1
|
Aksan B, Kenkel AK, Yan J, Sánchez Romero J, Missirlis D, Mauceri D. VEGFD signaling balances stability and activity-dependent structural plasticity of dendrites. Cell Mol Life Sci 2024; 81:354. [PMID: 39158743 PMCID: PMC11335284 DOI: 10.1007/s00018-024-05357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Mature neurons have stable dendritic architecture, which is essential for the nervous system to operate correctly. The ability to undergo structural plasticity, required to support adaptive processes like memory formation, is still present in mature neurons. It is unclear what molecular and cellular processes control this delicate balance between dendritic structural plasticity and stabilization. Failures in the preservation of optimal dendrite structure due to atrophy or maladaptive plasticity result in abnormal connectivity and are associated with various neurological diseases. Vascular endothelial growth factor D (VEGFD) is critical for the maintenance of mature dendritic trees. Here, we describe how VEGFD affects the neuronal cytoskeleton and demonstrate that VEGFD exerts its effects on dendrite stabilization by influencing the actin cortex and reducing microtubule dynamics. Further, we found that during synaptic activity-induced structural plasticity VEGFD is downregulated. Our findings revealed that VEGFD, acting on its cognate receptor VEGFR3, opposes structural changes by negatively regulating dendrite growth in cultured hippocampal neurons and in vivo in the adult mouse hippocampus with consequences on memory formation. A phosphoproteomic screening identified several regulatory proteins of the cytoskeleton modulated by VEGFD. Among the actin cortex-associated proteins, we found that VEGFD induces dephosphorylation of ezrin at tyrosine 478 via activation of the striatal-enriched protein tyrosine phosphatase (STEP). Activity-triggered structural plasticity of dendrites was impaired by expression of a phospho-deficient mutant ezrin in vitro and in vivo. Thus, VEGFD governs the equilibrium between stabilization and plasticity of dendrites by acting as a molecular brake of structural remodeling.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Ann-Kristin Kenkel
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Javier Sánchez Romero
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Department Molecular and Cellular Neuroscience, Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
2
|
Riyahi J, Taslimi Z, Gelfo F, Petrosini L, Haghparast A. Trans-generational effects of parental exposure to drugs of abuse on offspring memory functions. Neurosci Biobehav Rev 2024; 160:105644. [PMID: 38548003 DOI: 10.1016/j.neubiorev.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Recent evidence reported that parental-derived phenotypes can be passed on to the next generations. Within the inheritance of epigenetic characteristics allowing the transmission of information related to the ancestral environment to the offspring, the specific case of the trans-generational effects of parental drug addiction has been extensively studied. Drug addiction is a chronic disorder resulting from complex interactions among environmental, genetic, and drug-related factors. Repeated exposures to drugs induce epigenetic changes in the reward circuitry that in turn mediate enduring changes in brain function. Addictive drugs can exert their effects trans-generally and influence the offspring of addicted parents. Although there is growing evidence that shows a wide range of behavioral, physiological, and molecular phenotypes in inter-, multi-, and trans-generational studies, transmitted phenotypes often vary widely even within similar protocols. Given the breadth of literature findings, in the present review, we restricted our investigation to learning and memory performances, as examples of the offspring's complex behavioral outcomes following parental exposure to drugs of abuse, including morphine, cocaine, cannabinoids, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Zahra Taslimi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Balalian AA, Graeve R, Richter M, Fink A, Kielstein H, Martins SS, Philbin MM, Factor-Litvak P. Prenatal exposure to opioids and neurodevelopment in infancy and childhood: A systematic review. Front Pediatr 2023; 11:1071889. [PMID: 36896405 PMCID: PMC9989202 DOI: 10.3389/fped.2023.1071889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Aim This systematic review aims to estimate the relationship between prenatal exposure to opioids and neurodevelopmental outcomes and examines potential sources of heterogeneity between the studies. Methods We searched four databases through May 21st, 2022: PubMed, Embase, PsycInfo and the Web of Science according to a specified search strings. Study inclusion criteria include: (1) cohort and case-control peer-reviewed studies published in English; (2) studies comparing neurodevelopmental outcomes among children with prenatal opioid-exposure (prescribed or used non-medically) vs. an unexposed group. Studies investigating fetal alcohol syndrome or a different primary prenatal exposure other than opioids were excluded. Two main performed data extraction using "Covidence" systematic review platform. This systematic review was conducted in accordance with PRISMA guidelines. The Newcastle-Ottawa-Scale was used for quality assessment of the studies. Studies were synthesized based on the type of neurodevelopmental outcome and the instrument used to assess neurodevelopment. Results Data were extracted from 79 studies. We found significant heterogeneity between studies due to their use of different instruments to explore cognitive skills, motor, and behavioral outcomes among children of different ages. The other sources of heterogeneity included: procedures to assess prenatal exposure to opioids; period of pregnancy in which exposure was assessed; type of opioids assessed (non-medical, medication used for opioid use dis-order, prescribed by health professional), types of co-exposure; source of selection of prenatally exposed study participants and comparison groups; and methods to address lack of comparability between exposed and unexposed groups. Cognitive and motor skills as well as behavior were generally negatively affected by prenatal opioid exposure, but the significant heterogeneity precluded a meta-analysis. Conclusion We explored sources of heterogeneity in the studies assessing the association between prenatal exposure to opioids and neurodevelopmental outcomes. Sources of heterogeneity included different approaches to participant recruitment as well as exposure and outcome ascertainment methods. Nonetheless, overall negative trends were observed between prenatal opioid exposure and neuro-developmental outcomes.
Collapse
Affiliation(s)
- Arin A. Balalian
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Richard Graeve
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Richter
- Social Determinants of Health Group, Department of Sport and Health Sciences, Technical University of Munich (TUM), Germany
| | - Astrid Fink
- Department of Health and Consumer Protection, Kreis Groß-Gerau, Groß-Gerau, Germany
| | - Heike Kielstein
- Institut für Anatomie und Zellbiologie, Martin-Luther-Universität Halle, Halle (Saale), Germany
| | - Silvia S. Martins
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Morgan M. Philbin
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
4
|
Simmons SC, Grecco GG, Atwood BK, Nugent FS. Effects of prenatal opioid exposure on synaptic adaptations and behaviors across development. Neuropharmacology 2023; 222:109312. [PMID: 36334764 PMCID: PMC10314127 DOI: 10.1016/j.neuropharm.2022.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
In this review, we focus on prenatal opioid exposure (POE) given the significant concern for the mental health outcomes of children with parents affected by opioid use disorder (OUD) in the view of the current opioid crisis. We highlight some of the less explored interactions between developmental age and sex on synaptic plasticity and associated behavioral outcomes in preclinical POE research. We begin with an overview of the rich literature on hippocampal related behaviors and plasticity across POE exposure paradigms. We then discuss recent work on reward circuit dysregulation following POE. Additional risk factors such as early life stress (ELS) could further influence synaptic and behavioral outcomes of POE. Therefore, we include an overview on the use of preclinical ELS models where ELS exposure during key critical developmental periods confers considerable vulnerability to addiction and stress psychopathology. Here, we hope to highlight the similarity between POE and ELS on development and maintenance of opioid-induced plasticity and altered opioid-related behaviors where similar enduring plasticity in reward circuits may occur. We conclude the review with some of the limitations that should be considered in future investigations. This article is part of the Special Issue on 'Opioid-induced addiction'.
Collapse
Affiliation(s)
- Sarah C Simmons
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Greg G Grecco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fereshteh S Nugent
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
5
|
Grecco GG, Huang JY, Muñoz B, Doud EH, Hines CD, Gao Y, Rodriguez B, Mosley AL, Lu HC, Atwood BK. Sex-Dependent Synaptic Remodeling of the Somatosensory Cortex in Mice With Prenatal Methadone Exposure. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10400. [PMID: 37829495 PMCID: PMC10569410 DOI: 10.3389/adar.2022.10400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Rising opioid use among pregnant women has led to a growing population of neonates exposed to opioids during the prenatal period, but how opioids affect the developing brain remains to be fully understood. Animal models of prenatal opioid exposure have discovered deficits in somatosensory behavioral development that persist into adolescence suggesting opioid exposure induces long lasting neuroadaptations on somatosensory circuitry such as the primary somatosensory cortex (S1). Using a mouse model of prenatal methadone exposure (PME) that displays delays in somatosensory milestone development, we performed an un-biased multi-omics analysis and investigated synaptic functioning in the primary somatosensory cortex (S1), where touch and pain sensory inputs are received in the brain, of early adolescent PME offspring. PME was associated with numerous changes in protein and phosphopeptide abundances that differed considerably between sexes in the S1. Although prominent sex effects were discovered in the multi-omics assessment, functional enrichment analyses revealed the protein and phosphopeptide differences were associated with synapse-related cellular components and synaptic signaling-related biological processes, regardless of sex. Immunohistochemical analysis identified diminished GABAergic synapses in both layer 2/3 and 4 of PME offspring. These immunohistochemical and proteomic alterations were associated with functional consequences as layer 2/3 pyramidal neurons revealed reduced amplitudes and a lengthened decay constant of inhibitory postsynaptic currents. Lastly, in addition to reduced cortical thickness of the S1, cell-type marker analysis revealed reduced microglia density in the upper layer of the S1 that was primarily driven by PME females. Taken together, our studies show the lasting changes on synaptic function and microglia in S1 cortex caused by PME in a sex-dependent manner.
Collapse
Affiliation(s)
- Gregory G. Grecco
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN, United States
- Medical Scientist Training Program, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Jui Yen Huang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Caliel D. Hines
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, United States
| | - Yong Gao
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Brooke Rodriguez
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
6
|
Vassoler FM, Wimmer ME. Consequences of Parental Opioid Exposure on Neurophysiology, Behavior, and Health in the Next Generations. Cold Spring Harb Perspect Med 2021; 11:a040436. [PMID: 32601130 PMCID: PMC8485740 DOI: 10.1101/cshperspect.a040436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Substance abuse and the ongoing opioid epidemic represents a large societal burden. This review will consider the long-term impact of opioid exposure on future generations. Prenatal, perinatal, and preconception exposure are reviewed with discussion of both maternal and paternal influences. Opioid exposure can have long-lasting effects on reproductive function, gametogenesis, and germline epigenetic programming, which can influence embryogenesis and alter the developmental trajectory of progeny. The potential mechanisms by which preconception maternal and paternal opioid exposure produce deleterious consequences on the health, behavior, and physiology of offspring that have been identified by clinical and animal studies will be discussed. The timing, nature, dosing, and duration of prenatal opioid exposure combined with other important environmental considerations influence the extent to which these manipulations affect parents and their progeny. Epigenetic inheritance refers to the transmission of environmental insults across generations via mechanisms independent of the DNA sequence. This topic will be further explored in the context of prenatal, perinatal, and preconception opioid exposure for both the maternal and paternal lineage.
