1
|
Cai X, Yu M, Li B, Zhang Y, Han Y. Cobalt ions-derived nanoenzyme array for endosseous neural network reconstruction and osseointegration. Bioact Mater 2024; 42:1-17. [PMID: 39246698 PMCID: PMC11378756 DOI: 10.1016/j.bioactmat.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Interactions between bone cells and neurocytes are crucial for endosseous nerve and ensuing bone regeneration. However, absence of neural stem cells in bone makes the innervation of implant osseointegration a major challenge. Herein, a nanorod-like array of sodium hydrogen titanate (ST) co-doped with Co2+ and Co3+, namely STCh that behaves as a reactive oxygen species (ROS)-scavenging enzyme, was hydrothermally formed on Ti substrate. We show that the doped Co2+ and Co3+ locate at TiO6 octahedral interlayers and within octahedra of STCh lattice, appearing releasable and un-releasable, respectively, leading to an increase in Co3+/Co2+ ratio and enzyme activity of the array with immersion. The nanoenzyme-released Co2+ triggers macrophages (MΦs) towards M1 phenotype, then the nanoenzyme scavenges extracellular ROS inducing M1-to-M2 transition. The neurogenic factors secreted by STCh-regulated MΦs, in combination with the released Co2+, promote mesenchymal stem cells to differentiate into neurons and Schwann cells compared to sole Co2+and ST. STCh array greatly enhances nerve reconstruction, type-H capillary formation and ensuing osseointegration in normal rat bone, and antibacteria via engulfing S. aureus by MΦs and osteogenesis in infective case. This nanoenzyme provides an alternative strategy to orchestrate endosseous nerve regeneration for osseointegration without loading exogenous neurotrophins in implants.
Collapse
Affiliation(s)
- Xinmei Cai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yingang Zhang
- Department of Orthopaedics, The First Affiliated Hospital College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Orthopaedics, The First Affiliated Hospital College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
2
|
Dong Z, He W, Lin G, Chen X, Cao S, Guan T, Sun Y, Zhang Y, Qi M, Guo B, Zhou Z, Zhuo R, Wu R, Liu M, Liu Y. Histone acetyltransferase KAT2A modulates neural stem cell differentiation and proliferation by inducing degradation of the transcription factor PAX6. J Biol Chem 2023; 299:103020. [PMID: 36791914 PMCID: PMC10011063 DOI: 10.1016/j.jbc.2023.103020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Neural stem cells (NSCs) proliferation and differentiation rely on proper expression and post-translational modification of transcription factors involved in the determination of cell fate. Further characterization is needed to connect modifying enzymes with their transcription factor substrates in the regulation of these processes. Here, we demonstrated that the inhibition of KAT2A, a histone acetyltransferase, leads to a phenotype of small eyes in the developing embryo of zebrafish, which is associated with enhanced proliferation and apoptosis of NSCs in zebrafish eyes. We confirmed that this phenotype is mediated by the evaluated level of PAX6 protein. We further verified that KAT2A negatively regulates PAX6 at the protein level in cultured neural stem cells of rat cerebral cortex. We revealed that PAX6 is a novel acetylation substrate of KAT2A, and the acetylation of PAX6 promotes its ubiquitination mediated by the E3 ligase RNF8 that facilitated PAX6 degradation. Our study proposes that KAT2A inhibition results in accelerated proliferation, delayed differentiation, or apoptosis, depending on the context of PAX6 dosage. Thus, the KAT2A/PAX6 axis plays an essential role to keep a balance between the self-renewal and differentiation of NSCs.
Collapse
Affiliation(s)
- Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Wei He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ge Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Xu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Sixian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ying Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Zhihao Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| |
Collapse
|
3
|
Roolfs L, Hubertus V, Spinnen J, Shopperly LK, Fehlings MG, Vajkoczy P. Therapeutic Approaches Targeting Vascular Repair After Experimental Spinal Cord Injury: A Systematic Review of the Literature. Neurospine 2022; 19:961-975. [PMID: 36597633 PMCID: PMC9816606 DOI: 10.14245/ns.2244624.312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/16/2022] [Indexed: 12/27/2022] Open
Abstract
Traumatic spinal cord injury (SCI) disrupts the spinal cord vasculature resulting in ischemia, amplification of the secondary injury cascade and exacerbation of neural tissue loss. Restoring functional integrity of the microvasculature to prevent neural loss and to promote neural repair is an important challenge and opportunity in SCI research. Herein, we summarize the course of vascular injury and repair following SCI and give a comprehensive overview of current experimental therapeutic approaches targeting spinal cord microvasculature to diminish ischemia and thereby facilitate neural repair and regeneration. A systematic review of the published literature on therapeutic approaches to promote vascular repair after experimental SCI was performed using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) standards. The MEDLINE databases PubMed, Embase, and OVID MEDLINE were searched using the keywords "spinal cord injury," "angiogenesis," "angiogenesis inducing agents," "tissue engineering," and "rodent subjects." A total of 111 studies were identified through the search. Five main therapeutic approaches to diminish hypoxia-ischemia and promote vascular repair were identified as (1) the application of angiogenic factors, (2) genetic engineering, (3) physical stimulation, (4) cell transplantation, and (5) biomaterials carrying various factor delivery. There are different therapeutic approaches with the potential to diminish hypoxia-ischemia and promote vascular repair after experimental SCI. Of note, combinatorial approaches using implanted biomaterials and angiogenic factor delivery appear promising for clinical translation.
Collapse
Affiliation(s)
- Laurens Roolfs
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vanessa Hubertus
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jacob Spinnen
- Tissue Engineering Laboratory, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Lennard K. Shopperly
- Tissue Engineering Laboratory, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael G. Fehlings
- Division of Neurosurgery and Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Canada
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany,Corresponding Author Peter Vajkoczy Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
4
|
Sun R, Bai L, Yang Y, Ding Y, Zhuang J, Cui J. Nervous System-Driven Osseointegration. Int J Mol Sci 2022; 23:ijms23168893. [PMID: 36012155 PMCID: PMC9408825 DOI: 10.3390/ijms23168893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Implants are essential therapeutic tools for treating bone fractures and joint replacements. Despite the in-depth study of osseointegration for more than fifty years, poor osseointegration caused by aseptic loosening remains one of the leading causes of late implant failures. Osseointegration is a highly sophisticated and spatiotemporal process in vivo involving the immune response, angiogenesis, and osteogenesis. It has been unraveled that the nervous system plays a pivotal role in skeletal health via manipulating neurotrophins, neuropeptides, and nerve cells. Herein, the research related to nervous system-driven osseointegration was systematically analyzed and reviewed, aiming to demonstrate the prominent role of neuromodulation in osseointegration. Additionally, it is indicated that the implant design considering the role of neuromodulation might be a promising way to prevent aseptic loosening.
