1
|
Yang WL, Zhang WF, Wang Y, Lou Y, Cai Y, Zhu J. Origin recognition complex 6 overexpression promotes growth of glioma cells. Cell Death Dis 2024; 15:485. [PMID: 38971772 PMCID: PMC11227543 DOI: 10.1038/s41419-024-06764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 07/08/2024]
Abstract
The discovery of novel oncotargets for glioma is of immense significance. We here explored the expression patterns, biological functions, and underlying mechanisms associated with ORC6 (origin recognition complex 6) in glioma. Through the bioinformatics analyses, we found a significant increase in ORC6 expression within human glioma tissues, correlating with poorer overall survival, higher tumor grade, and wild-type isocitrate dehydrogenase status. Additionally, ORC6 overexpression is detected in glioma tissues obtained from locally-treated patients and across various primary/established glioma cells. Further bioinformatics scrutiny revealed that genes co-expressed with ORC6 are enriched in multiple signaling cascades linked to cancer. In primary and immortalized (A172) glioma cells, depleting ORC6 using specific shRNA or Cas9-sgRNA knockout (KO) significantly decreased cell viability and proliferation, disrupted cell cycle progression and mobility, and triggered apoptosis. Conversely, enhancing ORC6 expression via a lentiviral construct augmented malignant behaviors in human glioma cells. ORC6 emerged as a crucial regulator for the expression of key oncogenic genes, including Cyclin A2, Cyclin B2, and DNA topoisomerase II (TOP2A), within glioma cells. Silencing or KO of ORC6 reduced the mRNA and protein levels of these genes, while overexpression of ORC6 increased their expression in primary glioma cells. Bioinformatics analyses further identified RBPJ as a potential transcription factor of ORC6. RBPJ shRNA decreased ORC6 expression in primary glioma cells, while its overexpression increased it. Additionally, significantly enhanced binding between the RBPJ protein and the proposed ORC6 promoter region was detected in glioma tissues and cells. In vivo experiments demonstrated a significant reduction in the growth of patient-derived glioma xenografts in the mouse brain subsequent to ORC6 KO. ORC6 depletion, inhibited proliferation, decreased expression of Cyclin A2/B2/TOP2A, and increased apoptosis were detected within these ORC6 KO intracranial glioma xenografts. Altogether, RBPJ-driven ORC6 overexpression promotes glioma cell growth, underscoring its significance as a promising therapeutic target.
Collapse
Affiliation(s)
- Wen-Lei Yang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Feng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Wang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yue Lou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Cai
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Sharma NK, Bahot A, Sekar G, Bansode M, Khunteta K, Sonar PV, Hebale A, Salokhe V, Sinha BK. Understanding Cancer's Defense against Topoisomerase-Active Drugs: A Comprehensive Review. Cancers (Basel) 2024; 16:680. [PMID: 38398072 PMCID: PMC10886629 DOI: 10.3390/cancers16040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness are among the several key contributing molecular and cellular response mechanisms. Topo-active drugs, e.g., doxorubicin and topotecan, are clinically active and are utilized extensively against a wide variety of human tumors and often result in the development of resistance and failure to therapy. Thus, there is an urgent need for an incremental and comprehensive understanding of mechanisms of cancer drug resistance specifically in the context of topo-active drugs. This review delves into the intricate mechanistic aspects of these intracellular and extracellular topo-active drug resistance mechanisms and explores the use of potential combinatorial approaches by utilizing various topo-active drugs and inhibitors of pathways involved in drug resistance. We believe that this review will help guide basic scientists, pre-clinicians, clinicians, and policymakers toward holistic and interdisciplinary strategies that transcend resistance, renewing optimism in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Anjali Bahot
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Gopinath Sekar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Mahima Bansode
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Kratika Khunteta
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Priyanka Vijay Sonar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Ameya Hebale
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Vaishnavi Salokhe
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Birandra Kumar Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
3
|