Collapse
Affiliation(s)
- Fair M Vassoler
- Tufts University, Cummings School of Veterinary Medicine, Grafton, Massachusetts 01536, USA
| | - Mathieu E Wimmer
- Department of Psychology and Program in Neuroscience, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
7
|
Smith BL. Improving translational relevance: The need for combined exposure models for studying prenatal adversity. Brain Behav Immun Health 2021; 16:100294. [PMID: 34589787 PMCID: PMC8474200 DOI: 10.1016/j.bbih.2021.100294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Prenatal environmental adversity is a risk factor for neurodevelopmental disorders (NDDs), with the neuroimmune environment proposed to play a role in this risk. Adverse maternal exposures are associated with cognitive consequences in the offspring that are characteristics of NDDs and simultaneous neuroimmune changes that may underlie NDD risk. In both animal models and human studies the association between prenatal environmental exposure and NDD risk has been shown to be complex. Maternal overnutrition/obesity and opioid use are two different examples of complex exposure epidemics, each with their own unique comorbidities. This review will examine maternal obesity and maternal opioid use separately, illustrating the pervasive comorbidities with each exposure to argue a need for animal models of compound prenatal exposures. Many of these comorbidities can impact neuroimmune function, warranting systematic investigation of combined exposures to begin to understand this complexity. While traditional approaches in animal models have focused on modeling a single prenatal exposure or second exposure later in life, a translational approach would begin to incorporate the most prevalent co-occurring prenatal exposures. Long term follow-up in humans is extremely challenging, so animal models can provide timely insight into neurodevelopmental consequences of complex prenatal exposures. Animal models that represent this translational context of comorbid exposures behind maternal obesity or comorbid exposures behind maternal opioid use may reveal potential synergistic neuroimmune interactions that contribute to cognitive consequences and NDD risk. Finally, translational co-exposure models can identify concerning exposure combinations to guide treatment in complex cases, and identify high risk children starting in the prenatal period where early interventions improve prognosis.
Collapse
Affiliation(s)
- Brittany L. Smith
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
8
|
Grecco GG, Mork BE, Huang JY, Metzger CE, Haggerty DL, Reeves KC, Gao Y, Hoffman H, Katner SN, Masters AR, Morris CW, Newell EA, Engleman EA, Baucum AJ, Kim J, Yamamoto BK, Allen MR, Wu YC, Lu HC, Sheets PL, Atwood BK. Prenatal methadone exposure disrupts behavioral development and alters motor neuron intrinsic properties and local circuitry. eLife 2021; 10:e66230. [PMID: 33724184 PMCID: PMC7993998 DOI: 10.7554/elife.66230] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the rising prevalence of methadone treatment in pregnant women with opioid use disorder, the effects of methadone on neurobehavioral development remain unclear. We developed a translational mouse model of prenatal methadone exposure (PME) that resembles the typical pattern of opioid use by pregnant women who first use oxycodone then switch to methadone maintenance pharmacotherapy, and subsequently become pregnant while maintained on methadone. We investigated the effects of PME on physical development, sensorimotor behavior, and motor neuron properties using a multidisciplinary approach of physical, biochemical, and behavioral assessments along with brain slice electrophysiology and in vivo magnetic resonance imaging. Methadone accumulated in the placenta and fetal brain, but methadone levels in offspring dropped rapidly at birth which was associated with symptoms and behaviors consistent with neonatal opioid withdrawal. PME produced substantial impairments in offspring physical growth, activity in an open field, and sensorimotor milestone acquisition. Furthermore, these behavioral alterations were associated with reduced neuronal density in the motor cortex and a disruption in motor neuron intrinsic properties and local circuit connectivity. The present study adds to the limited body of work examining PME by providing a comprehensive, translationally relevant characterization of how PME disrupts offspring physical and neurobehavioral development.
Collapse
Affiliation(s)
- Gregory G Grecco
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Indiana University School of Medicine, Medical Scientist Training ProgramIndianapolisUnited States
| | - Briana E Mork
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Program in Medical Neuroscience, Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| | - Jui-Yen Huang
- Department of Psychological and Brain Sciences, Indiana UniversityBloomingtonUnited States
- The Linda and Jack Gill Center for Biomolecular Sciences, Department of Psychological and Brain Science, Program in Neuroscience, Indiana UniversityBloomingtonUnited States
| | - Corinne E Metzger
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of MedicineIndianapolisUnited States
| | - David L Haggerty
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Kaitlin C Reeves
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Yong Gao
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Hunter Hoffman
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Simon N Katner
- Deparment of Psychiatry, Indiana University School of MedicineIndianapolisUnited States
| | - Andrea R Masters
- Clinical Pharmacology Analytical Core-Indiana University Simon Cancer Center, Indiana University School of MedicineIndianapolisUnited States
| | - Cameron W Morris
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Department of Biology, Indiana University-Purdue UniversityIndianapolisUnited States
| | - Erin A Newell
- Deparment of Psychiatry, Indiana University School of MedicineIndianapolisUnited States
| | - Eric A Engleman
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Anthony J Baucum
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Department of Biology, Indiana University-Purdue UniversityIndianapolisUnited States
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| | - Jiuen Kim
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| | - Bryan K Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| | - Matthew R Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of MedicineIndianapolisUnited States
- Indiana Center for Musculoskeletal Health, Indiana University School of MedicineIndianapolisUnited States
| | - Yu-Chien Wu
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
- Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolisUnited States
| | - Hui-Chen Lu
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Department of Psychological and Brain Sciences, Indiana UniversityBloomingtonUnited States
| | - Patrick L Sheets
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| | - Brady K Atwood
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| |
Collapse
|
9
|
Yazdanfar N, Ali Mard S, Mahmoudi J, Bakhtiari N, Sarkaki A, Farnam A. Maternal Morphine Exposure and Post-Weaning Social Isolation Impair Memory and Ventral Striatum Dopamine System in Male Offspring: Is an Enriched Environment Beneficial? Neuroscience 2021; 461:80-90. [PMID: 33662528 DOI: 10.1016/j.neuroscience.2021.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Maternal opioids abuse has some deleterious consequences on next generations. Besides, children's rearing conditions can affect the behavioral states and brain plasticity in their later life. In the present study, we investigated the effects of maternal morphine (MOR) treatment and post-weaning rearing conditions on memory, pain threshold, and the ventral striatum dopaminergic activity in male offspring. Female Wistar rats were treated twice daily either with escalating doses of MOR or with normal saline (NS) one week before mating, during pregnancy and lactation. After weaning, the male pups were assigned to six groups and then raised for an 8-week period under three different conditions: standard (STD), isolated (ISO) or enriched environment (EE). The behavioral tests, including passive avoidance task, novel object recognition, and tail-flick test, were also performed. Moreover, the ventral striatum dopamine's content (DA), mRNA expressions of dopamine receptor 1(D1R) and dopamine receptor 2 (D2R), and dopamine transporter (DAT) were evaluated. The obtained data showed that maternal MOR exposure and post-weaning social isolation could dramatically impair memory in offspring, while EE could reverse these adverse outcomes. Moreover, results of tail flick latency indicated the increased pain threshold in EE animals. At molecular level, maternal MOR injections and social isolation reduced DA levels and altered expressions of D1R, D2R, and DAT within the ventral striatum of these male offspring. However, post-weaning EE partially buffered these changes. Our finding signified the effects of maternal MOR exposure and social isolation on the behaviors and neurochemistry of brain in next generation, and it also provided evidence on reversibility of these alterations following EE.
Collapse
Affiliation(s)
- Neda Yazdanfar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Mard
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- The Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Alireza Farnam
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Alipio JB, Brockett AT, Fox ME, Tennyson SS, deBettencourt CA, El-Metwally D, Francis NA, Kanold PO, Lobo MK, Roesch MR, Keller A. Enduring consequences of perinatal fentanyl exposure in mice. Addict Biol 2021; 26:e12895. [PMID: 32187805 PMCID: PMC7897444 DOI: 10.1111/adb.12895] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/14/2022]
Abstract
Opioid use by pregnant women is an understudied consequence associated with the opioid epidemic, resulting in a rise in the incidence of neonatal opioid withdrawal syndrome (NOWS) and lifelong neurobehavioral deficits that result from perinatal opioid exposure. There are few preclinical models that accurately recapitulate human perinatal drug exposure and few focus on fentanyl, a potent synthetic opioid that is a leading driver of the opioid epidemic. To investigate the consequences of perinatal opioid exposure, we administered fentanyl to mouse dams in their drinking water throughout gestation and until litters were weaned at postnatal day (PD) 21. Fentanyl-exposed dams delivered smaller litters and had higher litter mortality rates compared with controls. Metrics of maternal care behavior were not affected by the treatment, nor were there differences in dams' weight or liquid consumption throughout gestation and 21 days postpartum. Twenty-four hours after weaning and drug cessation, perinatal fentanyl-exposed mice exhibited signs of spontaneous somatic withdrawal behavior and sex-specific weight fluctuations that normalized in adulthood. At adolescence (PD 35), they displayed elevated anxiety-like behaviors and decreased grooming, assayed in the elevated plus maze and sucrose splash tests. Finally, by adulthood (PD 55), they displayed impaired performance in a two-tone auditory discrimination task. Collectively, our findings suggest that perinatal fentanyl-exposed mice exhibit somatic withdrawal behavior and change into early adulthood reminiscent of humans born with NOWS.
Collapse
Affiliation(s)
- Jason B. Alipio
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adam T. Brockett
- Department of Psychology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Megan E. Fox
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephen S. Tennyson
- Department of Psychology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | | | - Dina El-Metwally
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nikolas A. Francis
- Department of Biology, University of Maryland, College Park, MD, USA
- Institute for Systems Research, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| | - Patrick O. Kanold
- Department of Biology, University of Maryland, College Park, MD, USA
- Institute for Systems Research, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| | - Mary Kay Lobo
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew R. Roesch
- Department of Psychology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Asaf Keller
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Abstract
The inheritance of substance abuse, including opioid abuse, may be influenced by genetic and non-genetic factors related to the environment, such as stress and socioeconomic status. These non-genetic influences on the heritability of a trait can be attributed to epigenetics. Epigenetic inheritance can result from modifications passed down from the mother, father, or both, resulting in either maternal, paternal, or parental epigenetic inheritance, respectively. These epigenetic modifications can be passed to the offspring to result in multigenerational, intergenerational, or transgenerational inheritance. Human and animal models of opioid exposure have shown generational effects that result in molecular, developmental, and behavioral alterations in future generations.
Collapse
|
12
|
Bush NR, Wakschlag LS, LeWinn KZ, Hertz-Picciotto I, Nozadi SS, Pieper S, Lewis J, Biezonski D, Blair C, Deardorff J, Neiderhiser JM, Leve LD, Elliott AJ, Duarte CS, Lugo-Candelas C, O’Shea TM, Avalos LA, Page GP, Posner J. Family Environment, Neurodevelopmental Risk, and the Environmental Influences on Child Health Outcomes (ECHO) Initiative: Looking Back and Moving Forward. Front Psychiatry 2020; 11:547. [PMID: 32636769 PMCID: PMC7318113 DOI: 10.3389/fpsyt.2020.00547] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
The family environment, with all its complexity and diverse components, plays a critical role in shaping neurodevelopmental outcomes in children. Herein we review several domains of the family environment (family socioeconomic status, family composition and home environment, parenting behaviors and interaction styles, parental mental health and functioning, and parental substance use) and discuss how these domains influence neurodevelopment, with particular emphasis on mental health outcomes. We also highlight a new initiative launched by the National Institutes of Health, the Environmental influences on Child Health Outcomes (ECHO) program. We discuss the role that ECHO will play in advancing our understanding of the impact of the family environment on children's risk for psychiatric outcomes. Lastly, we conclude with important unanswered questions and controversies in this area of research, highlighting how ECHO will contribute to resolving these gaps in our understanding, clarifying relationships between the family environment and children's mental health.
