1
|
Afsar M, Soleimanzadeh A, Khaki A, Ayen E. Improvement of Post-Thaw Quality and In Vivo Fertility of Simmental Bull Spermatozoa Using Ferulic Acid. Vet Med Sci 2024; 10:e70064. [PMID: 39422094 PMCID: PMC11487330 DOI: 10.1002/vms3.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 07/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Artificial insemination and semen cryopreservation have significantly improved the quality and quantity of cattle production. Through cryopreserved semen and artificial insemination, top-breeding bull sperm can be used to inseminate thousands of cows worldwide. OBJECTIVES Our study aimed to determine the effect of adding ferulic acid (FA) to a Tris-based semen extender on frozen and thawed Simmental bull sperm. METHODS Semen samples were collected from three Simmental bulls. Pooled Simmental semen (n = 34 ejaculations) were diluted with a Tris-base extender containing varying FA concentrations (0.1, 0.15, 0.25, 0.35, and 0.45 mM). After the samples were frozen and thawed, the samples were tested for malondialdehyde (MDA), total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPx), total motility, progressive motility, motility characteristics, and plasma membrane functionality. RESULTS The control and the groups with the best FA concentrations, 0.25 and 0.35, were compared for in vivo fertility. Fifty-one cows were inseminated 24 h after the onset of oestrus. A rectal examination was used to diagnose pregnancies at least 60 days after fertilization. Results showed that adding FA-0.45, FA-0.35, FA-0.25, and FA-0.15 to the semen of Simmental bulls improved total and progressive motility, motility characteristics, and plasma membrane functionality. It also increased GPx and TAC levels, reducing MDA and DNA damage after freezing. The addition of FA did not affect SOD values. The fertility rate in the FA-0.25 and FA-0.35 groups was higher than in the control group, 35.29%, with rates of 76.47% and 70.58%, respectively. CONCLUSIONS In conclusion, adding FA (0.15, 0.25, 0.35, and 0.45 mM) to Tris-based semen extenders can improve the quality parameters of cryopreserved Simmental bull semen and increase in vivo fertility using 0.25 and 0.35 concentrations of FA.
Collapse
Affiliation(s)
- Mobin Afsar
- Department of TheriogenologyFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| | - Ali Soleimanzadeh
- Department of TheriogenologyFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| | - Amir Khaki
- Department of Clinical SciencesFaculty of Veterinary MedicineAmol University of Special Modern TechnologiesAmolIran
| | - Esmail Ayen
- Department of TheriogenologyFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| |
Collapse
|
2
|
Mohammadi T, Hosseinchi Gharehaghaj M, Alaei Novin A. Effects of apigenin and trans-ferulic acid on microscopic and oxidative stress parameters in the semen of water buffalo bulls during cryopreservation. Cryobiology 2024; 115:104868. [PMID: 38423495 DOI: 10.1016/j.cryobiol.2024.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/04/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Cryopreservation involves exposing sperm to stressful conditions that affect cell viability. The high quality of the Azerbaijani water buffalo's by-products, such as buffalo milk, makes it a species of significant importance. Our focus is on protecting its genetic resources by preserving its sperm, as their numbers will decrease in the coming years and they are at risk of extinction. This study's goal was to ascertain how apigenin (A) and trans-ferulic acid (t-FA) affected the semen quality of Azari water buffalo bulls under cryopreservation. Pooled buffalo sperm (n = 35 ejaculations) were diluted in a Tris-based diluent also containing varying amounts of apigenin (0.2, 0.4, 0.6, and 0.8 mM) and trans-ferulic acid (2.5, 5, 10 and 20 mM). Following a freeze-thaw procedure, samples were assayed for total antioxidant capacity (TAC), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione activity (GSH), glutathione peroxidase (GPx), progressive motility and total motility, motility properties, plasma membrane functionality, and viability. Sixty days after insemination, the rectal examination was performed on 38 buffaloes that had undergone sexual breeding to confirm pregnancy. The results of the study show that the addition of A-0.2, A-0.4, and t-FA-10 to buffalo semen increases the percentage of intact plasma membrane, motility, and sperm viability, as well as the levels of GSH, GPx, CAT. and TAC. In addition, there is a decrease in MDA and DNA damage after cryopreservation. Furthermore, the results show that 0.4 mM apigenin significantly increases conception rates compared to the control group. The base extender of Tris supplemented with A (0.4 and 0.2 mM) and t-FA (10 mM) improves the antioxidant indices of both frozen and thawed buffalo sperm, which in turn improves post-thawing sperm quality and in vivo fertility improves buffalo sperm.
Collapse
Affiliation(s)
- T Mohammadi
- Department of Basic Science, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | - M Hosseinchi Gharehaghaj
- Department of Basic Science, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - A Alaei Novin
- Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Iran
| |
Collapse
|
3
|
Kang JB, Koh PO. Retinoic acid alleviates the reduction of Akt and Bad phosphorylation and regulates Bcl-2 family protein interactions in animal models of ischemic stroke. PLoS One 2024; 19:e0303213. [PMID: 38753710 PMCID: PMC11098415 DOI: 10.1371/journal.pone.0303213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/21/2024] [Indexed: 05/18/2024] Open
Abstract
Ischemic stroke causes a lack of oxygen and glucose supply to brain, eventually leads to severe neurological disorders. Retinoic acid is a major metabolic product of vitamin A and has various biological effects. The PI3K-Akt signaling pathway is an important survival pathway in brain. Phosphorylated Akt is important in regulating survival and apoptosis. We examined whether retinoic acid has neuroprotective effects in stroke model by regulating Akt and its downstream protein, Bad. Moreover, we investigated the relationship between retinoic acid and Bcl-2 family protein interactions. Animals were intraperitoneally administered vehicle or retinoic acid (5 mg/kg) for four days before surgery and ischemic stroke was induced by middle cerebral artery occlusion (MCAO) surgery. Neurobehavioral tests were performed 24 h after MCAO and cerebral cortical tissues were collected. Cresyl violet staining and TUNEL histochemistry were performed, Western blot and immunoprecipitation analysis were performed to elucidate the expression of various proteins. Retinoic acid reduced neurological deficits and histopathological changes, decreased the number of TUNEL-positive cells, and alleviated reduction of phospho-PDK1, phospho-Akt, and phospho-Bad expression caused by MCAO damage. Immunoprecipitation analysis showed that MCAO damage reduced the interaction between phospho-Bad and 14-3-3, which was attenuated by retinoic acid. Furthermore, retinoic acid mitigated the increase in Bcl-2/Bad and Bcl-xL/Bad binding levels and the reduction in Bcl-2/Bax and Bcl-xL/Bax binding levels caused by MCAO damage. Retinoic acid alleviated MCAO-induced increase of caspase-3 and cleaved caspase-3 expression. We demonstrate that retinoic acid prevented apoptosis against cerebral ischemia through phosphorylation of Akt and Bad, maintenance of phospho-Bad and 14-3-3 binding, and regulation of Bcl-2 family protein interactions. .
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
4
|
Bhuia MS, Rokonuzzman M, Hossain MI, Ansari SA, Ansari IA, Islam T, Al Hasan MS, Mubarak MS, Islam MT. Anxiolytic- like Effects by trans-Ferulic Acid Possibly Occur through GABAergic Interaction Pathways. Pharmaceuticals (Basel) 2023; 16:1271. [PMID: 37765079 PMCID: PMC10535412 DOI: 10.3390/ph16091271] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Numerous previous studies reported that ferulic acid exerts anxiolytic activity. However, the mechanisms have yet to be elucidated. The current study aimed to investigate the anxiolytic effect of trans-ferulic acid (TFA), a stereoisomer of ferulic acid, and evaluated its underlying mechanism using in vivo and computational studies. For this, different experimental doses of TFA (25, 50, and 75 mg/kg) were administered orally to Swiss albino mice, and various behavioral methods of open field, hole board, swing box, and light-dark tests were carried out. Diazepam (DZP), a positive allosteric modulator of the GABAA receptor, was employed as a positive control at a dose of 2 mg/kg, and distilled water served as a vehicle. Additionally, molecular docking was performed to estimate the binding affinities of the TFA and DZP toward the GABAA receptor subunits of α2 and α3, which are associated with the anxiolytic effect; visualizations of the ligand-receptor interaction were carried out using various computational tools. Our findings indicate that TFA dose-dependently reduces the locomotor activity of the animals in comparison with the controls, calming their behaviors. In addition, TFA exerted the highest binding affinity (-5.8 kcal/mol) to the α2 subunit of the GABAA receptor by forming several hydrogen and hydrophobic bonds. Taken together, our findings suggest that TFA exerts a similar effect to DZP, and the compound exerts moderate anxiolytic activity through the GABAergic interaction pathway. We suggest further clinical studies to develop TFA as a reliable anxiolytic agent.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Md. Imran Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy;
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Md. Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| |
Collapse
|
5
|
Salimi A, Eslami M, Farrokhi-Ardabili F. Influence of trans-ferulic acid on the quality of ram semen upon cold preservation. Vet Med Sci 2023; 9:1369-1378. [PMID: 36913307 DOI: 10.1002/vms3.1117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Due to lower antioxidant capacity and higher amounts of polyunsaturated fatty acids, ram spermatozoa are very susceptible during cooling process. OBJECTIVES The objective was to examine the effect of the trans-ferulic acid (t-FA) on the ram semen during liquid preservation. METHODS Semen samples were collected from the Qezel rams, pooled, and extended with the Tris-based diluent. Pooled samples enriched with different amounts of the t-FA (0, 2.5, 5, 10, and 25 mM) and preserved at 4°C for 72 h. Spermatozoa's kinematics, membrane functionality, and viability were assessed by CASA system, hypoosmotic swelling test, and eosin-nigrosin staining, respectively. Moreover, biochemical parameters were measured at 0, 24, 48, and 72 h. RESULTS Results showed that 5 and 10 mM t-FA improved forward progressive motility (FPM) and curvilinear velocity compared to the other groups at 72 h (p < 0.05). Samples treated with 25 mM t-FA showed the lowest total motility, FPM, and viability at 24, 48, and 72 h of storage (p < 0.05). Higher total antioxidant activity levels were observed in the 10 mM t-FA-treated group compared to the negative control at 72 h (p < 0.05). Treatment with 25 mM t-FA increased malondialdehyde amounts and decreased superoxide dismutase activity compared to other groups at the final time assessment (p < 0.05). Nitrate-nitrite and lipid hydroperoxides values were not affected by treatment. CONCLUSIONS The current study indicates the positive and negative influences of different concentrations of t-FA on the ram semen upon cold storage.