Chen J, Chen Y, Zheng D, Pang P, Lu J, Zheng X. Pretreatment MR-Based Radiomics Signature as Potential Imaging Biomarker for Assessing the Expression of Topoisomerase II alpha (TOPO-IIα) in Rectal Cancer. J Magn Reson Imaging 2019; 51:1881-1889. [PMID: 31675149 DOI: 10.1002/jmri.26972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Rectal cancer (RC) is one of the most common cancers throughout the world. Chemotherapy or neoadjuvant chemotherapy play an important role in the treatment of advanced RC. Whether to add topoisomerase inhibitor to individualized chemotherapy is a puzzling question for clinicians. PURPOSE To investigate whether pretreatment MR-based radiomics signature can assess the expression of topoisomerase II alpha (TOPO-IIα) in RC. STUDY TYPE Retrospective. POPULATION In all, 122 patients with RC. Field Strength/Sequence: Pretreatment 3.0T; T2 WI turbo spin echo (TSE) sequence. ASSESSMENT A training group (n = 85) and a test group (n = 37) with pathologically confirmed RC. Patients underwent TOPO-IIα expression. A total of 180 radiomics features were extracted from oblique axial T2 WI TSE images of the entire primary tumor. The least absolute shrinkage and selection operator (LASSO) regression model was used to reduce the dimension of the data and select the features. STATISTICAL TESTS The assessment models were established by multivariable logistic regression analysis. The performance of the model was assessed by the receiver operating characteristic (ROC) curve, nomogram, and calibration. RESULTS The radiomics signature, which consisted of 10 selected optimal features, was significantly associated with TOPO-IIα expression (P < 0.01 for both training and test groups). The area under the curve (AUC), the sensitivity, and the specificity for assessing TOPO-IIα expression, were 0.859, 0.872, and 0.739, respectively, in the training group, while they were 0.762, 0.941, and 0.600 in the test group. The nomogram model of the radiomics signature (Rad-score) had good calibration. Calibration curves were plotted to assess the calibration of the radiomics nomogram that was accompanied with the Hosmer-Lemeshow test (P = 0.52). DATA CONCLUSION The proposed pretreatment MR-based radiomics signature was associated with TOPO-IIα expression. A radiomics nomogram might be helpful in the individualized assessment of TOPO-IIα expression in patients with RC. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:1881-1889.
Collapse
Affiliation(s)
- Jiayou Chen
- Department of Radiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Ying Chen
- Department of Radiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Dechun Zheng
- Department of Radiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | | | - Jianping Lu
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Xiang Zheng
- Department of Radiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Conjugation with polyamines enhances the antitumor activity of naphthoquinones against human glioblastoma cells. Anticancer Drugs 2019; 29:520-529. [PMID: 29561308 DOI: 10.1097/cad.0000000000000619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiform (GBM) is the most common and devastating type of primary brain tumor, being considered the deadliest of human cancers. In this context, extensive efforts have been undertaken to develop new drugs that exhibit both antiproliferation and antimetastasis effects on GBM. 1,4-Naphthoquinone (1,4-NQ) scaffold has been found in compounds able to inhibit important biological targets associated with cancer, which includes DNA topoisomerase, Hsp90 and monoamine oxidase. Among potential antineoplastic 1,4-NQs is the plant-derived lapachol (2-hydroxy-3-prenyl-1,4-naphthoquinone) that was found to be active against the Walker-256 carcinoma and Yoshida sarcoma. In the present study, we examined the effect of polyamine (PA)-conjugated derivatives of lapachol, nor-lapachol and lawsone on the growth and invasion of the human GBM cells. The conjugation with PA (a spermidine analog) resulted in dose-dependent and time-dependent increase of cytotoxicity of the 1,4-NQs. In addition, in-vitro inhibition of GBM cell invasion by lapachol was increased upon PA conjugation. Previous biochemical experiments indicated that these PA-1,4-NQs are capable of inhibiting DNA human topoisomerase II-α (topo2α), a major enzyme involved in maintaining DNA topology. Herein, we applied molecular docking to investigate the binding of PA-1,4-NQs to the ATPase site of topo2α. The most active molecules preferentially bind at the ATP-binding site of topo2α, which is energetically favored by the conjugation with PA. Taken together, these findings suggested that the PA-1,4-NQ conjugates might represent potential molecules in the development of new drugs in chemotherapy for malignant brain tumors.
Collapse
|
5
|
Li Q, Chang Y, Mu L, Song Y. MicroRNA-9 enhances chemotherapy sensitivity of glioma to TMZ by suppressing TOPO II via the NF-κB signaling pathway. Oncol Lett 2019; 17:4819-4826. [PMID: 31186688 PMCID: PMC6507329 DOI: 10.3892/ol.2019.10158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/08/2019] [Indexed: 01/13/2023] Open
Abstract
Glioma is the most common primary tumor of the central nervous system (CNS) that develops chemotherapy resistance. The microRNA (miRNA) miR-9 is a tissue-specific miRNA of the CNS that may serve a key role in the modulation of chemotherapy sensitivity. The aim of the present study was to investigate the effect of miR-9 on glioma chemotherapy sensitivity by altering the expression of miR-9 in U251 glioma cells by viral transfection and subsequently treating with gradient concentrations of temozolomide (TMZ). Cell viability, apoptosis and the cell cycle were examined, and drug resistance genes were analyzed by western blotting. The role of nuclear factor κB (NF-κB) in this regulation was also examined. The results revealed that the susceptibility of glioma cells to TMZ was enhanced by miR-9 overexpression. When miR-9 and TMZ were applied together, the apoptotic rate and percentage of cells arrested at the G2/M stage were significantly higher compared with either treatment alone. Topoisomerase II expression was suppressed by miR-9 via the NF-κB signaling pathway, which may be responsible for the sensitization. The results of the present study suggested that miR-9 may be a potential target for glioma chemotherapy.
