1
|
Adegboye C, Emeonye C, Wu YS, Kwon J, Oliveira LFS, Raveeniraraj S, O’Connell AE. Necrotizing enterocolitis causes increased ileal goblet cell loss in Wnt2b KO mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631715. [PMID: 39829885 PMCID: PMC11741354 DOI: 10.1101/2025.01.07.631715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
WNT2B is Wnt ligand which is able to support intestinal stem cells (ISC) in culture and support the intestinal epithelium in vivo. We have previously shown that WNT2B is critical for resistance to colitis, but not small intestinal injury, in the adult mouse. WNT2B is thought to coordinate with WNT3 in supporting ISC, and we have also shown that WNT3 expression is low in the early postnatal ileum in mice. Here, we hypothesized that WNT2B may be more critical in the small intestine during early development, and we challenged Wnt2b KO mice and controls with experimental necrotizing enterocolitis (NEC) on postnatal days 5-8. Wnt2b KO mice had similar ileum histology and injury scores to control mice. Molecular analyses showed that Wnt2b KO mice have differences in Lgr5 and Tlr4 expression compared to wild type controls in untreated conditions, but under experimental NEC expression of epithelial markers and inflammatory genes associated with NEC were similar to wild type. Periodic acid Schiff positive cells were lower in the villi of Wnt2b KO mice during NEC, however expression of goblet cell markers was not different compared to wild type mice. We also used an organoid-based NEC model to highlight the epithelium in isolation and also found no impact of WNT2B KO in the setting of NEC. These data further affirm that WNT2B is critical for inflammation responses in the mouse colon, but does not appear to play a major role in the small intestine, no matter the developmental period.
Collapse
Affiliation(s)
- Comfort Adegboye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Chidera Emeonye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Yu-Syuan Wu
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Jaedeok Kwon
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | | | | | - Amy E. O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
- The Manton Center for Orphan Disease Research at Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Takahashi M, Isagawa T, Sato T, Takeda N, Kawakami K. Lineage tracing using Wnt2b-2A-CreERT2 knock-in mice reveals the contributions of Wnt2b-expressing cells to novel subpopulations of mesothelial/epicardial cell lineages during mouse development. Genes Cells 2024; 29:854-875. [PMID: 39109760 DOI: 10.1111/gtc.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 10/04/2024]
Abstract
Mesothelial and epicardial cells give rise to various types of mesenchymal cells via epithelial (mesothelial)-to-mesenchymal transition during development. However, the genes controlling the differentiation and diversification of mesothelial/epicardial cells remain unclear. Here, we examined Wnt2b expression in the embryonic mesothelium and epicardium and performed lineage tracing of Wnt2b-expressing cells by using novel Wnt2b-2A-CreERT2 knock-in and LacZ-reporter mice. Wnt2b was expressed in mesothelial cells covering visceral organs, but the expression was restricted in their subpopulations. Wnt2b-expressing cells labeled at embryonic day (E) 10.5 were distributed to the mesothelium and mesenchyme in the lungs, abdominal wall, stomach, and spleen in Wnt2b2A-CreERT2/+;R26RLacZ/+ mice at E13.0. Wnt2b was initially expressed in the proepicardial organ (PEO) at E9.5 and then in the epicardium after E10.0. Wnt2b-expressing PEO cells labeled at E9.5 differentiated into a small fraction of cardiac fibroblasts and preferentially localized at the left side of the postnatal heart. LacZ+ epicardium-derived cells labeled at E10.5 differentiated into a small fraction of fibroblasts and smooth muscle cells in the postnatal heart. Taken together, our results reveal novel subpopulations of PEO and mesothelial/epicardial cells that are distinguishable by Wnt2b expression and elucidate the unique contribution of Wnt2b-expressing PEO and epicardial cells to the postnatal heart.
Collapse
Affiliation(s)
- Masanori Takahashi
- Department of Anatomy, Division of Bioimaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Japan
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Takayuki Isagawa
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Data Science Center, Jichi Medical University, Shimotsuke, Japan
| | - Tatsuyuki Sato
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | | |
Collapse
|
3
|
Borges KS, Little DW, Magalhães TDA, Ribeiro C, Dumontet T, Lapensee C, Basham KJ, Seth A, Azova S, Guagliardo NA, Barrett PQ, Berber M, O'Connell AE, Turcu AF, Lerario AM, Mohan DR, Rainey W, Carlone DL, Hirschhorn JN, Salic A, Breault DT, Hammer GD. Non-canonical Wnt signaling triggered by WNT2B drives adrenal aldosterone production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609423. [PMID: 39229119 PMCID: PMC11370552 DOI: 10.1101/2024.08.23.609423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The steroid hormone aldosterone, produced by the zona glomerulosa (zG) of the adrenal gland, is a master regulator of plasma electrolytes and blood pressure. While aldosterone control by the renin-angiotensin system is well understood, other key regulatory factors have remained elusive. Here, we replicated a prior association between a non-coding variant in WNT2B and an increased risk of primary aldosteronism, a prevalent and debilitating disease caused by excessive aldosterone production. We further show that in both mice and humans, WNT2B is expressed in the mesenchymal capsule surrounding the adrenal cortex, in close proximity to the zG. Global loss of Wnt2b in the mouse results in a dysmorphic and hypocellular zG, with impaired aldosterone production. Similarly, humans harboring WNT2B loss-of-function mutations develop a novel form of Familial Hyperreninemic Hypoaldosteronism, designated here as Type 4. Additionally, we demonstrate that WNT2B signals by activating the non-canonical Wnt/planar cell polarity pathway. Our findings identify WNT2B as a key regulator of zG function and aldosterone production with important clinical implications.