Collapse
Affiliation(s)
- Ali Salimi
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mohsen Eslami
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | |
Collapse
|
6
|
Potential of Staphylea holocarpa Wood for Renewable Bioenergy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010299. [PMID: 36615490 PMCID: PMC9822470 DOI: 10.3390/molecules28010299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Energy is indispensable in human life and social development, but this has led to an overconsumption of non-renewable energy. Sustainable energy is needed to maintain the global energy balance. Lignocellulose from agriculture or forestry is often discarded or directly incinerated. It is abundantly available to be discovered and studied as a biomass energy source. Therefore, this research uses Staphylea holocarpa wood as feedstock to evaluate its potential as energy source. We characterized Staphylea holocarpa wood by utilizing FT-IR, GC-MS, TGA, Py/GC-MS and NMR. The results showed that Staphylea holocarpa wood contained a large amount of oxygenated volatiles, indicating that it has the ability to act as biomass energy sources which can achieve green chemistry and sustainable development.
Collapse
|
7
|
Fatima MT, Bhat AA, Nisar S, Fakhro KA, Al-Shabeeb Akil AS. The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile. Heliyon 2022; 9:e12698. [PMID: 36632095 PMCID: PMC9826852 DOI: 10.1016/j.heliyon.2022.e12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Healthy diet is vital to cellular health. The human body succumbs to numerous diseases which afflict severe economic and psychological burdens on the patient and family. Oxidative stress is a possible crucial regulator of various pathologies, including type 2 diabetes and neurodegenerative diseases. It generates reactive oxygen species (ROS) that trigger the dysregulation of essential cellular functions, ultimately affecting cellular health and homeostasis. However, lower levels of ROS can be advantageous and are implicated in a variety of signaling pathways. Due to this dichotomy, the terms oxidative "eustress," which refers to a good oxidative event, and "distress," which can be hazardous, have developed. ROS affects multiple signaling pathways, leading to compromised insulin secretion, insulin resistance, and β-cell dysfunction in diabetes. ROS is also associated with increased mitochondrial dysfunction and neuroinflammation, aggravating neurodegenerative conditions in the body, particularly with age. Treatment includes drugs/therapies often associated with dependence, side effects including non-selectivity, and possible toxicity, particularly in the long run. It is imperative to explore alternative medicines as an adjunct therapy, utilizing natural remedies/resources to avoid all the possible harms. Antioxidants are vital components of our body that fight disease by reducing oxidative stress or nullifying the excess toxic free radicals produced under various pathological conditions. In this review, we focus on the antioxidant effects of components of dietary foods such as tea, coffee, wine, oils, and honey and the role and mechanism of action of these antioxidants in alleviating type 2 diabetes and neurodegenerative disorders. We aim to provide information about possible alternatives to drug treatments used alone or combined to reduce drug intake and encourage the consumption of natural ingredients at doses adequate to promote health and combat pathologies while reducing unwanted risks and side effects.
Collapse
Affiliation(s)
- Munazza Tamkeen Fatima
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz Ahmed Bhat
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khalid Adnan Fakhro
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Doha, Qatar,Department of Genetic Medicine, Weill Cornell Medical College, Doha, P.O. Box 24144, Doha, Qatar,Department of Human Genetics, Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ammira Sarah Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar,Corresponding author.
| |
Collapse
|
8
|
Development of Semisynthetic Apoptosis-Inducing Agents Based on Natural Phenolic Acids Scaffold: Design, Synthesis and In-Vitro Biological Evaluation. Molecules 2022; 27:molecules27196724. [PMID: 36235260 PMCID: PMC9571594 DOI: 10.3390/molecules27196724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
A crucial target in drug research is magnifying efficacy and decreasing toxicity. Therefore, using natural active constituents as precursors will enhance both safety and biological activities. Despite having many pharmacological activities, caffeic and ferulic acids showed limited clinical usage due to their poor bioavailability and fast elimination. Therefore, semisynthetic compounds from these two acids were prepared and screened as anticancer agents. In this study, CA and FA showed very potent anticancer activity against Caco-2 cells. Consequently, eighteen derivatives were tested against the same cell line. Four potent candidates were selected for determination of the selectivity index, where compound 10 revealed a high safety margin. Compound 10 represented a new scaffold and showed significant cytotoxic activity against Caco-2. Cell-cycle analysis and evaluation of apoptosis showed that derivatives 10, 7, 11, 15 and 14 showed the highest proportion of cells in a late apoptotic stage.
Collapse
|
9
|
Shah MA, Kang JB, Kim MO, Koh PO. Chlorogenic acid alleviates the reduction of Akt and Bad phosphorylation and of phospho-Bad and 14-3-3 binding in an animal model of stroke. J Vet Sci 2022; 23:e84. [PMID: 36259103 PMCID: PMC9715392 DOI: 10.4142/jvs.22200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Stroke is caused by disruption of blood supply and results in permanent disabilities as well as death. Chlorogenic acid is a phenolic compound found in various fruits and coffee and exerts antioxidant, anti-inflammatory, and anti-apoptotic effects. OBJECTIVES The purpose of this study was to investigate whether chlorogenic acid regulates the PI3K-Akt-Bad signaling pathway in middle cerebral artery occlusion (MCAO)-induced damage. METHODS Chlorogenic acid (30 mg/kg) or vehicle was administered peritoneally to adult male rats 2 h after MCAO surgery, and animals were sacrificed 24 h after MCAO surgery. Neurobehavioral tests were performed, and brain tissues were isolated. The cerebral cortex was collected for Western blot and immunoprecipitation analyses. RESULTS MCAO damage caused severe neurobehavioral disorders and chlorogenic acid improved the neurological disorders. Chlorogenic acid alleviated the MCAO-induced histopathological changes and decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. Furthermore, MCAO-induced damage reduced the expression of phospho-PDK1, phospho-Akt, and phospho-Bad, which was alleviated with administration of chlorogenic acid. The interaction between phospho-Bad and 14-3-3 levels was reduced in MCAO animals, which was attenuated by chlorogenic acid treatment. In addition, chlorogenic acid alleviated the increase of cytochrome c and caspase-3 expression caused by MCAO damage. CONCLUSIONS The results of the present study showed that chlorogenic acid activates phospho-Akt and phospho-Bad and promotes the interaction between phospho-Bad and 14-3-3 during MCAO damage. In conclusion, chlorogenic acid exerts neuroprotective effects by activating the Akt-Bad signaling pathway and maintaining the interaction between phospho-Bad and 14-3-3 in ischemic stroke model.
Collapse
Affiliation(s)
- Murad-Ali Shah
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Ju-Bin Kang
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Myeong-Ok Kim
- Division of Life Science and Applied Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Phil-Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
10
|
Maccioni RB, Calfío C, González A, Lüttges V. Novel Nutraceutical Compounds in Alzheimer Prevention. Biomolecules 2022; 12:249. [PMID: 35204750 PMCID: PMC8961630 DOI: 10.3390/biom12020249] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) incidence is increasing worldwide at an alarming rate. Considering this increase, prevention efforts, stemming from scientific research, health education, and public policies, are critical. Clinical studies evidenced that healthy lifestyles along with natural multitarget and disease-modifying agents have a preventative impact on AD or mitigate symptoms in diagnosed patients. The pathological alterations of AD start 30 years before symptoms, and it is essential to develop the capacity to detect those changes. In this regard, molecular biomarkers that detect early pathological manifestations are helpful. Based on markers data, early preventive interventions could reduce more than 40% of AD cases. Protective actions include exercise, shown to induce neurogenesis, cognitive stimulation, intellectual-social activity, and nutrition among others. Mediterranean diet, preprobiotics, and nutraceuticals containing bioactive molecules with antioxidant and anti-inflammatory properties are relevant. Antiprotein aggregation molecules whose mechanisms were described are important. Anti-inflammatory agents with anti-aggregation properties that help to control cognitive impairment, include quercetin, biocurcumin, rosemarinic acid, and Andean shilajit. Anthocyanidins, e.g., delphinidin, malvidin, and natural flavonoids, are also included. Quercetin and hydroxy-tyrosol are antiaging molecules and could have anti-AD properties. We emphasize the relevance of nutraceuticals as a main actor in the prevention and/or control of dementia and particularly AD.