Collapse
Affiliation(s)
- Nicole R. Bush
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco, CA, United States
| | - Lauren S. Wakschlag
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, Il, United States
| | - Kaja Z. LeWinn
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Sara S. Nozadi
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Sarah Pieper
- Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, United States
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Dominik Biezonski
- Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, United States
| | - Clancy Blair
- Department of Population Health, New York University, New York, NY, United States
| | - Julianna Deardorff
- Community Health Sciences, University of California, Berkeley, Berkeley, CA, United States
| | - Jenae M. Neiderhiser
- Department of Psychology, Penn State University, University Park, PA, United States
| | - Leslie D. Leve
- Prevention Science Institute, University of Oregon, Eugene, OR, United States
| | - Amy J. Elliott
- Center for Pediatric and Community Research, Avera Research Institute, Sioux Falls, SD, United States
| | - Cristiane S. Duarte
- Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, United States
| | - Claudia Lugo-Candelas
- Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, United States
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lyndsay A. Avalos
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Grier P. Page
- Department of Biostatistics and Epidemiology, RTI, Atlanta, GA, United States
| | - Jonathan Posner
- Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, United States
| |
Collapse
|
13
|
Boggess T, Risher WC. Clinical and basic research investigations into the long-term effects of prenatal opioid exposure on brain development. J Neurosci Res 2020; 100:396-409. [PMID: 32459039 DOI: 10.1002/jnr.24642] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022]
Abstract
Coincident with the opioid epidemic in the United States has been a dramatic increase in the number of children born with neonatal abstinence syndrome (NAS), a form of withdrawal resulting from opioid exposure during pregnancy. Many research efforts on NAS have focused on short-term care, including acute symptom treatment and weaning of the infants off their drug dependency prior to authorizing their release. However, investigations into the long-term effects of prenatal opioid exposure (POE) on brain development, from the cellular to the behavioral level, have not been as frequent. Given the importance of the perinatal period for human brain development, opioid-induced disturbances in the formation and function of nascent synaptic networks and glia have the potential to impact brain connectivity and cognition long after the drug supply is cutoff shortly after birth. In this review, we will summarize the current state of NAS research, bringing together findings from human studies and preclinical animal models to highlight what is known about how POE can induce significant, prolonged deficits in brain structure and function. With rates of NAS continuing to rise, particularly in regions that already face substantial socioeconomic challenges, we speculate as to the most promising avenues for future research to alleviate this growing multigenerational threat.
Collapse
Affiliation(s)
- Taylor Boggess
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - W Christopher Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| |
Collapse
|
14
|
Wlodarczyk-Li SA, Vassoler FM, Byrnes EM, Schonhoff CM. Oxycodone Decreases Dendritic Complexity in Female but not Male Rat Striatal Neurons In Vitro. Neurosci Lett 2020; 722:134856. [PMID: 32088199 DOI: 10.1016/j.neulet.2020.134856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 10/25/2022]
Abstract
The use of oxycodone in the past two decades has dramatically risen, yet the amount of research regarding how it impacts neuronal health is lacking. As prescription use and misuse in women of reproductive age increases there has been a corresponding increase in the number of infants who have been exposed to oxycodone in utero. Given the critical role of the striatum in motor control and reward regulation, the aim of the current study was to examine the effects of oxycodone on developing rat striatal neurons. Sex-specific effects of oxycodone on neuronal cytoarchitecture were examined in cultured rat striatal neurons with a primary focus on dendritic arborization. Neurons were extracted from either male or female embryonic day 18 rat striata and cultured and exposed to varying concentrations of oxycodone over a ten-day period. Dendritic complexity of the neurons was measured using Sholl analysis. Results indicate that oxycodone inhibits dendritic complexity in a dose-dependent manner in female but not male striatal neurons. Additional analysis indicated the number of non-primary dendrites in female striatal neurons significantly decreased with increasing concentrations of oxycodone, while the number of primary dendrites as well as the length of primary and non-primary dendrites was unaffected by oxycodone treatment in both sexes. These in vitro findings demonstrate sex-specific effects of oxycodone on the development of striatal dendritic architecture which may be important for understanding the effects of oxycodone exposure in utero.
Collapse
Affiliation(s)
- Sara A Wlodarczyk-Li
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, 01536, United States
| | - Fair M Vassoler
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, 01536, United States
| | - Elizabeth M Byrnes
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, 01536, United States
| | - Christopher M Schonhoff
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, 01536, United States.
| |
Collapse
|
15
|
Goldfarb SS, Stanwood GD, Flynn HA, Graham DL. Developmental opioid exposures: Neurobiological underpinnings, behavioral impacts, and policy implications. Exp Biol Med (Maywood) 2019; 245:131-137. [PMID: 31630569 DOI: 10.1177/1535370219883601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The devastating impact of opioid abuse and dependence on the individual, family, and society are well known but extremely difficult to combat. During pregnancy, opioid drugs and withdrawal also affect fetal brain development and newborn neural functions, in addition to maternal effects. Neonatal Abstinence Syndrome/Neonatal Opioid Withdrawal Syndrome (NAS/NOWS) rates have drastically increased in the US in the past decade. Solutions to this complex problem must be multi-faceted, which would be greatly enhanced by a translational, multidisciplinary understanding. Therefore, this mini-review incorporates biomedical, clinical, and policy aspects of opioid use during pregnancy. We review the known roles for endogenous opioids in mediating circuit formation and function in the developing brain, discuss how exogenous opioid drug use and addiction impact these processes in animal models and humans, and discuss the implications of these data on public policy. We suggest that some current policy initiatives produce unintended harm on both mothers and their children and delineate recommendations for how legislation could better contribute to addiction recovery and increase neural resilience in affected children. Impact statement Opioid abuse is a critical epidemic affecting individuals, families, and communities. This mini-review summarizes current literature on the impact of opioid drugs—including prescription pain relievers and illicit opioids—on neurobiological and neurobehavioral development. Using concepts related to the medical model of addiction as a brain disease, we review the public policy implications of these data and identify needs for future investigations.
Collapse
Affiliation(s)
- Samantha S Goldfarb
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Gregg D Stanwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.,Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Heather A Flynn
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL 32306, USA.,Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Devon L Graham
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.,Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
16
|
Ahmadian-Moghadam H, Akbarabadi A, Toolee H, Sadat-Shirazi MS, Khalifeh S, Niknamfar S, Zarrindast MR. Correlation among the Behavioral Features in the Offspring of Morphine-Abstinent Rats. ADDICTION & HEALTH 2019; 11:262-275. [PMID: 32206219 PMCID: PMC7073814 DOI: 10.22122/ahj.v11i4.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/03/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Critical analysis of new evidence in medical sciences relies on statistics in terms of correlation. The aim of the present study was to evaluate the correlation coefficients among the behavioral features in the offspring of morphine-abstinent parent(s). METHODS The offspring of rats with various parental morphine-exposure were divided into four groups including offspring with healthy parents (CTL), offspring with paternal morphine-abstinent (PMA) parent, offspring with maternal morphine-abstinent (MMA) parent, and offspring with both morphine-abstinent (BMA) parents. Pain perception, depression-like behavior and avoidance-memory in the offspring were quantified. The association between variables was measured using Pearson correlation analysis. FINDINGS A strong correlation was observed between pain and depressive-like behavior in female and male offspring of healthy parents. Moreover, in the male and female offspring of healthy parents and BMA, no significant correlation was observed between avoidance memory and pain behavior or depressive-like behavior. However, in the offspring of MMA, a strong correlation was observed between avoidance memory and depressive-like behavior. CONCLUSION The results revealed that in comparison with the offspring with CTL, the correlation among the behavioral futures in the offspring with MMA or PMA parents is significantly different.
Collapse
Affiliation(s)
- Hamid Ahmadian-Moghadam
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Heidar Toolee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center, Amir Al-Momenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Niknamfar
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Iranian National Center for Addiction Studies AND Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Pinson MR, Miranda RC. Noncoding RNAs in development and teratology, with focus on effects of cannabis, cocaine, nicotine, and ethanol. Birth Defects Res 2019; 111:1308-1319. [PMID: 31356004 DOI: 10.1002/bdr2.1559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Completion of the Human Genome Project has led to the identification of a large number of transcription start sites that are not paired with protein-coding genes, supporting the growing recognition of the abundance of encoded nonprotein-coding RNAs (ncRNAs) and their importance for speciation and species-specific development. Present in both plants and animals, ncRNAs vary in size, function, primary sequence, and secondary structure. While microRNAs (miRNAs) are the best known, there are a number of other ncRNAs (long[er] nonprotein-coding RNA, pseudogenes, circular RNAs, and so on) that have been shown to play an important role in the development either directly or via networks of proteins and other ncRNAs, including modulating the impact of miRNAs. Furthermore, these ncRNAs and their developmental regulatory networks are sensitive to teratogens such as ethanol, cannabis, cocaine, and nicotine. A better understanding of the developmental role of ncRNAs and their capacity to mediate teratogenesis is a necessary step in efforts to minimize the long-term consequences of developmental exposures to drugs-of-abuse. Moreover, with increasing awareness of the prevalence of polydrug use, experimental models will need to incorporate more complex drug exposure paradigms into meaningful assessments of developmental ncRNA function.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Pkwy Suite 1005 MREB, Bryan, Texas
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Pkwy Suite 1005 MREB, Bryan, Texas
| |
Collapse
|
18
|
Harder HJ, Murphy AZ. Early life opioid exposure and potential long-term effects. Neurobiol Stress 2019; 10:100156. [PMID: 31338390 PMCID: PMC6629922 DOI: 10.1016/j.ynstr.2019.100156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/13/2019] [Accepted: 03/08/2019] [Indexed: 11/09/2022] Open
Abstract
The long-term consequences of perinatal opioid exposure and subsequent development of neonatal opioid withdrawal syndrome is largely unknown and likely dependent on a multitude of factors, including co-morbid drug use, pre- and post-natal care, and individual factors including the maternal-infant relationship and home environment. This review summarizes the current literature from clinical and preclinical studies on perinatal opioid exposure, focusing on the consequences in the offspring. Although a large number of preclinical studies have been conducted examining the impact of prenatal opioid exposure, the models employed are not necessarily representative of clinical use patterns, making it challenging to translate these results to the impacted population. Use of more clinically-relevant models of perinatal opioid exposure are requisite for the development of improved pharmacological and behavioral treatment strategies to improve quality of life for this vulnerable population.
Collapse
Affiliation(s)
| | - Anne Z. Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30308, USA
| |
Collapse
|
19
|
Tsai SY, Bendriem RM, Lee CTD. The cellular basis of fetal endoplasmic reticulum stress and oxidative stress in drug-induced neurodevelopmental deficits. Neurobiol Stress 2019; 10:100145. [PMID: 30937351 PMCID: PMC6430408 DOI: 10.1016/j.ynstr.2018.100145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/02/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
Prenatal substance exposure is a growing public health concern worldwide. Although the opioid crisis remains one of the most prevalent addiction problems in our society, abuse of cocaine, methamphetamines, and other illicit drugs, particularly amongst pregnant women, are nonetheless significant and widespread. Evidence demonstrates prenatal drug exposure can affect fetal brain development and thus can have long-lasting impact on neurobehavioral and cognitive performance later in life. In this review, we highlight research examining the most prevalent drugs of abuse and their effects on brain development with a focus on endoplasmic reticulum stress and oxidative stress signaling pathways. A thorough exploration of drug-induced cellular stress mechanisms during prenatal brain development may provide insight into therapeutic interventions to combat effects of prenatal drug exposure.
