in PC12 cells. Int J Mol Med 2012; 30:1173-9. [DOI: 10.3892/ijmm.2012.1119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/20/2012] [Indexed: 11/06/2022] Open
|
34
|
Sun L, Hao Y, Nie X, Zhang X, Yang G, Wang Q. Construction of PR39 recombinant AAV under control of the HRE promoter and the effect of recombinant AAV on gene therapy of ischemic heart disease. Exp Ther Med 2012; 4:811-814. [PMID: 23226731 PMCID: PMC3493712 DOI: 10.3892/etm.2012.674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/14/2012] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to investigate the effect of the PR39 recombinant adeno-associated virus (AAV) controlled by the hypoxia-responsive element (HRE) on gene therapy of ischemic heart disease. The minimal HRE was artificially synthesized and the AAV vector controlled by HRE was introduced with NT4-TAT-His-PR39 to investigate the expression of AAV-PR39 in hypoxic vascular endothelial cells (VEC) of human umbilical vein (CRL-1730 cell line) and the angiogenesis-promoting effect in pigs with acute myocardial infraction (AMI). The minimal HRE/CMV was designed and artificially synthesized using the PCR method and cloned with the T vector cloning method. The pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV plasmid was constructed. Using the calcium phosphate precipitation method, HEK-293 cells were co-transfected with three plasmids to produce the recombinant virus. An equal volume of pSS-HRE-CMV-NT4-6His-PR39-PolyAAAV and enterovirus (EV, blank virus) was transfected into CRL-1730 cell lines, respectively. The immunohistochemical method was used to assay the expression of 6xHis in CRL-1730 cell lines and the expression of PR39 under hypoxia. Eighteen AMI miniature pigs were randomized into the experimental group (HRE-AAV-PR39 group), control group 1 (physical saline group) and control group 2 (EV group). The area of ischemia was assessed with conventional MRI and myocardium perfusion MRI. Pigs were sacrificed at preset time-points to obtain samples of ischemic myocardium. Morphological and pathological data were collected. According to data in the literature and databases, the minimal HRE was designed and synthesized with the PCR method. A large number of HREs were connected to modified pSSHGAAV (pSSV9int-/XbaI) vector followed by insertion of the NT4-6His-PR39 gene segment and, thus, the recombinant plasmid pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV was successfully constructed. The expression of 6xHis in CRL-1730 cells under the regulation of HRE was assayed using the immunohistochemical method and results showed that the expression was positive in the experimental group. Myocardium perfusion MRI displayed that the infracted area significantly decreased under the action of pSS-HRE-CMV-NT4-PR39-PolyA-AAV. The artificial minimal HRE in CRL-1730 cells effectively and rapidly regulates the expression of the downstream gene NT4-TAT-His-PR39 of the CMV promoter. Recombinant pSS-HRE-CMV-NT4-PR39-Poly-AAAV promotes neoangiogenesis in the ischemic area, reduces the area of infarction and improves heart function.
