1
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
2
|
Xu Z, Lee MC, Sheehan K, Fujii K, Rabl K, Rader G, Varney S, Sharma M, Eilers H, Kober K, Miaskowski C, Levine JD, Schumacher MA. Chemotherapy for pain: reversing inflammatory and neuropathic pain with the anticancer agent mithramycin A. Pain 2024; 165:54-74. [PMID: 37366593 PMCID: PMC10723648 DOI: 10.1097/j.pain.0000000000002972] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT The persistence of inflammatory and neuropathic pain is poorly understood. We investigated a novel therapeutic paradigm by targeting gene networks that sustain or reverse persistent pain states. Our prior observations found that Sp1-like transcription factors drive the expression of TRPV1, a pain receptor, that is blocked in vitro by mithramycin A (MTM), an inhibitor of Sp1-like factors. Here, we investigate the ability of MTM to reverse in vivo models of inflammatory and chemotherapy-induced peripheral neuropathy (CIPN) pain and explore MTM's underlying mechanisms. Mithramycin reversed inflammatory heat hyperalgesia induced by complete Freund adjuvant and cisplatin-induced heat and mechanical hypersensitivity. In addition, MTM reversed both short-term and long-term (1 month) oxaliplatin-induced mechanical and cold hypersensitivity, without the rescue of intraepidermal nerve fiber loss. Mithramycin reversed oxaliplatin-induced cold hypersensitivity and oxaliplatin-induced TRPM8 overexpression in dorsal root ganglion (DRG). Evidence across multiple transcriptomic profiling approaches suggest that MTM reverses inflammatory and neuropathic pain through broad transcriptional and alternative splicing regulatory actions. Mithramycin-dependent changes in gene expression following oxaliplatin treatment were largely opposite to and rarely overlapped with changes in gene expression induced by oxaliplatin alone. Notably, RNAseq analysis revealed MTM rescue of oxaliplatin-induced dysregulation of mitochondrial electron transport chain genes that correlated with in vivo reversal of excess reactive oxygen species in DRG neurons. This finding suggests that the mechanism(s) driving persistent pain states such as CIPN are not fixed but are sustained by ongoing modifiable transcription-dependent processes.
Collapse
Affiliation(s)
- Zheyun Xu
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Man-Cheung Lee
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kayla Sheehan
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Keisuke Fujii
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Katalin Rabl
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Gabriella Rader
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Scarlett Varney
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Manohar Sharma
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Helge Eilers
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kord Kober
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, United States
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, United States
| | - Jon D. Levine
- Division of Neuroscience, Departments of Medicine and Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Mark A. Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Schumacher MA. Peripheral Neuroinflammation and Pain: How Acute Pain Becomes Chronic. Curr Neuropharmacol 2024; 22:6-14. [PMID: 37559537 PMCID: PMC10716877 DOI: 10.2174/1570159x21666230808111908] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 08/11/2023] Open
Abstract
The number of individuals suffering from severe chronic pain and its social and financial impact is staggering. Without significant advances in our understanding of how acute pain becomes chronic, effective treatments will remain out of reach. This mini review will briefly summarize how critical signaling pathways initiated during the early phases of peripheral nervous system inflammation/ neuroinflammation establish long-term modifications of sensory neuronal function. Together with the recruitment of non-neuronal cellular elements, nociceptive transduction is transformed into a pathophysiologic state sustaining chronic peripheral sensitization and pain. Inflammatory mediators, such as nerve growth factor (NGF), can lower activation thresholds of sensory neurons through posttranslational modification of the pain-transducing ion channels transient-receptor potential TRPV1 and TRPA1. Performing a dual role, NGF also drives increased expression of TRPV1 in sensory neurons through the recruitment of transcription factor Sp4. More broadly, Sp4 appears to modulate a nociceptive transcriptome including TRPA1 and other genes encoding components of pain transduction. Together, these findings suggest a model where acute pain evoked by peripheral injury-induced inflammation becomes persistent through repeated cycles of TRP channel modification, Sp4-dependent overexpression of TRP channels and ongoing production of inflammatory mediators.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| |