Collapse
Affiliation(s)
- S-Y.A. Tsai
- Integrative Neuroscience Branch, Division of Neuroscience and Behavior, National Institute on Drug Abuse, The National Institute of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Raphael M. Bendriem
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Chun-Ting D. Lee
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, USA
| |
Collapse
|
20
|
Kvello AMS, Andersen JM, Øiestad EL, Steinsland S, Aase A, Mørland J, Bogen IL. A Monoclonal Antibody against 6-Acetylmorphine Protects Female Mice Offspring from Adverse Behavioral Effects Induced by Prenatal Heroin Exposure. J Pharmacol Exp Ther 2019; 368:106-115. [PMID: 30361238 DOI: 10.1124/jpet.118.251504] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/22/2018] [Indexed: 01/04/2023] Open
Abstract
Escalating opioid use among fertile women has increased the number of children being exposed to opioids during fetal life. Furthermore, accumulating evidence links prenatal opioid exposure, including opioid maintenance treatment, to long-term negative effects on cognition and behavior, and presses the need to explore novel treatment strategies for pregnant opioid users. The present study examined the potential of a monoclonal antibody (mAb) targeting heroin's first metabolite, 6-acetylmorphine (6-AM), in providing fetal protection against harmful effects of prenatal heroin exposure in mice. First, we examined anti-6-AM mAb's ability to block materno-fetal transfer of active metabolites after maternal heroin administration. Next, we studied whether maternal mAb pretreatment could prevent adverse effects in neonatal and adolescent offspring exposed to intrauterine heroin (3 × 1.05 mg/kg). Anti-6-AM mAb pretreatment of pregnant dams profoundly reduced the distribution of active heroin metabolites to the fetal brain. Furthermore, maternal mAb administration prevented hyperactivity and drug sensitization in adolescent female offspring prenatally exposed to heroin. Our findings demonstrate that passive immunization with a 6-AM-specific antibody during pregnancy provides fetal neuroprotection against heroin metabolites, and thereby prevents persistent adverse behavioral effects in the offspring. An immunotherapeutic approach to protect the fetus against long-term effects of prenatal drug exposure has not been reported previously, and should be further explored as prophylactic treatment of pregnant heroin users susceptible to relapse.
Collapse
Affiliation(s)
- Anne Marte Sjursen Kvello
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Jannike Mørch Andersen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Leere Øiestad
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Synne Steinsland
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Audun Aase
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Jørg Mørland
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Inger Lise Bogen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
21
|
Fill MMA, Miller AM, Wilkinson RH, Warren MD, Dunn JR, Schaffner W, Jones TF. Educational Disabilities Among Children Born With Neonatal Abstinence Syndrome. Pediatrics 2018; 142:e20180562. [PMID: 30166364 PMCID: PMC6947655 DOI: 10.1542/peds.2018-0562] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Neonatal abstinence syndrome (NAS) is a postnatal drug withdrawal syndrome that can occur after intrauterine opioid exposure. Adverse neurobehavioral outcomes have been documented in infants with NAS; however, educational outcomes have not been thoroughly examined. We analyzed Tennessee data to understand the need for special educational services among infants who are born with NAS. METHODS By using Tennessee Medicaid and birth certificate data, infants who were born in Tennessee between 2008 and 2011 with a history of NAS were matched (1:3) to infants who were born during the same period without a history of NAS. Groups were matched on the basis of sex, race and/or ethnicity, age, birth region of residence, and Medicaid enrollment status. Data were linked to Tennessee Department of Education special education data during early childhood (3-8 years of age). Conditional multivariable logistic regression was used to assess associations between NAS and selected special education outcomes. RESULTS A total of 1815 children with a history of NAS and 5441 children without NAS were assessed. Children with NAS were significantly more likely to be referred for a disability evaluation (351 of 1815 [19.3%] vs 745 of 5441 [13.7%]; P < .0001), to meet criteria for a disability (284 of 1815 [15.6%] vs 634 of 5441 [11.7%]; P < .0001), and to require classroom therapies or services (278 of 1815 [15.3%] vs 620 of 5441 [11.4%]; P < .0001). These findings were sustained in a multivariable analysis, with multiple models controlling for maternal tobacco use, maternal education status, birth weight, gestational age, and/or NICU admission. CONCLUSIONS Results of this novel analysis linking health and education data revealed that children with a history of NAS were significantly more likely to have a subsequent educational disability.
Collapse
Affiliation(s)
- Mary-Margaret A Fill
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia;
- Tennessee Department of Health, Nashville, Tennessee
- Department of Health Policy, School of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | | | | | | | - John R Dunn
- Tennessee Department of Health, Nashville, Tennessee
- Department of Health Policy, School of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | - William Schaffner
- Department of Health Policy, School of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | - Timothy F Jones
- Tennessee Department of Health, Nashville, Tennessee
- Department of Health Policy, School of Medicine, Vanderbilt University, Nashville, Tennessee; and
| |
Collapse
|
22
|
Zhu M, Xu Y, Wang H, Shen Z, Xie Z, Chen F, Gao Y, Chen X, Zhang Y, Wu Q, Li X, Yu J, Luo H, Wang K. Heroin Abuse Results in Shifted RNA Expression to Neurodegenerative Diseases and Attenuation of TNFα Signaling Pathway. Sci Rep 2018; 8:9231. [PMID: 29915338 PMCID: PMC6006288 DOI: 10.1038/s41598-018-27419-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Repeated administration of heroin results in the induction of physical dependence, which is characterized as a behavioral state of compulsive drug seeking and a high rate of relapse even after periods of abstinence. However, few studies have been dedicated to characterization of the long-term alterations in heroin-dependent patients (HDPs). Herein, we examined the peripheral blood from 810 HDPs versus 500 healthy controls (HCs) according to the inclusion criteria. Compared with the control group, significant decreases of albumin, triglyceride, and total cholesterol levels were identified in HDPs (P < 0.001) versus HCs coupled with an insignificant decrease in BMI. Meanwhile, RNA-sequencing analyses were performed on blood of 16 long-term HDPs and 25 HCs. The results showed that the TNFα signaling pathway and hematopoiesis related genes were inhibited in HDPs. We further compared the transcriptome data to those of SCA2 and posttraumatic stress disorder patients, identified neurodegenerative diseases related genes were commonly up-regulated in coupled with biological processes "vesicle transport", "mitochondria" and "splicing". Genes in the categories of "protein ubiquitination" were down-regulated indicating potential biochemical alterations shared by all three comparative to their controls. In summary, this is a leading study performing a series of through investigations and using delicate approaches. Results from this study would benefit the study of drug addiction overall and link long-term heroin abuse to neurodegenerative diseases.
Collapse
Affiliation(s)
- Mei Zhu
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yu Xu
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Huawei Wang
- Department of Gastrointestinal surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zongwen Shen
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Kunming Engineering Technology Center of Diagnosis and Treatment of Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Zhenrong Xie
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Department of reproduction and genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Fengrong Chen
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Department of reproduction and genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yunhong Gao
- Yunnan Drug Enforcement Commission Office, Kunming, 650032, Yunnan, China
- Yunnan Drug Enforcement Administration, Kunming, 650032, Yunnan, China
| | - Xin Chen
- Yunnan Drug Enforcement Commission Office, Kunming, 650032, Yunnan, China
- Yunnan Drug Enforcement Administration, Kunming, 650032, Yunnan, China
| | - Ying Zhang
- Yunnan Drug Enforcement Commission Office, Kunming, 650032, Yunnan, China
- Yunnan Drug Enforcement Administration, Kunming, 650032, Yunnan, China
| | - Qiang Wu
- Yunnan Drug Enforcement Commission Office, Kunming, 650032, Yunnan, China
- Yunnan Drug Enforcement Administration, Kunming, 650032, Yunnan, China
| | - Xuejun Li
- Yunnan Drug Enforcement Commission Office, Kunming, 650032, Yunnan, China
- Yunnan Drug Enforcement Administration, Kunming, 650032, Yunnan, China
| | - Juehua Yu
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Huayou Luo
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| | - Kunhua Wang
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
23
|
Nygaard E, Slinning K, Moe V, Due-Tønnessen P, Fjell A, Walhovd KB. Neuroanatomical characteristics of youths with prenatal opioid and poly-drug exposure. Neurotoxicol Teratol 2018; 68:13-26. [PMID: 29679636 DOI: 10.1016/j.ntt.2018.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neuroanatomical and cognitive differences have been documented during childhood between children with prenatal opioid- and poly-drug exposure and controls in small samples. We investigated whether these differences persisted in larger samples of youth at older ages. Quantitative MRI and cognitive data were compared between 38 youths in the risk group and 44 youths in the non-exposed group (aged 17 to 22 years) who had been followed prospectively since birth. Most drug-exposed youths (84%) moved to permanent foster or adoptive homes before one year of age. The drug-exposed group displayed smaller neuroanatomical volumes (0.70 SD difference in total brain volume, p = 0.001), smaller cortical surface areas and thinner cortices than the comparison group. The birth weight accounted for some of the intergroup differences. Neuroanatomical characteristics partially mediated group differences in cognitive function. The present study cannot differentiate between causal factors but indicates persistent neurocognitive differences associated with prenatal opioid or poly-drug exposure.
Collapse
Affiliation(s)
- Egil Nygaard
- Department of Psychology, University of Oslo, Postbox 1094 Blindern, 0317 Oslo, Norway; Center for Child and Adolescent Mental Health, Eastern and Southern Norway (RBUP), Postbox 4623 Nydalen, 0405 Oslo, Norway.
| | - Kari Slinning
- Department of Psychology, University of Oslo, Postbox 1094 Blindern, 0317 Oslo, Norway; Center for Child and Adolescent Mental Health, Eastern and Southern Norway (RBUP), Postbox 4623 Nydalen, 0405 Oslo, Norway.
| | - Vibeke Moe
- Department of Psychology, University of Oslo, Postbox 1094 Blindern, 0317 Oslo, Norway; Center for Child and Adolescent Mental Health, Eastern and Southern Norway (RBUP), Postbox 4623 Nydalen, 0405 Oslo, Norway.
| | - Paulina Due-Tønnessen
- Department of Psychology, University of Oslo, Postbox 1094 Blindern, 0317 Oslo, Norway; Department of Radiology, Rikshospitalet University Hospital, Oslo, Norway.
| | - Anders Fjell
- Department of Psychology, University of Oslo, Postbox 1094 Blindern, 0317 Oslo, Norway.
| | - Kristine B Walhovd
- Department of Psychology, University of Oslo, Postbox 1094 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
24
|
Tan KZ, Cunningham AM, Joshi A, Oei JL, Ward MC. Expression of kappa opioid receptors in developing rat brain - Implications for perinatal buprenorphine exposure. Reprod Toxicol 2018; 78:81-89. [PMID: 29635048 DOI: 10.1016/j.reprotox.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Buprenorphine, a mu opioid receptor partial agonist and kappa opioid receptor (KOR) antagonist, is an emerging therapeutic agent for maternal opioid dependence in pregnancy and neonatal abstinence syndrome. However, the endogenous opioid system plays a critical role in modulating neurodevelopment and perinatal buprenorphine exposure may detrimentally influence this. To identify aspects of neurodevelopment vulnerable to perinatal buprenorphine exposure, we defined KOR protein expression and its cellular associations in normal rat brain from embryonic day 16 to postnatal day 23 with double-labelling immunohistochemistry. KOR was expressed on neural stem and progenitor cells (NSPCs), choroid plexus epithelium, subpopulations of cortical neurones and oligodendrocytes, and NSPCs and subpopulations of neurones in postnatal hippocampus. These distinct patterns of KOR expression suggest several pathways vulnerable to perinatal buprenorphine exposure, including proliferation, neurogenesis and neurotransmission. We thus suggest the cautious use of buprenorphine in both mothers and infants until its impact on neurodevelopment is better defined.