Collapse
Affiliation(s)
- Ruoyue Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanshu Ding
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyuan Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| |
Collapse
|
5
|
Wang R, Liu W, Guo H, Ge S, Huang H, Yang P. Alveolar ridge preservation with fibroblast growth factor-2 modified acellular dermal matrix membrane and a bovine-derived xenograft: An experimental in vivo study. Clin Oral Implants Res 2021; 32:808-817. [PMID: 33756026 DOI: 10.1111/clr.13749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the effect of a bone substitute material combined with fibroblast growth factor-2 (FGF-2) loaded barrier membrane on the preservation of alveolar ridge after tooth extraction. MATERIAL AND METHODS Four dogs were included. Six extraction sockets of each animal received the 3 treatments and were randomly divided into three groups. Group A: negative control; Group B: bovine xenografts + membrane; and Group C: bovine xenografts + FGF-2-loaded membrane. CBCT and histological analysis were performed to evaluate changes in the width and height of alveolar ridges and extraction socket bone healing 8 weeks post-extraction. RESULTS CBCT showed that the alveolar bone in Group A was significantly thinner than that in Group B and Group C at 1 and 3 mm apically from the alveolar crest. The alveolar width at 1 mm in Group C (60.99 ± 15.36%) was significantly thicker than that in Group B (39.75 ± 30.18%). Histomorphmetrical measurements showed that the buccal alveolar width at 1 mm was significantly thicker in Groups B and C than in Group A. Additionally, buccal bone height and lingual bone width at 1 mm in Group C (87.06 ± 10.34%, 89.09 ± 10.56%) were significantly greater than in Group A (53.48 ± 23.94%, 82.72 ± 12.59%). CONCLUSION The present findings indicate that application of bovine bone combined with barrier membrane with or without FGF-2 over tooth sockets can effectively reduce ridge absorption, especially in terms of ridge width and FGF-2 modified membrane seems to improve the outcomes obtained with membrane alone.
Collapse
Affiliation(s)
- Ruolin Wang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Periodontology and Diseases of Oral Mucosa, Jinan Stomatological Hospital, Jinan, China
| | - Wenhua Liu
- Department of Stomatology, Mianyang Central Hospital, Mianyang, China
| | - Hongmei Guo
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Haiyun Huang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University Jinan, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
6
|
Dabrowska S, Andrzejewska A, Janowski M, Lukomska B. Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Outlook for Inflammatory and Degenerative Diseases. Front Immunol 2021; 11:591065. [PMID: 33613514 PMCID: PMC7893976 DOI: 10.3389/fimmu.2020.591065] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are non-hematopoietic, multipotent stem cells derived from mesoderm, which can be easily isolated from many sources such as bone marrow, umbilical cord or adipose tissue. MSCs provide support for hematopoietic stem cells and have an ability to differentiate into multiple cell lines. Moreover, they have proangiogenic, protective and immunomodulatory properties. MSCs have the capacity to modulate both innate and adaptive immune responses, which accompany many diseases, by inhibiting pro-inflammatory reactions and stimulating anti-inflammatory activity. Recent findings revealed that the positive effect of MSCs is at least partly associated with the production of extracellular vesicles (EVs). EVs are small membrane structures, containing proteins, lipids and nuclei acids, which take part in intra-cellular communication. Many studies indicate that EVs contain protective and pro-regenerative properties and can modulate an immune response that is activated in various diseases such as CNS diseases, myocardial infarction, liver injury, lung diseases, ulcerative colitis or kidney injury. Thus, EVs have similar functions as their cells of origin and since they do not carry the risk of cell transplantation, such as tumor formation or small vessel blockage, they can be considered a potential therapeutic tool for cell-free therapy.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland.,University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| |
Collapse
|
7
|
Zheng K, Feng G, Zhang J, Xing J, Huang D, Lian M, Zhang W, Wu W, Hu Y, Lu X, Feng X. Basic fibroblast growth factor promotes human dental pulp stem cells cultured in 3D porous chitosan scaffolds to neural differentiation. Int J Neurosci 2020; 131:625-633. [PMID: 32186218 DOI: 10.1080/00207454.2020.1744592] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM/PURPOSE Dental pulp stem cells (DPSCs) were widely used as seed cells in the field of tissue engineering and regenerative medicine, including spinal cord injury (SCI) repair and other neuronal degenerative diseases, due to their easy isolation, multiple differentiation potential, low immunogenicity and low rates of rejection during transplantation. Various studies have shown that bFGF can enhance peripheral nerve regeneration after injury, and phospho-ERK (p-ERK) activation as a major mediator may be involved in this process. Previous studies also have proved that a suitable biomaterial scaffold can carry and transport the therapeutic cells effectively to the recipient area. It has showed in our earlier experiments that 3D porous chitosan scaffolds exhibited a suitable circumstance for survival and neural differentiation of DPSCs in vitro. The purpose of the study was to evaluate the influence of chitosan scaffolds and bFGF on differentiation of DPSCs. MATERIALS AND METHODS In current study, DPSCs were cultured in chitosan scaffolds and treated with neural differentiation medium for 7 days. The neural genes and protein markers were analyzed by western blot and immunofluorescence. Meanwhile, the relevant signaling pathway involved in this process was also tested. RESULTS Our study revealed that the viability of DPSCs was not influenced by co-culture with the chitosan scaffolds as well as bFGF. Compared with the control and DPSC/chitosan-scaffold groups, the levels of GFAP, S100β and β-tubulin III significantly increased in the DPSC/chitosan-scaffold+bFGF group. CONCLUSION Chitosan scaffolds were non-cytotoxic to the survival of DPSCs, and chitosan scaffolds combined with bFGF facilitated the neural differentiation of DPSCs. The transplantation of DPSCs/chitosan-scaffold+bFGF might be a secure and effective method of treating SCI and other neuronal diseases.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Stomatology, Wuxi No. 2 People's Hospital, Wuxi, China.,Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Xing