Collapse
Affiliation(s)
- Lijun Sun
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032
| | | | | | | | | | | |
Collapse
|
35
|
Zhang J, Shi Q, Yang P, Xu X, Chen X, Qi C, Zhang J, Lu H, Zhao B, Zheng P, Zhang P, Liu Y. Neuroprotection of neurotrophin-3 against focal cerebral ischemia/reperfusion injury is regulated by hypoxia-responsive element in rats. Neuroscience 2012; 222:1-9. [PMID: 22820262 DOI: 10.1016/j.neuroscience.2012.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/26/2022]
Abstract
Exogenous delivery of the neurotrophin-3 (NT-3) gene may provide a potential therapeutic strategy for ischemic stroke. To investigate the neuroprotective effects of NT-3 expression controlled by 5HRE after focal cerebral ischemia, we constructed a recombinant retrovirus vector (RV) with five copies of hypoxia-responsive elements (5HRE or 5H) and NT-3 and delivered it to the rat brain. Three groups of rats received RV-5H-NT3, RV-5H-EGFP or saline injection. Three days after gene transfer, the rats underwent 90min of transient middle cerebral artery occlusion (tMCAO), followed by 1-28days of reperfusion. Three days after tMCAO, brain NT-3 expression was significantly increased in the RV-5H-NT3-transduced animals compared with the RV-5H-EGFP or saline group, and brain infarct volume was smaller in the RV-5H-NT3-transduced group than the RV-5H-EGFP or saline group. The percentage of TUNEL-positive cells was reduced in RV-5H-NT3-transduced brains compared with the RV-5H-EGFP or saline group 3 and 7days after tMCAO. Furthermore, the neurological status of RV-5H-NT3-transduced rats was better than that of RV-5H-EGFP- or saline-transduced animals from 1day to 4weeks after tMCAO. Our results demonstrated that 5HRE could modulate NT-3 expression in the ischemic brain environment and that the up-regulated NT-3 could effectively improve neurological status following tMCAO due to decreased initial damage. To avoid unexpected side effects, 5HRE-controlled gene expression might be a useful tool for gene therapy of ischemic disorders in the central nervous system.
Collapse
Affiliation(s)
- J Zhang
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Singh N, Sharma G, Mishra V, Raghubir R. Hypoxia inducible factor-1: its potential role in cerebral ischemia. Cell Mol Neurobiol 2012; 32:491-507. [PMID: 22297543 PMCID: PMC11498632 DOI: 10.1007/s10571-012-9803-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/13/2012] [Indexed: 12/16/2022]
Abstract
A divergence in the supply and consumption of oxygen in brain tissue initiates complex cycle of biochemical and molecular events resulting in neuronal death. To overcome such adverse situation, the tissue has to adopt some cellular mechanisms such as induction of various transcription factors, such as hypoxia inducible factor (HIF). It is a transcriptional regulator of oxygen homeostasis and key factor to generate the adaptive responses through upregulation of various target genes involved in the erythropoiesis, angiogenesis as well as glucose metabolism and transport. On the other hand, some studies do suggest that HIF also plays a detrimental role in ischemic reperfusion injury by inducing the pro apoptotic molecules, cytokines such as Nix, BNip3, and IL-20 which cause mitochondrial dysfunction leading to cell death. Hence, modulation of HIF-1 activity seems to provide an innovative therapeutic target to reduce the cellular damage, which arises from ischemic injury. Apart from traditional oxygen dependent HIF regulation, the focus has now shifted toward oxygen independent regulation in cell specific manner through reactive oxygen species involving hypoxia-associated factor, and heat shock protein 90, etc. Therefore, future development of such small molecule regulators for HIF-1 stability and signaling may prove useful to therapeutically target for enhancing recovery and repair in I/R injury.
Collapse
Affiliation(s)
- Neetu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| | - Gaurav Sharma
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| | - Vikas Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| | - Ram Raghubir
- Division of Pharmacology, CSIR-Central Drug Research Institute, P.O. Box 173, Lucknow, 226001 UP India
| |
Collapse
|
37
|
Tanaka Y, Fukumitsu H, Soumiya H, Yoshimura S, Iwama T, Furukawa S. 2-decenoic acid ethyl ester, a compound that elicits neurotrophin-like intracellular signals, facilitating functional recovery from cerebral infarction in mice. Int J Mol Sci 2012; 13:4968-4981. [PMID: 22606023 PMCID: PMC3344259 DOI: 10.3390/ijms13044968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 02/07/2023] Open
Abstract
In our previous study, we found that trans-2-decenoic acid ethyl ester (DAEE), a derivative of a medium-chain fatty acid, elicits neurotrophin-like signals including the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in cultured mouse cortical neurons. Here, we examined the efficacy of intraperitoneal administration of DAEE on the treatment of a mouse model of the cerebral infarction caused by unilateral permanent middle cerebral artery occlusion (PMCAO). DAEE-treatment (100 μg/kg body weight injected at 0.5, 24, 48, 72 h after PMCAO) significantly restored the mice from PMCAO-induced neurological deficits including motor paralysis when evaluated 48, 72, and 96 h after the PMCAO. Furthermore, DAEE facilitated the phosphorylation of ERK1/2 on the infarction side of the brain when analyzed by Western immunoblot analysis, and it enhanced the number of phosphorylated ERK1/2-positive cells in the border areas between the infarction and non-infarction regions of the cerebral cortex, as estimated immunohistochemically. As the infarct volume remained unchanged after DAEE-treatment, it is more likely that DAEE improved the neurological condition through enhanced neuronal functions of the remaining neurons in the damaged areas rather than by maintaining neuronal survival. These results suggest that DAEE has a neuro-protective effect on cerebral infarction.