Collapse
Affiliation(s)
- Kathleen Z Tan
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia
| | - Anne M Cunningham
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; Westfield Research Laboratories, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia.
| | - Anjali Joshi
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; Westfield Research Laboratories, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - Ju Lee Oei
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; The Royal Hospital for Women, Barker Street, Randwick, NSW 2031, Australia
| | - Meredith C Ward
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia; The Royal Hospital for Women, Barker Street, Randwick, NSW 2031, Australia; Westfield Research Laboratories, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia.
| |
Collapse
|
25
|
Gkioka E, Korou LM, Daskalopoulou A, Misitzi A, Batsidis E, Bakoyiannis I, Pergialiotis V. Prenatal cocaine exposure and its impact on cognitive functions of offspring: a pathophysiological insight. Rev Neurosci 2018; 27:523-34. [PMID: 26953708 DOI: 10.1515/revneuro-2015-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/07/2016] [Indexed: 11/15/2022]
Abstract
It is estimated that approximately 0.5%-3% of fetuses are prenatally exposed to cocaine (COC). The neurodevelopmental implications of this exposure are numerous and include motor skill impairments, alterations of social function, predisposition to anxiety, and memory function and attention deficits; these implications are commonly observed in experimental studies and ultimately affect both learning and IQ. According to previous studies, the clinical manifestations of prenatal COC exposure seem to persist at least until adolescence. The pathophysiological cellular processes that underlie these impairments include dysfunctional myelination, disrupted dendritic architecture, and synaptic alterations. On a molecular level, various neurotransmitters such as serotonin, dopamine, catecholamines, and γ-aminobutyric acid seem to participate in this process. Finally, prenatal COC abuse has been also associated with functional changes in the hormones of the hypothalamic-pituitary-adrenal axis that mediate neuroendocrine responses. The purpose of this review is to summarize the neurodevelopmental consequences of prenatal COC abuse, to describe the pathophysiological pathways that underlie these consequences, and to provide implications for future research in the field.
Collapse
|
26
|
García-Pardo MP, De la Rubia Ortí JE, Aguilar Calpe MA. Differential effects of MDMA and cocaine on inhibitory avoidance and object recognition tests in rodents. Neurobiol Learn Mem 2017; 146:1-11. [PMID: 29081371 DOI: 10.1016/j.nlm.2017.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Drug addiction continues being a major public problem faced by modern societies with different social, health and legal consequences for the consumers. Consumption of psychostimulants, like cocaine or MDMA (known as ecstasy) are highly prevalent and cognitive and memory impairments have been related with the abuse of these drugs. AIM The aim of this work was to review the most important data of the literature in the last 10 years about the effects of cocaine and MDMA on inhibitory avoidance and object recognition tests in rodents. DEVELOPMENT The object recognition and the inhibitory avoidance tests are popular procedures used to assess different types of memory. We compare the effects of cocaine and MDMA administration in these tests, taking in consideration different factors such as the period of life development of the animals (prenatal, adolescence and adult age), the presence of polydrug consumption or the role of environmental variables. Brain structures involved in the effects of cocaine and MDMA on memory are also described. CONCLUSIONS Cocaine and MDMA induced similar impairing effects on the object recognition test during critical periods of lifetime or after abstinence of prolonged consumption in adulthood. Deficits of inhibitory avoidance memory are observed only in adult rodents exposed to MDMA. Psychostimulant abuse is a potential factor to induce memory impairments and could facilitate the development of future neurodegenerative disorders.
Collapse
|
27
|
Differential modulatory effects of cocaine on marmoset monkey recognition memory. PROGRESS IN BRAIN RESEARCH 2017; 235:155-176. [PMID: 29054287 DOI: 10.1016/bs.pbr.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acute and repeated exposure to cocaine alters the cognitive performance of humans and animals. How each administration schedule affects the same memory task has yet to be properly established in nonhuman primates. Therefore, we assessed the performance of marmoset monkeys in a spontaneous object-location (SOL) recognition memory task after acute and repeated exposure to cocaine (COC; 5mg/kg, ip). Two identical neutral stimuli were explored on the 10-min sample trial, after which preferential exploration of the displaced vs the stationary object was analyzed on the 10-min test trial. For the acute treatment, cocaine was given immediately after the sample presentation, and spatial recognition was then tested after a 24-h interval. For the repeated exposure schedule, daily cocaine injections were given on 7 consecutive days. After a 7-day drug-free period, the SOL task was carried out with a 10-min intertrial interval. When given acutely postsample, COC improved the marmosets' recognition memory, whereas it had a detrimental effect after the repeated exposure. Thus, depending on the administration schedule, COC exerted opposing effects on the marmosets' ability to recognize spatial changes. This agrees with recent studies in rodents and the recognition impairment seen in human addicts. Further studies related to the effects of cocaine's acute×prior drug history on the same cognitive domain are warranted.
Collapse
|
28
|
Brain morphology in school-aged children with prenatal opioid exposure: A structural MRI study. Early Hum Dev 2017; 106-107:33-39. [PMID: 28187337 DOI: 10.1016/j.earlhumdev.2017.01.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Both animal and human studies have suggested that prenatal opioid exposure may be detrimental to the developing fetal brain. However, results are somewhat conflicting. Structural brain changes in children with prenatal opioid exposure have been reported in a few studies, and such changes may contribute to neuropsychological impairments observed in exposed children. AIM To investigate the association between prenatal opioid exposure and brain morphology in school-aged children. STUDY DESIGN A cross-sectional magnetic resonance imaging (MRI) study of prenatally opioid-exposed children and matched controls. SUBJECTS A hospital-based sample (n=16) of children aged 10-14years with prenatal exposure to opioids and 1:1 sex- and age-matched unexposed controls. OUTCOME MEASURES Automated brain volume measures obtained from T1-weighted MRI scans using FreeSurfer. RESULTS Volumes of the basal ganglia, thalamus, and cerebellar white matter were reduced in the opioid-exposed group, whereas there were no statistically significant differences in global brain measures (total brain, cerebral cortex, and cerebral white matter volumes). CONCLUSIONS In line with the limited findings reported in the literature to date, our study showed an association between prenatal opioid exposure and reduced regional brain volumes. Adverse effects of opioids on the developing fetal brain may explain this association. However, further research is needed to explore the causal nature and functional consequences of these findings.
Collapse
|
29
|
Oei JL, Melhuish E, Uebel H, Azzam N, Breen C, Burns L, Hilder L, Bajuk B, Abdel-Latif ME, Ward M, Feller JM, Falconer J, Clews S, Eastwood J, Li A, Wright IM. Neonatal Abstinence Syndrome and High School Performance. Pediatrics 2017; 139:peds.2016-2651. [PMID: 28093465 DOI: 10.1542/peds.2016-2651] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Little is known of the long-term, including school, outcomes of children diagnosed with Neonatal abstinence syndrome (NAS) (International Statistical Classification of Disease and Related Problems [10th Edition], Australian Modification, P96.1). METHODS Linked analysis of health and curriculum-based test data for all children born in the state of New South Wales (NSW), Australia, between 2000 and 2006. Children with NAS (n = 2234) were compared with a control group matched for gestation, socioeconomic status, and gender (n = 4330, control) and with other NSW children (n = 598 265, population) for results on the National Assessment Program: Literacy and Numeracy, in grades 3, 5, and 7. RESULTS Mean test scores (range 0-1000) for children with NAS were significantly lower in grade 3 (359 vs control: 410 vs population: 421). The deficit was progressive. By grade 7, children with NAS scored lower than other children in grade 5. The risk of not meeting minimum standards was independently associated with NAS (adjusted odds ratio [aOR], 2.5; 95% confidence interval [CI], 2.2-2.7), indigenous status (aOR, 2.2; 95% CI, 2.2-2.3), male gender (aOR, 1.3; 95% CI, 1.3-1.4), and low parental education (aOR, 1.5; 95% CI, 1.1-1.6), with all Ps < .001. CONCLUSIONS A neonatal diagnostic code of NAS is strongly associated with poor and deteriorating school performance. Parental education may decrease the risk of failure. Children with NAS and their families must be identified early and provided with support to minimize the consequences of poor educational outcomes.
Collapse
Affiliation(s)
- Ju Lee Oei
- School of Women's and Children's Health, .,Department of Newborn Care, Royal Hospital for Women, Randwick, New South Wales, Australia.,Ingham Research Centre, Liverpool, New South Wales, Australia
| | - Edward Melhuish
- Early Start Research Institute and.,Department of Education, University of Oxford, Oxford, United Kingdom.,Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | | | | | | | | | - Lisa Hilder
- National Perinatal Epidemiology and Statistics Unit, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Mohamed E Abdel-Latif
- Department of Neonatology, The Canberra Hospital, Garran, Australian Capital Territory, Australia.,Faculty of Medicine, the Australian National University, Deakin, Australian Capital Territory, Australia
| | - Meredith Ward
- School of Women's and Children's Health.,Department of Newborn Care, Royal Hospital for Women, Randwick, New South Wales, Australia
| | - John M Feller
- School of Women's and Children's Health.,Sydney Children's Hospital, Sydney Children's Hospital Network, Randwick, New South Wales, Australia
| | - Janet Falconer
- The Langton Centre, Surry Hills, New South Wales, Australia
| | - Sara Clews
- The Langton Centre, Surry Hills, New South Wales, Australia
| | - John Eastwood
- School of Women's and Children's Health.,Ingham Research Centre, Liverpool, New South Wales, Australia.,Community Health Services, Sydney Local Health District, Sydney, New South Wales, Australia.,School of Public Health, Menzies Centre for Health Policy, and Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; and.,School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Annie Li
- School of Women's and Children's Health
| | - Ian M Wright
- Early Start Research Institute and.,Illawarra Health and Medical Research Institute and School of Medicine, The University of Wollongong, Wollongong, New South Wales, Australia.,Department of Paediatrics, The Wollongong Hospital, Wollongong, New South Wales, Australia
| |
Collapse
|
30
|
Wang Y, Yao Y, Nie H, He X. Implication of protein kinase C of the left intermediate medial mesopallium in memory impairments induced by early prenatal morphine exposure in one-day old chicks. Eur J Pharmacol 2016; 795:94-100. [PMID: 27940175 DOI: 10.1016/j.ejphar.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
Abstract
Previously we reported that prenatal morphine exposure during embryonic days 5-8 can cause cognitive deficits of one-trial passive avoidance learning (PAL) in one-day old chicks. Because protein kinase C (PKC) has been associated with memory capacity, we investigated the effects of prenatal morphine exposure on PKC isoforms expression in the left intermediate medial mesopallium (IMM) of chick brain at a time when memory tests were performed at 30, 120 and 360min respectively following training in PAL paradigm. We found that the level of PKCα in the membrane fractions in left IMM was decreased but that in the cytosol fractions showed a increased trend in prenatally morphine-exposed chicks with impaired long-term memory (120 and 360min). Moreover, the translocation of PKC δ from cytosol to membrane in left IMM was shown in prenatal morphine group which had significantly impaired long-term memory at 360min after training. Furthermore, there were no statistical differences between the two groups regarding the expressions of PKCα and PKC δ in the membrane fraction, although their levels in the cytosol fraction of prenatal morphine group which showed impaired intermediate-term memory at 30min after training, were quite different from that of prenatal saline group. Taken together, these results indicate that PKCα and PKC δ in the left IMM are differentially involved in the impairments of long-term memory induced by prenatal morphine exposure. Neither PKCα nor PKC δ in left IMM may be associated with the disruption of intermediate-term memory of chicks prenatally exposed to morphine.