Collapse
Affiliation(s)
- Ricardo Benjamin Maccioni
- International Center for Biomedicine ICC, Vitacura 3568, Santiago 7630000, Chile; (C.C.); (A.G.); (V.L.)
- Laboratory of Neuroscience and Functional Medicine, Faculty of Sciences, University of Chile, Santiago 7630000, Chile
| | - Camila Calfío
- International Center for Biomedicine ICC, Vitacura 3568, Santiago 7630000, Chile; (C.C.); (A.G.); (V.L.)
- Laboratory of Neuroscience and Functional Medicine, Faculty of Sciences, University of Chile, Santiago 7630000, Chile
| | - Andrea González
- International Center for Biomedicine ICC, Vitacura 3568, Santiago 7630000, Chile; (C.C.); (A.G.); (V.L.)
- Laboratory of Neuroscience and Functional Medicine, Faculty of Sciences, University of Chile, Santiago 7630000, Chile
| | - Valentina Lüttges
- International Center for Biomedicine ICC, Vitacura 3568, Santiago 7630000, Chile; (C.C.); (A.G.); (V.L.)
- Laboratory of Neuroscience and Functional Medicine, Faculty of Sciences, University of Chile, Santiago 7630000, Chile
| |
Collapse
|
11
|
Fan X, Wang X, Liu XR, Li KX, Liu Y. Effects of ferulic acid on regulating the neurovascular unit: Implications for ischemic stroke treatment. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_76_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Osman SM, Soliman HSM, Hamed FM, Marrez DA, El-Gazar AA, Alazzouni AS, Nasr T, Ibrahim HA. Neuroprotective Role of Microbial Biotransformed Metabolites of Sinapic Acid on Repetitive Traumatic Brain Injury in Rats. PHARMACOPHORE 2022. [DOI: 10.51847/1rj6v3egdu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Al-Okbi SY. Date Palm as Source of Nutraceuticals for Health Promotion: a Review. Curr Nutr Rep 2022; 11:574-591. [PMID: 36125704 PMCID: PMC9750914 DOI: 10.1007/s13668-022-00437-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Chronic diseases are problematic to health professional specially when using drugs throughout the course of life with un-tolerated side effects. Returning to nature through using nutraceuticals might have both protective and therapeutic effects. Date palm was claimed to be a good source of such nutraceuticals or functional food ingredients. The purpose of the present review was to spot light on the different phytochemicals, phytonutrients, and remedial effects of date palm (Phoenix dactylifera L.) in a goal to be utilized in form of nutraceuticals. The possible mechanisms of action of the remedial effects were among the aim of the study. RECENT FINDINGS A protein hydrolyzate prepared from date seed could prevent DNA mutation and susceptibility to cancer. In addition to cancer prevention, date palm fruit improved the treatment outcome of cancer pediatric patients and possesses anti-angiogenic activity as one of the important anticancer mechanisms of action. On the other hand, date seed extracts was recently reported to protect from ulcerative colitis. It seems that all the aforementioned remedial effect might be ascribed to immunoregulatory effect of date palm. These findings proposed that date palm is beneficial for health. Date palm fruit is a rich source of vitamins, minerals, dietary fibers, energy, and easily digestible and absorbable sugars that instantaneously replenish and revitalize the body specially after fasting condition. Mineral contents in date fruits include potassium, phosphorus, magnesium, and calcium. Diverse health claims were reported to belong to various parts of the tree including the edible part of fruits, the seeds, the leaves, spathe (an envelope-like structure that encloses male and female date palm flowers), and pollen grains due to the presence of different bioactive constituents. The main phytochemicals and phytonutrients reported in date palms are phenolic compounds, carotenoids, sterols, anthocyanins, and others. In folk medicine, date palm fruits are used for enhancing immunity and treating gastrointestinal tract disorders, edema, bronchitis, wound, cancer, as well as infectious diseases. However, the exact health benefits and remedial effects of date palm were not fully and deeply investigated. The present review focused on the bioactive constituents and the reported health benefits of date palm and proposed mechanism of action.
Collapse
Affiliation(s)
- Sahar Y. Al-Okbi
- Nutrition and Food Sciences Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
14
|
Turkez H, Arslan ME, Barboza JN, Kahraman CY, de Sousa DP, Mardinoğlu A. Therapeutic Potential of Ferulic Acid in Alzheimer's Disease. Curr Drug Deliv 2021; 19:860-873. [PMID: 34963433 DOI: 10.2174/1567201819666211228153801] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is one of the most important neurodegenerative diseases and it covers 60% of whole dementia cases. AD is a constantly progressing neurodegenerative disease as a result of the production of β-amyloid (Aβ) protein and the accumulation of hyper-phosphorylated Tau protein; it causes breakages in the synaptic bonds and neuronal deaths to a large extent. Millions of people worldwide suffer from AD because there is no definitive drug for disease prevention, treatment or slowdown. Over the last decade, multiple target applications have been developed for AD treatments. These targets include Aβ accumulations, hyper-phosphorylated Tau proteins, mitochondrial dysfunction, and oxidative stress resulting in toxicity. Various natural or semisynthetic antioxidant formulations have been shown to protect brain cells from Aβ induced toxicity and provide promising potentials for AD treatment. Ferulic acid (FA), a high-capacity antioxidant molecule, is naturally synthesized from certain plants. FA has been shown to have different substantial biological properties, such as anticancer, antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and cardioprotective actions, etc. Furthermore, FA exerted neuroprotection via preventing Aβ-fibril formation, acting as an anti-inflammatory agent, and inhibiting free radical generation and acetylcholinesterase (AChE) enzyme activity. In this review, we present key biological roles of FA and several FA derivatives in Aβ-induced neurotoxicity, protection against free radical attacks, and enzyme inhibitions and describe them as possible therapeutic agents for the treatment of AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
- Department of Pharmacy, University G. d'Annunzio Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25200, Erzurum, Turkey
| | - Joice Nascimento Barboza
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil
| | - Cigdem Yuce Kahraman
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Damiao Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17121, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
15
|
A Review on Potential Footprints of Ferulic Acid for Treatment of Neurological Disorders. Neurochem Res 2021; 46:1043-1057. [PMID: 33547615 DOI: 10.1007/s11064-021-03257-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Ferulic acid is being screened in preclinical settings to combat various neurological disorders. It is a naturally occurring dietary flavonoid commonly found in grains, fruits, and vegetables such as rice, wheat, oats, tomatoes, sweet corn etc., which exhibits protective effects against a number of neurological diseases such as epilepsy, depression, ischemia-reperfusion injury, Alzheimer's disease, and Parkinson's disease. Ferulic acid prevents and treats different neurological diseases pertaining to its potent anti-oxidative and anti-inflammatory effects, beside modulating unique neuro-signaling pathways. It stays in the bloodstream for longer periods than other dietary polyphenols and antioxidants and easily crosses blood brain barrier. The use of novel drug delivery systems such as solid-lipid nanoparticles (SLNs) or its salt forms (sodium ferulate, ethyl ferulate, and isopentyl ferulate) further enhance its bioavailability and cerebral penetration. Based on reported studies, ferulic acid appears to be a promising molecule for treatment of neurological disorders; however, more preclinical (in vitro and in vivo) mechanism-based studies should be planned and conceived followed by its testing in clinical settings.