Collapse
Affiliation(s)
- Yoshitaka Tanaka
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi, 1-25-4, Gifu 501-1190, Japan; E-Mails: (Y.T.); (H.F.): (H.S.)
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan; E-Mails: (S.Y.); (T.I.)
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi, 1-25-4, Gifu 501-1190, Japan; E-Mails: (Y.T.); (H.F.): (H.S.)
| | - Hitomi Soumiya
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi, 1-25-4, Gifu 501-1190, Japan; E-Mails: (Y.T.); (H.F.): (H.S.)
| | - Shinichi Yoshimura
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan; E-Mails: (S.Y.); (T.I.)
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan; E-Mails: (S.Y.); (T.I.)
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi, 1-25-4, Gifu 501-1190, Japan; E-Mails: (Y.T.); (H.F.): (H.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-58-230-8100; Fax: +81-58-230-8105
| |
Collapse
|
38
|
Neuroprotective effects of adipose-derived stem cells against ischemic neuronal damage in the rabbit spinal cord. J Neurol Sci 2012; 317:40-6. [PMID: 22475376 DOI: 10.1016/j.jns.2012.02.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 02/25/2012] [Accepted: 02/29/2012] [Indexed: 12/16/2022]
Abstract
Transplantation of adipose-derived stem cells (ASCs) is one of the possible therapeutic tools for ischemic damage. In this study, we observed the effects of ASCs against ischemic damage in the ventral horn of L(5-6) levels in the rabbit spinal cord. ASCs were isolated from rabbits, and cell type was confirmed by flow cytometry analysis, labeling with CM-DiI dye and differentiation into adipocytes in adipogenesis differentiation medium. ASCs were administered intrathecally into recipient rabbits (2 × 10⁵) immediately after reperfusion following a 15-min aortic artery occlusion in the subrenal region. Transplantation of ASCs significantly improved functions of the hindlimb and morphology of the ventral horn of spinal cord although CM-DiI-labeled ASCs were not observed in the spinal cord parenchyma. In addition, transplantation of ASCs significantly increased brain-derived neurotrophic factor (BDNF) levels at 72h after ischemia/reperfusion. These results suggest that transplantation of ASCs prevents motor neurons from spinal ischemic damage and reactive gliosis by increasing neurotrophic factors such as BDNF in the spinal cord.
Collapse
|
39
|
Shi GX, Andres DA, Cai W. Ras family small GTPase-mediated neuroprotective signaling in stroke. Cent Nerv Syst Agents Med Chem 2012; 11:114-37. [PMID: 21521171 DOI: 10.2174/187152411796011349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/18/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022]
Abstract
Selective neuronal cell death is one of the major causes of neuronal damage following stroke, and cerebral cells naturally mobilize diverse survival signaling pathways to protect against ischemia. Importantly, therapeutic strategies designed to improve endogenous anti-apoptotic signaling appear to hold great promise in stroke treatment. While a variety of complex mechanisms have been implicated in the pathogenesis of stroke, the overall mechanisms governing the balance between cell survival and death are not well-defined. Ras family small GTPases are activated following ischemic insults, and in turn, serve as intrinsic switches to regulate neuronal survival and regeneration. Their ability to integrate diverse intracellular signal transduction pathways makes them critical regulators and potential therapeutic targets for neuronal recovery after stroke. This article highlights the contribution of Ras family GTPases to neuroprotective signaling cascades, including mitogen-activated protein kinase (MAPK) family protein kinase- and AKT/PKB-dependent signaling pathways as well as the regulation of cAMP response element binding (CREB), Forkhead box O (FoxO) and hypoxiainducible factor 1(HIF1) transcription factors, in stroke.
