1
|
Borges LF, Manetti M. Telocytes and Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:305-337. [DOI: 10.1016/b978-0-443-15289-4.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Babadag S, Çelebi-Saltik B. A cellular regulator of the niche: telocyte. Tissue Barriers 2023; 11:2131955. [PMID: 36218299 PMCID: PMC10606812 DOI: 10.1080/21688370.2022.2131955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022] Open
Abstract
Interstitial cells are present in the environment of stem cells in order to increase stem cell proliferation and differentiation and they are important to increase the efficiency of their transplantation. Telocytes (TCs) play an important role both in the preservation of tissue organ integrity and in the pathophysiology of many diseases, especially cancer. They make homo- or heterocellular contacts to form the structure of 3D network through their telopodes and deliver signaling molecules via a juxtacrine and/or paracrine association by budding shed vesicles into the vascular, nervous and endocrine systems. During this interaction, along with organelles, mRNA, microRNA, long non-coding RNA, and genomic DNA are transferred. This review article not only specifies the properties of TCs and their roles in the tissue organ microenvironment but also gives information about the factors that play a role in the transport of epigenetic information by TCs.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| |
Collapse
|
3
|
Dama G, Hu X, Yan Y, Li Y, Li H, Yang F, Liu Y, Lin J. Identification and protective role of CD34 + stromal cells/telocytes in experimental autoimmune encephalomyelitis (EAE) mouse spleen. Histochem Cell Biol 2023:10.1007/s00418-023-02186-5. [PMID: 37014442 DOI: 10.1007/s00418-023-02186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/05/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a classical animal model of human multiple sclerosis (MS) that is most commonly used to study the neuropathology and therapeutic effects of the disease. Telocytes (TCs) are a specialized type of interstitial or mesenchymal cell first identified by Popescu in various tissues and organs. However, the existence, distribution and role of CD34+ stromal cells (SCs)/TCs in the EAE-induced mouse spleen remain to be elucidated. We conducted immunohistochemistry, immunofluorescence (double staining for CD34 and c-kit, vimentin, F4/80, CD163, Nanog, Sca-1, CD31 or tryptase) and transmission electron microscopy experiments to investigate the existence, distribution and role of CD34+ SCs/TCs in the EAE-induced mouse spleen. Interestingly, immunohistochemistry, double-immunofluorescence, and transmission electron microscopy results revealed that CD34+ SCs/TCs were significantly upregulated in the EAE mouse spleen. Immunohistochemical or double-immunofluorescence staining of CD34+ SCs/TCs showed positive expression for CD34, c-kit, vimentin, CD34/vimentin, c-kit/vimentin and CD34/c-kit, and negative expression for CD31 and tryptase. Transmission electron microscopy (TEM) results demonstrated that CD34+ SCs/TCs established close connections with lymphocytes, reticular cells, macrophages, endothelial cells and erythrocytes. Furthermore, we also found that M1 (F4/80) or M2 (CD163) macrophages, and haematopoietic, pluripotent stem cells were markedly increased in EAE mice. Our results suggest that CD34+ SCs/TCs are abundant and may play a contributing role in modulating the immune response, recruiting macrophages and proliferation of haematopoietic and pluripotent stem cells following injury to promote tissue repair and regeneration in EAE mouse spleens. This suggests that their transplantation combined with stem cells might represent a promising therapeutic target for the treatment and prevention of multiple autoimmune and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ganesh Dama
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Xiaoxi Hu
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Yushan Yan
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Yonghai Li
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Han Li
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Fen Yang
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanli Liu
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China.
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China.
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China.
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China.
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Zhang X, Lu P, Shen X. Morphologies and potential roles of telocytes in nervous tissue. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 01/03/2025]
Abstract
AbstractStructurally similar cells have been found and termed telocytes (TCs) since the first characterisation of interstitial Cajal‐like cells in 1911. TCs are a novel and peculiar interstitial cell type with a small cellular body, markedly long cell processes named telopodes and a wide distribution in numerous tissues throughout the body. Besides specific morphological characteristics and immunohistochemical profiles, TCs build three‐dimensional mixed networks through homocellular (connection to each other) and/or heterocellular contacts (connection with other cell types), interaction with extracellular matrix and their vicinity to nerve endings, and thus might play, as part of an integrated system, roles in maintaining organ/tissue function. In this mini‐review, we summarise physical properties, general characteristics and distribution of TCs in diverse organs and tissues, focusing on their potential functions in nervous tissue and current challenges in investigating TCs as a distinct cell type.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Reproductive Health Shanghai Institute for Biomedical and Pharmaceutical Technologies Shanghai China
| | - Ping Lu
- Institute for Reproductive Health Shanghai Institute for Biomedical and Pharmaceutical Technologies Shanghai China
| | - Xiaorong Shen
- Institute for Reproductive Health Shanghai Institute for Biomedical and Pharmaceutical Technologies Shanghai China
| |
Collapse
|
5
|
Yang D, Yuan L, Chen S, Zhang Y, Ma X, Xing Y, Song J. Morphological and histochemical identification of telocytes in adult yak epididymis. Sci Rep 2023; 13:5295. [PMID: 37002252 PMCID: PMC10066225 DOI: 10.1038/s41598-023-32220-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Telocytes (TCs) are a newly discovered type of mesenchymal cell that are closely related to the tissue's internal environment. The study aimed to investigate the morphological identification of TCs in the epididymis of adult yak and their role in the local microenvironment. In this study, transmission electron microscopy (TEM), scanning electron microscopy, immunofluorescence, qRT-PCR, and western blotting were used to analyze the cell morphology of TCs. The results showed that there are two types of TCs in the epididymal stroma of yak by TEM; one type is distributed around the capillaries with full cell bodies, longer TPs, and a large number of secretory vesicles; the other is distributed outside the basement membrane with irregularly long, striped, large nuclei and short telopodes (TPs). In addition, these TCs formed complex TC cell networks through TPs with epididymal interstitial capillaries and basal fibroblasts. TCs often appear near the capillaries and basement membrane by special staining. The surface markers of TCs (CD34, vimentin, and CD117) were positively expressed in the epididymal stroma and epithelium by immunohistochemistry, and immunofluorescence co-expression of vimentin + CD34 and CD117 + CD34 was observed on the surface of TCs. The trends in the mRNA and protein expression of TCs surface markers revealed expression was highest in the caput epididymis. In summary, this is first report of TCs in the epididymis of yak, and two phenotypes of TCs were observed. The existence and distribution characteristics of TCs in the epididymis of plateau yaks provide important clues for further study of the adaptation to reproductive function in the plateau.
Collapse
Affiliation(s)
- Dapeng Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, 730070, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, 730070, China.
| | - Shaoyu Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation of Gansu Province, Lanzhou, 730070, China
| | - Xiaojie Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yindi Xing
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juanjuan Song
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
6
|
Ahmed AM, Hussein MR. Telocytes in Cutaneous Biology: A Reappraisal. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:T229-T239. [PMID: 36690154 DOI: 10.1016/j.ad.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 01/22/2023] Open
Abstract
The telocytes (TCs) are novel interstitial cells that have been overlooked for a long time due to their histologic similarity to other stromal cells. TCs can be separated from the stromal cells based on their distinct immunohistochemical, ultrastructural, and molecular features. Functionally, TCs are involved in the tissue renewal, mechanical support, and immune modulation. These cells are also involved in the signal transduction either through their direct interactions with the neighboring cells or through the paracrine signaling via extracellular vesicles. TCs are damaged in several inflammatory and fibrotic conditions such as ulcerative colitis, Crohn's disease, hepatic fibrosis, psoriasis, and systemic sclerosis. The transplantation of TCs in the damaged tissue can promote tissue regeneration. Therefore, enhancing tissue TCs either by their transplantation or by promoting their survival and growth using novel medications represents novel therapeutic strategy in the future. In this review, we addressed several aspects of TCs including their origin, distribution, morphologic features, and functions. We also discussed their involvement of the cutaneous TCs in the development various pathologic conditions.
Collapse
Affiliation(s)
- A M Ahmed
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egipto
| | - M R Hussein
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egipto.
| |
Collapse
|
7
|
Telocytes in Cutaneous Biology: A Reappraisal. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:229-239. [PMID: 36332689 DOI: 10.1016/j.ad.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022] Open
Abstract
The telocytes (TCs) are novel interstitial cells that have been overlooked for a long time due to their histologic similarity to other stromal cells. TCs can be separated from the stromal cells based on their distinct immunohistochemical, ultrastructural, and molecular features. Functionally, TCs are involved in the tissue renewal, mechanical support, and immune modulation. These cells are also involved in the signal transduction either through their direct interactions with the neighboring cells or through the paracrine signaling via extracellular vesicles. TCs are damaged in several inflammatory and fibrotic conditions such as ulcerative colitis, Crohn's disease, hepatic fibrosis, psoriasis, and systemic sclerosis. The transplantation of TCs in the damaged tissue can promote tissue regeneration. Therefore, enhancing tissue TCs either by their transplantation or by promoting their survival and growth using novel medications represents novel therapeutic strategy in the future. In this review, we addressed several aspects of TCs including their origin, distribution, morphologic features, and functions. We also discussed their involvement of the cutaneous TCs in the development various pathologic conditions.