Collapse
|
16
|
McCarty MF, Lerner A. Nutraceutical induction and mimicry of heme oxygenase activity as a strategy for controlling excitotoxicity in brain trauma and ischemic stroke: focus on oxidative stress. Expert Rev Neurother 2020; 21:157-168. [PMID: 33287596 DOI: 10.1080/14737175.2021.1861940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Ischemic stroke and traumatic brain injury are leading causes of acute mortality, and in the longer run, major causes of significant mental and physical impairment. Most of the brain neuronal cell death in the minutes and hours following an ischemic stroke or brain trauma is mediated by the process of excitotoxicity, in which sustained elevations of extracellular glutamate, reflecting a failure of ATP-dependent mechanism which sequester glutamate in neurons and astrocytes, drive excessive activation of NMDA receptors. Areas covered: A literature search was undertaken to clarify the molecular mechanisms whereby excessive NMDA activation leads to excitotoxic neuronal death, and to determine what safe nutraceutical agents might have practical potential for rescuing at-risk neurons by intervening in these mechanisms. Expert opinion: Activation of both NADPH oxidase and neuronal nitric oxide synthase in the microenvironment of activated NMDA receptors drives production of superoxide and highly toxic peroxynitrite. This leads to excessive activation of PARP and p38 MAP kinase, mitochondrial dysfunction, and subsequent neuronal death. Heme oxygenase-1 (HO-1) induction offers protection via inhibition of NADPH oxidase and promotion of cGMP generation. Phase 2-inductive nutraceuticals can induce HO-1, and other nutraceuticals can mimic the effects of its products biliverdin and carbon monoxide.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Technion Israel Institute of Technology Ruth and Bruce Rappaport Faculty of Medicine- Research, Haifa, Israel (Retired)
| |
Collapse
|
17
|
Synergistic protection of RGCs by olfactory ensheathing cells and alpha-crystallin through regulation of the Akt/BAD Pathway. J Fr Ophtalmol 2020; 43:718-726. [PMID: 32631692 DOI: 10.1016/j.jfo.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Our recent in vivo studies have shown that olfactory ensheathing cells (OECs) and α-crystallin can promote retinal ganglion cell (RGC) survival and axonal regeneration synergistically after optic nerve injury. However, the mechanism is still unknown. OBJECTIVES Here, we studied the synergistic effect and mechanism of OECs and α-crystallin on RGC survival after H2O2-induced oxidative damage and a crushing injury to the optic nerve in an adult rat model. METHODS After H2O2-induced oxidative damage, RGC-5 cells were treated with OECs, α-crystallin or a combination of OECs and α-crystallin. Apoptosis of RGC-5 cells was assessed by flow cytometry. Phosphorylated Akt, BAD, and cleaved-caspase3 were detected by Western blot after optic nerve injury in vivo and H2O2-induced RGC-5 oxidative damage in vitro. RESULTS The results showed that OECs and α-crystallin could both independently inhibit RGC-5 apoptosis (P<0.01), increase the phosphorylation of both Akt and BAD, and decrease the activation of caspase-3 (P<0.01). However, the effect of the combination of both was more significant than either alone. CONCLUSION These findings indicate that inhibition of superoxide damage to RGCs through regulation of the Akt/BAD pathway is one of the mechanisms by which OECs and α-crystallin promote optic nerve recovery after injury.
Collapse
|
18
|
Oral administration of ferulic acid or ethyl ferulate attenuates retinal damage in sodium iodate-induced retinal degeneration mice. Sci Rep 2020; 10:8688. [PMID: 32457394 PMCID: PMC7250827 DOI: 10.1038/s41598-020-65673-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
Epidemiological studies indicate that the daily intake of antioxidants from a traditional Asian diet reduces the risk of developing age-related macular degeneration. Many of the phytochemicals that are abundant in whole grains exhibit a wide variety of biological activity such as antioxidant, anti-inflammatory, and neuroprotective effects. Ferulic acid (FA) is a phenolic acid found in vegetables and grains that has therapeutic potential for diabetes mellitus, Alzheimer's disease, and other diseases. We investigated the retinal protective effect of FA in a sodium iodate (NaIO3)-induced model of retinal degeneration. In a human retinal pigment epithelial cell line, FA attenuated H2O2-induced injury and lipopolysaccharide- or 7-ketocholesterol-induced inflammation. In mice, the oral administration of FA or its analog, ethyl ferulate, attenuated the morphological and functional features of NaIO3-induced retinal degeneration according to optical coherence tomography and electroretinography. Our results demonstrate that the oral administration of FA provides protective effects to the retina, suggesting that the intake of FA as a daily supplement or daily healthy diet containing rich vegetables and whole grains may prevent age-related macular degeneration.
Collapse
|
19
|
Park DJ, Kang JB, Shah FA, Koh PO. Resveratrol modulates the Akt/GSK-3β signaling pathway in a middle cerebral artery occlusion animal model. Lab Anim Res 2019; 35:18. [PMID: 32257906 PMCID: PMC7081686 DOI: 10.1186/s42826-019-0019-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022] Open
Abstract
Cerebral ischemia is a major cause of neurodegenerative disease. It induces neuronal vulnerability and susceptibility, and leads to neuronal cell death. Resveratrol is a polyphenolic compound that acts as an anti-oxidant. It exerts a neuroprotective effect against focal cerebral ischemic injury. Akt signaling pathway is accepted as a representative cell survival pathway, including proliferation, growth, and glycogen synthesis. This study investigated whether resveratrol regulates Akt/glycogen synthase kinase-3β (GSK-3β) pathway in a middle cerebral artery occlusion (MCAO)-induced ischemic brain injury. Adult male rats were intraperitoneally injected with vehicle or resveratrol (30 mg/kg) and cerebral cortices were isolated 24 h after MCAO. Neurological behavior test, corner test, brain edema measurment, and 2,3,5-triphenyltetrazolium chloride staining were performed to elucidate the neuroprotective effects of resveratrol. Phospho-Akt and phospho-GSK-3β expression levels were measured using Western blot analysis. MCAO injury led to severe neurobehavioral deficit, infraction, and histopathological changes in cerebral cortex. However, resveratrol treatment alleviated these changes caused by MCAO injury. Moreover, MCAO injury induced decreases in phospho-Akt and phospho-GSK-3β protein levels, whereas resveratrol attenuated these decreases. Phosphorylations of Akt and GSK-3β act as a critical role for the suppression of apoptotic cell death. Thus, our finding suggests that resveratrol attenuates neuronal cell death in MCAO-induced cerebral ischemia and Akt/GSK-3β signaling pathway contributes to the neuroprotective effect of resveratrol.
Collapse
Affiliation(s)
- Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Fawad-Ali Shah
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| |
Collapse
|
20
|
Cheng CY, Kao ST, Lee YC. Ferulic Acid Exerts Anti-apoptotic Effects against Ischemic Injury by Activating HSP70/Bcl-2- and HSP70/Autophagy-Mediated Signaling after Permanent Focal Cerebral Ischemia in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:39-61. [PMID: 30612456 DOI: 10.1142/s0192415x19500034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study assessed the anti-apoptotic effects of the administration of ferulic acid (FrA) in rats 30 min before middle cerebral artery occlusion (MCAo) followed by 3 d of ischemia and the involvement of 70 kDa heat shock protein (HSP70)-mediated signaling in the penumbral cortex. Our results demonstrated that FrA pretreatment at doses of 80 mg/kg (FrA-80 mg) and 100 mg/kg (FrA-100 mg) effectively ameliorated neurological functions and reduced the numbers of cytochrome c-, cleaved caspase-3-, and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells in the penumbral cortex 3 d after ischemia. Moreover, FrA-80 mg and FrA-100 mg pretreatment markedly upregulated cytosolic HSP70, Beclin-1, microtubule-associated protein 1 light chain 3 (LC3) A/B-II and autophagy-related protein 5 (Atg5) expression; cytosolic and mitochondrial X-linked inhibitor of apoptosis (XIAP) expression and the Bcl-2/Bax ratio. FrA pretreatment downregulated cytosolic cytochrome c, apoptosis-inducing factor (AIF), procathepsin B, and cathepsin B expression and mitochondrial and cytosolic second mitochondria-derived activator of caspase/direct inhibitor of apoptosis protein-binding protein with a low isoelectric point (Smac/DIABLO) expression in the penumbral cortex. Pretreatment with VER155008, a HSP70 family inhibitor, significantly inhibited the effects of FrA-100 mg on the expression of the aforementioned proteins expression in the penumbral cortex. FrA-80 mg and FrA-100 mg pretreatment exerts neuroprotective effects against caspase-dependent and -independent apoptosis through activating HSP70/Bcl-2- and HSP70/autophagy-induced signaling pathways. Furthermore, the HSP70/Bcl-2- and HSP70/autophagy-induced anti-apoptotic effects of FrA pretreatment can be attributed to the regulation of Bax/cytochrome c/Smac/DIABLO/XIAP/ caspase-3- (or Bax/AIF-) and Beclin-1/LC3A/B-II/Atg5-mediated signaling, respectively, in the penumbral cortex 3 d after permanent MCAo.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- * School of Post-Baccalaureate Chinese Medicine, College of Chinese medicine, China Medical University, Taichung 40402, Taiwan.,¶ Department of Chinese Medicine, Hui-Sheng Hospital 42056, Taichung, Taiwan
| | - Shung-Te Kao
- † School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yu-Chen Lee
- ‡ Research Center for Chinese Medicine & Acupuncture Science, China Medical University, Taichung 40402, Taiwan.,§ Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.,∥ Department of Chinese Medicine, China Medical University Hospital 40447, Taichung, Taiwan
| |
Collapse
|
21
|