Collapse
Affiliation(s)
- Ying Wang
- School of Medical Humanities, Tianjin Medical University, Tianjin, PR China
| | - Yang Yao
- Department of Clinical Biochemistry, School of Medical Laboratory, Tianjin Medical University, Tianjin, PR China
| | - Han Nie
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, PR China
| | - Xingu He
- School of Medical Humanities, Tianjin Medical University, Tianjin, PR China.
| |
Collapse
|
31
|
Neonatal abstinence syndrome and the gastrointestinal tract. Med Hypotheses 2016; 97:11-15. [PMID: 27876117 DOI: 10.1016/j.mehy.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/18/2016] [Indexed: 02/08/2023]
Abstract
Development of a healthy gut microbiome is essential in newborns to establish immunity and protection from pathogens. Recent studies suggest that infants who develop dysbiosis may be at risk for lifelong adverse health consequences. Exposure to opioid drugs during pregnancy is a factor of potential importance for microbiome health that has not yet been investigated. Since these infants are born after an entire gestation exposed to mu opioid receptor agonists and have severe gastrointestinal and neurological symptoms, we hypothesize that these infants are at risk for dysbiosis. We speculate that opioid exposure during gestation and development of NAS at birth may lead to a dysbiotic gut microbiome, which may impair normal microbiome succession and development, and impact future health of these children.
Collapse
|
32
|
Aschner M, Ceccatelli S, Daneshian M, Fritsche E, Hasiwa N, Hartung T, Hogberg HT, Leist M, Li A, Mundi WR, Padilla S, Piersma AH, Bal-Price A, Seiler A, Westerink RH, Zimmer B, Lein PJ. Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2016; 34:49-74. [PMID: 27452664 PMCID: PMC5250586 DOI: 10.14573/altex.1604201] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/09/2016] [Indexed: 11/23/2022]
Abstract
There is a paucity of information concerning the developmental neurotoxicity (DNT) hazard posed by industrial and environmental chemicals. New testing approaches will most likely be based on batteries of alternative and complementary (non-animal) tests. As DNT is assumed to result from the modulation of fundamental neurodevelopmental processes (such as neuronal differentiation, precursor cell migration or neuronal network formation) by chemicals, the first generation of alternative DNT tests target these processes. The advantage of such types of assays is that they capture toxicants with multiple targets and modes-of-action. Moreover, the processes modelled by the assays can be linked to toxicity endophenotypes, i.e. alterations in neural connectivity that form the basis for neurofunctional deficits in man. The authors of this review convened in a workshop to define criteria for the selection of positive/negative controls, to prepare recommendations on their use, and to initiate the setup of a directory of reference chemicals. For initial technical optimization of tests, a set of >50 endpoint-specific control compounds was identified. For further test development, an additional “test” set of 33 chemicals considered to act directly as bona fide DNT toxicants is proposed, and each chemical is annotated to the extent it fulfills these criteria. A tabular compilation of the original literature used to select the test set chemicals provides information on statistical procedures, and toxic/non-toxic doses (both for pups and dams). Suggestions are provided on how to use the >100 compounds (including negative controls) compiled here to address specificity, adversity and use of alternative test systems.
Collapse
Affiliation(s)
| | | | - Mardas Daneshian
- Center for Alternatives to Animal Testing-Europe (CAAT-Europe), University of Konstanz, Germany
| | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Nina Hasiwa
- Center for Alternatives to Animal Testing-Europe (CAAT-Europe), University of Konstanz, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing-Europe (CAAT-Europe), University of Konstanz, Germany.,Center for Alternatives to Animal Testing (CAAT), The Johns Hopkins University, Baltimore, MD, USA
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), The Johns Hopkins University, Baltimore, MD, USA
| | - Marcel Leist
- Center for Alternatives to Animal Testing-Europe (CAAT-Europe), University of Konstanz, Germany.,In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation at the University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), Konstanz University
| | - Abby Li
- Exponent Inc.,San Francisco, USA
| | - William R Mundi
- United States Environmental Protection Agency (USEPA), NHEERL, Research Triangle Park, NC, USA
| | - Stephanie Padilla
- United States Environmental Protection Agency (USEPA), NHEERL, Research Triangle Park, NC, USA
| | - Aldert H Piersma
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anna Bal-Price
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Andrea Seiler
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Remco H Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | | - Pamela J Lein
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, USA.,Department of Molecular Biosciences, University of California, Davis, USA
| |
Collapse
|
33
|
Nygaard E, Slinning K, Moe V, Walhovd KB. Behavior and Attention Problems in Eight-Year-Old Children with Prenatal Opiate and Poly-Substance Exposure: A Longitudinal Study. PLoS One 2016; 11:e0158054. [PMID: 27336798 PMCID: PMC4918960 DOI: 10.1371/journal.pone.0158054] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/09/2016] [Indexed: 01/08/2023] Open
Abstract
Multiple studies have found that children born to mothers with opioid or poly-substance use during pregnancy have more behavior and attention problems and lower cognitive functioning than non-exposed children. The present study aimed to investigate whether behavior and attention problems are more prominent than general cognitive deficits in this risk group and whether the problems wane or increase over time. This prospective longitudinal cross-informant study compared 72 children who were prenatally exposed to heroin and multiple drugs with a group of 58 children without known prenatal risk factors. Group differences in caregivers' and teachers' reports of the children's behavior and attention problems based on the Child Behavior Check List and the ADHD Rating Scale were compared based on group differences in general cognitive functioning at 4 ½ and 8 ½ years of age. Both parent and teacher reports suggest that the exposed group has significantly more problems in several behavioral areas than the comparison group, particularly with regard to attention problems. The preschool teachers had already reported these problems when the children were 4 ½ years old, whereas the caregivers reported these problems mainly when the children were 8 ½ years old. The group differences in behavioral and attentional problems were not significantly greater and some were even significantly smaller than the group differences in general cognitive abilities. These findings suggest that children subject to prenatally drug exposure have increasing problems in multiple areas related to behavior from preschool age to 8 ½ years but that these problems do not seem to be specific; i.e., they are not more severe than the problems with general cognitive abilities found for this group.
Collapse
Affiliation(s)
- Egil Nygaard
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Center for Child and Adolescent Mental Health, Eastern and Southern Norway (RBUP), Oslo, Norway
| | - Kari Slinning
- Center for Child and Adolescent Mental Health, Eastern and Southern Norway (RBUP), Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Vibeke Moe
- Center for Child and Adolescent Mental Health, Eastern and Southern Norway (RBUP), Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Kristine B. Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
34
|
Martin MM, Graham DL, McCarthy DM, Bhide PG, Stanwood GD. Cocaine-induced neurodevelopmental deficits and underlying mechanisms. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2016; 108:147-73. [PMID: 27345015 PMCID: PMC5538582 DOI: 10.1002/bdrc.21132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/06/2016] [Indexed: 11/06/2022]
Abstract
Exposure to drugs early in life has complex and long-lasting implications for brain structure and function. This review summarizes work to date on the immediate and long-term effects of prenatal exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, particularly dopamine, during sensitive periods of brain development, and leads to permanent changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and significance with mechanistic preclinical studies, to define our current knowledge base and identify gaps for future investigation. Birth Defects Research (Part C) 108:147-173, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Melissa M. Martin
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Devon L. Graham
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Deirdre M. McCarthy
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Pradeep G. Bhide
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| | - Gregg D. Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida
| |
Collapse
|
35
|
Terasaki LS, Gomez J, Schwarz JM. An examination of sex differences in the effects of early-life opiate and alcohol exposure. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150123. [PMID: 26833841 DOI: 10.1098/rstb.2015.0123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 11/12/2022] Open
Abstract
Early-life exposure to drugs and alcohol is one of the most preventable causes of developmental, behavioural and learning disorders in children. Thus a significant amount of basic, animal and human research has focused on understanding the behavioural consequences and the associated neural effects of exposure to drugs and alcohol during early brain development. Despite this, much of the previous research that has been done on this topic has used predominantly male subjects or rodents. While many of the findings from these male-specific studies may ultimately apply to females, the purpose of this review is to highlight the research that has also examined sex as a factor and found striking differences between the sexes in their response to early-life opiate and alcohol exposure. Finally, we will also provide a framework for scientists interested in examining sex as a factor in future experiments that specifically examine the consequences of early-life drug and alcohol exposure.
Collapse
Affiliation(s)
- Laurne S Terasaki
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA
| | - Julie Gomez
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA
| | - Jaclyn M Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA
| |
Collapse
|
36
|
Maguire DJ, Taylor S, Armstrong K, Shaffer-Hudkins E, Germain AM, Brooks SS, Cline GJ, Clark L. Long-Term Outcomes of Infants with Neonatal Abstinence Syndrome. Neonatal Netw 2016; 35:277-286. [PMID: 27636691 DOI: 10.1891/0730-0832.35.5.277] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Parents of infants with neonatal abstinence syndrome (NAS) in the NICU may have questions about the long-term consequences of prenatal exposure to methadone, both asked and unasked. Although the signs of withdrawal will abate relatively quickly, parents should be aware of potential vision, motor, and behavioral/cognitive problems, as well as sleeping disturbances and ear infections so their infants can be followed closely and monitored by their pediatrician with appropriate referrals made. Furthermore, this knowledge may inspire parents to enroll their infants in an early intervention program to help optimize their outcomes. There are still many unanswered questions about epigenetic consequences, risk for child abuse/neglect, and risk of future substance abuse in this population.
Collapse
|
37
|
Anand KJS, Campbell-Yeo M. Consequences of prenatal opioid use for newborns. Acta Paediatr 2015; 104:1066-9. [PMID: 26174725 DOI: 10.1111/apa.13121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/26/2015] [Accepted: 07/08/2015] [Indexed: 01/20/2023]
Abstract
UNLABELLED One-third of childbearing women take prescription opioids, previously occurring only in 6-7% of pregnant women. Prenatal opioid exposures may cause birth defects, altered brain development and neonatal abstinence syndrome (NAS). NAS incidence increased fourfold and length of stay increased from 13 to 19 days over 10 years (2004-2013), leading to sevenfold increases in NICU days due to NAS. Initial data suggest that recent NAS increases have resulted from increased use of prescription opioids rather than illicit drugs. CONCLUSION Paediatricians will have to manage the consequences of prenatal opioid exposures, as the offspring often have complex medical and social issues associated with these families.
Collapse
Affiliation(s)
- Kanwaljeet J. S. Anand
- Departments of Pediatrics, Anesthesiology, Anatomy & Neurobiology; University of Tennessee Health Science Center; Memphis TN USA
- Pain Neurobiology Lab; UT Neuroscience Institute; Memphis TN USA
| | - Marsha Campbell-Yeo
- School of Nursing and Departments of Pediatrics, Psychology and Neuroscience; Dalhousie University; Halifax NS Canada
- Centre for Pediatric Pain Research; IWK Health Centre; Halifax NS Canada
| |
Collapse
|
38
|
Mundy WR, Padilla S, Breier JM, Crofton KM, Gilbert ME, Herr DW, Jensen KF, Radio NM, Raffaele KC, Schumacher K, Shafer TJ, Cowden J. Expanding the test set: Chemicals with potential to disrupt mammalian brain development. Neurotoxicol Teratol 2015; 52:25-35. [PMID: 26476195 DOI: 10.1016/j.ntt.2015.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 11/15/2022]
Abstract
High-throughput test methods including molecular, cellular, and alternative species-based assays that examine critical events of normal brain development are being developed for detection of developmental neurotoxicants. As new assays are developed, a "training set" of chemicals is used to evaluate the relevance of individual assays for specific endpoints. Different training sets are necessary for each assay that would comprise a developmental neurotoxicity test battery. In contrast, evaluation of the predictive ability of a comprehensive test battery requires a set of chemicals that have been shown to alter brain development after in vivo exposure ("test set"). Because only a small number of substances have been well documented to alter human neurodevelopment, we have proposed an expanded test set that includes chemicals demonstrated to adversely affect neurodevelopment in animals. To compile a list of potential developmental neurotoxicants, a literature review of compounds that have been examined for effects on the developing nervous system was conducted. The search was limited to mammalian studies published in the peer-reviewed literature and regulatory studies submitted to the U.S. EPA. The definition of developmental neurotoxicity encompassed changes in behavior, brain morphology, and neurochemistry after gestational or lactational exposure. Reports that indicated developmental neurotoxicity was observed only at doses that resulted in significant maternal toxicity or were lethal to the fetus or offspring were not considered. As a basic indication of reproducibility, we only included a chemical if data on its developmental neurotoxicity were available from more than one laboratory (defined as studies originating from laboratories with a different senior investigator). Evidence from human studies was included when available. Approximately 100 developmental neurotoxicity test set chemicals were identified, with 22% having evidence in humans.