Collapse
|
8
|
Korzh V. Development of the brain ventricular system from a comparative perspective. Clin Anat 2023; 36:320-334. [PMID: 36529666 DOI: 10.1002/ca.23994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The brain ventricular system (BVS) consists of brain ventricles and channels filled with cerebrospinal fluid (CSF). Disturbance of CSF flow has been linked to scoliosis and neurodegenerative diseases, including hydrocephalus. This could be due to defects of CSF production by the choroid plexus or impaired CSF movement over the ependyma dependent on motile cilia. Most vertebrates have horizontal body posture. They retain additional evolutionary innovations assisting CSF flow, such as the Reissner fiber. The causes of hydrocephalus have been studied using animal models including rodents (mice, rats, hamsters) and zebrafish. However, the horizontal body posture reduces the effect of gravity on CSF flow, which limits the use of mammalian models for scoliosis. In contrast, fish swim against the current and experience a forward-to-backward mechanical force akin to that caused by gravity in humans. This explains the increased popularity of the zebrafish model for studies of scoliosis. "Slit-ventricle" syndrome is another side of the spectrum of BVS anomalies. It develops because of insufficient inflation of the BVS. Recent advances in zebrafish functional genetics have revealed genes that could regulate the development of the BVS and CSF circulation. This review will describe the BVS of zebrafish, a typical teleost, and vertebrates in general, in comparative perspective. It will illustrate the usefulness of the zebrafish model for developmental studies of the choroid plexus (CP), CSF flow and the BVS.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
9
|
Attaai AH, Hussein MT, Aly KH, Abdel-Maksoud FM. Morphological, Immunohistochemical, and Ultrastructural Studies of the Donkey's Eye with Special Reference to the AFGF and ACE Expression. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-14. [PMID: 35513852 DOI: 10.1017/s1431927622000666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The donkey is mainly used as a working animal for riding and pack transport, as well as for dairy and meat production. Eye afflictions are common in donkeys, thus requiring a detailed study. A few studies had focused on the donkey's eye, and most of them had considered it, merely, a horse's eye. This study aimed to investigate the anatomy, histology, ultrastructure, and immunohistochemical features of the donkey's eye. The results were recorded and compared to those of horses in certain dimensions. Unlike horses, the donkey's eye is more circular in the contour of the cornea, has smaller lenticular thickness, and has longer anterior and vitreous chambers. Positive immunoreactivity to acidic fibroblast growth factor in the basal cell layers of the cornea was observed, indicating their role in cell differentiation and the renewal of the epithelium. Moreover, the corneal keratocytes expressed angiotensin-converting enzyme, which plays a role in corneal homeostasis and wound healing. Additionally, telocytes, hyalocytes, and other immune cells were observed within the iris and ciliary processes. Hence, this work is an updated detailed study of the morphology and ultrastructure of the donkey's eye and reveals some similarities and dissimilarities to the horse's eyes, which should be considered in clinical practice.
Collapse
Affiliation(s)
- Abdelraheim H Attaai
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Manal T Hussein
- Department of cell and tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Khaled H Aly
- Department of Basic Medical Science, College of Applied Medical Sciences, Bisha University, Bisha, Kingdom of Saudi Arabia
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
10
|
Klein M, Csöbönyeiová M, Danišovič Ľ, Lapides L, Varga I. Telocytes in the Female Reproductive System: Up-to-Date Knowledge, Challenges and Possible Clinical Applications. Life (Basel) 2022; 12:267. [PMID: 35207554 PMCID: PMC8874826 DOI: 10.3390/life12020267] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
From their initial description in 2005 to this day, telocytes (TCs) have been described in the ovary, uterine tubes, uterus, vagina, mammary gland, and placenta. Their morphological features, immunophenotype, physiological functions, and roles in disease have been thoroughly documented in both animal models and human subjects. TCs, with their extremely long cytoplasmic processes called telopodes, play a pivotal role in the morphological and functional interconnection of all the components of the interstitial compartment, but also with constituents of the parenchyma. Although there is no specific immunohistochemical marker for their identification, the most cited are CD 117, CD 34, platelet-derived growth factor receptor (PDGFR), vimentin, and specific markers typical for the female reproductive system (FRS)-estrogen and progesterone receptors (ER and PR). This immunophenotype provides important clues to their physiological roles. Their main functions include the regulation of hormone-dependent processes, intercellular signaling, immune surveillance, microenvironmental maintenance, and the nursing of stem cells. In a situation where TCs are functionally or morphologically decimated, many disease entities may develop, including premature ovarian failure, endometriosis, ectopic pregnancy, infertility, preeclampsia, or even breast cancer. The common denominator of many of these conditions is that their etiopathogenesis is either partially known or completely obscure. Even though the exact role of TCs in these conditions is yet to be revealed, multiple lines of research indicate that their future clinical application may enrich diagnostic-therapeutic strategies of countless conditions. TCs are also heavily debated in terms of their possible use in regenerative medicine and tissue engineering. Some of the concepts related to TC research are strongly substantiated by experimental data, while others are highly speculative. Only future research endeavors will clearly distinguish dead-end lines of research from genuine contributions to the field.
Collapse
Affiliation(s)
- Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| | - Mária Csöbönyeiová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Lenka Lapides
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
- ISCARE, Reproduction Clinic, Gynaecology & Urology, 821 09 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (L.L.); (I.V.)
| |
Collapse
|
11
|
Aschacher T, Schmidt K, Aschacher O, Eichmair E, Baranyi U, Winkler B, Grabenwoeger M, Spittler A, Enzmann F, Messner B, Riebandt J, Laufer G, Bergmann M, Ehrlich M. Telocytes in the human ascending aorta: Characterization and exosome-related KLF-4/VEGF-A expression. J Cell Mol Med 2021; 25:9697-9709. [PMID: 34562312 PMCID: PMC8505852 DOI: 10.1111/jcmm.16919] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Telocytes (TCs), a novel interstitial cell entity promoting tissue regeneration, have been described in various tissues. Their role in inter‐cellular signalling and tissue remodelling has been reported in almost all human tissues. This study hypothesizes that TC also contributes to tissue remodelling and regeneration of the human thoracic aorta (HTA). The understanding of tissue homeostasis and regenerative potential of the HTA is of high clinical interest as it plays a crucial role in pathogenesis from aortic dilatation to lethal dissection. Therefore, we obtained twenty‐five aortic specimens of heart donors during transplantation. The presence of TCs was detected in different layers of aortic tissue and characterized by immunofluorescence and transmission electron microscopy. Further, we cultivated and isolated TCs in highly differentiated form identified by positive staining for CD34 and c‐kit. Aortic‐derived TC was characterized by the expression of PDGFR‐α, PDGFR‐β, CD29/integrin β‐1 and αSMA and the stem cell markers Nanog and KLF‐4. Moreover, TC exosomes were isolated and characterized for soluble angiogenic factors by Western blot. CD34+/c‐kit+ TCs shed exosomes containing the soluble factors VEGF‐A, KLF‐4 and PDGF‐A. In summary, TC occurs in the aortic wall. Correspondingly, exosomes, derived from aortic TCs, contain vasculogenesis‐relevant proteins. Understanding the regulation of TC‐mediated aortic remodelling may be a crucial step towards designing strategies to promote aortic repair and prevent adverse remodelling.
Collapse
Affiliation(s)
- Thomas Aschacher
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Katy Schmidt
- Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Olivia Aschacher
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Eva Eichmair
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Winkler
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Martin Grabenwoeger
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Andreas Spittler
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Enzmann
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Riebandt
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Guenther Laufer
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Marek Ehrlich
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Condrat CE, Barbu MG, Thompson DC, Dănilă CA, Boboc AE, Suciu N, Crețoiu D, Voinea SC. Roles and distribution of telocytes in tissue organization in health and disease. TISSUE BARRIERS IN DISEASE, INJURY AND REGENERATION 2021:1-41. [DOI: 10.1016/b978-0-12-818561-2.00001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Hussein MT, Abdel-Maksoud FM. Structural Investigation of Epididymal Microvasculature and Its Relation to Telocytes and Immune Cells in Camel. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1024-1034. [PMID: 32665042 DOI: 10.1017/s1431927620001786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The vascular and perivascular cells, including telocytes (TCs) and immune cells, play an important role in male fertility. The current study intended to describe in detail the microvascular structures harboring special regulatory devices in addition to the interstitial cellular components of the one-humped camel epididymis. The samples were collected from 10 clinically healthy mature camels (Camelus dromedarius). The distribution and characteristics of TCs, peripheral blood vessels of the epididymis, and immune cells were investigated using the light, immunohistochemistry, immunofluorescence, and transmission electron microscopy analyses. Frequent occlusive or throttle arterioles were demonstrated in the epididymal interstitium and their tunica media consisted of glomus cells. In addition, some vein walls consisted of one or two layers of glomus cells. TCs, fibroblasts, muscle cells, and tunica media of the blood vessels, that present in the loose connective tissue surrounding the intertubular interstitium of camel epididymis, showed a positive reaction with vimentin. The endothelium of blood vessels and veins showed positive immunoreactivity for CD34 and vascular endothelial growth factor (VEGF). Furthermore, VEGF, CD34, and S100 proteins were expressed in dendritic cells (DCs) as well as TCs. The current data suggest the involvement of DCs and TCs in angiogenesis and a possible role for the interstitial components in creating an appropriate milieu for the full maturation of sperms.