Cheng CY, Kao ST, Lee YC. Ferulic acid ameliorates cerebral infarction by activating Akt/mTOR/4E‑BP1/Bcl‑2 anti‑apoptotic signaling in the penumbral cortex following permanent cerebral ischemia in rats. Mol Med Rep 2018; 19:792-804. [PMID: 30569126 DOI: 10.3892/mmr.2018.9737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/23/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to determine the effects of ferulic acid (FerA) administered immediately following the onset of permanent middle cerebral artery occlusion (MCAo) and then 7 days of ischemia, and also to explore the involvement of protein kinase B (Akt)‑induced signaling in the penumbral cortex. Immediately following the onset of MCAo, FerA was intravenously administered to rats at a dose of 60 mg/kg (FerA‑60 mg), 80 mg/kg (FerA‑80 mg), or 100 mg/kg (FerA‑100 mg). FerA‑80 mg and FerA‑100 mg effectively ameliorated cerebral infarction and neurological deficits 7 days following permanent cerebral ischemia. FerA‑80 mg and FerA‑100 mg significantly upregulated the expression of phospho‑Akt (p‑Akt), phospho‑mammalian target of rapamycin (p‑mTOR), and eukaryotic initiation factor 4E (eIF4E)‑binding protein 1 (4E‑BP1), and the phospho‑4E‑BP1 (p‑4E‑BP1)/4E‑BP1 and mitochondrial Bcl‑2/Bax ratios, and markedly downregulated the levels of cytochrome c‑, cleaved caspase‑3‑, and terminal deoxynucleotidyl transferase‑mediated dUTP‑biotin nick‑end labeling‑immunoreactive cells in the penumbral cortex at 7 days post‑ischemia. LY294002, a selective inhibitor of phosphoinositide 3‑kinase/Akt signaling, was administered 30 min prior to ischemia, which abrogated the upregulating effects of FerA‑100 mg on the expression of p‑Akt, p‑mTOR, 4E‑BP1, p‑4E‑BP1 and eIF4E, the mitochondrial Bcl‑2/Bax ratio and the ameliorating effect of FerA‑100 mg on cerebral infarction. FerA administered at doses of 80 and 100 mg/kg exerted beneficial effects against cerebral ischemia by activating Akt‑induced signaling. The effects of FerA at doses of 80 and 100 mg/kg on mitochondrial B‑cell lymphoma-2 (Bcl‑2)‑associated X protein‑related apoptosis were attributed to the activation of Akt/mTOR/4E‑BP1/Bcl‑2 anti‑apoptotic signaling, and eventually contributed to suppression of the cytochrome c/caspase‑3 activation pathway in the penumbral cortex 7 days following permanent cerebral ischemia.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- School of Post‑Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yu-Chen Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| |
Collapse
|
22
|
Lima IAD, Khalil NM, Tominaga TT, Lechanteur A, Sarmento B, Mainardes RM. Mucoadhesive chitosan-coated PLGA nanoparticles for oral delivery of ferulic acid. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:993-1002. [DOI: 10.1080/21691401.2018.1477788] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Isabela Angeli de Lima
- Department of Pharmacy, Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| | - Najeh Maissar Khalil
- Department of Pharmacy, Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| | - Tania Toyomi Tominaga
- Department of Physics, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, PR, Brazil
| | - Anna Lechanteur
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Laboratory of Pharmaceutical Technology and Biopharmacy (LPTB) CIRM, Department of Pharmacy, University of Liege, Liege, Belgium
| | - Bruno Sarmento
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação and Inovação em Saúde, Universidade do Porto, Porto, Portugal
- CESPU – Instituto de Investigação e Formação Avançada em Ciências and Tecnologias da Saúde, Gandra, Portugal
| | - Rubiana Mara Mainardes
- Department of Pharmacy, Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Guarapuava, Brazil
| |
Collapse
|
23
|
Kurtys E, Eisel ULM, Hageman RJJ, Verkuyl JM, Broersen LM, Dierckx RAJO, de Vries EFJ. Anti-inflammatory effects of rice bran components. Nutr Rev 2018. [DOI: 10.1093/nutrit/nuy011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ewelina Kurtys
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, RB Groningen, The Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, GELIFES, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, RB Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, RB Groningen, The Netherlands
| |
Collapse
|
24
|
Beker MC, Caglayan B, Yalcin E, Caglayan AB, Turkseven S, Gurel B, Kelestemur T, Sertel E, Sahin Z, Kutlu S, Kilic U, Baykal AT, Kilic E. Time-of-Day Dependent Neuronal Injury After Ischemic Stroke: Implication of Circadian Clock Transcriptional Factor Bmal1 and Survival Kinase AKT. Mol Neurobiol 2018; 55:2565-2576. [PMID: 28421530 DOI: 10.1007/s12035-017-0524-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/06/2017] [Indexed: 12/14/2022]
Abstract
Occurrence of stroke cases displays a time-of-day variation in human. However, the mechanism linking circadian rhythm to the internal response mechanisms against pathophysiological events after ischemic stroke remained largely unknown. To this end, temporal changes in the susceptibility to ischemia/reperfusion (I/R) injury were investigated in mice in which the ischemic stroke induced at four different Zeitgeber time points with 6-h intervals (ZT0, ZT6, ZT12, and ZT18). Besides infarct volume and brain swelling, neuronal survival, apoptosis, ischemia, and circadian rhythm related proteins were examined using immunohistochemistry, Western blot, planar surface immune assay, and liquid chromatography-mass spectrometry tools. Here, we present evidence that midnight (ZT18; 24:00) I/R injury in mice resulted in significantly improved infarct volume, brain swelling, neurological deficit score, neuronal survival, and decreased apoptotic cell death compared with ischemia induced at other time points, which were associated with increased expressions of circadian proteins Bmal1, PerI, and Clock proteins and survival kinases AKT and Erk-1/2. Moreover, ribosomal protein S6, mTOR, and Bad were also significantly increased, while the levels of PRAS40, negative regulator of AKT and mTOR, and phosphorylated p53 were decreased at this time point compared to ZT0 (06:00). Furthermore, detailed proteomic analysis revealed significantly decreased CSKP, HBB-1/2, and HBA levels, while increased GNAZ, NEGR1, IMPCT, and PDE1B at midnight as compared with early morning. Our results indicate that nighttime I/R injury results in less severe neuronal damage, with increased neuronal survival, increased levels of survival kinases and circadian clock proteins, and also alters the circadian-related proteins.
Collapse
Affiliation(s)
- Mustafa Caglar Beker
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
- Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, Necmettin Erbakan University, 42060, Konya, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
- Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Esra Yalcin
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
- Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Ahmet Burak Caglayan
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
- Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, Necmettin Erbakan University, 42060, Konya, Turkey
| | - Seyma Turkseven
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
| | - Busra Gurel
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
- School of Medicine, Department of Medical Biochemistry, Acibadem University, 34752, Istanbul, Turkey
| | - Taha Kelestemur
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
- Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, Necmettin Erbakan University, 42060, Konya, Turkey
| | - Elif Sertel
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
- Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Zafer Sahin
- Department of Physiotherapy and Rehabilitation, Necmettin Erbakan University, 42060, Konya, Turkey
| | - Selim Kutlu
- Department of Physiology, Necmettin Erbakan University, 42060, Konya, Turkey
| | - Ulkan Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- School of Medicine, Department of Medical Biochemistry, Acibadem University, 34752, Istanbul, Turkey
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Ekinciler Cad. 19, TR-34810, Istanbul, Turkey.
- Department of Physiology, Istanbul Medipol University, 34810, Istanbul, Turkey.
| |
Collapse
|
25
|
Addition of Antioxidants Myoinositol, Ferulic Acid, and Melatonin and Their Effects on Sperm Motility, Membrane Integrity, and Reactive Oxygen Species Production in Cooled Equine Semen. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2017.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Hossen MS, Ali MY, Jahurul MHA, Abdel-Daim MM, Gan SH, Khalil MI. Beneficial roles of honey polyphenols against some human degenerative diseases: A review. Pharmacol Rep 2017; 69:1194-1205. [PMID: 29128800 DOI: 10.1016/j.pharep.2017.07.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/11/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023]
Abstract
Honey contains many active constituents and antioxidants such as polyphenols. Polyphenols are phytochemicals, a generic term for the several thousand plant-based molecules with antioxidant properties. Many in vitro studies in human cell cultures as well as many animal studies confirm the protective effect of polyphenols on a number of diseases such as cardiovascular diseases (CVD), diabetes, cancer, neurodegenerative diseases, pulmonary diseases, liver diseases and so on. Nevertheless, it is challenging to identify the specific biological mechanism underlying individual polyphenols and to determine how polyphenols impact human health. To date, several studies have attempted to elucidate the molecular pathway for specific polyphenols acting against particular diseases. In this review, we report on the various polyphenols present in different types of honey according to their classification, source, and specific functions and discuss several of the honey polyphenols with the most therapeutic potential to exert an effect on the various pathologies of some major diseases including CVD, diabetes, cancer, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Md Sakib Hossen
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh.
| | - Md Yousuf Ali
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh.
| | - M H A Jahurul
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt; Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan.
| | - Siew Hua Gan
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| | - Md Ibrahim Khalil
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh; Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
27
|
Wu H, Dai X, Li H, Lv C. WITHDRAWN: Effect of minocycline on vascular proliferation after corneal alkaline burn:A mechanism study. Cancer Biomark 2017:CBM170517. [PMID: 29103026 DOI: 10.3233/cbm-170517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ahead of Print article withdrawn by publisher.
Collapse
Affiliation(s)
- Haijun Wu
- Department of Ophthalmology, Heze Municipal Hospital, Heze 274000, Shandong, China
| | - Xin Dai
- Shandong Heze Medical College, Heze 274000, Shandong, China
| | - Hui Li
- Department of Ophthalmology, Heze Municipal Hospital, Heze 274000, Shandong, China
| | - Chunying Lv
- Department of Ophthalmology, Heze Municipal Hospital, Heze 274000, Shandong, China
| |
Collapse
|
28
|
Ghosh S, Basak P, Dutta S, Chowdhury S, Sil PC. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem Toxicol 2017; 103:41-55. [PMID: 28237775 DOI: 10.1016/j.fct.2017.02.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022]
Abstract
Ferulic acid, a natural phytochemical has gained importance as a potential therapeutic agent by virtue of its easy commercial availability, low cost and minimal side-effects. It is a derivative of curcumin and possesses the necessary pharmacokinetic properties to be retained in the general circulation for several hours. The therapeutic effects of ferulic acid are mediated through its antioxidant and anti-inflammatory properties. It exhibits different biological activities such as anti-inflammatory, anti-apoptotic, anti-carcinogenic, anti-diabetic, hepatoprotective, cardioprotective, neuroprotective actions, etc. The current review addresses its therapeutic effects under different pathophysiological conditions (eg. cancer, cardiomyopathy, skin disorders, brain disorders, viral infections, diabetes etc.).