Collapse
Affiliation(s)
- Kleiton S Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald W Little
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Claudio Ribeiro
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chris Lapensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aishwarya Seth
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Svetlana Azova
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Mesut Berber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amy E O'Connell
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Adina F Turcu
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipika R Mohan
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - William Rainey
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
O'Connell AE, Raveenthiraraj S, Oliveira LFS, Adegboye C, Dasuri VS, Qi W, Khetani RS, Singh A, Sundaram N, Lin J, Nandivada P, Rincón-Cruz L, Goldsmith JD, Thiagarajah JR, Carlone DL, Turner JR, Agrawal PB, Helmrath M, Breault DT. WNT2B Deficiency Causes Enhanced Susceptibility to Colitis Due to Increased Inflammatory Cytokine Production. Cell Mol Gastroenterol Hepatol 2024; 18:101349. [PMID: 38697357 PMCID: PMC11217757 DOI: 10.1016/j.jcmgh.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND & AIMS Humans with WNT2B deficiency have severe intestinal disease, including significant inflammatory injury, highlighting a critical role for WNT2B. We sought to understand how WNT2B contributes to intestinal homeostasis. METHODS We investigated the intestinal health of Wnt2b knock out (KO) mice. We assessed the baseline histology and health of the small intestine and colon, and the impact of inflammatory challenge using dextran sodium sulfate (DSS). We also evaluated human intestinal tissue. RESULTS Mice with WNT2B deficiency had normal baseline histology but enhanced susceptibility to DSS colitis because of an increased early injury response. Although intestinal stem cells markers were decreased, epithelial proliferation was similar to control subjects. Wnt2b KO mice showed an enhanced inflammatory signature after DSS treatment. Wnt2b KO colon and human WNT2B-deficient organoids had increased levels of CXCR4 and IL6, and biopsy tissue from humans showed increased neutrophils. CONCLUSIONS WNT2B is important for regulation of inflammation in the intestine. Absence of WNT2B leads to increased expression of inflammatory cytokines and increased susceptibility to gastrointestinal inflammation, particularly in the colon.
Collapse
Affiliation(s)
- Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts; The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.
| | | | | | - Comfort Adegboye
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Venkata Siva Dasuri
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Wanshu Qi
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Akaljot Singh
- Department of Pediatric, General, and Thoracic Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Nambirajam Sundaram
- Department of Pediatric, General, and Thoracic Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Jasmine Lin
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Prathima Nandivada
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Lorena Rincón-Cruz
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts
| | | | - Jay R Thiagarajah
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts
| | - Diana L Carlone
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology and Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts; The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, Florida
| | - Michael Helmrath
- Department of Pediatric, General, and Thoracic Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - David T Breault
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
5
|
Iype M, Melempatt N, James J, Thomas SV, Anitha A. Hypomethylation of Wnt signaling regulator genes in developmental language disorder. Epigenomics 2024; 16:137-146. [PMID: 38264859 DOI: 10.2217/epi-2023-0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Background: Developmental language disorder (DLD) is a neurodevelopmental disorder. Considering the pivotal role of epigenetics in neurodevelopment, we examined any altered DNA methylation between DLD and control subjects. Materials & methods: We looked into genome-wide methylation differences between DLD and control groups. The findings were validated by quantitative PCR (qPCR). Results: In the DLD group, differential methylation of CpG sites was observed in the Wnt signaling regulator genes APCDD1, AMOTL1, LRP5, MARK2, TMEM64, TRABD2B, VEPH1 and WNT2B. Hypomethylation of APCDD1, LRP5 and WNT2B was confirmed by qPCR. Conclusion: This is the first report associating Wnt signaling with DLD. The findings are relevant in the light of the essential role of Wnt in myelination, and of the altered myelination in DLD.