Collapse
Affiliation(s)
- Manal T Hussein
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut71526, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut71526, Egypt
| |
Collapse
|
14
|
Decimo I, Dolci S, Panuccio G, Riva M, Fumagalli G, Bifari F. Meninges: A Widespread Niche of Neural Progenitors for the Brain. Neuroscientist 2020; 27:506-528. [PMID: 32935634 PMCID: PMC8442137 DOI: 10.1177/1073858420954826] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emerging evidence highlights the several roles that meninges play in
relevant brain functions as they are a protective membrane for the
brain, produce and release several trophic factors important for
neural cell migration and survival, control cerebrospinal fluid
dynamics, and embrace numerous immune interactions affecting neural
parenchymal functions. Furthermore, different groups have identified
subsets of neural progenitors residing in the meninges during
development and in the adulthood in different mammalian species,
including humans. Interestingly, these immature neural cells are able
to migrate from the meninges to the neural parenchyma and
differentiate into functional cortical neurons or oligodendrocytes.
Immature neural cells residing in the meninges promptly react to brain
disease. Injury-induced expansion and migration of meningeal neural
progenitors have been observed following experimental demyelination,
traumatic spinal cord and brain injury, amygdala lesion, stroke, and
progressive ataxia. In this review, we summarize data on the function
of meninges as stem cell niche and on the presence of immature neural
cells in the meninges, and discuss their roles in brain health and
disease. Furthermore, we consider the potential exploitation of
meningeal neural progenitors for the regenerative medicine to treat
neurological disorders.
Collapse
Affiliation(s)
- Ilaria Decimo
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Sissi Dolci
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Istituto Italiano di Tecnologia, Genova, Italy
| | - Marco Riva
- Unit of Neurosurgery, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Guido Fumagalli
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Mustafa FEZA, Abdel-Maksoud FM, Hassan AHS, Mokhtar DM. Melatonin induces a stimulatory action on the scrotal skin components of Soay ram in the non-breeding season. Sci Rep 2020; 10:10154. [PMID: 32576871 PMCID: PMC7311388 DOI: 10.1038/s41598-020-67103-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/02/2020] [Indexed: 01/16/2023] Open
Abstract
Fifteen adult Soay rams were employed in this study to investigate the effect of melatonin on the scrotal skin using histological, histochemical, and morphometrical analysis. The results revealed that the melatonin treated group showed a significant increase in the thickness of the epidermis, the cross-sectional area of blood capillaries and nerve fibers compared with the control one. In addition, obvious hypertrophy and hyperplasia were detected in the sebaceous glands in association with a significant increase in the number and diameter of apocrine sweat glands with well-developed secretory activity. S100 protein and cytokeratin-19 strongly stained the basal cells of sebaceous glands in the melatonin treated group incomparable to the control group. Moreover, the nerve fibers were intensively immunoreacted for S100 and cytokeratin proteins in the melatonin treated group in contrast to the control one. A high number of telocytes (TCs) could be identified in the treated group around the nerve fibers and blood vessels in the dermis. The number of Langerhans cells showed a significant increase in the melatonin groups that were identified by MHC II and PGP 9.5 within the epidermal layer. Furthermore, a significant increase in the number of dendritic cells was identified in the melatonin group, which were distributed within the dermis, around hair follicles, sebaceous glands, and sweat glands and were strongly expressed PGP-9.5, MHC-II, VAMP, SNAP, keratin-5, and cytokeratin-19 immunoreactivity. Notably, Merkel cells showed a significant increase in the number in the melatonin group that could be stained against nestin, SNAP, and VAMP. On the other hand, the secretory granules in sweat glands were exhibited a strong positive reactivity for synaptophysin in melatonin group. The current study showed that the administration of melatonin induced a stimulatory effect on keratinocytes, non-keratinocytes, sebaceous and sweat glands, hair follicles, as well as the vascular, neuronal, and cellular constituents of the dermis.
Collapse
Affiliation(s)
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt.
| | - A H S Hassan
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
16
|
Hussein MT, Mokhtar DM, Hassan AHS. Melatonin activates the vascular elements, telocytes, and neuroimmune communication in the adrenal gland of Soay rams during the non-breeding season. PROTOPLASMA 2020; 257:353-369. [PMID: 31637525 DOI: 10.1007/s00709-019-01441-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The adrenal glands of 15 adult Soay rams were used to study the effect of melatonin on their vascular elements and cellular organization. A significant increase in the cross-sectional area of the blood sinusoids was demonstrated after melatonin administration. The vimentin-expressing mesenchymal cells were increased in the melatonin-treated group. Intensive S-100 protein expression was observed in the sustentacular cells and telocytes (TCs) of the treated groups. Moreover, S-100 protein expressed intensively in the dendritic cells that distributed around the blood sinusoids. Dendritic cells showed positive immunoreactivity for CD8 and CD103. Many dendritic cells with well-defined processes were observed close to the nerve fibers after melatonin administration. A significant increase in the number and diameter of dendritic cells after melatonin treatment was demonstrated. Many highly active TCs were observed in the medulla of the treated group, which were characterized by long telopodes (Tps) containing abundant secretory vesicles that released into the extracellular milieu and towards the dendritic cells. In the melatonin-treated groups, the nerve fibers showed a significant increase in their cross-sectional area accompanied by an increase in the activity of Schwann cells and neighboring dendritic cells. In the treated group, TCs and DCs appear to contribute to angiogenesis. A planner contact between Tps and the stem cell was demonstrated in the treated group. Melatonin induced a stimulatory action on the vascular and neuronal elements of the adrenal gland. Moreover, it enhances the activity of a variety of cells including telocytes, dendritic, sustentacular, and Schwann cells.
Collapse
Affiliation(s)
- Manal T Hussein
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, 71526, Egypt
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, 71526, Egypt.
| | - A H S Hassan
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
17
|
Shibata-Germanos S, Goodman JR, Grieg A, Trivedi CA, Benson BC, Foti SC, Faro A, Castellan RFP, Correra RM, Barber M, Ruhrberg C, Weller RO, Lashley T, Iliff JJ, Hawkins TA, Rihel J. Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges. Acta Neuropathol 2020; 139:383-401. [PMID: 31696318 PMCID: PMC6989586 DOI: 10.1007/s00401-019-02091-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
Abstract
The vertebrate CNS is surrounded by the meninges, a protective barrier comprised of the outer dura mater and the inner leptomeninges, which includes the arachnoid and pial layers. While the dura mater contains lymphatic vessels, no conventional lymphatics have been found within the brain or leptomeninges. However, non-lumenized cells called Brain/Mural Lymphatic Endothelial Cells or Fluorescent Granule Perithelial cells (muLECs/BLECs/FGPs) that share a developmental program and gene expression with peripheral lymphatic vessels have been described in the meninges of zebrafish. Here we identify a structurally and functionally similar cell type in the mammalian leptomeninges that we name Leptomeningeal Lymphatic Endothelial Cells (LLEC). As in zebrafish, LLECs express multiple lymphatic markers, containing very large, spherical inclusions, and develop independently from the meningeal macrophage lineage. Mouse LLECs also internalize macromolecules from the cerebrospinal fluid, including Amyloid-β, the toxic driver of Alzheimer's disease progression. Finally, we identify morphologically similar cells co-expressing LLEC markers in human post-mortem leptomeninges. Given that LLECs share molecular, morphological, and functional characteristics with both lymphatics and macrophages, we propose they represent a novel, evolutionary conserved cell type with potential roles in homeostasis and immune organization of the meninges.
Collapse
Affiliation(s)
| | - James R Goodman
- Department of Anaesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Alan Grieg
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Chintan A Trivedi
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Bridget C Benson
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Sandrine C Foti
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Ana Faro
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | | | | | - Melissa Barber
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | | | - Roy O Weller
- Clinical Neurosciences (Neuropathology), Faculty of Medicine, Southampton University Hospitals, Southampton, SO16 6YD, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Jeffrey J Iliff
- Department of Anaesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
18
|
Mitrofanova L, Hazratov A, Galkovsky B, Gorshkov A, Bobkov D, Gulyaev D, Shlyakhto E. Morphological and immunophenotypic characterization of perivascular interstitial cells in human glioma: Telocytes, pericytes, and mixed immunophenotypes. Oncotarget 2020; 11:322-346. [PMID: 32064038 PMCID: PMC6996916 DOI: 10.18632/oncotarget.27340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022] Open
Abstract
Telocytes (Tcs) and pericytes (Pcs) are two types of perivascular interstitial cell known to be widespread in various organs and tissues, including the brain. We postulated that Tcs and Pcs may be involved in glioblastoma (GBM) neovascularization.