Collapse
Affiliation(s)
- Qingla Li
- Second Department of Minimal Invasive Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yingnan Chang
- First Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Luyan Mu
- Second Department of Minimal Invasive Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuwen Song
- Second Department of Minimal Invasive Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
6
|
Song J, Ma Q, Hu M, Qian D, Wang B, He N. The Inhibition of miR-144-3p on Cell Proliferation and Metastasis by Targeting TOP2A in HCMV-Positive Glioblastoma Cells. Molecules 2018; 23:molecules23123259. [PMID: 30544723 PMCID: PMC6320803 DOI: 10.3390/molecules23123259] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM), the most common type of primary tumor in the central nervous system, is a very aggressive brain tumor with poor prognosis and a high recurrence rate. Increasing evidence suggests that human cytomegalovirus (HCMV) infection is related to GBM and leads to GBM cell growth and metastasis. MicroRNAs are important regulators in the growth and metastasis of glioblastoma. This study aimed to demonstrate the role of miR-144-3p in HCMV-positive glioblastoma. We found that, after HCMV infection, the expression of miR-144-3p decreased, whereas the expression of TOP2A increased. Bioinformatics analyses indicated that miR-144-3p directly targets the TOP2A 3'-UTR (Untranslated Region). We discovered that the overexpression of miR-144-3p downregulated the overexpression of TOP2A and inhibited the proliferation, clone formation, and invasion of HCMV-positive glioma in vitro. Taken together, these results show that miR-144-3p inhibited growth and promoted apoptosis in glioma cells by targeting TOP2A.
Collapse
Affiliation(s)
- Jingyi Song
- School of Basic Medical Sciences, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Qingxia Ma
- School of Basic Medical Sciences, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Ming Hu
- School of Basic Medical Sciences, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Dongmeng Qian
- School of Basic Medical Sciences, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Bin Wang
- School of Basic Medical Sciences, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| | - Ningning He
- School of Basic Medical Sciences, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
| |
Collapse
|
7
|
Vastrad C, Vastrad B. Bioinformatics analysis of gene expression profiles to diagnose crucial and novel genes in glioblastoma multiform. Pathol Res Pract 2018; 214:1395-1461. [PMID: 30097214 DOI: 10.1016/j.prp.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
Therefore, the current study aimed to diagnose the genes associated in the pathogenesis of GBM. The differentially expressed genes (DEGs) were diagnosed using the limma software package. The ToppFun was used to perform pathway and Gene Ontology (GO) enrichment analysis of the DEGs. Protein-protein interaction (PPI) networks, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network were used to obtain insight into the actions of DEGs. Survival analysis for DEGs carried out. A total of 701 DEGs, including 413 upregulated and 288 downregulated genes, were diagnosed between U1118MG cell line (PK 11195 treated with 1 h exposure) and U1118MG cell line (PK 11195 treated with 24 h exposure). The up-regulated genes were enriched in superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis, cell cycle, cell cycle process and chromosome. The down-regulated genes were enriched in folate transformations I, biosynthesis of amino acids, cellular amino acid metabolic process and vacuolar membrane. The current study screened the genes in PPI network, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network with higher degrees as hub genes, which included MYC, TERF2IP, CDK1, EEF1G, TXNIP, SLC1A5, RGS4 and IER5L Survival suggested that low expressed NR4A2, SLC7 A5, CYR61 and ID1 in patients with GBM was linked with a positive prognosis for overall survival. In conclusion, the current study could improve our understanding of the molecular mechanisms in the progression of GBM, and these crucial as well as new molecular markers might be used as therapeutic targets for GBM.
Collapse
Affiliation(s)
- Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karanataka, India.