Collapse
Affiliation(s)
- William R Mundy
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Stephanie Padilla
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Joseph M Breier
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kevin M Crofton
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mary E Gilbert
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David W Herr
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Karl F Jensen
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nicholas M Radio
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kathleen C Raffaele
- Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC, USA
| | | | - Timothy J Shafer
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - John Cowden
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
39
|
Mithbaokar P, Fiorito F, Della Morte R, Maharajan V, Costagliola A. Chronic maternal morphine alters calbindin D-28k expression pattern in postnatal mouse brain. Synapse 2015; 70:15-23. [PMID: 26418221 DOI: 10.1002/syn.21866] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
The distribution pattern of calbindin (CB)-D28k-expressing neurons results to be altered in several brain regions of chronic morphine exposed adult mice. In this study, the influence of chronic maternal exposure to morphine on the distribution pattern of CB-D28k-expressing neurons in the brain of mouse offspring was investigated. Females of CD-1 mice were daily administered with saline or morphine for 7 days before mating, during the whole gestation period, and until 21 day post-partum. Their offspring were sacrificed on postnatal day 18, and the brains were examined by histology using cresyl violet and by immunohistochemistry using a rabbit polyclonal anti-CB-D28k antibody. Histology revealed no significant differences in the distribution pattern and the number of neurons between the offspring forebrain of the control group of mice and the two groups of mice treated with different doses of morphine. However, immunohistochemical analysis revealed that the number of CB-D28k-immunoreactive neurons remarkably decreased in the cingulate cortex, in the layers II-IV of the parietal cortex and in all regions of the hippocampus, while it increased in the layers V-VI of the parietal cortex and in the subicular region of the offspring brain of morphine treated mice. Overall, our findings demonstrate that maternal exposure to morphine alters the pattern of CB-D28k-expressing neuron pattern in specific regions of murine developing brain, in a layer- and dose-dependent way, thus suggesting that these alterations might represent a mechanism by which morphine modifies the functional aspects of developing brain.
Collapse
Affiliation(s)
- Pratibha Mithbaokar
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1, Naples, 80137, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1, Naples, 80137, Italy.,Department of Chemistry, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, via Salute, 2, Portici, Naples, 80055, Italy
| | - Rossella Della Morte
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1, Naples, 80137, Italy
| | | | - Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1, Naples, 80137, Italy
| |
Collapse
|
40
|
Nygaard E, Slinning K, Moe V, Walhovd KB. Cognitive function of youths born to mothers with opioid and poly-substance abuse problems during pregnancy. Child Neuropsychol 2015; 23:159-187. [DOI: 10.1080/09297049.2015.1092509] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Nygaard E, Moe V, Slinning K, Walhovd KB. Longitudinal cognitive development of children born to mothers with opioid and polysubstance use. Pediatr Res 2015; 78:330-5. [PMID: 25978800 PMCID: PMC4539602 DOI: 10.1038/pr.2015.95] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/18/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Previous studies indicate an increased risk for neuropsychological difficulties in young children prenatally exposed to opioids and polysubstances, but longitudinal information is scarce. The present longitudinal study investigated whether these waned, persisted, or increased over time. METHODS The cognitive functioning of 72 children with prenatal opioid and polysubstance exposure and 58 children without any established prenatal risk was assessed at 1, 2, 3, 4½, and 8½ y. RESULTS The exposed boys had significantly and stably lower levels of cognitive functioning than the control group, whereas there were increasing differences over time for the girls. The exposed group had significantly lower IQ scores than the control group on Wechsler Intelligence Scale for Children--Revised at 8½ y after controlling for earlier cognitive abilities, and for children who were permanently placed in adoptive/foster homes before 1 y of age and whose mothers used heroin as their main drug during pregnancy (B = 17.04, 95% CI 8.69-25.38, P < 0.001). CONCLUSION While effects of prenatal substance exposure cannot be isolated, group effects on cognition rather increased than waned over time, even in adoptive/foster children with minimal postnatal risk.
Collapse
Affiliation(s)
- Egil Nygaard
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Center for Child and Adolescent Mental Health, Eastern and Southern Norway (RBUP), Oslo, Norway
| | - Vibeke Moe
- Center for Child and Adolescent Mental Health, Eastern and Southern Norway (RBUP), Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Kari Slinning
- Center for Child and Adolescent Mental Health, Eastern and Southern Norway (RBUP), Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Kristine B. Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Physical Medicine and Rehabilition, Unit of Neuropsychology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
42
|
Abstract
Opioid misuse during pregnancy is associated with negative outcomes for both mother and fetus due not only to the physiological effects of the drug but also to the associated social, medical and mental health problems that accompany illicit drug use. An interdisciplinary approach to the treatment of opioid use disorder during pregnancy is most effective. Ideally, obstetric and substance use treatment are co-located and ancillary support services are readily available. Medication-assisted treatment with methadone or buprenorphine is intrinsic to evidence-based care for the opioid-using pregnant woman. Women who are not stabilized on an opioid maintenance medication experience high rates of relapse and worse outcomes. Methadone has been the mainstay of maintenance treatment for nearly 50 years, but recent research has found that both methadone and buprenorphine maintenance treatments significantly improve maternal, fetal and neonatal outcomes. Although methadone remains the current standard of care, the field is beginning to move towards buprenorphine maintenance as a first-line treatment for pregnant women with opioid use disorder, because of its greater availability and evidence of better neonatal outcomes than methadone. However, there is some evidence that treatment dropout may be greater with buprenorphine relative to methadone.
Collapse
Affiliation(s)
- Christine M Wilder
- Addiction Sciences Division, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 3131 Harvey Avenue, Cincinnati, OH, 45229, USA. .,Department of Veterans Affairs Medical Center, 3200 Vine Street, Cincinnati, OH, 45220, USA.
| | - Theresa Winhusen
- Addiction Sciences Division, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 3131 Harvey Avenue, Cincinnati, OH, 45229, USA
| |
Collapse
|
43
|
Schweitzer JB, Riggins T, Liang X, Gallen C, Kurup PK, Ross TJ, Black MM, Nair P, Salmeron BJ. Prenatal drug exposure to illicit drugs alters working memory-related brain activity and underlying network properties in adolescence. Neurotoxicol Teratol 2015; 48:69-77. [PMID: 25683798 DOI: 10.1016/j.ntt.2015.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/12/2015] [Accepted: 02/05/2015] [Indexed: 12/17/2022]
Abstract
The persistence of effects of prenatal drug exposure (PDE) on brain functioning during adolescence is poorly understood. We explored neural activation to a visuospatial working memory (VSWM) versus a control task using functional magnetic resonance imaging (fMRI) in adolescents with PDE and a community comparison group (CC) of non-exposed adolescents. We applied graph theory metrics to resting state data using a network of nodes derived from the VSWM task activation map to further explore connectivity underlying WM functioning. Participants (ages 12-15 years) included 47 adolescents (27 PDE and 20 CC). All analyses controlled for potentially confounding differences in birth characteristics and postnatal environment. Significant group by task differences in brain activation emerged in the left middle frontal gyrus (BA 6) with the CC group, but not the PDE group, activating this region during VSWM. The PDE group deactivated the culmen, whereas the CC group activated it during the VSWM task. The CC group demonstrated a significant relation between reaction time and culmen activation, not present in the PDE group. The network analysis underlying VSWM performance showed that PDE group had lower global efficiency than the CC group and a trend level reduction in local efficiency. The network node corresponding to the BA 6 group by task interaction showed reduced nodal efficiency and fewer direct connections to other nodes in the network. These results suggest that adolescence reveals altered neural functioning related to response planning that may reflect less efficient network functioning in youth with PDE.
Collapse
Affiliation(s)
- Julie B Schweitzer
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, United States; MIND Institute, University of California Davis School of Medicine, United States.
| | - Tracy Riggins
- Department of Psychology, University of Maryland College Park, United States
| | - Xia Liang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, United States
| | - Courtney Gallen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, United States
| | - Pradeep K Kurup
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, United States
| | - Thomas J Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, United States
| | - Maureen M Black
- Department of Pediatrics, University of Maryland School of Medicine, United States
| | - Prasanna Nair
- Department of Pediatrics, University of Maryland School of Medicine, United States
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, United States
| |
Collapse
|
44
|
Ross EJ, Graham DL, Money KM, Stanwood GD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology 2015; 40:61-87. [PMID: 24938210 PMCID: PMC4262892 DOI: 10.1038/npp.2014.147] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023]
Abstract
Most drugs of abuse easily cross the placenta and can affect fetal brain development. In utero exposures to drugs thus can have long-lasting implications for brain structure and function. These effects on the developing nervous system, before homeostatic regulatory mechanisms are properly calibrated, often differ from their effects on mature systems. In this review, we describe current knowledge on how alcohol, nicotine, cocaine, amphetamine, Ecstasy, and opiates (among other drugs) produce alterations in neurodevelopmental trajectory. We focus both on animal models and available clinical and imaging data from cross-sectional and longitudinal human studies. Early studies of fetal exposures focused on classic teratological methods that are insufficient for revealing more subtle effects that are nevertheless very behaviorally relevant. Modern mechanistic approaches have informed us greatly as to how to potentially ameliorate the induced deficits in brain formation and function, but conclude that better delineation of sensitive periods, dose-response relationships, and long-term longitudinal studies assessing future risk of offspring to exhibit learning disabilities, mental health disorders, and limited neural adaptations are crucial to limit the societal impact of these exposures.
Collapse
Affiliation(s)
- Emily J Ross
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Devon L Graham
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kelli M Money
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Gregg D Stanwood
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
45
|
Yuan Q, Rubic M, Seah J, Rae C, Wright IMR, Kaltenbach K, Feller JM, Abdel-Latif ME, Chu C, Oei JL. Do maternal opioids reduce neonatal regional brain volumes? A pilot study. J Perinatol 2014; 34:909-13. [PMID: 24945162 DOI: 10.1038/jp.2014.111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 01/17/2023]
Abstract
OBJECTIVE A substantial number of children exposed to gestational opioids have neurodevelopmental, behavioral and cognitive problems. Opioids are not neuroteratogens but whether they affect the developing brain in more subtle ways (for example, volume loss) is unclear. We aimed to determine the feasibility of using magnetic resonance imaging (MRI) to assess volumetric changes in healthy opioid-exposed infants. STUDY DESIGN Observational pilot cohort study conducted in two maternity hospitals in New South Wales, Australia. Maternal history and neonatal urine and meconium screens were obtained to confirm drug exposure. Volumetric analysis of MRI scans was performed with the ITK-snap program. RESULT Scans for 16 infants (mean (s.d.) gestational age: 40.9 (1.5) weeks, birth weight: 3022.5 (476.6) g, head circumference (HC): 33.7 (1.5 cm)) were analyzed. Six (37.5%) infants had HC <25th percentile. Fourteen mothers used methadone, four used buprenorphine and 11 used more than one opioid (including heroin, seven). All scans were structurally normal whole brain volumes (357.4 (63.8)) and basal ganglia (14.5 (3.5)) ml were significantly smaller than population means (425.4 (4.8), 17.1 (4.4) ml, respectively) but lateral ventricular volumes (3.5 (1.8) ml) were larger than population values (2.1(1.5)) ml. CONCLUSION Our pilot study suggests that brain volumes of opioid-exposed babies may be smaller than population means and that specific regions, for example, basal ganglia, that are involved in neurotransmission, may be particularly affected. Larger studies including correlation with neurodevelopmental outcomes are warranted to substantiate this finding.