Collapse
Affiliation(s)
- Lubov Mitrofanova
- Almazov National Medical Research Centre, Pathomorphology Research Laboratory, St. Petersburg, Russia
| | - Anton Hazratov
- Almazov National Medical Research Centre, Pathomorphology Research Laboratory, St. Petersburg, Russia
| | - Boris Galkovsky
- Almazov National Medical Research Centre, Pathomorphology Research Laboratory, St. Petersburg, Russia
| | - Andrey Gorshkov
- Almazov National Medical Research Centre, Pathomorphology Research Laboratory, St. Petersburg, Russia.,Smorodintsev Research Institute of Influenza, Laboratory of Intracellular Signaling and Transport, St. Petersburg, Russia
| | - Danila Bobkov
- Smorodintsev Research Institute of Influenza, Laboratory of Intracellular Signaling and Transport, St. Petersburg, Russia.,Institute of Cytology of the Russian Academy of Science, Laboratory of Cell Biology in Culture, St. Petersburg, Russia
| | - Dmitry Gulyaev
- Almazov National Medical Research Centre, Research Department of Neurosurgery, St. Petersburg, Russia
| | - Evgeny Shlyakhto
- Almazov National Medical Research Centre, General Director, St. Petersburg, Russia
| |
Collapse
|
19
|
Song J, Lee SS, Lim S, Yeo S. Mechanism of the neuroprotective effect of injecting brain cells on ST36 in an animal model of Parkinson's disease. Neurosci Lett 2019; 717:134698. [PMID: 31857129 DOI: 10.1016/j.neulet.2019.134698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
In Parkinson's disease, the dopaminergic neurons of the brain are destroyed. Dopamine is an important neurotransmitter that acts on the basal ganglia of the brain, allowing precise body movement. In the early stages of Parkinson's disease, levodopa appears to alleviate clinical symptoms; however, during long-term use, motor complications occur. There is no clear treatment or remedy for Parkinson's disease; therefore, the development of novel therapies is urgently required. In the present study, mouse choroid plexus cells were transplanted into ST36 in a mouse model of Parkinson's disease to determine whether the motor function could be restored. Pole tests showed changes in motor dysfunction in the mice. The athletic ability of the mice was significantly lowered after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection and significantly increased after choroidal neuron cell treatment. Injection of di-alkyl indocarbocyanine (DiI) (as a trace substance) confirmed that the choroid plexus cells injected into acupuncture point ST36 were transferred to the brain. In the Parkinson's disease model, choroid plexus cell injection into ST36 inhibited the decrease in tyrosine hydroxylase (TH) expression and decreased the activation of inflammatory factors mitochondrial cytochrome C oxidase (COX2) and inducible NO synthase (iNOS). Apoptosis factors Cytochrome C and BCL2 associated X, apoptosis regulator (BAX) levels were decreased and B-Cell CLL/Lymphoma 2 (BCL2) levels were increased. Taken together, these results suggest that the injection of choroid plexus cell at ST36 had neuroprotective effects in the Parkinson's disease mouse model. The results suggest new possibilities for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Jongbeom Song
- College of Korean Medicine, Sang Ji University, Wonju 26339, Republic of Korea
| | - Sang-Suk Lee
- Department of Oriental Biomedical Engineering, College of Health Sciences, Sang Ji University, Wonju 26339, Republic of Korea
| | - Sabina Lim
- Department of Meridian & Acupoint, College of Korean Medicine, WHO Collaborating Center for Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Sujung Yeo
- College of Korean Medicine, Sang Ji University, Wonju 26339, Republic of Korea.
| |
Collapse
|
20
|
Enos N, Takenaka H, Scott S, Salfity HVN, Kirk M, Egar MW, Sarria DA, Slayback-Barry D, Belecky-Adams T, Chernoff EAG. Meningeal Foam Cells and Ependymal Cells in Axolotl Spinal Cord Regeneration. Front Immunol 2019; 10:2558. [PMID: 31736973 PMCID: PMC6838144 DOI: 10.3389/fimmu.2019.02558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/15/2019] [Indexed: 12/01/2022] Open
Abstract
A previously unreported population of foam cells (foamy macrophages) accumulates in the invasive fibrotic meninges during gap regeneration of transected adult Axolotl spinal cord (salamander Ambystoma mexicanum) and may act beneficially. Multinucleated giant cells (MNGCs) also occurred in the fibrotic meninges. Actin-label localization and transmission electron microscopy showed characteristic foam cell and MNGC podosome and ruffled border-containing sealing ring structures involved in substratum attachment, with characteristic intermediate filament accumulations surrounding nuclei. These cells co-localized with regenerating cord ependymal cell (ependymoglial) outgrowth. Phase contrast-bright droplets labeled with Oil Red O, DiI, and DyRect polar lipid live cell label showed accumulated foamy macrophages to be heavily lipid-laden, while reactive ependymoglia contained smaller lipid droplets. Both cell types contained both neutral and polar lipids in lipid droplets. Foamy macrophages and ependymoglia expressed the lipid scavenger receptor CD36 (fatty acid translocase) and the co-transporter toll-like receptor-4 (TLR4). Competitive inhibitor treatment using the modified fatty acid Sulfo-N-succinimidyl Oleate verified the role of the lipid scavenger receptor CD36 in lipid uptake studies in vitro. Fluoromyelin staining showed both cell types took up myelin fragments in situ during the regeneration process. Foam cells took up DiI-Ox-LDL and DiI-myelin fragments in vitro while ependymoglia took up only DiI-myelin in vitro. Both cell types expressed the cysteine proteinase cathepsin K, with foam cells sequestering cathepsin K within the sealing ring adjacent to the culture substratum. The two cell types act as sinks for Ox-LDL and myelin fragments within the lesion site, with foamy macrophages showing more Ox-LDL uptake activity. Cathepsin K activity and cellular localization suggested that foamy macrophages digest ECM within reactive meninges, while ependymal cells act from within the spinal cord tissue during outgrowth into the lesion site, acting in complementary fashion. Small MNGCs also expressed lipid transporters and showed cathepsin K activity. Comparison of 3H-glucosamine uptake in ependymal cells and foam cells showed that only ependymal cells produce glycosaminoglycan and proteoglycan-containing ECM, while the cathepsin studies showed both cell types remove ECM. Interaction of foam cells and ependymoglia in vitro supported the dispersion of ependymal outgrowth associated with tissue reconstruction in Axolotl spinal cord regeneration.
Collapse
Affiliation(s)
- Nathaniel Enos
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Hidehito Takenaka
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Sarah Scott
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Hai V N Salfity
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Maia Kirk
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Margaret W Egar
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Deborah A Sarria
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Denise Slayback-Barry
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Teri Belecky-Adams
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Ellen A G Chernoff
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
21
|
Abstract
Since the first description of 'interstitial cells of Cajal' in the mammalian gut in 1911, scientists have found structurally similar cells, now termed telocytes, in numerous tissues throughout the body. These cells have recently sparked renewed interest, facilitated through the development of a molecular handle to genetically manipulate their function in tissue homeostasis and disease. In this Primer, we discuss the discovery of telocytes, their physical properties, distribution and function, focusing on recent developments in the functional analysis of Foxl1-positive telocytes in the intestinal stem cell niche, and, finally, the current challenges of studying telocytes as a distinct cell type.
Collapse
Affiliation(s)
- Ayano Kondo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Varga I, Polák Š, Kyselovič J, Kachlík D, Danišovič Ľ, Klein M. Recently Discovered Interstitial Cell Population of Telocytes: Distinguishing Facts from Fiction Regarding Their Role in the Pathogenesis of Diverse Diseases Called "Telocytopathies". MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E56. [PMID: 30781716 PMCID: PMC6410178 DOI: 10.3390/medicina55020056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/14/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
In recent years, the interstitial cells telocytes, formerly known as interstitial Cajal-like cells, have been described in almost all organs of the human body. Although telocytes were previously thought to be localized predominantly in the organs of the digestive system, as of 2018 they have also been described in the lymphoid tissue, skin, respiratory system, urinary system, meninges and the organs of the male and female genital tracts. Since the time of eminent German pathologist Rudolf Virchow, we have known that many pathological processes originate directly from cellular changes. Even though telocytes are not widely accepted by all scientists as an individual and morphologically and functionally distinct cell population, several articles regarding telocytes have already been published in such prestigious journals as Nature and Annals of the New York Academy of Sciences. The telocyte diversity extends beyond their morphology and functions, as they have a potential role in the etiopathogenesis of different diseases. The most commonly described telocyte-associated diseases (which may be best termed "telocytopathies" in the future) are summarized in this critical review. It is difficult to imagine that a single cell population could be involved in the pathogenesis of such a wide spectrum of pathological conditions as extragastrointestinal stromal tumors ("telocytomas"), liver fibrosis, preeclampsia during pregnancy, tubal infertility, heart failure and psoriasis. In any case, future functional studies of telocytes in vivo will help to understand the mechanism by which telocytes contribute to tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - Ján Kyselovič
- Fifth Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - David Kachlík
- Institute of Anatomy, Second Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic.
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| |
Collapse
|
23
|
Hussein MM, Mokhtar DM. The roles of telocytes in lung development and angiogenesis: An immunohistochemical, ultrastructural, scanning electron microscopy and morphometrical study. Dev Biol 2018; 443:137-152. [PMID: 30227119 DOI: 10.1016/j.ydbio.2018.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022]
Abstract
Many studies have been carried out to investigate the occurrence and distribution of telocytes (TCs) in many organs. However, their morphological development is still unclear. This study was performed to demonstrate the morphological development of TCs in rabbits' lung from fetal to postnatal life using light-, electron- microscopy, immunohistochemistry, morphometrical and statistical analysis. During the fetal life, these cells formed an extensive network of telopodes (Tps) which were in close contact with developing alveoli, bronchioles, stem cells and many other interstitial components. In addition, the TCs' number was significantly increased around the neocapillaries in fetal lung. In the fetal life, TCs were stellate in shape and characterized by large cell bodies and many short Tps that contained abundant rER, mitochondria, and ribosomes. By gradual increasing of ages, TCs were spindle in shape with two Tps contained a massive amount of secretory structures (exosomes, ectosomes, and multivesicular bodies). Moreover, TCs in postnatal lung showed a significant decrease in number and diameter of their cell bodies and a significant increase in the length of Tps compared with those in fetal life. The TCs contributed with pneumocytes and endothelium in the formation of air-blood barrier. The TCs' immunohistochemical profiles for CD34, vimentin, c-kit, connexin 43, vascular endothelial growth factor (VEGF), and neuron- specific enolase (NSE) differed between ages during the lung development. This study provided an evidence that TCs contributed to angiogenesis, the formation of the air-blood barrier, lung organization, and development.