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET`S College of Pharmacy, Dharwad, Karnataka, 580002, India
| |
Collapse
|
8
|
Gravina GL, Mancini A, Mattei C, Vitale F, Marampon F, Colapietro A, Rossi G, Ventura L, Vetuschi A, Di Cesare E, Fox JA, Festuccia C. Enhancement of radiosensitivity by the novel anticancer quinolone derivative vosaroxin in preclinical glioblastoma models. Oncotarget 2018; 8:29865-29886. [PMID: 28415741 PMCID: PMC5444710 DOI: 10.18632/oncotarget.16168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/03/2017] [Indexed: 12/24/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) is the most aggressive brain tumor. The activity of vosaroxin, a first-in-class anticancer quinolone derivative that intercalates DNA and inhibits topoisomerase II, was investigated in GBM preclinical models as a single agent and combined with radiotherapy (RT). Results Vosaroxin showed antitumor activity in clonogenic survival assays, with IC50 of 10−100 nM, and demonstrated radiosensitization. Combined treatments exhibited significantly higher γH2Ax levels compared with controls. In xenograft models, vosaroxin reduced tumor growth and showed enhanced activity with RT; vosaroxin/RT combined was more effective than temozolomide/RT. Vosaroxin/RT triggered rapid and massive cell death with characteristics of necrosis. A minor proportion of treated cells underwent caspase-dependent apoptosis, in agreement with in vitro results. Vosaroxin/RT inhibited RT-induced autophagy, increasing necrosis. This was associated with increased recruitment of granulocytes, monocytes, and undifferentiated bone marrow–derived lymphoid cells. Pharmacokinetic analyses revealed adequate blood-brain penetration of vosaroxin. Vosaroxin/RT increased disease-free survival (DFS) and overall survival (OS) significantly compared with RT, vosaroxin alone, temozolomide, and temozolomide/RT in the U251-luciferase orthotopic model. Materials and Methods Cellular, molecular, and antiproliferative effects of vosaroxin alone or combined with RT were evaluated in 13 GBM cell lines. Tumor growth delay was determined in U87MG, U251, and T98G xenograft mouse models. (DFS) and (OS) were assessed in orthotopic intrabrain models using luciferase-transfected U251 cells by bioluminescence and magnetic resonance imaging. Conclusions Vosaroxin demonstrated significant activity in vitro and in vivo in GBM models, and showed additive/synergistic activity when combined with RT in O6-methylguanine methyltransferase-negative and -positive cell lines.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Claudia Mattei
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Neurosciences, University of L'Aquila, L'Aquila, Italy
| | - Flora Vitale
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Neurosciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Giulia Rossi
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Luca Ventura
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Neurosciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, Chair of Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L'Aquila, L'Aquila, Italy
| | - Judith A Fox
- Sunesis Pharmaceuticals Inc., South San Francisco, CA, USA
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
9
|
Mallik MK. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network. J Theor Biol 2018; 438:78-91. [DOI: 10.1016/j.jtbi.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/12/2017] [Accepted: 11/02/2017] [Indexed: 01/22/2023]
|
10
|
DNA topoisomerase IIα and mitosin expression predict meningioma recurrence better than histopathological grade and MIB-1 after initial surgery. PLoS One 2017; 12:e0172316. [PMID: 28301542 PMCID: PMC5354255 DOI: 10.1371/journal.pone.0172316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/02/2017] [Indexed: 01/27/2023] Open
Abstract
Background The 2016 WHO histopathological grade or conventional biomarker MIB-1 is insufficient for predicting meningioma recurrence after initial treatment and alternative strategies are required. In this study, we investigated whether DNA topoisomerase IIα and/or mitosin expression can predict tumor recurrence with greater accuracy than conventional methods. Methods The expression of MIB-1, topoisomerase IIα, and mitosin were determined as proliferation indices in tissue microarrays using immunohistochemistry. The accuracy of prognostication was assessed with receiver operating characteristic (ROC) analyses and standard survival analyses. Results Expression of topoisomerase IIα and mitosin was significantly higher in recurrent meningioma than in non-recurrent meningioma (P ≤ 0.031), but no difference in MIB-1 expression was observed (P = 0.854). ROC analysis found topoisomerase IIα and mitosin expression to be the most reliable predictors of recurrence compared to WHO histopathological grade and MIB-1 expression. This result was supported by the multivariate survival analysis, in which mitosin expression was a significant predictor of recurrence-free survival (P < 0.001) and no association was found with histopathological grade or MIB-1 expression (P ≥ 0.158). Conclusions The results suggest that topoisomerase IIα and mitosin improve prognostication of patients resected for meningioma. Tumors with higher topoisomerase IIα and/or mitosin expression have a higher risk of recurrence after initial treatment, and these patients may benefit from adjuvant treatment and closer radiological follow-up.