Collapse
Affiliation(s)
- Q Yuan
- School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - M Rubic
- School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - J Seah
- School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - C Rae
- Neuroscience Research Australia, University of New South Wales, Randwick, NSW, Australia
| | - I M R Wright
- Graduate School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - K Kaltenbach
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA
| | - J M Feller
- 1] School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia [2] Department of Paediatrics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - M E Abdel-Latif
- 1] Department of Neonatology, Centenary Hospital for Women and Children, Canberra, ACT, Australia [2] School of Clinical Medicine, Australian National University, Woden, ACT, Australia
| | - C Chu
- Department of Radiology, The Wollongong Hospital, Wollongong, NSW, Australia
| | - J L Oei
- 1] School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia [2] Department of Newborn Care, Royal Hospital for Women, Randwick, NSW, Australia
| | | |
Collapse
|
46
|
Kivistö K, Nevalainen P, Lauronen L, Tupola S, Pihko E, Kivitie-Kallio S. Somatosensory and auditory processing in opioid-exposed newborns with neonatal abstinence syndrome: a magnetoencephalographic approach. J Matern Fetal Neonatal Med 2014; 28:2015-9. [PMID: 25354289 DOI: 10.3109/14767058.2014.978755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Opioid exposure during pregnancy is a potential risk factor for the developing central nervous system of the fetus. We studied evoked responses in buprenorphine-exposed newborns who displayed neonatal abstinence syndrome (NAS) to elucidate the possible alterations in functioning of the somatosensory and auditory systems. METHODS We compared somatosensory (SEFs) and auditory evoked magnetic fields (AEFs), recorded with magnetoencephalography (MEG), of 11 prenatally buprenorphine-exposed newborns with those of 12 healthy newborns. Peak latencies, source strength and location of SEFs or AEFs were recorded. RESULTS AEFs were present in all buprenorphine-exposed newborns without significant differences from those of healthy newborns. In contrast, though no group level differences in SEFs existed, at individual level the response deviated from the typical neonatal morphology in four buprenorphine-exposed newborns. CONCLUSIONS Although buprenorphine exposure during pregnancy does not seem to cause constant deficiencies in somatosensory or auditory processing, in some newborns the typical development of somatosensory networks may be - at least transiently - disrupted.
Collapse
Affiliation(s)
- K Kivistö
- a Department of Social Pediatrics , Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki , Helsinki , Finland
| | - P Nevalainen
- b BioMag Laboratory , Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki , Helsinki , Finland
| | - L Lauronen
- c Department of Clinical Neurophysiology , Hospital for Children and Adolescents and University of Helsinki , Helsinki , Finland , and
| | - S Tupola
- a Department of Social Pediatrics , Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki , Helsinki , Finland
| | - E Pihko
- d Brain Research Unit, O.V. Lounasmaa Laboratory , Aalto University School of Science , Espoo , Finland
| | - S Kivitie-Kallio
- a Department of Social Pediatrics , Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki , Helsinki , Finland
| |
Collapse
|
47
|
Li CQ, Luo YW, Bi FF, Cui TT, Song L, Cao WY, Zhang JY, Li F, Xu JM, Hao W, Xing XW, Zhou FH, Zhou XF, Dai RP. Development of anxiety-like behavior via hippocampal IGF-2 signaling in the offspring of parental morphine exposure: effect of enriched environment. Neuropsychopharmacology 2014; 39:2777-87. [PMID: 24889368 PMCID: PMC4200488 DOI: 10.1038/npp.2014.128] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/20/2014] [Accepted: 05/09/2014] [Indexed: 01/09/2023]
Abstract
Opioid addiction is a major social, economic, and medical problem worldwide. Long-term adverse consequences of chronic opiate exposure not only involve the individuals themselves but also their offspring. Adolescent maternal morphine exposure results in behavior and morphologic changes in the brain of their adult offspring. However, few studies investigate the effect of adult opiate exposure on their offspring. Furthermore, the underlying molecular signals regulating the intergenerational effects of morphine exposure are still elusive. We report here that morphine exposure of adult male and female rats resulted in anxiety-like behavior and dendritic retraction in the dentate gyrus (DG) region of the hippocampus in their adult offspring. The behavior and morphologic changes were concomitant with the downregulation of insulin-like growth factor (IGF)-2 signaling in the granular zone of DG. Overexpression of hippocampal IGF-2 by bilateral intra-DG injection of lentivirus encoding the IGF-2 gene prevented anxiety-like behaviors in the offspring. Furthermore, exposure to an enriched environment during adolescence corrected the reduction of hippocampal IGF-2 expression, normalized anxiety-like behavior and reversed dendritic retraction in the adult offspring. Thus, parental morphine exposure can lead to the downregulation of hippocampal IGF-2, which contributed to the anxiety and hippocampal dendritic retraction in their offspring. An adolescent-enriched environment experience prevented the behavior and morphologic changes in their offspring through hippocampal IGF-2 signaling. IGF-2 and an enriched environment may be a potential intervention to prevention of anxiety and brain atrophy in the offspring of parental opioid exposure.
Collapse
Affiliation(s)
- Chang-Qi Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yan-Wei Luo
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Fang-Fang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Tao-Tao Cui
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Ling Song
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Wen-Yu Cao
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Jian-Yi Zhang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Fang Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Jun-Mei Xu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Wei Hao
- Institute of Mental Health, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xiao-Wei Xing
- Center for Medical Experiments, Third Xiang-Ya Hospital of Central South University, Changsha, Hunan Province, China
| | - Fiona H Zhou
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China,Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Ren-Min Road No. 86, Changsha, Hunan Province 410011, China, Tel: +86 731 85295970, Fax: +86 731 85292115, E-mail:
| |
Collapse
|
48
|
Behavioral effects of perinatal opioid exposure. Life Sci 2014; 104:1-8. [PMID: 24746901 DOI: 10.1016/j.lfs.2014.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/01/2014] [Accepted: 04/05/2014] [Indexed: 01/15/2023]
Abstract
Opioids are among the world's oldest known drugs used mostly for pain relief, but recreational use is also widespread. A particularly important problem is opioid exposure in females, as their offspring can also be affected. Adverse intrauterine and postnatal environments can affect offspring development and may lead to various disabilities later in life. It is clear that repetitive painful experiences, such as randomly occurring invasive procedures during neonatal intensive care, can permanently alter neuronal and synaptic organization and therefore later behavior. At the same time, analgesic drugs can also be harmful, inducing neuronal apoptosis or withdrawal symptoms in the neonate and behavioral alterations in adulthood. Hence, risk-benefit ratios should be taken into consideration when pain relief is required during pregnancy or in neonates. Recreational use of opioids can also alter many aspects of life. Intrauterine opioid exposure has many toxic effects, inducing poor pregnancy outcomes due to underdevelopment, but it is believed that later negative consequences are more related to environmental factors such as a chaotic lifestyle and inadequate prenatal care. One of the crucial components is maternal care, which changes profoundly in addicted mothers. In substance-dependent mothers, pre- and postnatal care has special importance, and controlled treatment with a synthetic opioid (e.g., methadone) could be beneficial. We aimed to summarize and compare human and rodent data, as it is important to close the gap between scientific knowledge and societal policies. Special emphasis is given to gender differences in the sensitivity of offspring to perinatal opioid exposure.
Collapse
|
49
|
Santiago SE, Park GH, Huffman KJ. Consumption habits of pregnant women and implications for developmental biology: a survey of predominantly Hispanic women in California. Nutr J 2013; 12:91. [PMID: 23815874 PMCID: PMC3704911 DOI: 10.1186/1475-2891-12-91] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Healthy post-pregnancy outcomes are contingent upon an informed regimen of prenatal care encouraging healthy maternal consumption habits. In this article, we describe aspects of maternal intake of food, drink, and medication in a population of predominantly Hispanic women in Southern California. Potential implications for unhealthy prenatal dietary choices are discussed. METHODS The Food, Beverage, and Medication Intake Questionnaire (FBMIQ) measures common practices of maternal consumption during pregnancy. The FBMIQ was administered to English and Spanish speaking pregnant and recently pregnant (36 weeks pregnant - 8 weeks post-partum) women over the age of 18 who were receiving care from a private medical group in Downey CA. RESULTS A total of 200 women completed the FBMIQ. Consumption habits of healthy foods and beverages, unhealthy foods, unhealthy beverages, and medication are characterized in this article. Data indicate widespread consumption of fresh fruit, meats, milk and juice and indicate most women used prenatal vitamin supplements. Studies in developmental neuroscience have shown that certain substances may cause teratogenic effects on the fetus when ingested by the mother during pregnancy. Those potentially harmful substances included in our study were Bisphenol-A (BPA), methylmercury, caffeine, alcohol and certain medications. Our results show that a proportion of the women surveyed in our study consumed BPA, methylmercury, caffeine, alcohol, and certain medications at varied levels during pregnancy. This represents an interesting finding and suggests a disconnect between scientific data and general recommendations provided to pregnant mothers by obstetricians. CONCLUSIONS The results of our study demonstrate that a proportion of pregnant women consume substances that are potentially teratogenic and may impact the health and well being of the offspring. It is important to appraise healthy and unhealthy consumption habits in order to encourage healthy practices and alleviate future effects of preventable, toxin-induced developmental issues. Prenatal advising should discourage the consumption of dangerous foods, beverages, and medications that women commonly report eating during pregnancy.
Collapse
Affiliation(s)
- Sarah E Santiago
- Department of Psychology, University of California, 900 University Avenue, Riverside, CA, 92521-0128, California
| | - Grace H Park
- Department of Psychology, University of California, 900 University Avenue, Riverside, CA, 92521-0128, California
| | - Kelly J Huffman
- Department of Psychology, University of California, 900 University Avenue, Riverside, CA, 92521-0128, California
| |
Collapse
|
50
|
Long-term health consequences of early-life exposure to substance abuse: an epigenetic perspective. J Dev Orig Health Dis 2013; 4:269-79. [DOI: 10.1017/s2040174413000123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A growing body of evidence highlights the importance of the nutritional or other environmental stimuli during critical periods of development in the long-term programming of organ systems and homeostatic pathways of the organism. The adverse influences early in development and particularly during intrauterine life have been shown to programme the risks for adverse health outcomes in adult life. The mechanisms underlying developmental programming remain still unclear. However, increasing evidence has been accumulated indicating the important role of epigenetic regulation including DNA methylation, histone modifications and non-coding RNAs in the developmental programming of late-onset pathologies, including cancer, neurodegenerative diseases, and type 2 diabetes. The maternal substance abuse during pregnancy, including smoking, drinking and psychoactive drug intake, is one of the important factors determining the process of developmental programming in modern human beings. The impact of prenatal drug/substance exposure on infant and early childhood development is currently in the main focus. The long-term programming effects of such exposures on aging and associated pathologies, however, have been reported only rarely. The purpose of this review is to provide a summary of recent research findings which indicate that maternal substance abuse during pregnancy and/or neonatal period can programme not only a child's health status, but also can cause long-term or even life-long health outcomes via mechanisms of epigenetic memory.
Collapse
|