Collapse
Affiliation(s)
- Marwa M Hussein
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
24
|
Ma R, Wu P, Shi Q, Song D, Fang H. Telocytes promote VEGF expression and alleviate ventilator-induced lung injury in mice. Acta Biochim Biophys Sin (Shanghai) 2018; 50:817-825. [PMID: 29924305 DOI: 10.1093/abbs/gmy066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 01/17/2023] Open
Abstract
Mechanical ventilation (MV) is an important procedure for the treatment of patients with acute lung injury or acute respiratory distress syndrome in a clinical setting; however, MV can lead to severe complications, including ventilator-induced lung injury (VILI). Telocytes (TCs) can promote tissue repair following injury in the heart, kidneys, and other organs. The aim of this study was to investigate the role of TCs in VILI in mice and the associated mechanisms. By using in vivo studies in mice and in vitro studies in cells, we demonstrated that an airway injection of TCs can reduce the pulmonary inflammatory response and improve the lung function in mice with VILI and promote the proliferation of pulmonary vascular endothelial cells. We also demonstrated that the impact of TCs on VILI repair might partially due to vascular endothelial growth factor (VEGF) secreted by TCs upon VILI stimulation, and that VEGF could induce the proliferation of hemangioendothelioma endothelial cells (EOMA). Collectively, our results revealed novel functions of TCs in VILA repair and shed light on the complications that are caused by MV.
Collapse
Affiliation(s)
- Ruihua Ma
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pinwen Wu
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiqing Shi
- Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, China
| | - Dongli Song
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Jiang XJ, Cretoiu D, Shen ZJ, Yang XJ. An in vitro investigation of telocytes-educated macrophages: morphology, heterocellular junctions, apoptosis and invasion analysis. J Transl Med 2018; 16:85. [PMID: 29615057 PMCID: PMC5883889 DOI: 10.1186/s12967-018-1457-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Telocytes (TCs), a recently discovered novel type of interstitial cells, were also found in a wide variety of human and mammalian reproductive organs/tissues, including uterus, oviduct and placenta. Previously, we demonstrated that TCs-conditioned media was capable of activating peritoneal macrophages (pMACs) through paracrine effects. This study investigates the hypothesis that direct interaction of TCs with pMACs will also play a significant role in immunoregulation of pMACs. METHODS TCs and pMACs were derived from the uterus and intraperitoneal cavity of female BALB/c mice, respectively. TCs were identified by immunofluorescence and then co-cultured directly with pMACs for 24 h without added cytokines, to observe the in vitro biological behavior of pMACs. We used histochemical staining to study morphology and mitochondrial metabolism of pMACs, scanning electron microscopy to study heterocellular junctions, flow cytometry to investigate mitochondrial membrane potential (ΔΨm) and apoptosis, and transwell chambers to study invasion ability. Student-t test was used accordingly. RESULTS Presently, TCs with typical structure and immunophenotype of double CD-34-positive/vimentin-positive were successfully isolated. pMACs co-cultured with TCs showed obviously morphological activation, with enhanced energy metabolism (P < 0.05). Meanwhile, direct physical cell-to-cell interaction promoted the development of heterocellular junctions between TCs and pMACs. Furthermore, TCs treatment markedly reduced the depletion of ΔΨm in co-cultured pMACs (all P < 0.05), and inhibited their apoptosis (P < 0.05). Functionally, pMACs co-cultured with TCs showed enhanced invasion ability (P < 0.05). CONCLUSIONS Direct physical cell-to-cell interaction promoted the development of heterocellular junctions between TCs and pMACs, presumably responsible for the observed novel efficient way of pMACs activation via mitochondrial signaling pathway. TCs-educated pMACs might be a promising way to restore the defective immunosurveillance in endometriosis (EMs), led to the enhanced treatment efficacy of EMs in a simple and clinically feasible fashion.
Collapse
Affiliation(s)
- Xiao-Juan Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Dragos Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute of Mother and Child Health, Bucharest, Romania
| | - Zong-Ji Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 Jiangsu Province People’s Republic of China
| |
Collapse
|
26
|
Tay H, Vandecasteele T, Van den Broeck W. Identification of telocytes in the porcine heart. Anat Histol Embryol 2017; 46:519-527. [PMID: 28884484 DOI: 10.1111/ahe.12296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/11/2022]
Abstract
Recently, a new interstitial cell type called telocyte has been identified. Telocytes are found in many organs including the heart, where they are especially well described. However, their presence in the porcine heart has not yet been proven. The pig is a valuable animal model in research because of its resemblance with man, making it interesting to determine whether telocytes can be found in pigs as well. The focus of this study is the identification and ultrastructural description of telocytes in the heart tissue of pig. Using transmission electron microscopy, telocytes were found in both left and right atrium and ventricle, usually close to cardiomyocytes and/or blood vessels. Their most important characteristic is the long cytoplasmic processes called telopodes, which have a moniliform aspect, measure tens of μm and usually have a thickness below 0.2 μm. This unique morphological feature enables telocytes to be recognized from other interstitial cells such as fibroblasts. Additional observations include the ability to release extracellular vesicles and to make contacts with other structures such as endothelial cells, suggesting a role in intercellular communication.
Collapse
Affiliation(s)
- H Tay
- Faculty of Veterinary Medicine, Department of Morphology, Ghent University, Merelbeke, Belgium
| | - T Vandecasteele
- Faculty of Veterinary Medicine, Department of Morphology, Ghent University, Merelbeke, Belgium
| | - W Van den Broeck
- Faculty of Veterinary Medicine, Department of Morphology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
27
|
Abstract
Cholesterol gallstone disease is highly prevalent in Western countries, particularly in women and some specific ethnic groups. The mechanisms behind the formation of gallstones are not clearly understood, but gallbladder dysmotility seems to be a key factor that triggers the precipitation of cholesterol microcrystals from supersaturated lithogenic bile.Given that newly described interstitial cells, telocytes, are present in the gallbladder and they are located in close vicinity of smooth muscle cell and neural fibers possibly interfering with gallbladder motility or contractility, authors are trying to summarize the current knowledge on the role of telocytes with respect to disturbed gallbladder function in gallstone disease.
Collapse
|
28
|
A Tale of Two Cells: Telocyte and Stem Cell Unique Relationship. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 913:359-376. [PMID: 27796899 DOI: 10.1007/978-981-10-1061-3_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Telocytes have been identified as a distinctive type of interstitial cells and have been recognized in most tissues and organs. Telocytes are characterized by having extraordinary long cytoplasmic processes, telopodes, that extend to form three-dimensional networks and commonly constitute specialized forms of cell-to-cell junctions with other neighboring cells. Telocytes have been localized in the stem cell niche of different organs such as the heart, lung, skeletal muscle, and skin. Electron microscopy and electron tomography revealed a specialized link between telocytes and stem cells that postulates a potential role for telocytes during tissue regeneration and repair. In this review, the distribution of telocytes in different stem cell niches will be explored, highlighting the intimate relationship between the two types of cells and their possible functional relationship.
Collapse
|
29
|
Abstract
Telocytes (TCs) are interstitial cells found in stroma of many organs, including the skin dermis. Ultrastructurally, normal skin TCs recapitulates all the previously documented features in interstitum of other organs. Their (ultra)structural hallmark is the presence of particular shaped cellular prolongations (termed telopodes), along other features as cellular organelles representation and their distribution within cell body and its prolongations. Transmission electron microscopy (TEM) or high magnification light microscopy indicated that the particular shape of telopodes alternate characteristically thin segments (termed podomeres) and dilated segments (called podoms). A new and powerful technique, focused ion beam scanning electron microscopy (FIB-SEM), indicated that, ultrastructurally, telopodes could be either irregular ribbon-like structures, or uneven tubular-like structures. TEM images shown that podoms consists mitochondria, elements of endoplasmic reticulum and caveolae. Immunohisochemical studies on skin TCs revealed their positive expression for CD34 and PDGFRα, but for vimentin and c-kit, also. In normal dermis, TCs are involved in junctions, either homocellular (TCs-TCs), or heterocellular (TCs - other type of cells). The junctional attribute of TCs underlies their ability of forming a 3D network within dermis. Beyond the physical interactions, the connections between TCs and other cells could be also chemical, by paracrine secretion via shed vesicles as ultrastructural studies demonstrated. In normal dermis, TCs were found distributed in particular spatial relationships with other interstitial structures and/or cells: vascular structures, nerves, skin adnexa, stem cells and immune reactive cells.To date, the study of TCs was approached into two pathologic conditions: systemic sclerosis and psoriasis. In both diseases, the normal ultrastructure of TCs and also their distribution were shown to be altered. Moreover, the pattern of TCs ultrastructural changes differs in systemic sclerosis (cytoplasmic vacuolization, swollen mitochondria, lipofuscin bodies) from those appeared in psoriasis, characterized by important dystrophic changes (telopodes fragmentation, cytoplasmic disintegration, apoptotic nuclei, nuclear extrusions). Furthermore, in psoriasis, the lesional remission is (ultra)structurally displaying a recovery of dermal TCs at values similar to normal.Considering TCs ultrastructural features, their connections and spatiality in normal dermis and also their pathologic changes, TCs are credited with roles in skin homeostasis and/or pathogeny of dermatological disorders. In our opinion, further researches should be focused on identifying a specific marker for TCs and also on comprehending the pattern of their response in different dermatoses.