Collapse
|
11
|
Varughese RK, Skjulsvik AJ, Torp SH. Prognostic value of survivin and DNA topoisomerase IIα in diffuse and anaplastic astrocytomas. Pathol Res Pract 2017; 213:339-347. [PMID: 28214203 DOI: 10.1016/j.prp.2017.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 12/30/2022]
Abstract
Distinguishing WHO grade II astrocytomas from grade III is a difficult task. This study looks into the potential prognostic use of mitotic activity and the proliferation markers Ki67/MiB-1 (Ki67), survivin and DNA topoisomerase IIα (TIIα) in 59 WHO grade II diffuse astrocytomas (DA) and 33 WHO grade III anaplastic astrocytomas (AA), IDH1 R132H-mutated and not otherwise specified (NOS) by means of immunohistochemistry. All proliferation markers showed higher expression in AA compared with DA. Only Ki67 had significantly greater expression in astrocytomas, NOS vs. astrocytomas, IDH1-mutated. Uni-/multivariable COX-regression analyses showed that greater expression of both survivin and TIIα were associated with poorer survival when stratified for IDH1-mutation status and, additionally, achieved hazard rates surpassing clinically established prognostic factors such as age and WHO performance status. Ki67 achieved only statistical significance in univariable analyses, whereas mitoses did not reveal any relation to survival. IDH1-mutated astrocytomas had significantly better survival than astrocytomas, NOS. Among IDH1-mutated astrocytomas no significant difference in survival was shown between DA and AA. Our findings suggest a potential usefulness of proliferation markers in the prognostic setting of astrocytomas independent of IDH1-mutation status, and survivin and TIIα are potential candidates in that regard.
Collapse
Affiliation(s)
- R K Varughese
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - A J Skjulsvik
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Pathology and Medical Genetics, St Olavs Hospital, Trondheim, Norway
| | - S H Torp
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Pathology and Medical Genetics, St Olavs Hospital, Trondheim, Norway
| |
Collapse
|
12
|
Fazi B, Felsani A, Grassi L, Moles A, D'Andrea D, Toschi N, Sicari D, De Bonis P, Anile C, Guerrisi MG, Luca E, Farace MG, Maira G, Ciafré SA, Mangiola A. The transcriptome and miRNome profiling of glioblastoma tissues and peritumoral regions highlights molecular pathways shared by tumors and surrounding areas and reveals differences between short-term and long-term survivors. Oncotarget 2016; 6:22526-52. [PMID: 26188123 PMCID: PMC4673180 DOI: 10.18632/oncotarget.4151] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/18/2015] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and deadliest primary brain tumor, driving patients to death within 15 months after diagnosis (short term survivors, ST), with the exception of a small fraction of patients (long term survivors, LT) surviving longer than 36 months. Here we present deep sequencing data showing that peritumoral (P) areas differ from healthy white matter, but share with their respective frankly tumoral (C) samples, a number of mRNAs and microRNAs representative of extracellular matrix remodeling, TGFβ and signaling, of the involvement of cell types different from tumor cells but contributing to tumor growth, such as microglia or reactive astrocytes. Moreover, we provide evidence about RNAs differentially expressed in ST vs LT samples, suggesting the contribution of TGF-β signaling in this distinction too. We also show that the edited form of miR-376c-3p is reduced in C vs P samples and in ST tumors compared to LT ones. As a whole, our study provides new insights into the still puzzling distinction between ST and LT tumors, and sheds new light onto that "grey" zone represented by the area surrounding the tumor, which we show to be characterized by the expression of several molecules shared with the proper tumor mass.
Collapse
Affiliation(s)
- Barbara Fazi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Armando Felsani
- CNR, Institute of Cell Biology and Neurobiology, Rome, Italy.,Genomnia srl, Lainate, Milan, Italy
| | - Luigi Grassi
- Department of Physics, University of Rome "La Sapienza", Rome, Italy
| | - Anna Moles
- CNR, Institute of Cell Biology and Neurobiology, Rome, Italy.,Genomnia srl, Lainate, Milan, Italy
| | - Daniel D'Andrea
- Department of Physics, University of Rome "La Sapienza", Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Daria Sicari
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Pasquale De Bonis
- Department of Head and Neck, Institute of Neurosurgery, Catholic University of Sacred Heart, Rome, Italy.,Neurosurgery, Ferrara University Hospital S. Anna, Cona di Ferrara, Ferrara, Italy
| | - Carmelo Anile
- Department of Head and Neck, Institute of Neurosurgery, Catholic University of Sacred Heart, Rome, Italy
| | | | - Emilia Luca
- Institute of Anatomic Pathology, University Hospital "A. Gemelli", Catholic University of Sacred Heart, Rome, Italy
| | - Maria Giulia Farace
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giulio Maira
- Department of Head and Neck, Institute of Neurosurgery, Catholic University of Sacred Heart, Rome, Italy
| | - Silvia Anna Ciafré
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Annunziato Mangiola
- Department of Head and Neck, Institute of Neurosurgery, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
13
|