Collapse
Affiliation(s)
- Geng-Xian Shi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, 741 S. Limestone St., Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
40
|
Mast TG, Fadool DA. Mature and precursor brain-derived neurotrophic factor have individual roles in the mouse olfactory bulb. PLoS One 2012; 7:e31978. [PMID: 22363780 PMCID: PMC3283713 DOI: 10.1371/journal.pone.0031978] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/16/2012] [Indexed: 11/18/2022] Open
Abstract
Background Sensory deprivation induces dramatic morphological and neurochemical changes in the olfactory bulb (OB) that are largely restricted to glomerular and granule layer interneurons. Mitral cells, pyramidal-like neurons, are resistant to sensory-deprivation-induced changes and are associated with the precursor to brain-derived neurotrophic factor (proBDNF); here, we investigate its unknown function in the adult mouse OB. Principal Findings As determined using brain-slice electrophysiology in a whole-cell configuration, brain-derived neurotrophic factor (BDNF), but not proBDNF, increased mitral cell excitability. BDNF increased mitral cell action potential firing frequency and decreased interspike interval in response to current injection. In a separate set of experiments, intranasal delivery of neurotrophic factors to awake, adult mice was performed to induce sustained interneuron neurochemical changes. ProBDNF, but not BDNF, increased activated-caspase 3 and reduced tyrosine hydroxylase immunoreactivity in OB glomerular interneurons. In a parallel set of experiments, short-term sensory deprivation produced by unilateral naris occlusion generated an identical phenotype. Conclusions Our results indicate that only mature BDNF increases mitral cell excitability whereas proBDNF remains ineffective. Our demonstration that proBDNF activates an apoptotic marker in vivo is the first for any proneurotrophin and establishes a role for proBDNF in a model of neuronal plasticity.
Collapse
Affiliation(s)
- Thomas Gerald Mast
- Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America.
| | | |
Collapse
|
41
|
Gene regulation systems for gene therapy applications in the central nervous system. Neurol Res Int 2012; 2012:595410. [PMID: 22272373 PMCID: PMC3261487 DOI: 10.1155/2012/595410] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/23/2011] [Indexed: 01/02/2023] Open
Abstract
Substantial progress has been made in the development of novel gene therapy strategies for central nervous system (CNS) disorders in recent years. However, unregulated transgene expression is a significant issue limiting human applications due to the potential side effects from excessive levels of transgenic protein that indiscriminately affect both diseased and nondiseased cells. Gene regulation systems are a tool by which tight tissue-specific and temporal regulation of transgene expression may be achieved. This review covers the features of ideal regulatory systems and summarises the mechanics of current exogenous and endogenous gene regulation systems and their utility in the CNS.