Collapse
|
30
|
Xu T, Lu S, Zhang H. Transmission electron microscope evidence of telocytes in canine dura mater. J Cell Mol Med 2017; 20:188-92. [PMID: 26781033 PMCID: PMC4717856 DOI: 10.1111/jcmm.12726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Telocytes (TCs) are a novel type of interstitial cells present in a wide variety of organs and tissues (www.telocytes.com). Telocytes are identified morphologically by a small cell body and specific long prolongations (telopodes) alternating thin segments (podomers) with dilations (podoms). The presence of TCs in rat meninges has been identified in previous research. We here present further evidence that TCs existed in canine dura mater, closed to capillary and surrounded by a great deal of collagen fibres under transmission electron microscope.
Collapse
Affiliation(s)
- Ting Xu
- Department of Anatomy, Histology and Embryology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shanshan Lu
- Department of Anatomy, Histology and Embryology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hongqi Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical College of Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| |
Collapse
|
31
|
Cretoiu D, Radu BM, Banciu A, Banciu DD, Cretoiu SM. Telocytes heterogeneity: From cellular morphology to functional evidence. Semin Cell Dev Biol 2016; 64:26-39. [PMID: 27569187 DOI: 10.1016/j.semcdb.2016.08.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Abstract
Telocytes (TCs), located ubiquitously in the internal organs of vertebrates, are a heterogeneous, recently described, cell population of the stromal space. Characterized by lengthy cytoplasmic extensions that can reach tens of microns and are called telopodes (Tps), TCs are difficult to see using conventional microscopes. It was the electron microscopy which led to their first identification and Popescu's team the first responsible for the reconstructions indicating TCs 'organization' in a three-dimensional (3D) network that is believed to be accountable for the complex roles of TCs. Gradually, it became increasingly evident that TCs are difficult to characterize in terms of immunophenotype and that their phenotype is different depending on the location and needs of the tissue at one time. This review discusses the growing body of evidence accumulated since TCs were discovered and highlights how the complex interplay between TCs and stem cells might be of importance for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Dragos Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania; 'Victor Babes' National Institute of Pathology, Bucharest 050096, Romania
| | - Beatrice Mihaela Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona 37134, Italy; Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Sanda Maria Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania; 'Victor Babes' National Institute of Pathology, Bucharest 050096, Romania.
| |
Collapse
|
32
|
Arafat EA. Ultrastructural and immunohistochemical characteristics of telocytes in the skin and skeletal muscle of newborn rats. Acta Histochem 2016; 118:574-580. [PMID: 27344553 DOI: 10.1016/j.acthis.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/29/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
Telocytes (TCs) are newly described interstitial cells that might play a role in normal and pathological conditions. The aim of this study was designed to investigate its existence in the skin and skeletal muscle of one day old newborn rats and to study their ultrastructure and immunohistochemical characteristics. Ten rats (one day old newborn) were used in this study. Dorsal skin and femoral skeletal muscle samples were obtained and examined by CD117, CD34, semi-thin and ultrathin sections examination. Semi-thin sections examination revealed multiple spindle shape cells with cytoplasmic extension in the skin and in between muscle fibers. Telocytes showed positive reaction for both CD117 and CD34 immunostains. By electron microscopy these cells were spindle shaped with small cell bodies and long processes. Telocytes showed homo-cellular junctions between two adjacent telocytes and hetero-cellular junctions between telocytes and other cellular and non-cellular structures. Multiple vesicles were seen either intra-cellular or budding from the cell membrane or detached from the telocytes leaving caveolae. It could be concluded that telocytes are present in the skin and skeletal muscle of one day old newborn rats. They might play a role in pathologies and regenerative medicine due to their ability to release vesicles.
Collapse
|
33
|
Kostin S. Cardiac telocytes in normal and diseased hearts. Semin Cell Dev Biol 2016; 55:22-30. [PMID: 26912117 DOI: 10.1016/j.semcdb.2016.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 12/28/2022]
|
34
|
Regulation of neural stem cells by choroid plexus cells population. Neurosci Lett 2016; 626:35-41. [DOI: 10.1016/j.neulet.2016.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/03/2023]
|
35
|
Cretoiu D, Gherghiceanu M, Hummel E, Zimmermann H, Simionescu O, Popescu LM. FIB-SEM tomography of human skin telocytes and their extracellular vesicles. J Cell Mol Med 2016; 19:714-22. [PMID: 25823591 PMCID: PMC4395186 DOI: 10.1111/jcmm.12578] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/15/2015] [Indexed: 12/19/2022] Open
Abstract
We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) – the podoms. FIB-SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc.
Collapse
Affiliation(s)
- Dragos Cretoiu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Victor Babeș National Institute of Pathology, Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
36
|
Telocytes in their context with other intercellular communication agents. Semin Cell Dev Biol 2016; 55:9-13. [PMID: 27013113 DOI: 10.1016/j.semcdb.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 11/23/2022]
Abstract
The past decade has borne witness to an explosion in our understanding of the fundamental complexities of intercellular communication. Previously, the field was solely defined by the simple exchange of endocrine, autocrine and epicrine agents. Then it was discovered that cells possess an elaborate system of extracellular vesicles, including exosomes, which carry a vast array of small and large molecules (including many epigenetic agents such as a variety RNAs and DNA), as well as large organelles that modulate almost every aspect of cellular function. In addition, it was thought that electrical communication between cells was limited mainly to neurotransmitters and neuromodulators in the nervous system. Also within the past decade, it was found that - in addition to neurons - most cells (both mammalian and non-mammalian) communicate via elaborate bioelectric systems which modulate many fundamental cellular processes including growth, differentiation, morphogenesis and repair. In the nervous system, volume transmission via the extracellular matrix has been added to the list. Lastly, it was discovered that what had previously been regarded as simple connective cells in most tissues proved to be miniature communication devices now known as telocytes. These unusually long, tenuous and sinuous cells utilize elaborate electrical, chemical and epigenetic mechanisms, including the exchange of exosomes, to integrate many activities within and between nearly all types of cells in tissues and organs. Their interrelationship with neural stem cells and neurogenesis in the context of neurodegenerative disease is just beginning to be explored. This review presents an account of precisely how each of these varied mechanisms are relevant and critical to the understanding of what telocytes are and how they function.
Collapse
|
37
|
Li YY, Lu SS, Xu T, Zhang HQ, Li H. Comparative Analysis of Telomerase Activity in CD117⁺ CD34⁺ Cardiac Telocytes with Bone Mesenchymal Stem Cells, Cardiac Fibroblasts and Cardiomyocytes. Chin Med J (Engl) 2016; 128:1942-7. [PMID: 26168836 PMCID: PMC4717931 DOI: 10.4103/0366-6999.160560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: This study characterized the cardiac telocyte (TC) population both in vivo and in vitro, and investigated its telomerase activity related to mitosis. Methods: Using transmission electron microscopy and a phase contrast microscope, the typical morphological features of cardiac TCs were observed; by targeting the cell surface proteins CD117 and CD34, CD117+CD34+ cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture. Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8. Under this conditioned medium, the process of cell division was captured, and the telomerase activity of CD117+CD34+ cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs), cardiac fibroblasts (CFBs), cardiomyocytes (CMs). Results: Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms). In addition, 64% of the primary cultured cardiac TCs were composed of CD117+CD34+ cardiac TCs; which was verified by immunofluorescence. In a live cell imaging system, CD117+CD34+ cardiac TCs were observed to enter into cell division in a short time, followed by an significant invagination forming across the middle of the cell body. Using a real-time quantitative telomeric-repeat amplification assay, the telomerase concentration in CD117+CD34+ cardiac TCs was obviously lower than in BMSCs and CFBs, and significantly higher than in CMs. Conclusions: Cardiac TCs represent a unique cell population and CD117+CD34+ cardiac TCs have relative low telomerase activity that differs from BMSCs, CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Hua Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
38
|
Schwerk A, Altschüler J, Roch M, Gossen M, Winter C, Berg J, Kurtz A, Akyüz L, Steiner B. Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson's disease. Regen Med 2016; 10:431-46. [PMID: 26022763 DOI: 10.2217/rme.15.17] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) are easily harvested, and possess anti-inflammatory and trophic properties. Furthermore, MSC promote neuroprotection and neurogenesis, which could greatly benefit neurodegenerative disorders, such as Parkinson's disease. METHODS MSC were transplanted one week after 6-hydroxydopamine lesioning and effects were evaluated after 6 months. RESULTS MSC localized around the substantia nigra and the arachnoid mater, expressing pericyte and endothelial markers. MSC protected dopamine levels and upregulated peripheral anti-inflammatory cytokines. Furthermore, adipose-derived MSC increased neurogenesis in hippocampal and subventricular regions, and boosted memory functioning. CONCLUSION Considering that hyposmia and loss of memory function are two major nonmotor symptoms in Parkinson's disease, transplants with modulatory effects on the hippocampus and subventricular zone could provide a disease-modifying therapy.