Collapse
Affiliation(s)
- Mary Iype
- Dept. of Neurology, Institute for Communicative & Cognitive Neurosciences (ICCONS), Thiruvananthapuram, 695 011, Kerala, India
| | - Nisha Melempatt
- Dept. of Audiology & Speech Language Pathology, ICCONS, Shoranur, Palakkad, 679 523, Kerala, India
| | - Jesmy James
- Dept. of Neurogenetics, ICCONS, Shoranur, Palakkad, 679 523, Kerala, India
| | - Sanjeev V Thomas
- Dept. of Neurology, Institute for Communicative & Cognitive Neurosciences (ICCONS), Thiruvananthapuram, 695 011, Kerala, India
- Dept. of Neurology, ICCONS, Shoranur, Palakkad, 679 523, Kerala, India
| | - Ayyappan Anitha
- Dept. of Neurogenetics, ICCONS, Shoranur, Palakkad, 679 523, Kerala, India
| |
Collapse
|
6
|
Iskusnykh IY, Fattakhov N, Li Y, Bihannic L, Kirchner MK, Steshina EY, Northcott PA, Chizhikov VV. Lmx1a is a master regulator of the cortical hem. eLife 2023; 12:e84095. [PMID: 37725078 PMCID: PMC10508884 DOI: 10.7554/elife.84095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
Development of the nervous system depends on signaling centers - specialized cellular populations that produce secreted molecules to regulate neurogenesis in the neighboring neuroepithelium. In some cases, signaling center cells also differentiate to produce key types of neurons. The formation of a signaling center involves its induction, the maintenance of expression of its secreted molecules, and cell differentiation and migration events. How these distinct processes are coordinated during signaling center development remains unknown. By performing studies in mice, we show that Lmx1a acts as a master regulator to orchestrate the formation and function of the cortical hem (CH), a critical signaling center that controls hippocampus development. Lmx1a co-regulates CH induction, its Wnt signaling, and the differentiation and migration of CH-derived Cajal-Retzius neurons. Combining RNAseq, genetic, and rescue experiments, we identified major downstream genes that mediate distinct Lmx1a-dependent processes. Our work revealed that signaling centers in the mammalian brain employ master regulatory genes and established a framework for analyzing signaling center development.
Collapse
Affiliation(s)
- Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Nikolai Fattakhov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Laure Bihannic
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Matthew K Kirchner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Ekaterina Y Steshina
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| |
Collapse
|
7
|
Zhao X, Zhang Z, Zhu Q, Luo Y, Ye Q, Shi S, He X, Zhu J, Zhang D, Xia W, Zhang Y, Jiang L, Cui L, Ye Y, Xiang Y, Hu J, Zhang J, Lin CP. Modeling human ectopic pregnancies with trophoblast and vascular organoids. Cell Rep 2023; 42:112546. [PMID: 37224015 DOI: 10.1016/j.celrep.2023.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Ruptured ectopic pregnancy (REP), a pregnancy complication caused by aberrant implantation, deep invasion, and overgrowth of embryos in fallopian tubes, could lead to rupture of fallopian tubes and accounts for 4%-10% of pregnancy-related deaths. The lack of ectopic pregnancy phenotypes in rodents hampers our understanding of its pathological mechanisms. Here, we employed cell culture and organoid models to investigate the crosstalk between human trophoblast development and intravillous vascularization in the REP condition. Compared with abortive ectopic pregnancy (AEP), the size of REP placental villi and the depth of trophoblast invasion are correlated with the extent of intravillous vascularization. We identified a key pro-angiogenic factor secreted by trophoblasts, WNT2B, that promotes villous vasculogenesis, angiogenesis, and vascular network expansion in the REP condition. Our results reveal the important role of WNT-mediated angiogenesis and an organoid co-culture model for investigating intricate communications between trophoblasts and endothelial/endothelial progenitor cells.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yurui Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuxiang Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xueyang He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jing Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Duo Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wei Xia
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yiqin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Linlin Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Long Cui
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
8
|
O'Connell AE, Raveenthiraraj S, Adegboye C, Qi W, Khetani RS, Singh A, Sundaram N, Emeonye C, Lin J, Goldsmith JD, Thiagarajah JR, Carlone DL, Turner JR, Agrawal PB, Helmrath M, Breault DT. WNT2B Deficiency Causes Increased Susceptibility to Colitis in Mice and Impairs Intestinal Epithelial Development in Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537894. [PMID: 37131772 PMCID: PMC10153278 DOI: 10.1101/2023.04.21.537894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background and aims WNT2B is a canonical Wnt ligand previously thought to be fully redundant with other Wnts in the intestinal epithelium. However, humans with WNT2B deficiency have severe intestinal disease, highlighting a critical role for WNT2B. We sought to understand how WNT2B contributes to intestinal homeostasis. Methods We investigated the intestinal health of Wnt2b knock out (KO) mice. We assessed the impact of inflammatory challenge to the small intestine, using anti-CD3χ antibody, and to the colon, using dextran sodium sulfate (DSS). In addition, we generated human intestinal organoids (HIOs) from WNT2B-deficient human iPSCs for transcriptional and histological analyses. Results Mice with WNT2B deficiency had significantly decreased Lgr5 expression in the small intestine and profoundly decreased expression in the colon, but normal baseline histology. The small intestinal response to anti-CD3χ antibody was similar in Wnt2b KO and wild type (WT) mice. In contrast, the colonic response to DSS in Wnt2b KO mice showed an accelerated rate of injury, featuring earlier immune cell infiltration and loss of differentiated epithelium compared to WT. WNT2B-deficient HIOs showed abnormal epithelial organization and an increased mesenchymal gene signature. Conclusion WNT2B contributes to maintenance of the intestinal stem cell pool in mice and humans. WNT2B deficient mice, which do not have a developmental phenotype, show increased susceptibility to colonic injury but not small intestinal injury, potentially due to a higher reliance on WNT2B in the colon compared to the small intestine.WNT2B deficiency causes a developmental phenotype in human intestine with HIOs showing a decrease in their mesenchymal component and WNT2B-deficient patients showing epithelial disorganization. Data Transparency Statement All RNA-Seq data will be available through online repository as indicated in Transcript profiling. Any other data will be made available upon request by emailing the study authors.