Collapse
Affiliation(s)
- Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Priyanka Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
29
|
Chen S, Liu Y, Rong X, Li Y, Zhou J, Lu L. Neuroprotective Role of the PI3 Kinase/Akt Signaling Pathway in Zebrafish. Front Endocrinol (Lausanne) 2017; 8:21. [PMID: 28228749 PMCID: PMC5296330 DOI: 10.3389/fendo.2017.00021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/23/2017] [Indexed: 12/27/2022] Open
Abstract
Neuronal survival and growth in the embryo is controlled partly by trophic factors. For most trophic factors (such as Insulin-like growth factor-1), the ability to regulate cell survival has been attributed to the phosphoinositide 3-kinase (PI3K)/Akt kinase cascade. This study presents data illustrating the role of PI3K/Akt in attainment of normal brain size during zebrafish embryogenesis. Blocking PI3K with inhibitor LY294002 caused a significant reduction in brain size (in addition to global growth retardation) during zebrafish embryogenesis. This PI3 Kinase inhibition-induced brain size decrease was recovered by the overexpression of myristoylated Akt (myr-Akt), a constitutive form of Akt. Further analysis reveals that expressing exogenous myr-Akt significantly augmented brain size. Whole mount in situ hybridization analysis of several marker genes showed that myr-Akt overexpression did not alter brain patterning. Furthermore, the expression of myr-Akt was found to protect neuronal cells from apoptosis induced by heat shock and UV light, suggesting that inhibition of neuronal cell death may be part of the underlying cause of the increased brain size. These data provide a foundation for addressing the role of PI3K/Akt in brain growth during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Shuang Chen
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- *Correspondence: Ling Lu,
| |
Collapse
|
30
|
Ferulic acid ameliorates chronic constriction injury induced painful neuropathy in rats. Inflammopharmacology 2016; 24:181-8. [DOI: 10.1007/s10787-016-0272-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
|
31
|
Mirzamohammadi S, Nematollahi MH, Mehrbani M, Mehrabani M. Ferulic acid pretreatment could improve prognosis of autologous mesenchymal stromal cell transplantation for diabetic neuropathy. Cytotherapy 2016; 18:925-7. [DOI: 10.1016/j.jcyt.2016.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022]
|
32
|
Ferulic Acid Administered at Various Time Points Protects against Cerebral Infarction by Activating p38 MAPK/p90RSK/CREB/Bcl-2 Anti-Apoptotic Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion Injury in Rats. PLoS One 2016; 11:e0155748. [PMID: 27187745 PMCID: PMC4871485 DOI: 10.1371/journal.pone.0155748] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/03/2016] [Indexed: 01/29/2023] Open
Abstract
Objectives This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. Methods FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Results Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Conclusions Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to inhibition of the cytochrome c-mediated caspase-3-dependent apoptotic pathway in the cortical penumbra 7 d after reperfusion.
Collapse
|
33
|
DU Q, Hao C, Gou J, Li X, Zou K, He X, Li Z. Protective effects of p-nitro caffeic acid phenethyl ester on acute myocardial ischemia-reperfusion injury in rats. Exp Ther Med 2016; 11:1433-1440. [PMID: 27073461 DOI: 10.3892/etm.2016.3070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
Myocardial ischemia-reperfusion (IR) causes widespread cardiomyocyte dysfunction, including apoptosis and necrosis. The present study aimed to investigate the possible cardioprotective effects of p-nitro caffeic acid phenethyl ester (CAPE-NO2) on myocardial IR-induced injury in vivo. To generate a rat model of myocardial IR, the left anterior descending coronary artery was occluded for 30 min, followed by reperfusion for 2 h. The rats were administered either the sham treatment (the sham and IR control groups) or the therapeutic agents [the caffeic acid phenethyl ester (CAPE) and CAPE-NO2 groups] 10 min prior to the occlusion. Myocardial IR-induced injury is characterized by: A significant increase in the levels of myocardial enzymes, including creatine kinase, lactate dehydrogenase and aspartate transaminase; a marked increase in intercellular adhesion molecule 1 expression levels, lipid peroxidation products and inflammatory mediators; and a significant decrease in myocardial antioxidants, including catalase, total superoxide dismutase and glutathione peroxidase. In the present study, pretreatment with CAPE-NO2 significantly ameliorated these changes, and decreased the infarct size, as compared with the IR control group (10.32±3.8 vs. 35.65±5.4%). Furthermore, western blotting demonstrated that pretreatment with CAPE-NO2 downregulated the myocardial IR-induced protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax), cleaved caspase-3, P38 and the Bax/Bcl-2 ratio. CAPE-NO2 also upregulated the myocardial IR-induced expression levels of Bcl-2, phosphoinositide-3-kinase, phosphorylated Akt and mammalian target of rapamycin. In conclusion, the results of the present study indicated that CAPE-NO2 demonstrated improved cardioprotective effects, as compared with CAPE; therefore, CAPE-NO2 may represent a novel approach to pharmacological cardioprotection.
Collapse
Affiliation(s)
- Qin DU
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400716, P.R. China
| | - Chunzhi Hao
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400716, P.R. China
| | - Jing Gou
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400716, P.R. China
| | - Xiaoli Li
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400716, P.R. China
| | - Kaili Zou
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400716, P.R. China
| | - Xiaoyan He
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400716, P.R. China
| | - Zhubo Li
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
34
|
Ferulic Acid: A Hope for Alzheimer's Disease Therapy from Plants. Nutrients 2015; 7:5764-82. [PMID: 26184304 PMCID: PMC4517023 DOI: 10.3390/nu7075246] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 06/26/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the deposition of extracellular amyloid-beta peptide (Aβ) and intracellular neurofibrillar tangles, associated with loss of neurons in the brain and consequent learning and memory deficits. Aβ is the major component of the senile plaques and is believed to play a central role in the development and progress of AD both in oligomer and fibril forms. Inhibition of the formation of Aβ fibrils as well as the destabilization of preformed Aβ in the Central Nervous System (CNS) would be an attractive therapeutic target for the treatment of AD. Moreover, a large number of studies indicate that oxidative stress and mitochondrial dysfunction may play an important role in AD and their suppression or reduction via antioxidant use could be a promising preventive or therapeutic intervention for AD patients. Many antioxidant compounds have been demonstrated to protect the brain from Aβ neurotoxicity. Ferulic acid (FA) is an antioxidant naturally present in plant cell walls with anti-inflammatory activities and it is able to act as a free radical scavenger. Here we present the role of FA as inhibitor or disaggregating agent of amyloid structures as well as its effects on biological models.
Collapse
|
35
|
Subash S, Essa MM, Braidy N, Awlad-Thani K, Vaishnav R, Al-Adawi S, Al-Asmi A, Guillemin GJ. Diet rich in date palm fruits improves memory, learning and reduces beta amyloid in transgenic mouse model of Alzheimer's disease. J Ayurveda Integr Med 2015; 6:111-20. [PMID: 26167001 PMCID: PMC4484046 DOI: 10.4103/0975-9476.159073] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/09/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022] Open
Abstract
Background: At present, the treatment options available to delay the onset or slow down the progression of Alzheimer's disease (AD) are not effective. Recent studies have suggested that diet and lifestyle factors may represent protective strategies to minimize the risk of developing AD. Date palm fruits are a good source of dietary fiber and are rich in total phenolics and natural antioxidants, such as anthocyanins, ferulic acid, protocatechuic acid and caffeic acid. These polyphenolic compounds have been shown to be neuroprotective in different model systems. Objective: We investigated whether dietary supplementation with 2% and 4% date palm fruits (grown in Oman) could reduce cognitive and behavioral deficits in a transgenic mouse model for AD (amyloid precursor protein [APPsw]/Tg2576). Materials and Methods: The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 2% and 4% date fruits. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in all the animals at the age of 4 months and after 14 months of treatment using the Morris water maze test, rota-rod test, elevated plus maze test, and open-field test. We have also analyzed the levels of amyloid beta (Aβ) protein (1–40 and 1–42) in plasma of control and experimental animals. Results: Standard diet-fed Tg mice showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination when compared to wild-type on the same diet and Tg mice fed 2% and 4% date supplementation at the age of 18 months. The levels of both Aβ proteins were significantly lowered in date fruits supplemented groups than the Tg mice without the diet supplement. The neuroprotective effect offered by 4% date fruits diet to AD mice is higher than 2% date fruits diet. Conclusions: Our results suggest that date fruits dietary supplementation may have beneficial effects in lowering the risk, delaying the onset or slowing down the progression of AD.