Collapse
Affiliation(s)
- Anne Schwerk
- 1Department of Neurology, Charité University Medicine, Berlin, Germany
| | | | - Manfred Roch
- 2Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Manfred Gossen
- 2Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,3Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow, Germany
| | - Christine Winter
- 4Department of Psychiatry, Technical University Dresden, Germany
| | - Jürgen Berg
- 1Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Andreas Kurtz
- 2Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,3Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow, Germany
| | - Levent Akyüz
- 2Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,6Institute for Medical Immunology, Berlin, Germany
| | - Barbara Steiner
- 1Department of Neurology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
39
|
Bei Y, Zhou Q, Sun Q, Xiao J. Telocytes in cardiac regeneration and repair. Semin Cell Dev Biol 2016; 55:14-21. [PMID: 26826525 DOI: 10.1016/j.semcdb.2016.01.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/24/2016] [Indexed: 02/08/2023]
Abstract
Telocytes (TCs) are a novel type of stromal cells reported by Popescu's group in 2010. The unique feature that distinguishes TCs from other "classical" stromal cells is their extremely long and thin telopodes (Tps). As evidenced by electron microscopy, TCs are widely distributed in almost all tissues and organs. TCs contribute to form a three-dimensional interstitial network and play as active regulators in intercellular communication via homocellular/heterocellular junctions or shed vesicles. Interestingly, increasing evidence suggests the potential role of TCs in regenerative medicine. Although the heart retains some limited endogenous regenerative capacity, cardiac regenerative and repair response is however insufficient to make up the loss of cardiomyocytes upon injury. Developing novel strategies to increase cardiomyocyte renewal and repair is of great importance for the treatment of cardiac diseases. In this review, we focus on the role of TCs in cardiac regeneration and repair. We particularly describe the intercellular communication between TCs and cardiomyocytes, stem/progenitor cells, endothelial cells, and fibroblasts. Also, we discuss the current knowledge about TCs in cardiac repair after myocardial injury, as well as their potential roles in cardiac development and aging. TC-based therapy or TC-derived exosome delivery might be used as novel therapeutic strategies to promote cardiac regeneration and repair.
Collapse
Affiliation(s)
- Yihua Bei
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qiulian Zhou
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qi Sun
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
40
|
Behaviour of telocytes during physiopathological activation. Semin Cell Dev Biol 2016; 55:50-61. [PMID: 26826526 DOI: 10.1016/j.semcdb.2016.01.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 12/30/2022]
Abstract
We consider CD34+ stromal cells/telocytes (CD34+ SC/TCs) in normal and pathological conditions. These cells are involved in organisation and control of the extracellular matrix, structural support, creation of microenvironments, intercellular communication, neurotransmission, immunomodulation and immunosurveillance, inhibition of apoptosis, and control, regulation and source of other cell types. CD34+ SC/TCs are widely reported in the origin of interstitial cells of Cajal and in regeneration in the heart, skeletal muscle, skin, respiratory tree, liver, urinary system and the eye. In addition, we contribute CD34+ SC/TC hyperplasia associated with several processes, including neurogenous hyperplasia (neuroma of the appendix), hyperplasia of Leydig cells in undescended testes (Cryptorchidism), peripheral areas of inflammatory/repair processes (pericicatricial tissue and transitional zones between diseased segments in Crohn's disease and normal bowel), benign tumours (neurofibromas, Antoni-B zones of neurilemmomas, granular cell tumours, and melanocytic nevi) and in some lesions with myxoid, oedematous and degenerative changes (Reinke's oedema, myxomatous mitral valve degeneration, thyroid-associated ophthalmopathy and basophilic degenerative changes of the collagen in the dermis). We pay particular attention to the role of CD34+ SC/TCs during repair through granulation tissue, including morphologic changes, loss of CD34 expression and gain of αSMA expression with myofibroblast transformation, and interactions with pericytes, endothelial and inflammatory cells. Finally, we consider CD34 or αSMA expression in stromal cells of malignant epithelial tumours, and the role of CD34+ SC/TCs in the origin of carcinoma-associated fibroblasts (CAFs) and myofibroblasts. In conclusion, CD34+ SC/TCs play an important role in the maintenance and modulation of tissue homeostasis and in morphogenesis/renewal/repair.
Collapse
|
41
|
Faussone-Pellegrini MS, Gherghiceanu M. Telocyte's contacts. Semin Cell Dev Biol 2016; 55:3-8. [PMID: 26826524 DOI: 10.1016/j.semcdb.2016.01.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/24/2016] [Indexed: 12/27/2022]
Abstract
Telocytes (TC) are an interstitial cell type located in the connective tissue of many organs of humans and laboratory mammals. By means of homocellular contacts, TC build a scaffold whose meshes integrity and continuity are guaranteed by those contacts having a mechanical function; those contacts acting as sites of intercellular communication allow exchanging information and spreading signals. Heterocellular contacts between TC and a great variety of cell types give origin to mixed networks. TC, by means of all these types of contacts, their interaction with the extracellular matrix and their vicinity to nerve endings, are part of an integrated system playing tissue/organ-specific roles.
Collapse
Affiliation(s)
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology, 'Victor Babeș' National Institute of Pathology,99-101 Spl. Independentei, 050096, Bucharest, Romania.
| |
Collapse
|
42
|
Immunohistochemistry of Telocytes in the Uterus and Fallopian Tubes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 913:335-357. [PMID: 27796898 DOI: 10.1007/978-981-10-1061-3_22] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The seminal work of Popescu and colleagues first demonstrated the existence of a new cell type - the telocytes. We were among the first who reported the presence of such cells in the female genital tract and performed TEM examinations, as well as immunohistochemical staining in the attempt to find a specific marker. Telocytes from rat and from the human uterus and from human fallopian tube were extensively investigated initially by comparison with interstitial cells of Cajal. Progress in telocyte research led to the identification of different subtypes suggestive for a heterogeneous telocyte population which can even coexist in the same location. As a consequence, the functions of TCs are still elusive and can be considered a versatile phenomenon that depends on a variety of conditions, including signal reception and transmission of information via extracellular vesicles or by direct intercellular contact.
Collapse
|
43
|
Juxtacerebral Tissue Regeneration Potential: Telocytes Contribution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 913:397-402. [PMID: 27796901 DOI: 10.1007/978-981-10-1061-3_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is well proved already that neurogenesis does take place in mammals' brain, including human brain. However, neurogenesis by itself is not able to compensate for brain tissue loss in serious neurological diseases, such as stroke, brain trauma or neurodegenerative disorders. Recent evidences show that neural stem cell niches are present not only in classical locations, such as subventricularor subgranular zones, but in other areas as well, including tissues contiguous to the brain (meninges and choroid plexus).In this chapter we revise the relationship of neural stem cells with interstitial cells (mainly telocytes), which we think is significant, and we describe what is known about the juxtacerebral tissue neurogenesis potential.
Collapse
|
44
|
Wang J, Jin M, Ma WH, Zhu Z, Wang X. The History of Telocyte Discovery and Understanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 913:1-21. [PMID: 27796877 DOI: 10.1007/978-981-10-1061-3_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Telocytes (TCs) are identified as a peculiar cell type of interstitial cells in various organs. The typical features of TCs from the other cells are the extending cellular process as telopodes with alternation of podomeres and podoms. Before the year of 2010, TCs were considered as interstitial Cajal-like cells because of the similar morphology and immunohistochemical features with interstitial cells of Cajal which were found more than 100 years ago and considered to be pacemakers for gut motility. Subsequently, it demonstrated that TCs were not Cajal-like cells, and thus the new name "telocyte" was proposed in 2010. With the help of different techniques, e.g., transmission electron microscopy, immunohistochemistry, or omics science, TCs have been detected in various tissues and organs from different species. The pathological role of TCs in different diseases was also studied. According to observation in situ or in vitro, TCs played a vital role in mechanical support, signaling transduction, tissue renewal or repair, immune surveillance, and mechanical sensor via establishing homo- or heterogenous junctions with neighboring cells to form 3D network or release extracellular vesicles to form juxtacrine and paracrine. This review will introduce the origin, distribution, morphology, functions, omics science, methods, and interaction of TCs with other cells and provide a better understanding of the new cell type.
Collapse
Affiliation(s)
- Jian Wang
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Clinical Science Institute of Fudan University Zhongshan Hospital, Shanghai, China
| | - Meiling Jin
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Clinical Science Institute of Fudan University Zhongshan Hospital, Shanghai, China
| | - Wen-Huan Ma
- Zhabei District Hospital of Traditional Chinese Medicine, Yanchang Middle Road No. 288, Jingan District, Shanghai, China
| | - Zhitu Zhu
- Jinzhou Hospital of Liaoning Medical College, Jinzhou, China.
| | - Xiangdong Wang
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Clinical Science Institute of Fudan University Zhongshan Hospital, Shanghai, China.
| |
Collapse
|
45
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, Díaz-Flores L, Valladares F, Rancel N, Sáez FJ, Madrid JF. Telocyte Behaviour During Inflammation, Repair and Tumour Stroma Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 913:177-191. [PMID: 27796888 DOI: 10.1007/978-981-10-1061-3_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this chapter, we outline the role of human CD34+ stromal cells/telocytes (CD34+ SC/TCs) as progenitor cells during repair. The in vivo activation phenomena of CD34+ SC/TCs in this process include increased size; separation from the neighbouring structures (mainly of the vascular walls); association with inflammatory cells, predominantly macrophages; development of the organelles of synthesis (rough endoplasmic reticulum and Golgi apparatus); cell proliferation with presence of mitosis and high proliferative index (transit-amplifying cells); and fibroblastic and myofibroblastic differentiation. A procedure to study these tissue-resident cells, comparison of their behaviour in vivo and in vitro and different behaviour depending on location, time, type of injury (including tumour stroma) and greater or lesser proximity to the injury are also considered.