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenli Wu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yingzi Hu
- Medical College of Nantong University, Nantong, China
| | - Xiaohui Lu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
8
|
Omar N, Lokanathan Y, Mohd Razi ZR, Bt Haji Idrus R. The effects of Centella asiatica (L.) Urban on neural differentiation of human mesenchymal stem cells in vitro. Altern Ther Health Med 2019; 19:167. [PMID: 31286956 PMCID: PMC6615117 DOI: 10.1186/s12906-019-2581-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/27/2019] [Indexed: 01/17/2023]
Abstract
Background Centella asiatica (L.) Urban, known as Indian Pennywort, is a tropical medicinal plant from Apiaceae family native to Southeast Asian countries. It has been widely used as a nerve tonic in Ayuverdic medicine since ancient times. However, whether it can substitute for neurotrophic factors to induce human mesenchymal stem cell (hMSCs) differentiation into the neural lineage remains unknown. This study aimed to investigate the effect of a raw extract of C. asiatica (L.) (RECA) on the neural differentiation of hMSCs in vitro. Methods The hMSCs derived from human Wharton’s jelly umbilical cord (hWJMSCs; n = 6) were treated with RECA at different concentrations; 400, 800, 1200, 1600, 2000 and 2400 μg/ml. The cytotoxicity of RECA was evaluated via the MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) and cell proliferation assays. The hWJMSCs were then induced to neural lineage for 9 days either with RECA alone or RECA in combination with neurotrophic factors (NF). Cell morphological changes were observed under an inverted microscope, while the expression of the neural markers S100β, p75 NGFR, MBP, GFAP and MOG was analyzed by quantitative polymerase chain reaction and immunocytochemistry. The cell cycle profile of differentiated and undifferentiated hWJMSCs was investigated through cell cycle analysis. Results RECA exerted effects on both proliferation and neural differentiation of hWJMSCs in a dose-dependent manner. RECA reduced the proliferation of hWJMSCs and was cytotoxic to cells above 1600 μg/ml, with IC50 value, 1875 ± 55.67 μg/ml. In parallel with the reduction in cell viability, cell enlargement was also observed at the end of the induction. Cells treated with RECA alone had more obvious protein expression of the neural markers compared to the other groups. Meanwhile, gene expression of the aforementioned markers was detected at low levels across the experimental groups. The supplementation of hWJMSCs with RECA did not change the normal life cycle of the cells. Conclusions Although RECA reduced the proliferation of hWJMSCs, a low dose of RECA (400 μg/ml), alone or in combination of neurotrophic factors (NF + RECA 400 μg/ml), has the potential to differentiate hWJMSCs into Schwann cells and other neural lineage cells. Electronic supplementary material The online version of this article (10.1186/s12906-019-2581-x) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Lotfi L, Khakbiz M, Moosazadeh Moghaddam M, Bonakdar S. A biomaterials approach to Schwann cell development in neural tissue engineering. J Biomed Mater Res A 2019; 107:2425-2446. [DOI: 10.1002/jbm.a.36749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/08/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Leila Lotfi
- Department of Life Science Engineering, Faculty of New Sciences and TechnologiesUniversity of Tehran Tehran Iran
| | - Mehrdad Khakbiz
- Department of Life Science Engineering, Faculty of New Sciences and TechnologiesUniversity of Tehran Tehran Iran
| | | | - Shahin Bonakdar
- National Cell Bank DepartmentPasteur Institute of Iran Tehran Iran
| |
Collapse
|
10
|
Wen Y, Yang H, Wu J, Wang A, Chen X, Hu S, Zhang Y, Bai D, Jin Z. COL4A2 in the tissue-specific extracellular matrix plays important role on osteogenic differentiation of periodontal ligament stem cells. Am J Cancer Res 2019; 9:4265-4286. [PMID: 31285761 PMCID: PMC6599665 DOI: 10.7150/thno.35914] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 02/05/2023] Open
Abstract
Periodontal ligament stem cells (PDLSCs) can repair alveolar bone defects in periodontitis in a microenvironment context-dependent manner. This study aimed to determine whether different extracellular matrices (ECMs) exert diverse effects on osteogenic differentiation of PDLSCs and accurately control alveolar bone defect repair. Methods: The characteristics of PDLSCs and bone marrow mesenchymal stem cells (BMSCs) with respect to surface markers and multi-differentiation ability were determined. Then, we prepared periodontal ligament cells (PDLCs)-derived and bone marrow cells (BMCs)-derived ECMs (P-ECM and B-ECM) and the related decellularized ECMs (dECMs). Transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and protein mass spectrometry were used to distinguish the ECMs. The expression of Type IV collagen A2 (COL4A2) in the ECMs was inhibited by siRNA or activated by lentiviral transduction of relevant cells. The stemness, proliferation, and differentiation of PDLSCs were determined in vitro in different dECMs. For the in vivo analysis, different dECMs under the regulation of COL4A2 mixed with PDLSCs and Bio-Oss bone powder were subcutaneously implanted into immunocompromised mice or in defects in rat alveolar bone. The repair effects were identified by histological or immunohistochemical staining and micro-CT. Results: B-dECM exhibited more compact fibers than P-dECM, as revealed by TEM, SEM, and AFM. Protein mass spectrometry showed that COL4A2 was significantly increased in B-dECM compared with P-dECM. PDLSCs displayed stronger proliferation, stemness, and osteogenic differentiation ability when cultured on B-dECM than P-dECM. Interestingly, B-dECM enhanced the osteogenic differentiation of PDLSCs to a greater extent than P-dECM both in vitro and in vivo, whereas downregulation of COL4A2 in B-dECM showed the opposite results. Furthermore, the classical Wnt/β-catenin pathway was found to play an important role in the negative regulation of osteogenesis through COL4A2, confirmed by experiments with the Wnt inhibitor DKK-1 and the Wnt activator Wnt3a. Conclusion: These findings indicate that COL4A2 in the ECM promotes osteogenic differentiation of PDLSCs through negative regulation of the Wnt/β-catenin pathway, which can be used as a potential therapeutic strategy to repair bone defects.