Liu J, Qu CB, Xue YX, Li Z, Wang P, Liu YH. MiR-143 enhances the antitumor activity of shikonin by targeting BAG3 expression in human glioblastoma stem cells. Biochem Biophys Res Commun 2015; 468:105-12. [DOI: 10.1016/j.bbrc.2015.10.153] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
|
14
|
Ali Y, Abd Hamid S. Human topoisomerase II alpha as a prognostic biomarker in cancer chemotherapy. Tumour Biol 2015; 37:47-55. [DOI: 10.1007/s13277-015-4270-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022] Open
|
15
|
Liu J, Wang P, Xue YX, Li Z, Qu CB, Liu YH. Enhanced antitumor effect of shikonin by inhibiting Endoplasmic Reticulum Stress via JNK/c-Jun pathway in human glioblastoma stem cells. Biochem Biophys Res Commun 2015; 466:103-10. [PMID: 26321663 DOI: 10.1016/j.bbrc.2015.08.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 12/23/2022]
Abstract
Though previous study demonstrated that shikonin could exert its antitumor activity by inducing apoptosis and necrosis, the pro-survival mechanisms involved in its antitumor process are still little to know. In the present study, for the first time, we found a protective mechanism was simultaneously activated which caused the reduced sensitivity of glioblastoma stem cells (GSCs) to the cytotoxicity of shikonin. Reduced active caspase-9 expression and enhanced mitochondrial membrane potential (MMP) were intriguingly observed within 24 h treatment by shikonin in GSCs. Further investigation identified that Endoplasmic Reticulum Stress (ERS) was involved in its antitumor process, which compromised the cytotoxicity of shikonin toward GSCs. Inhibiting ERS by 4-phenylbutyric acid (4-PBA) markedly enhanced the cytotoxicity of shikonin in GSCs. The consistent result was simultaneously observed in the GSCs-xenografted mice. Furthermore, our results identified that JNK/c-Jun pathway was involved in the antitumor process of shikonin, providing a mechanism by which ERS reduced the cytotoxicity of shikonin toward GSCs. Altogether, the novel observation in the present study identified that inhibiting ERS would be an attractive new approach to enhance the therapeutic potency of shikonin toward GSCs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China
| | - Yi-Xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Cheng-Bin Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Yun-Hui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
16
|
Abstract
In view of the trend towards personalized treatment strategies for (cancer) patients, there is an increasing need to noninvasively determine individual patient characteristics. Such information enables physicians to administer to patients accurate therapy with appropriate timing. For the noninvasive visualization of disease-related features, imaging biomarkers are expected to play a crucial role. Next to the chemical development of imaging probes, this requires preclinical studies in animal tumour models. These studies provide proof-of-concept of imaging biomarkers and help determine the pharmacokinetics and target specificity of relevant imaging probes, features that provide the fundamentals for translation to the clinic. In this review we describe biological processes derived from the “hallmarks of cancer” that may serve as imaging biomarkers for diagnostic, prognostic and treatment response monitoring that are currently being studied in the preclinical setting. A number of these biomarkers are also being used for the initial preclinical assessment of new intervention strategies. Uniquely, noninvasive imaging approaches allow longitudinal assessment of changes in biological processes, providing information on the safety, pharmacokinetic profiles and target specificity of new drugs, and on the antitumour effectiveness of therapeutic interventions. Preclinical biomarker imaging can help guide translation to optimize clinical biomarker imaging and personalize (combination) therapies.
Collapse
|
17
|
Wu SY, Pan SL, Xiao ZY, Hsu JL, Chen MC, Lee KH, Teng CM. NPRL-Z-1, as a new topoisomerase II poison, induces cell apoptosis and ROS generation in human renal carcinoma cells. PLoS One 2014; 9:e112220. [PMID: 25372714 PMCID: PMC4221609 DOI: 10.1371/journal.pone.0112220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 10/09/2014] [Indexed: 11/21/2022] Open
Abstract
NPRL-Z-1 is a 4β-[(4"-benzamido)-amino]-4'-O-demethyl-epipodophyllotoxin derivative. Previous reports have shown that NPRL-Z-1 possesses anticancer activity. Here NPRL-Z-1 displayed cytotoxic effects against four human cancer cell lines (HCT 116, A549, ACHN, and A498) and exhibited potent activity in A498 human renal carcinoma cells, with an IC50 value of 2.38 µM via the MTT assay. We also found that NPRL-Z-1 induced cell cycle arrest in G1-phase and detected DNA double-strand breaks in A498 cells. NPRL-Z-1 induced ataxia telangiectasia-mutated (ATM) protein kinase phosphorylation at serine 1981, leading to the activation of DNA damage signaling pathways, including Chk2, histone H2AX, and p53/p21. By ICE assay, the data suggested that NPRL-Z-1 acted on and stabilized the topoisomerase II (TOP2)-DNA complex, leading to TOP2cc formation. NPRL-Z-1-induced DNA damage signaling and apoptotic death was also reversed by TOP2α or TOP2β knockdown. In addition, NPRL-Z-1 inhibited the Akt signaling pathway and induced reactive oxygen species (ROS) generation. These results demonstrated that NPRL-Z-1 appeared to be a novel TOP2 poison and ROS generator. Thus, NPRL-Z-1 may present a significant potential anticancer candidate against renal carcinoma.