Collapse
|
9
|
Blomfield AK, Maurya M, Bora K, Pavlovich MC, Yemanyi F, Huang S, Fu Z, O’Connell AE, Chen J. Ectopic Rod Photoreceptor Development in Mice with Genetic Deficiency of WNT2B. Cells 2023; 12:1033. [PMID: 37048106 PMCID: PMC10093714 DOI: 10.3390/cells12071033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Wnt/β-catenin signaling is essential for embryonic eye development in both the anterior eye and retina. WNT2B, a ligand and activator of the Wnt/β-catenin pathway, assists in the development of the lens and peripheral regions of the eye. In humans WNT2B mutations are associated with coloboma and WNT2B may also assist in retinal progenitor cell differentiation in chicken, yet the potential role of WNT2B in retinal neuronal development is understudied. This study explored the effects of WNT2B on retinal neuronal and vascular formation using systemic Wnt2b knockout (KO) mice generated by crossing Wnt2bflox/flox (fl/fl) mice with CMV-cre mice. Wnt2b KO eyes exhibited relatively normal anterior segments and retinal vasculature. Ectopic formation of rod photoreceptor cells in the subretinal space was observed in Wnt2b KO mice as early as one week postnatally and persisted through nine-month-old mice. Other retinal neuronal layers showed normal organization in both thickness and lamination, without detectable signs of retinal thinning. The presence of abnormal photoreceptor genesis was also observed in heterozygous Wnt2b mice, and occasionally in wild type mice with decreased Wnt2b expression levels. Expression of Wnt2b was found to be enriched in the retinal pigment epithelium compared with whole retina. Together these findings suggest that WNT2B is potentially involved in rod photoreceptor genesis during eye development; however, potential influence by a yet unknown genetic factor is also possible.
Collapse
Affiliation(s)
- Alexandra K. Blomfield
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Meenakshi Maurya
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Madeline C. Pavlovich
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Felix Yemanyi
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shuo Huang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Amy E. O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
10
|
Zhu H, Liu D, Jia H. Analysis of Wnt7B and BMP4 expression patterns in congenital pulmonary airway malformation. Pediatr Pulmonol 2020; 55:765-770. [PMID: 31962011 DOI: 10.1002/ppul.24651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/07/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Congenital pulmonary airway malformation (CPAM) is a rare disorder characterized by aberrant overgrowth of terminal bronchioles. The objective of this study was to describe wingless-type MMTV integration site family 7B (Wnt7B) and bone morphogenetic protein 4 (BMP4) expression patterns in human CPAM lesions and to explore the possible roles of Wnt7B and BMP4 in the pathogenesis of CPAM. METHODS Fifteen tissue samples from patients with CPAM were obtained from the Pathology Department of Shengjing Hospital of China Medical University. Samples representing CPAM lesions and adjacent normal lung tissues were collected and Wnt7B and BMP4 expression was detected through immunohistochemical (IHC) staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. RESULTS IHC revealed that Wnt7B immunopositive cells were only detected in epithelial cells, whereas BMP4 immunopositive cells were detected in epithelial and mesenchymal cells. Expression of Wnt7B and BMP4 immunopositive cells was higher in CPAM lesions than that in adjacent normal lung tissue. qRT-PCR and Western blotting showed that Wnt7B and BMP4 mRNA and protein expression were significantly higher in CPAM lesions than in adjacent normal lung tissue (P < .05). Overall, the level of BMP4 was higher than that of Wnt7B. CONCLUSIONS Increased expression of Wnt7B and BMP4 appear to be related to the pathogenesis of CPAM and abnormal pulmonary development. Upregulation of Wnt7B and BMP4 could play an important role in the development of the bronchial-alveolar structures that characterize CPAM.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Dan Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| |