Collapse
|
11
|
Ramli K, Aminath Gasim I, Ahmad AA, Hassan S, Law ZK, Tan GC, Baharuddin A, Naicker AS, Htwe O, Mohammed Haflah NH, B H Idrus R, Abdullah S, Ng MH. Human bone marrow-derived MSCs spontaneously express specific Schwann cell markers. Cell Biol Int 2019; 43:233-252. [PMID: 30362196 DOI: 10.1002/cbin.11067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
In peripheral nerve injuries, Schwann cells (SC) play pivotal roles in regenerating damaged nerve. However, the use of SC in clinical cell-based therapy is hampered due to its limited availability. In this study, we aim to evaluate the effectiveness of using an established induction protocol for human bone marrow derived-MSC (hBM-MSCs) transdifferentiation into a SC lineage. A relatively homogenous culture of hBM-MSCs was first established after serial passaging (P3), with profiles conforming to the minimal criteria set by International Society for Cellular Therapy (ISCT). The cultures (n = 3) were then subjected to a series of induction media containing β-mercaptoethanol, retinoic acid, and growth factors. Quantitative RT-PCR, flow cytometry, and immunocytochemistry analyses were performed to quantify the expression of specific SC markers, that is, S100, GFAP, MPZ and p75 NGFR, in both undifferentiated and transdifferentiated hBM-MSCs. Based on these analyses, all markers were expressed in undifferentiated hBM-MSCs and MPZ expression (mRNA transcripts) was consistently detected before and after transdifferentiation across all samples. There was upregulation at the transcript level of more than twofolds for NGF, MPB, GDNF, p75 NGFR post-transdifferentiation. This study highlights the existence of spontaneous expression of specific SC markers in cultured hBM-MSCs, inter-donor variability and that MSC transdifferentiation is a heterogenous process. These findings strongly oppose the use of a single marker to indicate SC fate. The heterogenous nature of MSC may influence the efficiency of SC transdifferentiation protocols. Therefore, there is an urgent need to re-define the MSC subpopulations and revise the minimal criteria for MSC identification.
Collapse
Affiliation(s)
- Khairunnisa Ramli
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ifasha Aminath Gasim
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amir Adham Ahmad
- Department of Orthopaedics, School of Medicine, International Medical University, Negeri Sembilan, Malaysia
| | - Shariful Hassan
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zhe Kang Law
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azmi Baharuddin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amaramalar Selvi Naicker
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ohnmar Htwe
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Hazla Mohammed Haflah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ruszymah B H Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shalimar Abdullah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Kitada M, Murakami T, Wakao S, Li G, Dezawa M. Direct conversion of adult human skin fibroblasts into functional Schwann cells that achieve robust recovery of the severed peripheral nerve in rats. Glia 2019; 67:950-966. [PMID: 30637802 DOI: 10.1002/glia.23582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
Direct conversion is considered a promising approach to obtain tissue-specific cells for cell therapies; however, this strategy depends on exogenous gene expression that may cause undesired adverse effects such as tumorigenesis. By optimizing the Schwann cell induction system, which was originally developed for trans-differentiation of bone marrow mesenchymal stem cells into Schwann cells, we established a system to directly convert adult human skin fibroblasts into cells comparable to authentic human Schwann cells without gene introduction. Serial treatments with beta-mercaptoethanol, retinoic acid, and finally a cocktail of basic fibroblast growth factor, forskolin, platelet-derived growth factor-AA, and heregulin-β1 (EGF domain) converted fibroblasts into cells expressing authentic Schwann cell markers at an efficiency of approximately 75%. Genome-wide gene expression analysis suggested the conversion of fibroblasts into the Schwann cell-lineage. Transplantation of induced Schwann cells into severed peripheral nerve of rats facilitated axonal regeneration and robust functional recovery in sciatic function index comparable to those of authentic human Schwann cells. The contributions of induced Schwann cells to myelination of regenerated axons and re-formation of neuromuscular junctions were also demonstrated. Our data clearly demonstrated that cells comparable to functional Schwann cells feasible for the treatment of neural disease can be induced from adult human skin fibroblasts without gene introduction. This direct conversion system will be beneficial for clinical applications to peripheral and central nervous system injuries and demyelinating diseases.
Collapse
Affiliation(s)
- Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Murakami
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gen Li
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Sun X, Zhu Y, Yin HY, Guo ZY, Xu F, Xiao B, Jiang WL, Guo WM, Meng HY, Lu SB, Wang Y, Peng J. Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: potential advantage of cellular transient memory function. Stem Cell Res Ther 2018; 9:133. [PMID: 29751848 PMCID: PMC5948899 DOI: 10.1186/s13287-018-0884-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background Peripheral nerve injury (PNI) is a worldwide issue associated with severe social and economic burden. Autologous nerve grafting, the gold standard treatment for peripheral nerve defects, still has a number of technical limitations. Tissue engineering technology is a novel therapeutic strategy, and mesenchymal stromal cells (MSCs) are promising seed cells for nerve tissue engineering. However, the efficiency of traditional methods for inducing the differentiation of MSCs to Schwann cell-like cells (SCLCs) remains unsatisfactory. Methods Here, we propose an intermittent induction method with alternate use of complete and incomplete induction medium to induce differentiation of adipose-derived stem cells (ASCs) to SCLCs. The time dependence of traditional induction methods and the efficiency of the intermittent induction method and traditional induction methods were evaluated and compared using immunocytochemistry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and co-culture with the dorsal root ganglion (DRG) in vitro. Cell transplantation was used to compare the effects of the traditional induction method and the intermittent induction method in repairing sciatic nerve defects in vivo. Results The results of the present study indicated that the intermittent induction method is more efficient than traditional methods for inducing ASCs to differentiate into SCLCs. In addition, SCLCs induced by this method were closer to mature myelinating Schwann cells and were capable of secreting neurotrophins and promoting DRG axon regeneration in vitro. Furthermore, SCLCs induced by the intermittent induction method could repair sciatic nerve defects in rats by cell transplantation in vivo more effectively than those produced by traditional methods. Conclusion Intermittent induction represents a novel strategy for obtaining seed cells for use in nerve tissue engineering. Electronic supplementary material The online version of this article (10.1186/s13287-018-0884-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xun Sun
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China.,School of Medicine, Nankai University, No.94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Yun Zhu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, No.21 Sassoon Road, Pokfulam, 999077, Hong Kong
| | - He-Yong Yin
- Department of Surgery, Experimental Surgery and Regenerative Medicine, Ludwig-Maximilians-University (LMU), Nussbaumstr. 20, 80336, Munich, Germany
| | - Zhi-Yuan Guo
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Feng Xu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Bo Xiao
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Wen-Li Jiang
- Department of Ultrasound, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Beijing, 100730, People's Republic of China
| | - Wei-Min Guo
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Hao-Ye Meng
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Shi-Bi Lu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226007, People's Republic of China.