Collapse
Affiliation(s)
- Szu-Ying Wu
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiow-Lin Pan
- The Ph.D. program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zhi-Yan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Drug ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jui-Ling Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Chuan Chen
- The Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Che-Ming Teng
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Daumar P, Zeglis BM, Ramos N, Divilov V, Sevak KK, Pillarsetty N, Lewis JS. Synthesis and evaluation of (18)F-labeled ATP competitive inhibitors of topoisomerase II as probes for imaging topoisomerase II expression. Eur J Med Chem 2014; 86:769-81. [PMID: 25240701 DOI: 10.1016/j.ejmech.2014.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/02/2014] [Accepted: 09/06/2014] [Indexed: 01/01/2023]
Abstract
Type II topoisomerase (Topo-II) is an ATP-dependent enzyme that is essential in the transcription, replication, and chromosome segregation processes and, as such, represents an attractive target for cancer therapy. Numerous studies indicate that the response to treatment with Topo-II inhibitors is highly dependent on both the levels and the activity of the enzyme. Consequently, a non-invasive assay to measure tumoral Topo-II levels has the potential to differentiate responders from non-responders. With the ultimate goal of developing a radiofluorinated tracer for positron emission tomography (PET) imaging, we have designed, synthesized, and evaluated a set of fluorinated compounds based on the structure of the ATP-competitive Topo-II inhibitor QAP1. Compounds 18 and 19b showed inhibition of Topo-II in in vitro assays and exhibited moderate, Topo-II level dependent cytotoxicity in SK-BR-3 and MCF-7 cell lines. Based on these results, (18)F-labeled analogs of these two compounds were synthesized and evaluated as PET probes for imaging Topo-II overexpression in mice bearing SK-BR-3 xenografts. [(18)F]-18 and [(18)F]-19b were synthesized from their corresponding protected tosylated derivatives by fluorination and subsequent deprotection. Small animal PET imaging studies indicated that both compounds do not accumulate in tumors and exhibit poor pharmacokinetics, clearing from the blood pool very rapidly and getting metabolized over. The insights gained from the current study will surely aid in the design and construction of future generations of PET agents for the non-invasive delineation of Topo-II expression.
Collapse
Affiliation(s)
- Pierre Daumar
- Department of Radiology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Brian M Zeglis
- Department of Radiology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Nicholas Ramos
- Department of Radiology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Vadim Divilov
- Department of Radiology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kuntal Kumar Sevak
- Department of Radiology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - NagaVaraKishore Pillarsetty
- Department of Radiology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | - Jason S Lewis
- Department of Radiology and the Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
19
|
Liu J, Liu L, Xue Y, Meng F, Li S, Wang P, Liu Y. Anti-neoplastic activity of low-dose endothelial-monocyte activating polypeptide-II results from defective autophagy and G2/M arrest mediated by PI3K/Akt/FoxO1 axis in human glioblastoma stem cells. Biochem Pharmacol 2014; 89:477-89. [DOI: 10.1016/j.bcp.2014.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 01/04/2023]
|
20
|
Yao Y, Xue Y, Ma J, Shang C, Wang P, Liu L, Liu W, Li Z, Qu S, Li Z, Liu Y. MiR-330-mediated regulation of SH3GL2 expression enhances malignant behaviors of glioblastoma stem cells by activating ERK and PI3K/AKT signaling pathways. PLoS One 2014; 9:e95060. [PMID: 24736727 PMCID: PMC3988141 DOI: 10.1371/journal.pone.0095060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/23/2014] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are currently considered as an active and rapidly evolving area for the treatment of tumors. In this study, we elucidated the biological significance of miR-330 in glioblastoma stem cells (GSCs) as well as the possible molecular mechanisms. SH3GL2 is mainly distributed in the central nervous system and considered to be a tumor suppressor in many tumors. In the present study, we identified miR-330 as a potential regulator of SH3GL2 and we found that it was to be inversely correlated with SH3GL2 expression in GSCs which were isolated from U87 cell lines. The expression of miR-330 enhanced cellular proliferation, promoted cell migration and invasion, and dampened cell apoptosis. When the GSCs were co-transfected with the plasmid containing short hairpin RNA directed against human SH3GL2 gene and miR-330 mimic, we found that miR-330 promoted the malignant behavior of GSCs by down-regulating the expression of SH3GL2. Meanwhile, the ERK and PI3K/AKT signaling pathways were significantly activated, leading to the decreased expression of apoptotic protein and increased expression of anti-apoptotic protein. Furthermore, in orthotopic mouse xenografts, the mice given stable over-expressed SH3GL2 cells co-transfected with miR-330 knockdown plasmid had the smallest tumor sizes and longest survival. In conclusion, these results suggested that miR-330 negatively regulated the expression of SH3GL2 in GSCs, which promoted the oncogenic progression of GSCs through activating ERK and PI3K/AKT signaling pathways. The elucidation of these mechanisms will provide potential therapeutic approaches for human glioblastoma.