Collapse
|
11
|
Suh HN, Kim MJ, Jung YS, Lien EM, Jun S, Park JI. Quiescence Exit of Tert + Stem Cells by Wnt/β-Catenin Is Indispensable for Intestinal Regeneration. Cell Rep 2018; 21:2571-2584. [PMID: 29186692 DOI: 10.1016/j.celrep.2017.10.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/03/2017] [Accepted: 10/29/2017] [Indexed: 01/08/2023] Open
Abstract
Fine control of stem cell maintenance and activation is crucial for tissue homeostasis and regeneration. However, the mechanism of quiescence exit of Tert+ intestinal stem cells (ISCs) remains unknown. Employing a Tert knockin (TertTCE/+) mouse model, we found that Tert+ cells are long-term label-retaining self-renewing cells, which are partially distinguished from the previously identified +4 ISCs. Tert+ cells become mitotic upon irradiation (IR) injury. Conditional ablation of Tert+ cells impairs IR-induced intestinal regeneration but not intestinal homeostasis. Upon IR injury, Wnt signaling is specifically activated in Tert+ cells via the ROS-HIFs-transactivated Wnt2b signaling axis. Importantly, conditional knockout of β-catenin/Ctnnb1 in Tert+ cells undermines IR-induced quiescence exit of Tert+ cells, which subsequently impedes intestinal regeneration. Our results that Wnt-signaling-induced activation of Tert+ ISCs is indispensable for intestinal regeneration unveil the underlying mechanism for how Tert+ stem cells undergo quiescence exit upon tissue injury.
Collapse
Affiliation(s)
- Han Na Suh
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Moon Jong Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youn-Sang Jung
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Esther M Lien
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Genes and Development, The University of Texas MD, Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
O'Connell AE, Zhou F, Shah MS, Murphy Q, Rickner H, Kelsen J, Boyle J, Doyle JJ, Gangwani B, Thiagarajah JR, Kamin DS, Goldsmith JD, Richmond C, Breault DT, Agrawal PB. Neonatal-Onset Chronic Diarrhea Caused by Homozygous Nonsense WNT2B Mutations. Am J Hum Genet 2018; 103:131-137. [PMID: 29909964 PMCID: PMC6035368 DOI: 10.1016/j.ajhg.2018.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
Abstract
Homozygous nonsense mutations in WNT2B were identified in three individuals from two unrelated families with severe, neonatal-onset osmotic diarrhea after whole-exome sequencing was performed on trios from the two families. Intestinal biopsy samples from affected individuals were used for histology and immunofluorescence and to generate enteroids ex vivo. Histopathologic evaluation demonstrated chronic inflammatory changes in the stomach, duodenum, and colon. Immunofluorescence demonstrated diminished staining for OLFM4, a marker for intestinal stem cells (ISCs). The enteroids generated from WNT2B-deficient intestinal epithelium could not be expanded and did not survive passage. Addition of CHIR-99021 (a GSK3A and GSK3B inhibitor and activator of canonical WNT/β-CATENIN signaling) could not rescue WNT2B-deficient enteroids. Addition of supplemental recombinant murine WNT2B was able to perpetuate small enteroids for multiple passages but failed to expand their number. Enteroids showed a 10-fold increase in the expression of LEF1 mRNA and a 100-fold reduction in TLR4 expression, compared with controls by quantitative RT-PCR, indicating alterations in canonical WNT and microbial pattern-recognition signaling. In summary, individuals with homozygous nonsense mutations in WNT2B demonstrate severe intestinal dysregulation associated with decreased ISC number and function, likely explaining their diarrheal phenotype. WNT2B deficiency should be considered for individuals with neonatal-onset diarrhea.