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226007, People's Republic of China.
| |
Collapse
|
14
|
Qiu X, Liu S, Zhang H, Zhu B, Su Y, Zheng C, Tian R, Wang M, Kuang H, Zhao X, Jin Y. Mesenchymal stem cells and extracellular matrix scaffold promote muscle regeneration by synergistically regulating macrophage polarization toward the M2 phenotype. Stem Cell Res Ther 2018; 9:88. [PMID: 29615126 PMCID: PMC5883419 DOI: 10.1186/s13287-018-0821-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
Background Skeletal muscle plays an important role in the body’s physiology but there are still no effective treatments for volumetric muscle loss (VML) resulting from severe traumatic injury or tumor excision. Recent studies show that a tissue engineering strategy using a compound containing mesenchymal stem cells (MSCs) and decellularized extracellular matrix (ECM) scaffold generates significant regenerative effects on VML injury, but the underlying mechanisms are not fully understood. Methods The characteristics of human umbilical cord MSCs, including multiplication capacity and multidifferentiation ability, were determined. We constructed a compound containing MSCs and decellularized ECM scaffold which was used for tissue regeneration in a VML model. Results We found that MSCs and decellularized ECM scaffold generated synergistic effects on promoting skeletal muscle tissue regeneration. Interestingly, both MSCs and decellularized ECM scaffold could promote macrophage polarization toward the M2 phenotype and suppress macrophage polarization toward the M1 phenotype, which is widely regarded as an important promoting factor in tissue regeneration. More importantly, MSCs and decellularized ECM scaffold generate synergistic promoting effects on macrophage polarization toward the M2 phenotype, not just an additive effect. Conclusions Our findings uncover a previously unknown mechanism that MSCs and decellularized ECM scaffold promote tissue regeneration via collaboratively regulating macrophage polarization. Electronic supplementary material The online version of this article (10.1186/s13287-018-0821-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinyu Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bin Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Department of Stomatology, General Hospital of Tibet Military Region, Lhasa, Tibet, 850007, China
| | - Yuting Su
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chenxi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Rong Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Miao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Huijuan Kuang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xinyi Zhao
- State Key Laboratory of Military Stomatology, Department of Dental Materials, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. .,Department of Dental Materials, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. .,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
15
|
Wang R, Liu W, Du M, Yang C, Li X, Yang P. The differential effect of basic fibroblast growth factor and stromal cell‑derived factor‑1 pretreatment on bone morrow mesenchymal stem cells osteogenic differentiation potency. Mol Med Rep 2017; 17:3715-3721. [PMID: 29359787 PMCID: PMC5802181 DOI: 10.3892/mmr.2017.8316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022] Open
Abstract
In situ tissue engineering has become a novel strategy to repair periodontal/bone tissue defects. The choice of cytokines that promote the recruitment and proliferation, and potentiate and maintain the osteogenic differentiation ability of mesenchymal stem cells (MSCs) is the key point in this technique. Stromal cell‑derived factor‑1 (SDF‑1) and basic fibroblast growth factor (bFGF) have the ability to promote the recruitment, and proliferation of MSCs; however, the differential effect of SDF‑1 and bFGF pretreatment on MSC osteogenic differentiation potency remains to be explored. The present study comparatively observed osteogenic differentiation of bone morrow MSCs (BMMSCs) pretreated by bFGF or SDF‑1 in vitro. The gene and protein expression levels of alkaline phosphatase (ALP), runt related transcription factor 2 (Runx‑2) and bone sialoprotein (BSP) were detected using reverse transcription‑quantitative polymerase chain reaction and western blotting. The results showed that the expression of ALP mRNA on day 3, and BSP and Runx‑2 mRNA on day 7 in the bFGF pretreatment group was significantly higher than those in SDF‑1 pretreatment group. Expression levels of Runx‑2 mRNA, and ALP and Runx‑2 protein on day 3 in the SDF‑1 pretreatment group were higher than those in the bFGF pretreatment group. However, there was no significant difference in osteogenic differentiation ability on day 14 and 28 between the bFGF‑ or SDF‑1‑pretreatment groups and the control. In conclusion, bFGF and SDF‑1 pretreatment inhibits osteogenic differentiation of BMMSCs at the early stage, promotes it in the medium phase, and maintains it in the later stage during osteogenic induction, particularly at the mRNA level. Out of the two cytokines, bFGF appeared to have a greater effect on osteogenic differentiation.
Collapse
Affiliation(s)
- Ruolin Wang
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenhua Liu
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Mi Du
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital and Institute of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuefen Li
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Pishan Yang
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
16
|
Zhou Y, Wang Z, Li J, Li X, Xiao J. Fibroblast growth factors in the management of spinal cord injury. J Cell Mol Med 2017; 22:25-37. [PMID: 29063730 PMCID: PMC5742738 DOI: 10.1111/jcmm.13353] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) possesses a significant health and economic burden worldwide. Traumatic SCI is a devastating condition that evolves through two successive stages. Throughout each of these stages, disturbances in ionic homeostasis, local oedema, ischaemia, focal haemorrhage, free radicals stress and inflammatory response were observed. Although there are no fully restorative cures available for SCI patients, various molecular, cellular and rehabilitative therapies, such as limiting local inflammation, preventing secondary cell death and enhancing the plasticity of local circuits in the spinal cord, were described. Current preclinical studies have showed that fibroblast growth factors (FGFs) alone or combination therapies utilizing cell transplantation and biomaterial scaffolds are proven effective for treating SCI in animal models. More importantly, some studies further demonstrated a paucity of clinical transfer usage to promote functional recovery of numerous patients with SCI. In this review, we focus on the therapeutic capacity and pitfalls of the FGF family and its clinical application for treating SCI, including the signalling component of the FGF pathway and the role in the central nervous system, the pathophysiology of SCI and the targets for FGF treatment. We also discuss the challenges and potential for the clinical translation of FGF-based approaches into treatments for SCI.