Collapse
Affiliation(s)
- Selvaraju Subash
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Muscat, Oman ; Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Muscat, Oman ; Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kathyia Awlad-Thani
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Muscat, Oman ; Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Ragini Vaishnav
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman ; Behavioral Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman, Oman
| | - Samir Al-Adawi
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman ; Behavioral Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman, Oman
| | - Abdullah Al-Asmi
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman ; Neurology Unit - Medicine, College of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Gilles J Guillemin
- Neuropharmacology Group, MND and Neurodegenerative Diseases Research Centre, Macquarie University, NSW, Australia
| |
Collapse
|
36
|
Yang D, Wang F, Zhang L, Gong N, Lv Y. Development of a new ferulic acid certified reference material for use in clinical chemistry and pharmaceutical analysis. Acta Pharm Sin B 2015; 5:231-7. [PMID: 26579451 PMCID: PMC4629261 DOI: 10.1016/j.apsb.2015.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/04/2015] [Accepted: 03/14/2015] [Indexed: 11/24/2022] Open
Abstract
This study compares the results of three certified methods, namely differential scanning calorimetry (DSC), the mass balance (MB) method and coulometric titrimetry (CT), in the purity assessment of ferulic acid certified reference material (CRM). Purity and expanded uncertainty as determined by the three methods were respectively 99.81%, 0.16%; 99.79%, 0.16%; and 99.81%, 0.26% with, in all cases, a coverage factor (k) of 2 (P=95%). The purity results are consistent indicating that the combination of DSC, the MB method and CT provides a confident assessment of the purity of suitable CRMs like ferulic acid.
Collapse
Key Words
- ASTM, American Society for Testing and Materials
- CRM, certified reference material
- CT, coulometric titrimetry
- Certified reference material
- Coulometric titrimetry
- DAD, diode-array detector
- DSC, differential scanning calorimetry
- Differential scanning calorimetry
- EDQM, European Directorate for Quality Medicine
- Ferulic acid
- GUM, Guide to the Expression of Uncertainty in Measurement
- ISO, International Organization for Standardization
- MB, mass balance
- Mass balance
- RM, reference material
- SI, International System of Units
- Uncertainty
- WHO, World Health Organization
Collapse
|
37
|
Koh PO. Ferulic acid attenuates the down-regulation of MEK/ERK/p90RSK signaling pathway in focal cerebral ischemic injury. Neurosci Lett 2014; 588:18-23. [PMID: 25543028 DOI: 10.1016/j.neulet.2014.12.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
Ferulic acid provides neuroprotective effects against a middle cerebral artery occlusion (MCAO)-induced cerebral ischemia. Mitogen-activated protein kinases can regulate extensive intracellular processes including cell differentiation, growth, and death. This study further investigated whether ferulic acid modulates a protective mechanism through the activation of Raf-MEK-ERK and its downstream targets, including 90 ribosomal S6 kinase (p90RSK) and Bad during cerebral ischemic injury. Male Sprague-Dawley rats were treated with ferulic acid (100mg/kg) or vehicle after the onset of MCAO and brain tissues were collected 24h after MCAO. These results indicated that ferulic acid decreases the volume of the infarct area and the number of cells positive in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Although MCAO injury induces a decrease in the phosphorylation of Raf-1, MEK1/2, and ERK1/2, ferulic acid treatment prevents the injury-induced decrease in these phosphorylation levels. Ferulic acid also attenuates the injury-induced decrease in p90RSK and Bad phosphorylation levels. These findings suggest that ferulic acid prevents MCAO-induced neuronal cell death and that the MEK-ERK-p90RSK-Bad signaling pathway is involved in these neuroprotective effects.
Collapse
Affiliation(s)
- Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701, South Korea.
| |
Collapse
|
38
|
CHEN H, SHI YY, WEI ML, LIU WY, FENG F. Chemical profile of the active fraction of Yi-Gan San by HPLC-DAD-Q-TOF-MS and its neuroprotective effect against glutamate-induced cytotoxicity. Chin J Nat Med 2014; 12:869-80. [DOI: 10.1016/s1875-5364(14)60130-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Indexed: 11/29/2022]
|
39
|
Lalith Kumar V. Ameliorative effects of ferulic Acid against lead acetate-induced oxidative stress, mitochondrial dysfunctions and toxicity in prepubertal rat brain. Neurochem Res 2014; 39:2501-15. [PMID: 25322819 DOI: 10.1007/s11064-014-1451-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 01/23/2023]
Abstract
Epidemiological evidence has shown higher susceptibility of Children to the adverse effects of lead (Pb) exposure. However, experimental studies on Pb-induced neurotoxicity in prepubertal (PP) rats are limited. The present study aimed to examine the propensity of ferulic acid (FA), a commonly occurring phenolic acid in staple foods (fruits, vegetables, cereals, coffee etc.) to abrogate Pb-induced toxicity. Initially, we characterized Pb-induced adverse effects among PP rats exposed to Pb acetate (1,000-3,000 ppm in drinking water) for 5 weeks in terms of locomotor phenotype, activity of 5-aminolevulinic acid dehydratase (ALAD) in the blood, blood Pb levels and oxidative stress in brain regions. Further, the ameliorative effects of oral supplements of FA (25 mg/kg bw/day) were investigated in PP rats exposed to Pb (3,000 ppm). Pb intoxication increased the locomotor activity and FA supplements partially reversed the phenotype, while the reduced ALAD activity was also restored. FA significantly abrogated the enhanced oxidative stress in cerebellum (Cb) and hippocampus (Hc) as evidenced in terms of ROS generation, lipid peroxidation and protein carbonyls. Further, Pb-mediated perturbations in the glutathione levels and activity of enzymic antioxidants were also markedly restored. Furthermore, the protective effect of FA was discernible in striatum in terms of reduced oxidative stress, restored cholinergic activity and dopamine levels. Interestingly, reduced activity levels of mitochondrial complex I in Cb and enhanced levels in Hc among Pb-intoxicated rats were ameliorated by FA supplements. FA also decreased the number of damaged cells in cornu ammonis area CA1 and dentate gyrus as reflected by the histoarchitecture of Hc among Pb intoxicated rats. Collectively, our findings in the PP model allow us to hypothesize that ingestion of common phenolics such as FA may significantly alleviate the neurotoxic effects of Pb which may be largely attributed to its ability to abrogate oxidative stress.
Collapse
Affiliation(s)
- Venkareddy Lalith Kumar
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, 570020, India
| |
Collapse
|
40
|
Xiong X, Zhao X, Song Z. Exploring host–guest interactions of sulfobutylether-β-cyclodextrin and phenolic acids by chemiluminescence and site-directed molecular docking. Anal Biochem 2014; 460:54-60. [DOI: 10.1016/j.ab.2014.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/28/2022]
|
41
|
Huang X, Su S, Cui W, Liu P, Duan JA, Guo J, Li Z, Shang E, Qian D, Huang Z. Simultaneous determination of paeoniflorin, albiflorin, ferulic acid, tetrahydropalmatine, protopine, typhaneoside, senkyunolide I in Beagle dogs plasma by UPLC–MS/MS and its application to a pharmacokinetic study after Oral Administration of Shaofu Zhuyu Decoction. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 962:75-81. [DOI: 10.1016/j.jchromb.2014.05.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 01/04/2023]
|
42
|
Baek SE, Kim JY, Song WT, Lee SH, Hong JH, Lee CK, Kang SG. Neuroprotective effect of rice bran extract supplemented with ferulic acid in the rat model of ischemic brain injury. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.904249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
43
|
Ramesh BN, Girish TK, Raghavendra RH, Naidu KA, Rao UJSP, Rao KS. Comparative study on anti-oxidant and anti-inflammatory activities of Caesalpinia crista and Centella asiatica leaf extracts. J Pharm Bioallied Sci 2014; 6:86-91. [PMID: 24741275 PMCID: PMC3983751 DOI: 10.4103/0975-7406.129172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/07/2013] [Accepted: 11/21/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Amyloidosis, oxidative stress and inflammation have been strongly implicated in neurodegenerative disorders like Alzheimer's disease. Traditionally, Caesalpinia crista and Centella asiatica leaf extracts are used to treat brain related diseases in India. C. crista is used as a mental relaxant drink as well as to treat inflammatory diseases, whereas C. asiatica is reported to be used to enhance memory and to treat dementia. OBJECTIVE The present study is aimed to understand the anti-oxidant and anti-inflammatory potential of C. asiatica and C. crista leaf extracts. MATERIALS AND METHODS Phenolic acid composition of the aqueous extracts of C. crista and C. asiatica were separated on a reverse phase C18 column (4.6 x 250 mm) using HPLC system. Antioxidant properties of the leaf extracts were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and the reducing potential assay. The anti-inflammatory activities of aqueous extracts of C. crista and C. asiatica were studied using 5-lipoxygenase assay. Polymorphonuclear leukocytes (PMNLs) were isolated from blood by Ficoll-Histopaque density gradient followed by hypotonic lysis of erythrocytes. RESULTS Gallic, protocatechuic, gentisic, chlorogenic, caffeic, p-coumaric and ferulic acids were the phenolic acids identified in C. crista and C. asiatica leaf aqueous extracts. However, gallic acid and ferulic acid contents were much higher in C. crista compared to C. asiatica. Leaf extracts of C. asiatica and C. crista exhibited antioxidant properties and inhibited 5-lipoxygenase (anti-inflammatory) in a dose dependent manner. However, leaf extracts of C. crista had better antioxidant and anti-inflammatory activity compared to that of C. asiatica. The better activity of C. crista is attributed to high gallic acid and ferulic acid compared to C. asiatica. CONCLUSIONS Thus, the leaf extract of C. crista can be a potential therapeutic role for Alzheimer's disease.