Collapse
Affiliation(s)
- Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Fanny Zhou
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Manasvi S Shah
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Quinn Murphy
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hannah Rickner
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Judith Kelsen
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John Boyle
- Division of Gastroenterology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jefferson J Doyle
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Bharti Gangwani
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S Kamin
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Camilla Richmond
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Expression Analysis of ACSL5 and Wnt2B in Human Congenital Pulmonary Airway Malformations. J Surg Res 2018; 232:128-136. [PMID: 30463708 DOI: 10.1016/j.jss.2018.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/22/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The objective of this study was to determine acyl-CoA synthetase 5 (ACSL5) and Wnt2B expression patterns in human congenital pulmonary airway malformations (CPAMs) and to identify the possible roles of ACSL5 and Wnt2B in the pathogenesis of CPAM. METHODS Expression of ACSL5 and Wnt2B was evaluated by immunohistochemical staining, Western blotting, and quantitative real-time polymerase chain reaction, which were performed on surgical specimens of CPAM and adjacent normal lung tissues as controls. RESULTS Immunohistochemistry revealed that ACSL5 and Wnt2B immunopositive cells were predominantly detected in the mesenchymal cell nucleus, and there were lower expressions of ACSL5 and Wnt2B immunopositive cells in CPAM tissues than those in adjacent normal lung tissues. Western blotting and quantitative real-time polymerase chain reaction showed that ACSL5 and Wnt2B protein and mRNA expressions were significantly decreased in CPAM tissues as compared to the adjacent normal lung tissues (P < 0.05). In addition, there was a reduced level of ACSL5 relative to that of Wnt2B. CONCLUSIONS The decreased ACSL5 and Wnt2B expressions correlated with aberrations in pulmonary development and in the pathogenesis of CPAM, so downregulation of ACSL5 and Wnt2B could play an important role in the development of bronchial-alveolar structures in CPAM.
Collapse
|
14
|
Abstract
The process of sexual differentiation is central for reproduction of almost all metazoan and therefore for maintenance of practically all multicellular organisms. In sex development we can distinguish two different processes: First, sex determination is the developmental decision that directs the undifferentiated embryo into a sexually dimorphic individual. In mammals, sex determination equals gonadal development. The second process known as sex differentiation takes place once the sex determination decision has been made through factors produced by the gonads that determine the development of the phenotypic sex. Most of the knowledge on the factors involved in sexual development came from animal models and from studies of cases in whom the genetic or the gonadal sex does not match the phenotypical sex, i.e., patients affected by disorders of sex development (DSD). Generally speaking, factors influencing sex determination are transcriptional regulators, whereas factors important for sex differentiation are secreted hormones and their receptors. This review focuses on the factors involved in gonadal determination, and whenever possible, references on the "prismatic" clinical cases are given.
Collapse
Affiliation(s)
- Anna Biason-Lauber
- Department of Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland.
| |
Collapse
|
15
|
Fujimura N. WNT/β-Catenin Signaling in Vertebrate Eye Development. Front Cell Dev Biol 2016; 4:138. [PMID: 27965955 PMCID: PMC5127792 DOI: 10.3389/fcell.2016.00138] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/09/2016] [Indexed: 01/04/2023] Open
Abstract
The vertebrate eye is a highly specialized sensory organ, which is derived from the anterior neural plate, head surface ectoderm, and neural crest-derived mesenchyme. The single central eye field, generated from the anterior neural plate, divides to give rise to the optic vesicle, which evaginates toward the head surface ectoderm. Subsequently, the surface ectoderm, in conjunction with the optic vesicle invaginates to form the lens vesicle and double-layered optic cup, respectively. This complex process is controlled by transcription factors and several intracellular and extracellular signaling pathways including WNT/β-catenin signaling. This signaling pathway plays an essential role in multiple developmental processes and has a profound effect on cell proliferation and cell fate determination. During eye development, the activity of WNT/β-catenin signaling is tightly controlled. Faulty regulation of WNT/β-catenin signaling results in multiple ocular malformations due to defects in the process of cell fate determination and differentiation. This mini-review summarizes recent findings on the role of WNT/β-catenin signaling in eye development. Whilst this mini-review focuses on loss-of-function and gain-of-function mutants of WNT/β-catenin signaling components, it also highlights some important aspects of β-catenin-independent WNT signaling in the eye development at later stages.
Collapse
Affiliation(s)
- Naoko Fujimura
- Laboratory of Eye Biology, BIOCEV Division, Institute of Molecular Genetics Prague, Czechia
| |
Collapse
|
16
|
Miyoshi H. Wnt-expressing cells in the intestines: guides for tissue remodeling. J Biochem 2016; 161:19-25. [PMID: 28013225 DOI: 10.1093/jb/mvw070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 01/07/2023] Open
Abstract
The crypt is a minimal functional unit in the intestinal epithelium. This unique structure is maintained by surrounding mesenchymal cells that focally interact with associated epithelial cells. Canonical and non-canonical Wnt ligands enable specific microenvironments localized to each end of the crypt major axis. While canonical Wnt-expressing cells are localized near the crypt bottom where intestinal stem cells reside, non-canonical Wnt-expressing cells are positioned beneath the luminal surface of epithelial cells. During wound healing, propagation and appropriate relocation of each cell population are thought to ensure subsequent crypt regeneration. In this review, I integrate information from recent studies on Wnt-expressing cells and intestinal fibroblast lineages and discuss their roles in homeostasis and wound healing. More information on the lineages of Wnt-expressing cells will help clarify the mechanisms of epithelial tissue formation.