Collapse
Affiliation(s)
- Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Cao S, Du J, Lv Y, Lin H, Mao Z, Xu M, Liu M, Liu Y. PAX3 inhibits β-Tubulin-III expression and neuronal differentiation of neural stem cell. Biochem Biophys Res Commun 2017; 485:307-311. [PMID: 28223217 DOI: 10.1016/j.bbrc.2017.02.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/17/2017] [Indexed: 01/28/2023]
Abstract
PAX3 functions at the nodal point in neural stem cell maintenance and differentiation. Using bioinformatics methods, we identified PAX3 as a potential regulator of β-Tubulin-III (TUBB3) gene transcription, and the results indicated that PAX3 might be involved in neural stem cell (NSC) differentiation by orchestrating the expression of cytoskeletal proteins. In the present study, we reported that PAX3 could inhibit the differentiation of NSCs and the expression of TUBB3. Further, using luciferase and electrophoretic mobility shift assays, we demonstrated that PAX3 could bind to the promoter region of TUBB3 and inhibit TUBB3 transcription. Finally, we confirmed that PAX3 could bind to the promoter region of endogenous TUBB3 in the native chromatin of NSCs. These findings indicated that PAX3 is a pivotal factor targeting various molecules during differentiation of NSCs in vitro.
Collapse
Affiliation(s)
- Sixian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jinfeng Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yan Lv
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Hengrong Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Zuming Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
18
|
Cruz Villagrán C, Schumacher J, Donnell R, Dhar MS. A Novel Model for Acute Peripheral Nerve Injury in the Horse and Evaluation of the Effect of Mesenchymal Stromal Cells Applied In Situ on Nerve Regeneration: A Preliminary Study. Front Vet Sci 2016; 3:80. [PMID: 27695697 PMCID: PMC5023688 DOI: 10.3389/fvets.2016.00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2022] Open
Abstract
Transplantation of mesenchymal stromal cells (MSCs) to sites of experimentally created nerve injury in laboratory animals has shown promising results in restoring nerve function. This approach for nerve regeneration has not been reported in horses. In this study, we first evaluated the in vitro ability of equine bone marrow-derived MSCs (EBM-MSCs) to trans-differentiate into Schwann-like cells and subsequently tested the MSCs in vivo for their potential to regenerate a transected nerve after implantation. The EBM-MSCs from three equine donors were differentiated into SCLs for 7 days, in vitro, in the presence of specialized differentiation medium and evaluated for morphological characteristics, by using confocal microscopy, and for protein characteristics, by using selected Schwann cell markers (GFAP and S100b). The EBM-MSCs were then implanted into the fascia surrounding the ramus communicans of one fore limb of three healthy horses after a portion of this nerve was excised. The excised portion of the nerve was examined histologically at the time of transection, and stumps of the nerve were examined histologically at day 45 after transplantation. The EBM-MSCs from all donors demonstrated morphological and protein characteristics of those of Schwann cells 7 days after differentiation. Nerves implanted with EBM-MSCs after nerve transection did not show evidence of nerve regeneration at day 45. Examination of peripheral nerves collected 45 days after injury and stem cell treatment revealed no histological differences between nerves treated with MSCs and those treated with isotonic saline solution (controls). The optimal delivery of MSCs and the model suitable to study the efficacy of MSCs in nerve regeneration should be investigated.
Collapse
Affiliation(s)
- Claudia Cruz Villagrán
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, TN , USA
| | - Jim Schumacher
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, TN , USA
| | - Robert Donnell
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, TN , USA
| | - Madhu S Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, TN , USA
| |
Collapse
|
19
|
Fu X, Tong Z, Li Q, Niu Q, Zhang Z, Tong X, Tong L, Zhang X. Induction of adipose-derived stem cells into Schwann-like cells and observation of Schwann-like cell proliferation. Mol Med Rep 2016; 14:1187-93. [PMID: 27279556 PMCID: PMC4940092 DOI: 10.3892/mmr.2016.5367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/21/2016] [Indexed: 01/05/2023] Open
Abstract
The peripheral nervous system has the potential for full regeneration following injury and recovery, predominantly controlled by Schwann cells (SCs). Therefore, obtaining a sufficient number of SCs in a short duration is crucial. In the present study, rat adipose-derived stem cells (ADSCs) were isolated and cultured, following which characterization of the ADSCs was performed using flow cytometry. The results showed that the cells were positive for the CD29 and CD44 markers, and negative for the CD31, CD45, CD49 and CD106 markers. The multilineage differentiation potential of the ADSCs was assayed by determining the ability of the cells to differentiate into osteoblasts and adipocytes. Following this, the ADSCs were treated with a specific medium and differentiated into Schwann-like cells. Immunofluorescence, western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that ~95% of the differentiated cells expressed glial fibrillary acidic protein, S100 and p75. In addition, the present study found that a substantial number of SCs can be produced in a short duration via the mitotic feature of Schwann-like cells. These data indicated that Schwann-like cells derived from ADSCs can undergo mitotic proliferation, which may be beneficial for the treatment of peripheral nerve injury in the future.