Collapse
|
42
|
Chen C, Zhou C. Hypoxia-Inducible Factor: A New Hope to Counteract Stroke. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Treatment with edaravone attenuates ischemic brain injury and inhibits neurogenesis in the subventricular zone of adult rats after focal cerebral ischemia and reperfusion injury. Neuroscience 2012; 201:297-306. [DOI: 10.1016/j.neuroscience.2011.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/18/2011] [Accepted: 11/02/2011] [Indexed: 01/18/2023]
|
44
|
Texel SJ, Zhang J, Camandola S, Unger EL, Taub DD, Koehler RC, Harris ZL, Mattson MP. Ceruloplasmin deficiency reduces levels of iron and BDNF in the cortex and striatum of young mice and increases their vulnerability to stroke. PLoS One 2011; 6:e25077. [PMID: 21949858 PMCID: PMC3174999 DOI: 10.1371/journal.pone.0025077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/26/2011] [Indexed: 11/26/2022] Open
Abstract
Ceruloplasmin (Cp) is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, coincident with areas more susceptible to insults. Because of their high metabolic demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral cortex of these young animals are significantly lower than wild-type (WT) controls. Also mRNA levels of the neurotrophin brain derived neurotrophic factor (BDNF), known for its role in maintenance of cell viability, were decreased in these brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to ischemic injury by a mechanism that may involve reduced levels of iron and BDNF.
Collapse
Affiliation(s)
- Sarah J. Texel
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, United States of America
| | - Jian Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, United States of America
| | - Erica L. Unger
- Department of Nutrition Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dennis D. Taub
- Laboratories of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Z. Leah Harris
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mark P. Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Mejía-Toiber J, Castillo CG, Giordano M. Strategies for the Development of Cell Lines for Ex Vivo Gene Therapy in the Central Nervous System. Cell Transplant 2011; 20:983-1001. [DOI: 10.3727/096368910x546599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disorders of the central nervous system (CNS) as a result of trauma or ischemic or neurodegenerative processes still pose a challenge for modern medicine. Due to the complexity of the CNS, and in spite of the advances in the knowledge of its anatomy, pharmacology, and molecular and cellular biology, treatments for these diseases are still limited. The development of cell lines as a source for transplantation into the damaged CNS (cell therapy), and more recently their genetic modification to favor the expression and delivery of molecules with therapeutic potential (ex vivo gene therapy), are some of the techniques used in search of novel restorative strategies. This article reviews the different approaches that have been used and perfected during the last decade to generate cell lines and their use in experimental models of neuronal damage, and evaluates the prospects of applying these methods to treat CNS disorders.
Collapse
Affiliation(s)
- Jana Mejía-Toiber
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| | - Claudia G. Castillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Magda Giordano
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| |
Collapse
|
46
|
Han Q, Li B, Feng H, Xiao Z, Chen B, Zhao Y, Huang J, Dai J. The promotion of cerebral ischemia recovery in rats by laminin-binding BDNF. Biomaterials 2011; 32:5077-85. [DOI: 10.1016/j.biomaterials.2011.03.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
|
47
|
Kawamura K, Kawamura N, Kumazawa Y, Kumagai J, Fujimoto T, Tanaka T. Brain-derived neurotrophic factor/tyrosine kinase B signaling regulates human trophoblast growth in an in vivo animal model of ectopic pregnancy. Endocrinology 2011; 152:1090-100. [PMID: 21239439 DOI: 10.1210/en.2010-1124] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although medical treatment of unruptured ectopic pregnancy using methotrexate has been established, development of more potent and safer medical treatment is needed due to limited indications and side effects of methotrexate. Brain-derived neurotrophic factor (BDNF) signals through its receptor tyrosine kinase B (TrkB) to regulate the growth of malignant trophoblastic, choriocarcinoma cell. We investigated possible involvement of this signaling system in nonmalignant human trophoblast growth in both ectopic and intrauterine pregnancy. Here, we demonstrated the expression of BDNF in syncytiotrophoblasts and extravillous trophoblasts (EVTs) together with TrkB in cytotrophoblasts and EVTs in human placental villi during both normal and ectopic pregnancies. Treatment of cultured villous explants with soluble TrkB ectodomain or a Trk receptor inhibitor K252a suppressed cytotrophoblast differentiation by inhibiting EVT outgrowth reflected by decreased levels of an EVT marker, human leukocyte antigen-G. These inhibitors also decreased cytotrophoblast proliferation and cellular viability based on histopathological analyses and monitoring glucose metabolism, together with increased apoptosis in cytotrophoblasts based on in situ terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end-labeling and caspase-3/7 assays. After xenotransplantation of human placental villi into SCID mice as an in vivo model of ectopic pregnancy, treatment with K252a suppressed transplanted villi growth as reflected by decreased cytotrophoblast differentiation and proliferation, reduced tissue levels of chorionic gonadotropin-β, and increased apoptosis and caspase-3/7 activities. Thus, paracrine signaling by the BDNF/TrkB system is important for human cytotrophoblast differentiation, proliferation, and survival, and inhibition of BDNF/TrkB signaling in cytotrophoblasts could provide a novel medical treatment for ectopic pregnancy.