Collapse
Affiliation(s)
- Hiroyuki Miyoshi
- Division of Experimental Therapeutics, Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Bai B, Chen S, Zhang Q, Jiang Q, Li H. Abnormal epigenetic regulation of the gene expression levels of Wnt2b and Wnt7b: Implications for neural tube defects. Mol Med Rep 2015; 13:99-106. [PMID: 26548512 PMCID: PMC4686081 DOI: 10.3892/mmr.2015.4514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 10/02/2015] [Indexed: 02/05/2023] Open
Abstract
The association between Wnt genes and neural tube defects (NTDs) is recognized, however, it remains to be fully elucidated. Our previous study demonstrated that epigenetic mechanisms are affected in human NTDs. Therefore, the present study aimed to evaluate whether Wnt2b and Wnt7b are susceptible to abnormal epigenetic modification in NTDs, using chromatin immunoprecipitation assays to evaluate histone enrichments and the MassARRAY platform to detect the methylation levels of target regions within Wnt genes. The results demonstrated that the transcriptional activities of Wnt2b and Wnt7b were abnormally upregulated in mouse fetuses with NTDs and, in the GC-rich promoters of these genes, histone 3 lysine 4 (H3K4) acetylation was enriched, whereas H3K27 trimethylation was reduced. Furthermore, several CpG sites in the altered histone modification of target regions were significantly hypomethylated. The present study also detected abnormal epigenetic modifications of these Wnt genes in human NTDs. In conclusion, the present study detected abnormal upregulation in the levels of Wnt2b and Wnt7b, and hypothesized that the alterations may be due to the ectopic opening of chromatin structure. These results improve understanding of the dysregulation of epigenetic modification of Wnt genes in NTDs.
Collapse
Affiliation(s)
- Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Shuyuan Chen
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Qian Jiang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Huili Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| |
Collapse
|
18
|
Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. Post-transcriptional Wnt Signaling Governs Epididymal Sperm Maturation. Cell 2015; 163:1225-1236. [DOI: 10.1016/j.cell.2015.10.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/03/2015] [Accepted: 09/23/2015] [Indexed: 01/11/2023]
|
19
|
Abstract
The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis.
Collapse
Affiliation(s)
- Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
McClelland KS, Bell K, Larney C, Harley VR, Sinclair AH, Oshlack A, Koopman P, Bowles J. Purification and Transcriptomic Analysis of Mouse Fetal Leydig Cells Reveals Candidate Genes for Specification of Gonadal Steroidogenic Cells1. Biol Reprod 2015; 92:145. [DOI: 10.1095/biolreprod.115.128918] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/02/2015] [Indexed: 01/12/2023] Open
|
21
|
Feeney A, Nilsson E, Skinner MK. Cytokine (IL16) and tyrphostin actions on ovarian primordial follicle development. Reproduction 2014; 148:321-31. [PMID: 24970835 DOI: 10.1530/rep-14-0246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An ovarian follicle is composed of an oocyte and surrounding theca and granulosa cells. Oocytes are stored in an arrested state within primordial follicles until they are signaled to re-initiate development by undergoing primordial-to-primary follicle transition. Previous gene bionetwork analyses of primordial follicle development identified a number of critical cytokine signaling pathways and genes potentially involved in the process. In the current study, candidate regulatory genes and pathways from the gene network analyses were tested for their effects on the formation of primordial follicles (follicle assembly) and on primordial follicle transition using whole ovary organ culture experiments. Observations indicate that the tyrphostin inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased follicle assembly significantly, supporting a role for the MAPK signaling pathway in follicle assembly. The cytokine interleukin 16 (IL16) promotes primordial-to-primary follicle transition as compared with the controls, where as Delta-like ligand 4 (DLL4) and WNT-3A treatments have no effect. Immunohistochemical experiments demonstrated the localization of both the cytokine IL16 and its receptor CD4 in the granulosa cells surrounding each oocyte within the ovarian follicle. The tyrphostin LDN193189 (LDN) is an inhibitor of the bone morphogenic protein receptor 1 within the TGFB signaling pathway and was found to promote the primordial-to-primary follicle transition. Observations support the importance of cytokines (i.e., IL16) and cytokine signaling pathways in the regulation of early follicle development. Insights into regulatory factors affecting early primordial follicle development are provided that may associate with ovarian disease and translate to improved therapy in the future.