Collapse
Affiliation(s)
- Xiumei Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhaoxue Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qi Li
- Department of Hand Surgery, Affiliated Feng Tian Hospital, Shenyang Medical College, Shenyang, Liaoning 110001, P.R. China
| | - Qingfei Niu
- Department of Hand Surgery, Affiliated Feng Tian Hospital, Shenyang Medical College, Shenyang, Liaoning 110001, P.R. China
| | - Zhe Zhang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaojie Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xu Zhang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
20
|
Ma K, Tan Z, Zhang C, Fu X. Mesenchymal stem cells for sweat gland regeneration after burns: From possibility to reality. Burns 2016; 42:492-9. [DOI: 10.1016/j.burns.2015.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/18/2015] [Accepted: 04/17/2015] [Indexed: 01/16/2023]
|
21
|
Chiossone L, Conte R, Spaggiari GM, Serra M, Romei C, Bellora F, Becchetti F, Andaloro A, Moretta L, Bottino C. Mesenchymal Stromal Cells Induce Peculiar Alternatively Activated Macrophages Capable of Dampening Both Innate and Adaptive Immune Responses. Stem Cells 2016; 34:1909-21. [PMID: 27015881 DOI: 10.1002/stem.2369] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/07/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) support hematopoiesis and exert immunoregulatory activities. Here, we analyzed the functional outcome of the interactions between MSCs and monocytes/macrophages. We showed that MSCs supported the survival of monocytes that underwent differentiation into macrophages, in the presence of macrophage colony-stimulating factor. However, MSCs skewed their polarization toward a peculiar M2-like functional phenotype (M(MSC) ), through a prostaglandin E2-dependent mechanism. M(MSC) were characterized by high expression of scavenger receptors, increased phagocytic capacity, and high production of interleukin (IL)-10 and transforming growth factor-β. These cytokines contributed to the immunoregulatory properties of M(MSC) , which differed from those of typical IL-4-induced macrophages (M2). In particular, interacting with activated natural killer (NK) cells, M(MSC) inhibited both the expression of activating molecules such as NKp44, CD69, and CD25 and the production of IFNγ, while M2 affected only IFNγ production. Moreover, M(MSC) inhibited the proliferation of CD8(+) T cells in response to allogeneic stimuli and induced the expansion of regulatory T cells (Tregs). Toll-like receptor engagement reverted the phenotypic and functional features of M(MSC) to those of M1 immunostimulatory/proinflammatory macrophages. Overall our data show that MSCs induce the generation of a novel type of alternatively activated macrophages capable of suppressing both innate and adaptive immune responses. These findings may help to better understand the role of MSCs in healthy tissues and inflammatory diseases including cancer, and provide clues for novel therapeutic approaches. Stem Cells 2016;34:1909-1921.
Collapse
Affiliation(s)
- Laura Chiossone
- Laboratory of Clinical and Experimental Immunology, G. Gaslini Institute, Genoa, Italy
| | - Romana Conte
- Laboratory of Immunology, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, G. Gaslini Institute, Genoa, Italy
| | - Cristina Romei
- Laboratory of Clinical and Experimental Immunology, G. Gaslini Institute, Genoa, Italy
| | - Francesca Bellora
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Flavio Becchetti
- Laboratory of Clinical and Experimental Immunology, G. Gaslini Institute, Genoa, Italy
| | - Antonio Andaloro
- Laboratory of Clinical and Experimental Immunology, G. Gaslini Institute, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Cristina Bottino
- Laboratory of Clinical and Experimental Immunology, G. Gaslini Institute, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
22
|
The key components of Schwann cell-like differentiation medium and their effects on gene expression pattern of adipose-derived stem cells. Ann Plast Surg 2016; 74:584-8. [PMID: 25643192 DOI: 10.1097/sap.0000000000000436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Schwann cell-like cells differentiated from adipose-derived stem cells may have an important role in peripheral nerve regeneration. Herein, we document the individual effects of growth factors in Schwann cell-like differentiation medium. METHODS There were 6 groups in the study. In the control group, we supplemented the rat adipose-derived stem cells with normal cell culture medium. In group 1, we fed the cells with Schwann cell-like differentiation medium (normal cell culture medium supplemented with platelet-derived growth factor, basic fibroblast growth factor, forskolin, and glial growth factor). In the other groups, we removed the components of the medium one at a time from the differentiation medium so that group 2 lacked glial growth factor, group 3 lacked forskolin, group 4 lacked basic fibroblast growth factor, and group 5 lacked platelet-derived growth factor. We examined the expression of the Schwann cell-specific genes with quantitative reverse transcription polymerase chain reaction and immunofluorescence staining in each group. RESULTS Groups 3 and 4, lacking forskolin and basic fibroblast growth factor, respectively, had the highest expression levels of integrin-β4, and p75. Group 1 showed a 3.2-fold increase in the expression of S100, but the expressions of integrin-β4 and p75 were significantly lower compared to groups 3 and 4. Group 2 [glial growth factor (-)] did not express significant levels of Schwann cell-specific genes. The gene expression profile in group 4 most closely resembled Schwann cells. Immunofluorescence staining results were parallel with the quantitative real-time polymerase chain reaction results. CONCLUSIONS Glial growth factor is a key component of Schwann cell-like differentiation medium.
Collapse
|
23
|
Cao S, Wei X, Li H, Miao J, Zhao G, Wu D, Liu B, Zhang Y, Gu H, Wang L, Fan Y, An D, Yuan Z. Comparative Study on the Differentiation of Mesenchymal Stem Cells Between Fetal and Postnatal Rat Spinal Cord Niche. Cell Transplant 2015; 25:1115-30. [PMID: 26651539 DOI: 10.3727/096368915x689910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In a previous study, we established a prenatal surgical approach and transplanted mesenchymal stem cells (MSCs) into the fetal rat spinal column to treat neural tube defects (NTDs). We found that the transplanted MSCs survived and differentiated into neural lineage cells. Various cytokines and extracellular signaling systems in the spinal cord niche play an important role in cell differentiation. In this study, we observed the differentiation of transplanted MSCs in different spinal cord niches and further observed the expression of neurotrophic factors and growth factors in the spinal cord at different developmental stages to explore the mechanism of MSC differentiation in different spinal cord niches. The results showed that transplanted MSCs expressed markers of neural precursor cells (nestin), neurogliocytes (GFAP), and neurons (β-tubulin). The percentages of GFP(+)/nestin(+) double-positive cells in transplanted MSCs in E16, P1, and P21 rats were 18.31%, 12.18%, and 5.06%, respectively. The percentages of GFP(+)/GFAP(+) double-positive cells in E16, P1, and P21 rats were 32.01%, 15.35%, and 12.56%, respectively. The percentages of GFP(+)/β-tubulin(+) double-positive cells in E16, P1, and P21 were 11.76%, 7.62%, and 4.88%, respectively. The differentiation rates of MSCs in embryonic spinal cords were significantly higher than in postnatal spinal cords (p < 0.05). We found that the transplanted MSCs expressed synapsin-1 at different developmental stages. After MSC transplantation, we observed that neurotrophic factor-3 (NT-3), fibroblast growth factor-2 (FGF-2), FGF-8, transforming growth factor-α (TGF-α), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) significantly increased in the MSC transplantation group compared with the blank injection group. Furthermore, FGF-2 and VEGF expression were positively correlated with the number of surviving MSCs. In addition, we found that the expression of brain-derived neurotrophic factor (BDNF), NT-3, FGF-8, TGF-β, epidermal growth factor (EGF), and insulin-like growth factor (IGF) decreased with age, and the expression of FGF-2, FGF-10, FGF-20, TGF-α, and PDGF increased with age. Our data suggest that the embryonic spinal cord niche is more conducive to MSC differentiation after transplantation.