Collapse
Affiliation(s)
- Yilong Yao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Chao Shang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Wenjing Liu
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
21
|
Zhang FL, Wang P, Liu YH, Liu LB, Liu XB, Li Z, Xue YX. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells. PLoS One 2013; 8:e81815. [PMID: 24303074 PMCID: PMC3841142 DOI: 10.1371/journal.pone.0081815] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/16/2013] [Indexed: 01/01/2023] Open
Abstract
Gliomas, the most malignant form of brain tumors, contain a small subpopulation of glioma stem cells (GSCs) that are implicated in therapeutic resistance and tumor recurrence. Topoisomerase I inhibitors, shikonin and topotecan, play a crucial role in anti-cancer therapies. After isolated and identified the GSCs from glioma cells successfully, U251, U87, GSCs-U251 and GSCs-U87 cells were administrated with various concentrations of shikonin or topotecan at different time points to seek for the optimal administration concentration and time point. The cell viability, cell cycle and apoptosis were detected using cell counting kit-8 and flow cytometer to observe the inhibitory effects on glioma cells and GSCs. We demonstrated that shikonin and topotecan obviously inhibited proliferation of not only human glioma cells but also GSCs in a dose- and time-dependent manner. According to the IC50 values at 24 h, 2 μmol/L of shikonin and 3 μmol/L of topotecan were selected as the optimal administration concentration. In addition, shikonin and topotecan induced cell cycle arrest in G0/G1 and S phases and promoted apoptosis. The down-regulation of Bcl-2 expression with the activation of caspase 9/3-dependent pathway was involved in the apoptosis process. Therefore, the above results showed that topoisomerase I inhibitors, shikonin and topotecan, inhibited growth and induced apoptosis of GSCs as well as glioma cells, which suggested that they might be the potential anticancer agents targeting gliomas to provide a novel therapeutic strategy.
Collapse
Affiliation(s)
- Feng-Lei Zhang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Yun-Hui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Li-bo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Xiao-Bai Liu
- The 96 Class, 7-Year Program, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Yi-Xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
22
|
Park SE, Chang IH, Jun KY, Lee E, Lee ES, Na Y, Kwon Y. 3-(3-Butylamino-2-hydroxy-propoxy)-1-hydroxy-xanthen-9-one acts as a topoisomerase IIα catalytic inhibitor with low DNA damage. Eur J Med Chem 2013; 69:139-45. [PMID: 24013413 DOI: 10.1016/j.ejmech.2013.07.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022]
Abstract
As a continuous study we prepared several alkylamine (n = 3-6) and evaluated for the pharmacological activity and mode of action. In the topoisomerase IIα (topo IIα) inhibition test, compound 4 showed strongest inhibitory activity among the compounds at 10 μM. Inhibitory activities of the compounds are in the order of 4 (n = 4) > 1 (n = 3) >> 5 (n = 5) ≈ 6 (n = 6); 8 (n = 4) >> 7 (n = 3) ≈ 9 (n = 5) ≈ 10 (n = 6) where n is the number of carbon in the aliphatic side chain in ring C and compounds 7-10 have additional methoxy group in ring A compared to compounds 1, 4-6. Compound 4 showed efficient cytotoxicities against T47D (IC₅₀: 0.93 ± 0.04 μM) and HCT15 (IC50: 0.78 ± 0.01 μM) cells, which are higher than etoposide. Compound 4 was also an ATP-competitive human topo IIα catalytic inhibitor with partially blocking human topo IIα-catalyzed ATP hydrolysis and intercalating into DNA. Compound 4 induced much less DNA damage than etoposide in HCT15 human colorectal carcinoma cells. Overall, compound 4 can be a potential anticancer agent acting as topo IIα catalytic inhibitor with low DNA damage.
Collapse
Affiliation(s)
- So-Eun Park
- College of Pharmacy & Ewha Global Top5 Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Würth R, Pattarozzi A, Gatti M, Bajetto A, Corsaro A, Parodi A, Sirito R, Massollo M, Marini C, Zona G, Fenoglio D, Sambuceti G, Filaci G, Daga A, Barbieri F, Florio T. Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt. Cell Cycle 2012; 12:145-56. [PMID: 23255107 DOI: 10.4161/cc.23050] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.
Collapse
Affiliation(s)
- Roberto Würth
- Department of Internal Medicine, University of Genova, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|