Collapse
Affiliation(s)
- Kazuhiro Kawamura
- Department of Obstetrics and Gynecology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat. Mediators Inflamm 2011; 2010:372423. [PMID: 21490702 PMCID: PMC3068595 DOI: 10.1155/2010/372423] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/14/2010] [Accepted: 12/27/2010] [Indexed: 12/25/2022] Open
Abstract
This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF) can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO) for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobility shift assay, respectively. Exogenous BDNF significantly improved motor-sensory, sensorimotor function, and vestibulomotor function, while BDNF did not decrease the infarct volume. Exogenous BDNF increased the number of both activated and phagocytotic microglia in brain. BDNF upregulated interleukin10 and its mRNA expression, while downregulated tumor necrosis factor α and its mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B. BDNF antibody, which blocked the activity of endogenous BDNF, showed the opposite effect of exogenous BDNF. Our data indicated that BDNF may modulate local inflammation in ischemic brain tissues on the cellular, cytokine, and transcription factor levels.
Collapse
|
49
|
Jiang Y, Wei N, Lu T, Zhu J, Xu G, Liu X. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats. Neuroscience 2010; 172:398-405. [PMID: 21034794 DOI: 10.1016/j.neuroscience.2010.10.054] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/07/2010] [Accepted: 10/20/2010] [Indexed: 01/12/2023]
Abstract
Inflammation plays a vital role in the pathogenesis of ischemic stroke. Brain-derived neurotrophic factor (BDNF) may protect brain tissues from ischemic injury. In this study, we investigated whether intranasal BDNF exerted neuroprotection against ischemic insult by modulating the local inflammation in rats with ischemic stroke. Rats were subjected to temporary occlusion of the right middle cerebral artery (120 min) and intranasal BDNF or vehicle was adminstrated 2 h after reperfusion. Infarct volume and neuron injury were measured using triphenyltetrazolium chloride, Nissl staining and TUNEL assay, respectively. Microglia were detected by immunohistofluorescence. Tumor necrosis factor-α, interleukin10 and mRNAs were evaluated by enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction. DNA-binding activity of nuclear factor-kappa B was measured by electrophoretic mobility shift assay. BDNF level in brain tissues was markedly raised following intranasal administration. There were more Nissl positive and less TUNEL positive neurons in BDNF group than in control group while intranasal BDNF did not reduce the infarct volume significantly (n=6, 0.27±0.04 vs. 0.24±0.05, P>0.05). BDNF increased the number of activated microglia (OX-42 positive) and phagocytotic microglia (ED1 positive). BDNF suppressed tumor necrosis factor-α and mRNA expression while increasing the interleukin10 and mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B (n=6, 49.78±1.23 vs. 52.89±1.64, P<0.05). Our data suggest intranasal BDNF might protect the brain against ischemic insult by modulating local inflammation via regulation of the levels of cellular, cytokine and transcription factor in the experimental stroke.
Collapse
Affiliation(s)
- Y Jiang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, PR China
| | | | | | | | | | | |
Collapse
|
50
|
De-routing neuronal precursors in the adult brain to sites of injury: Role of the vasculature. Neuropharmacology 2010; 58:877-83. [DOI: 10.1016/j.neuropharm.2009.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 01/18/2023]
|