Collapse
Affiliation(s)
- Songying Cao
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hu Y, Zhang Y, Tian K, Xun C, Wang S, Lv D. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Mol Med Rep 2015; 13:49-58. [PMID: 26572749 PMCID: PMC4686117 DOI: 10.3892/mmr.2015.4553] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/26/2015] [Indexed: 12/26/2022] Open
Abstract
Recent studies regarding regenerative medicine have focused on bone marrow mesenchymal stem cells (BMSCs), which have the potential to undergo neural differentiation, and may be transfected with specific genes. BMSCs can differentiate into neuron-like cells in certain neurotropic circumstances in vitro. Basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) are often used to induce neural differentiation in BMSCs in vitro. However, previous studies regarding their combined actions are insufficient. The present study is the first, to the best of our knowledge, to thoroughly assess the enhancement of neural differentiation of BMSCs following transfection with bFGF and NGF. Sprague-Dawley (SD) rat BMSCs were separated through whole bone marrow adherence, and were then passaged to the third generation. The cells were subsequently divided into five groups: The control group, which consisted of untransfected BMSCs; the plv-blank-transfected BMSCs group; the plv-bFGF-trans-fected BMSCs group; the plv-NGF-transfected BMSCs group; and the plv-NGF-bFGF co-transfected BMSCs group. Cell neural differentiation was characterized in terms of stem cell molecular expression, and the neuronal morphology and expression of neural-like molecules was detected in each of the groups. A total of 72 h post-transfection, the expression levels of neuron-specific enolase, glial fibrillary acidic protein, and nestin protein, were higher in the co-transfected group, as compared with the other groups, the expression levels of β-tubulin III were also increased in the co-transfected cells, thus suggesting the maturation of differentiated neuron-like cells. Furthermore, higher neuronal proliferation was observed in the co-transfected group, as compared with the other groups at passages 2, 4, 6 and 8. Western blotting demonstrated that the transfected groups exhibited a simultaneous increase in phosphorylation of the AKT and extracellular signal-regulated kinases (ERK) signaling pathway. These results suggested that manipulation of the ERK and AKT signaling pathway may be associated with the differentiation of transfected BMSCs.
Collapse
Affiliation(s)
- Yang Hu
- Department of Orthopedics, The First Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yan Zhang
- Institute of Cancer Stem Cells, Cancer Center, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Kang Tian
- Department of Orthopedics, The First Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chong Xun
- Department of Orthopedics, The First Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shouyu Wang
- Department of Orthopedics, The First Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Decheng Lv
- Department of Orthopedics, The First Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
25
|
Bone marrow-derived, neural-like cells have the characteristics of neurons to protect the peripheral nerve in microenvironment. Stem Cells Int 2015; 2015:941625. [PMID: 25861281 PMCID: PMC4378708 DOI: 10.1155/2015/941625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022] Open
Abstract
Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that "neural-like cells" may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG), immunohistochemistry, and transmission electron microscopy (TEM) were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve.
Collapse
|
26
|
Wakao S, Matsuse D, Dezawa M. Mesenchymal stem cells as a source of Schwann cells: their anticipated use in peripheral nerve regeneration. Cells Tissues Organs 2015; 200:31-41. [PMID: 25765009 DOI: 10.1159/000368188] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2014] [Indexed: 11/19/2022] Open
Abstract
Schwann cells form myelin, sustain axons and provide the microenvironment for nerve fibers, thereby playing a key role in the peripheral nervous system (PNS). Schwann cells also provide support for the damaged PNS by producing factors that strongly promote axonal regrowth and contribute to remyelination, which is crucial for the recovery of neural function. These advantages are not confined to the PNS and also apply to the central nervous system. Many diseases, including peripheral nerve injury, neuropathy, multiple sclerosis and spinal cord injury, are targets for Schwann cell therapy. The collection of Schwann cells, however, causes new damage to other peripheral nerve segments. Furthermore, the doubling time of Schwann cells is not very fast, and thus adequate amounts of Schwann cells for clinical use cannot be collected within a reasonable amount of time. Mesenchymal stem cells, which are highly proliferative, are easily accessible from various types of mesenchymal tissues, such as the bone marrow, umbilical cord and fat tissue. Because these cells have the ability to cross oligolineage boundaries between mesodermal to ectodermal lineages, they are capable of differentiating into Schwann cells with step-by-step cytokine stimulation. In this review, we summarize the properties of mesenchymal stem cell-derived Schwann cells, which are comparable to authentic Schwann cells, and discuss future perspectives.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
27
|
Proposing the use of dental pulp stem cells as a suitable biological model of neurofibromatosis type 1. Childs Nerv Syst 2015; 31:7-13. [PMID: 25480698 DOI: 10.1007/s00381-014-2599-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE This study aims to propose the dental pulp stem cells (DPSCs) as a model for studying two features related to neurofibromatosis type 1 (NF1), i.e. augmented proliferative capacity and altered osteogenic differentiation. METHODS We isolated a DPSC from the pulp of deciduous teeth of a 6-year-old NF1 patient and two other healthy children of similar age. Cell proliferation was assayed by counting with a haemocytometer after successive cell re-plating. In order to compare osteogenic differentiation, we used osteoblast-differentiating medium and quantified alizarin stain, which relates to degree of calcification, and evaluated the expression of osteoblastic markers by reverse transcription polymerase chain reaction (RT-PCR). RESULTS The DPSCs isolated from the NF1 patient displayed a greater rate of proliferation when compared to the control cells. Osteogenic differentiation occurred as expected for both NF1 and control, which concerned cell morphology and expression of osteoblast marker genes ALP, BMP2, BMP4, OCN and SPP1. However, alizarin staining denoted a markedly lower calcification level in the cells from the NF1-diagnosed child, considering that less calcium deposits were visualized under light microscopy and a smaller amount of alizarin could be quantified by spectrophotometry after extraction from the stained cells. CONCLUSION DPSCs seem to be useful as a model for studying NF1 and predicting prognosis of patients, since their in vitro behaviour seems to mimic at least two features of this disorder: higher tendency to develop bone abnormalities and neoplastic cell proliferation.
Collapse
|