Collapse
Affiliation(s)
- B N Ramesh
- Department of Agricultural Biotechnology, Agricultural College, Karekere, Hassan, University of Agricultural Sciences (B), Mysore, Karnataka, India
| | - T K Girish
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - R H Raghavendra
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - K Akhilender Naidu
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - U J S Prasada Rao
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - K S Rao
- Centre for Neuroscience, INDICASAT-AIP, City of Knowledge, Republic Panama
| |
Collapse
|
44
|
Ferulic acid prevents the injury-induced decrease of γ-enolase expression in brain tissue and HT22 cells. Lab Anim Res 2014; 30:8-13. [PMID: 24707299 PMCID: PMC3973811 DOI: 10.5625/lar.2014.30.1.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/24/2014] [Accepted: 02/04/2014] [Indexed: 11/23/2022] Open
Abstract
Ferulic acid is known to act as a protective agent in cerebral ischemia through its anti-oxidant activity. γ-Enolase is a neuron-specific enolase that also exerts a neuroprotective effect. Here, we investigated whether ferulic acid regulates the expression level of γ-enolase in middle cerebral artery occlusion (MCAO)-induced brain injury and glutamate exposure-induced neuronal cell death. Adult male rats were treated with either vehicle or ferulic acid (100 mg/kg, i.v.) after MCAO and cerebral cortex tissues were collected 24 h after MCAO. Using a proteomics approach, we found that γ-enolase expression was decreased in MCAO-injured animals treated with vehicle alone, whereas ferulic acid treatment attenuated this decrease. Reverse-transcription PCR and Western blot analyses confirmed that ferulic acid treatment prevented MCAO injury-induced decrease in γ-enolase. Furthermore, in hippocampal-derived cell lines, glutamate exposure also decreased γ-enolase expression and ferulic acid treatment attenuated this glutamate-induced decrease in γ-enolase. These findings suggest that ferulic acid mediates a neuroprotective effect by attenuating injury-induced decreases of γ-enolase expression in neuronal cells.
Collapse
|
45
|
Sung JH, Gim SA, Koh PO. Ferulic acid attenuates the cerebral ischemic injury-induced decrease in peroxiredoxin-2 and thioredoxin expression. Neurosci Lett 2014; 566:88-92. [PMID: 24582902 DOI: 10.1016/j.neulet.2014.02.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/17/2022]
Abstract
Ferulic acid, a phenolic phytochemical compound found in various plants, has a neuroprotective effect through its anti-oxidant and anti-inflammation functions. Peroxiredoxin-2 and thioredoxin play a potent neuroprotective function against oxidative stress. We investigated whether ferulic acid regulates peroxiredoxin-2 and thioredoxin levels in cerebral ischemia. Sprague-Dawley rats (male, 210-230g) were treated with vehicle or ferulic acid (100mg/kg) after middle cerebral artery occlusion (MCAO), and cerebral cortex tissues were collected 24h after MCAO. Decreases in peroxiredoxin-2 and thioredoxin levels were elucidated in MCAO-operated animals using a proteomics approach. We found that ferulic acid treatment prevented the MCAO-induced decrease in the expression of peroxiredoxin-2 and thioredoxin. RT-PCR and Western blot analyses confirmed that ferulic acid treatment attenuated the MCAO-induced decrease in peroxiredoxin-2 and thioredoxin levels. Moreover, immunoprecipitation analysis showed that the interaction between thioredoxin and apoptosis signal-regulating kinase 1 (ASK1) decreased during MCAO, whereas ferulic acid prevented the MCAO-induced decrease in this interaction. Our findings suggest that ferulic acid plays a neuroprotective role by attenuating injury-induced decreases in peroxiredoxin-2 and thioredoxin levels in neuronal cell injury.
Collapse
Affiliation(s)
- Jin-Hee Sung
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701, South Korea
| | - Sang-Ah Gim
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701, South Korea.
| |
Collapse
|
46
|
Koh PO. Ferulic acid attenuates focal cerebral ischemia-induced decreases in p70S6 kinase and S6 phosphorylation. Neurosci Lett 2013; 555:7-11. [DOI: 10.1016/j.neulet.2013.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/29/2013] [Accepted: 09/01/2013] [Indexed: 10/26/2022]
|
47
|
Ferulic acid regulates the AKT/GSK-3β/CRMP-2 signaling pathway in a middle cerebral artery occlusion animal model. Lab Anim Res 2013; 29:63-9. [PMID: 23825478 PMCID: PMC3696626 DOI: 10.5625/lar.2013.29.2.63] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/27/2013] [Accepted: 05/02/2013] [Indexed: 11/21/2022] Open
Abstract
Ferulic acid, a component of the plants Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort, exerts a neuroprotective effect by regulating various signaling pathways. This study showed that ferulic acid treatment prevents the injury-induced increase of collapsin response mediator protein 2 (CRMP-2) in focal cerebral ischemia. Glycogen synthase kinase-3β (GSK-3β) regulates CRMP-2 function through phosphorylation of CRMP-2. Moreover, the pro-apoptotic activity of GSK-3β is inactivated by phosphorylation by Akt. This study investigated whether ferulic acid modulates the expression of CRMP-2 and its upstream targets, Akt and GSK-3β, in focal cerebral ischemia. Male rats were treated immediately with ferulic acid (100 mg/kg, i.v.) or vehicle after middle cerebral artery occlusion (MCAO), and then cerebral cortices were collected 24 hr after MCAO. MCAO resulted in decreased levels of phospho-Akt and phospho-GSK-3β, while ferulic acid treatment prevented the decrease in the levels of these proteins. Moreover, phospho-CRMP-2 and CRMP-2 levels increased during MCAO, whereas ferulic acid attenuated these injury-induced increases. These results demonstrate that ferulic acid regulates the Akt/GSK-3β/CRMP-2 signaling pathway in focal cerebral ischemic injury, thereby protecting against brain injury.
Collapse
|
48
|
Kanehashi S, Nagasawa T, Kobayashi M, Lee SL, Nakamura M, Sato S, Beristain MF, Ogawa T, Miyakoshi T, Nagai K. Characterization and gas-permeation properties of crosslinked diacetylene-containing polymer membranes from ferulic acid. J Appl Polym Sci 2013. [DOI: 10.1002/app.39121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Koh PO. Ferulic acid prevents cerebral ischemic injury-induced reduction of hippocalcin expression. Synapse 2013; 67:390-8. [DOI: 10.1002/syn.21649] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Phil-Ok Koh
- Department of Anatomy; College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University; Jinju; 660-701; South Korea
| |
Collapse
|
50
|
Mori T, Koyama N, Guillot-Sestier MV, Tan J, Town T. Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and alzheimer-like pathology in transgenic mice. PLoS One 2013; 8:e55774. [PMID: 23409038 PMCID: PMC3568151 DOI: 10.1371/journal.pone.0055774] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/04/2013] [Indexed: 11/19/2022] Open
Abstract
Amyloid precursor protein (APP) proteolysis is required for production of amyloid-β (Aβ) peptides that comprise β-amyloid plaques in brains of Alzheimer's disease (AD) patients. Recent AD therapeutic interest has been directed toward a group of anti-amyloidogenic compounds extracted from plants. We orally administered the brain penetrant, small molecule phenolic compound ferulic acid (FA) to the transgenic PSAPP mouse model of cerebral amyloidosis (bearing mutant human APP and presenilin-1 transgenes) and evaluated behavioral impairment and AD-like pathology. Oral FA treatment for 6 months reversed transgene-associated behavioral deficits including defective: hyperactivity, object recognition, and spatial working and reference memory, but did not alter wild-type mouse behavior. Furthermore, brain parenchymal and cerebral vascular β-amyloid deposits as well as abundance of various Aβ species including oligomers were decreased in FA-treated PSAPP mice. These effects occurred with decreased cleavage of the β-carboxyl-terminal APP fragment, reduced β-site APP cleaving enzyme 1 protein stability and activity, attenuated neuroinflammation, and stabilized oxidative stress. As in vitro validation, we treated well-characterized mutant human APP-overexpressing murine neuron-like cells with FA and found significantly decreased Aβ production and reduced amyloidogenic APP proteolysis. Collectively, these results highlight that FA is a β-secretase modulator with therapeutic potential against AD.
Collapse
Affiliation(s)
- Takashi Mori
- Department of Biomedical Sciences, Saitama Medical Center and University, Kawagoe, Saitama, Japan
- Department of Pathology, Saitama Medical Center and University, Kawagoe, Saitama, Japan
| | - Naoki Koyama
- Department of Biomedical Sciences, Saitama Medical Center and University, Kawagoe, Saitama, Japan
| | | | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsoni College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsoni College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Terrence Town
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Regenerative Medicine Institute Neural Program, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|