Collapse
Affiliation(s)
- L Díaz-Flores
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain.
| | - R Gutiérrez
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - M González-Gómez
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - L Díaz-Flores
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - F Valladares
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - N Rancel
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - F J Sáez
- Department of Cell Biology and Histology, UFI11/44, School of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - J F Madrid
- Department of Cell Biology and Histology, School of Medicine, Regional Campus of International Excellence, "Campus Mare Nostrum" University of Murcia, Murcia, Spain
| |
Collapse
|
46
|
Abstract
Telocytes (TCs) are a novel type of interstitial cells, with extremely long and thin cellular prolongations termed telopodes (Tps). TCs were first identified by Popescu et al. and described their finding as "cells with telopodes." The presence of TCs has been reported in the majority of tissues and organs (for details please visit www.telocytes.com ). TCs have been ignored or overlooked for a long time due to our inability to observe these cells via a light microscopy. TCs represent a distinct cell population, different from other types of interstitial cells, based on their distinct (ultra)structure, immunophenotype, microRNA profile, gene feature, proteome signature, and secretome features. As TCs have been suggested as new cellular targets for forthcoming therapies, developing specific methods to modulate TC numbers represents an important objective.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| |
Collapse
|
47
|
Yang XJ. Telocytes in Inflammatory Gynaecologic Diseases and Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 913:263-285. [PMID: 27796894 DOI: 10.1007/978-981-10-1061-3_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Women suffered with inflammatory gynecologic diseases, such as endometriosis (EMs) and acute salpingitis (AS) often complained of sub- or infertility, even in those women without obvious macroscopic anatomical pelvic abnormalities also have unexplained infertility. Generally, besides the well-known impairment of classically described oviduct cells caused by inflammatory diseases, such as the ciliated cells, fibroblasts and myofibroblasts, the involvement of the newly identified telocytes (TCs) in disease-affected oviduct tissues and potential pathophysiological roles in fertility problems remain unknown. In this chapter, TCs was investigated in rat model of EMs- and AS-affected oviduct tissues. Results showed inflammation and ischaemia-induced extensive ultrastructural damages of TCs both in cellular body and prolongations, with obvious TCs loss and interstitial fibrotic remodelling. Such in vivo pathological alterations might contribute to structural and functional abnormalities of oviduct tissue and potentially engaged in sub- or infertility. And especially, TCs connected to various activated immunocytes in both normal and diseased tissues, thus might participate in local immunoregulation (either repression or activation) and serve a possible explanation for immune-mediated pregnancy failure. Then, in vitro cell co-culture study showed that uterine TC conditioned media (TCM) can activate mouse peritoneal macrophages and subsequently trigger its cytokine secretion, thus providepreliminary evidence that, TCs are not simply innocent bystanders, but are instead potential functional players in local immunoregulatory and immunosurveillance.
Collapse
Affiliation(s)
- Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou City, Jiangsu Province, 215006, People's Republic of China.
| |
Collapse
|
48
|
Chi C, Jiang XJ, Su L, Shen ZJ, Yang XJ. In vitro morphology, viability and cytokine secretion of uterine telocyte-activated mouse peritoneal macrophages. J Cell Mol Med 2015; 19:2741-2750. [PMID: 26471943 PMCID: PMC4687714 DOI: 10.1111/jcmm.12711] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/01/2015] [Indexed: 12/21/2022] Open
Abstract
Telocytes (TCs), a distinct interstitial cell population, have been identified in the uterus, oviduct and placenta, with multiple proposed potential biological functions. Their unique structure allows them to form intercellular junctions with various immunocytes, both in normal and diseased tissues, suggesting a potential functional relationship with the local immune response. It has been hypothesized that through direct heterocellular junctions or indirect paracrine effects, TCs influence the activity of local immunocytes that are involved in the inflammatory process and in immune-mediated reproductive abnormalities. However, no reliable cytological evidence for this hypothesis is currently available. In this study, we cultured primary murine uterine TCs and collected TC conditioned media (TCM). Mouse peritoneal macrophages (pMACs) were co-cultured for 48 hrs with TCM or with DMEM/F12 or lipopolysaccharide (LPS) as negative and positive controls, respectively. Normal uterine TCs with a typical structure and a CD-34-positive/vimentin-positive/c-kit-negative immunophenotype were observed during culture. Morphologically, TCM-treated pMACs displayed an obvious activation/immunoresponse, in contrast to over-stimulation and cell death after LPS treatment and no sign of activation in the presence of DMEM/F12. Accordingly, a cell counting kit 8 (CCK-8) assay indicated significant activation of pMACs by TCM and LPS compared to DMEM/F12, thus supporting the marked morphological differences among these groups of cells. Furthermore, within a panel of macrophage-derived cytokines/enzymes, interleukin-6 (IL-6) and inducible nitric oxide synthase were significantly elevated in TCM-treated pMACs; tumour necrosis factor α, IL1-R1, and IL-10 were slightly, but significantly, up-regulated; and no changes were observed for transforming growth factor-β1, IL-1β, IL-23α and IL-18. Our results indicate that TCs are not simply innocent bystanders but are rather functional players in the activation of pMACs; they trigger and maintain the immune response, likely through indirect paracrine effects. Thus, we provide preliminary in vitro evidence of immunoregulatory and immunosurveillance roles for TCs.
Collapse
Affiliation(s)
- Chi Chi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou city, Jiangsu province, China
| | - Xiao-Juan Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou city, Jiangsu province, China
| | - Lei Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou city, Jiangsu province, China
| | - Zong-Ji Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou city, Jiangsu province, China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou city, Jiangsu province, China
| |
Collapse
|
49
|
Yang P, Liu Y, Ahmed N, Ullah S, Liu YI, Chen Q. Ultrastructural identification of telocytes in the muscularis of chicken ileum. Exp Ther Med 2015; 10:2325-2330. [PMID: 26668636 DOI: 10.3892/etm.2015.2841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 09/24/2015] [Indexed: 12/23/2022] Open
Abstract
Telocytes (TCs) are a specialized type of interstitial cells, characterized by a small cell body and long, thin processes, that have recently been identified in various cavitary and non-cavitary organs of humans and laboratory mammals. Chickens present significant economical and scientific notability; however, ultrastructural identification of TCs remains unclear in birds. The aim of the present study was to describe electron microscopic evidence for the presence of TCs in the chicken gut. The ileum of healthy adult broiler chickens (n=10) was studied by transmission electron microscopy. TCs are characterized by several, long (tens to hundreds of µm) prolongations called telopodes (Tps). Tps, which are below the resolving power of light microscopy, display podomeres (thin segments of ≤0.2 µm) and podoms (dilations accommodating caveolae, mitochondria and endoplasmic reticulum). TCs were observed in every field, but were predominantly located in the myenteric plexus and the lamina propria. Tps frequently establish close spatial relationships with immune cells, blood vessels and nerve endings. On the basis of their distribution and morphology, it was hypothesized that the different locations of TCs may be associated with different roles.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Ya'an Liu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Nisar Ahmed
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Shakeeb Ullah
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Y I Liu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Qiusheng Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
50
|
Zhu Y, Zheng M, Song D, Ye L, Wang X. Global comparison of chromosome X genes of pulmonary telocytes with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes. J Transl Med 2015; 13:318. [PMID: 26416664 PMCID: PMC4587873 DOI: 10.1186/s12967-015-0669-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/11/2015] [Indexed: 02/05/2023] Open
Abstract
Background Telocytes (TCs) are suggested as a new type of interstitial cells with specific telopodes. Our previous study evidenced that TCs differed from fibroblasts and stem cells at the aspect of gene expression profiles. The present study aims to search the characters and patterns of chromosome X genes of TC-specific or TC-dominated gene profiles and fingerprints, investigate the network of principle genes, and explore potential functional association. Methods We compared gene expression profiles in chromosome X of pulmonary TCs with mesenchymal stem cells (MSC), fibroblasts (Fb), alveolar type II cells (ATII), airway basal cells (ABC), proximal airway cells (PAC), CD8+ T cells come from bronchial lymph nodes (T-BL), or CD8+ T cells from lungs (T-L) by global analyses, and selected the genes which were consistently up or down regulated (>1 fold) in TCs compared to other cells as TC-specific genes. The functional and characteristic networks were identified and compared by bioinformatics tools. Results We selected 31 chromosome X genes as the TC-specific or dominated genes, among which 8 up-regulated (Flna, Msn, Cfp, Col4a5, Mum1l1, Rnf128, Syn1, and Srpx2) and 23 down-regulated (Abcb7, Atf1, Ddx26b, Drp2, Fam122b, Gyk, Irak1, Lamp2, Mecp2, Ndufb11, Ogt, Pdha1, Pola1, Rab9, Rbmx2, Rhox9, Thoc2, Vbp1, Dkc1, Nkrf, Piga, Tmlhe and Tsr2), as compared with other cells. Conclusions Our data suggested that gene expressions of chromosome X in TCs are different with those in other cells in the lung tissue. According to the selected TC-specific genes, we infer that pulmonary TCs function as modulators which may enhance cellular growth and migration, resist senescence, protect cells from external stress, regulate immune responses, participate in tissue remodeling and repair, regulate neural function, and promote vessel formation. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0669-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yichun Zhu
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Bioinformatics, Fudan University, Shanghai, China.
| | - Minghuan Zheng
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Bioinformatics, Fudan University, Shanghai, China.
| | - Dongli Song
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Bioinformatics, Fudan University, Shanghai, China.
| | - Ling Ye
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Bioinformatics, Fudan University, Shanghai, China.
| | - Xiangdong Wang
- Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Bioinformatics, Fudan University, Shanghai, China.
| |
Collapse
|