Collapse
Affiliation(s)
- Amanda Feeney
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| | - Eric Nilsson
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| | - Michael K Skinner
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| |
Collapse
|
22
|
Porcupine is not required for the production of the majority of Wnts from primary human astrocytes and CD8+ T cells. PLoS One 2014; 9:e92159. [PMID: 24647048 PMCID: PMC3960167 DOI: 10.1371/journal.pone.0092159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
Wnts are small secreted glycoproteins that are highly conserved among species. To date, 19 Wnts have been described, which initiate a signal transduction cascade that is either β-catenin dependent or independent, culminating in the regulation of hundreds of target genes. Extracellular release of Wnts is dependent on lipidation of Wnts by porcupine, a membrane-bound-O-acyltransferase protein in the endoplasmic reticulum. Studies demonstrating the requirement of porcupine for Wnts production are based on cell line and non-human primary cells. We evaluated the requirement for porcupine for Wnts production in human primary astrocytes and CD8+ T cells. Using IWP-2, an inhibitor of porcupine, or siRNA targeting porcupine, we demonstrate that porcupine is not required for the release of Wnt 1, 3, 5b, 6,7a, 10b, and 16a. While IWP had no effect on Wnt 2b release, knockdown of porcupine by siRNA reduced Wnt 2b release by 60%. These data indicate that porcupine-mediated production of Wnts is context dependent and is not required for all Wnts production, suggesting that alternative mechanisms exist for Wnts production.
Collapse
|
23
|
Hägglund AC, Berghard A, Carlsson L. Canonical Wnt/β-catenin signalling is essential for optic cup formation. PLoS One 2013; 8:e81158. [PMID: 24324671 PMCID: PMC3852023 DOI: 10.1371/journal.pone.0081158] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/09/2013] [Indexed: 12/17/2022] Open
Abstract
A multitude of signalling pathways are involved in the process of forming an eye. Here we demonstrate that β-catenin is essential for eye development as inactivation of β-catenin prior to cellular specification in the optic vesicle caused anophthalmia in mice. By achieving this early and tissue-specific β-catenin inactivation we find that retinal pigment epithelium (RPE) commitment was blocked and eye development was arrested prior to optic cup formation due to a loss of canonical Wnt signalling in the dorsal optic vesicle. Thus, these results show that Wnt/β-catenin signalling is required earlier and play a more central role in eye development than previous studies have indicated. In our genetic model system a few RPE cells could escape β-catenin inactivation leading to the formation of a small optic rudiment. The optic rudiment contained several neural retinal cell classes surrounded by an RPE. Unlike the RPE cells, the neural retinal cells could be β-catenin-negative revealing that differentiation of the neural retinal cell classes is β-catenin-independent. Moreover, although dorsoventral patterning is initiated in the mutant optic vesicle, the neural retinal cells in the optic rudiment displayed almost exclusively ventral identity. Thus, β-catenin is required for optic cup formation, commitment to RPE cells and maintenance of dorsal identity of the retina.
Collapse
Affiliation(s)
| | - Anna Berghard
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Leif Carlsson
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
24
|
Steinfeld J, Steinfeld I, Coronato N, Hampel ML, Layer PG, Araki M, Vogel-Höpker A. RPE specification in the chick is mediated by surface ectoderm-derived BMP and Wnt signalling. Development 2013; 140:4959-69. [PMID: 24227655 DOI: 10.1242/dev.096990] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The retinal pigment epithelium (RPE) is indispensable for vertebrate eye development and vision. In the classical model of optic vesicle patterning, the surface ectoderm produces fibroblast growth factors (FGFs) that specify the neural retina (NR) distally, whereas TGFβ family members released from the proximal mesenchyme are involved in RPE specification. However, we previously proposed that bone morphogenetic proteins (BMPs) released from the surface ectoderm are essential for RPE specification in chick. We now show that the BMP- and Wnt-expressing surface ectoderm is required for RPE specification. We reveal that Wnt signalling from the overlying surface ectoderm is involved in restricting BMP-mediated RPE specification to the dorsal optic vesicle. Wnt2b is expressed in the dorsal surface ectoderm and subsequently in dorsal optic vesicle cells. Activation of Wnt signalling by implanting Wnt3a-soaked beads or inhibiting GSK3β at optic vesicle stages inhibits NR development and converts the entire optic vesicle into RPE. Surface ectoderm removal at early optic vesicle stages or inhibition of Wnt, but not Wnt/β-catenin, signalling prevents pigmentation and downregulates the RPE regulatory gene Mitf. Activation of BMP or Wnt signalling can replace the surface ectoderm to rescue MITF expression and optic cup formation. We provide evidence that BMPs and Wnts cooperate via a GSK3β-dependent but β-catenin-independent pathway at the level of pSmad to ensure RPE specification in dorsal optic vesicle cells. We propose a new dorsoventral model of optic vesicle patterning, whereby initially surface ectoderm-derived Wnt signalling directs dorsal optic vesicle cells to develop into RPE through a stabilising effect of BMP signalling.
Collapse
Affiliation(s)
- Jörg Steinfeld
- Fachgebiet Entwicklungsbiologie und Neurogenetik, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Maupin KA, Droscha CJ, Williams BO. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res 2013; 1:27-71. [PMID: 26273492 DOI: 10.4248/br201301004] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Casey J Droscha
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|