Collapse
|
4
|
Jiang H, Qiu J, Deng X, Li D, Tao T. Potential active compounds and common mechanisms of Evodia rutaecarpa for Alzheimer's disease comorbid pain by network pharmacology analysis. Heliyon 2023; 9:e18455. [PMID: 37529338 PMCID: PMC10388172 DOI: 10.1016/j.heliyon.2023.e18455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Evodia rutaecarpa (Evodia) is a Chinese herbal medicine with analgesic and anti-neurodegenerative properties. However, whether Evodia compounds can be applied for the comorbid pain of Alzheimer's disease (AD) and the underlying mechanisms remain unclear. Herein, 137 common targets of Evodia between AD and pain were predicted from drug and disease target databases. Subsequently, protein-protein interaction (PPI) network, protein function module construction, and bioinformatics analyses were used to analyze the potential relationship among targets, pathways, and diseases. Evodia could simultaneously treat AD comorbid pain through multi-target, multi-component, and multi-pathway mechanisms, and inflammation was an important common phenotype of AD and pain. The relationship between important transcription factors such as RELA, NF-κB1, SP1, STAT3, and JUN on IL-17, TNF, and MAPK signaling pathways might be potential mechanisms of Evodia. Additionally, 10 candidate compounds were predicted, and evodiamine might be the effective active ingredient of Evodia in treating AD or pain. In summary, this study provided a reference for subsequent research and a novel understanding and direction for the clinical use of evodiamine to treat AD patients with comorbid pain.
Collapse
Affiliation(s)
- Huiyi Jiang
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Jiamin Qiu
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Xin Deng
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Danping Li
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Tao Tao
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
- Department of Anesthesiology, Zhujiang hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
5
|
Joffre J, Wong E, Lawton S, Lloyd E, Nguyen N, Xu F, Sempio C, Kobzik L, Zlatanova I, Schumacher M, Klawitter J, Su H, Rabl K, Wilhelmsen K, Yeh CC, Hellman J. N-Oleoyl dopamine induces IL-10 via central nervous system TRPV1 and improves endotoxemia and sepsis outcomes. J Neuroinflammation 2022; 19:118. [PMID: 35610647 PMCID: PMC9131699 DOI: 10.1186/s12974-022-02485-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background The transient receptor potential vanilloid 1 (TRPV1) participates in thermosensation and inflammatory pain, but its immunomodulatory mechanisms remain enigmatic. N-Oleoyl dopamine (OLDA), an endovanilloid and endocannabinoid, is a TRPV1 agonist that is produced in the central nervous system and the peripheral nervous system. We studied the anti-inflammatory effects and TRPV1-dependent mechanisms of OLDA in models of inflammation and sepsis. Methods Mice were challenged intratracheally or intravenously with LPS, or intratracheally with S. aureus to induce pneumonia and sepsis, and then were treated intravenously with OLDA. Endpoints included plasma cytokines, leukocyte activation marker expression, mouse sepsis scores, lung histopathology, and bacterial counts. The role of TRPV1 in the effects of OLDA was determined using Trpv1−/− mice, and mice with TRPV1 knockdown pan-neuronally, in peripheral nervous system neurons, or in myeloid cells. Circulating monocytes/macrophages were depleted using clodronate to determine their role in the anti-inflammatory effects of OLDA in endotoxemic mice. Levels of exogenous OLDA, and of endovanilloids and endocannabinoids, at baseline and in endotoxemic mice, were determined by LC–MS/MS. Results OLDA administration caused an early anti-inflammatory response in endotoxemic and septic mice with high serum levels of IL-10 and decreased levels of pro-inflammatory cytokines. OLDA also reduced lung injury and improved mouse sepsis scores. Blood and lung bacterial counts were comparable between OLDA- and carrier-treated mice with S. aureus pneumonia. OLDA’s effects were reversed in mice with pan-neuronal TRPV1 knockdown, but not with TRPV1 knockdown in peripheral nervous system neurons or myeloid cells. Depletion of monocytes/macrophages reversed the IL-10 upregulation by OLDA in endotoxemic mice. Brain and blood levels of endovanilloids and endocannabinoids were increased in endotoxemic mice. Conclusions OLDA has strong anti-inflammatory actions in mice with endotoxemia or S. aureus pneumonia. Prior studies focused on the role of peripheral nervous system TRPV1 in modulating inflammation and pneumonia. Our results suggest that TRPV1-expressing central nervous system neurons also regulate inflammatory responses to endotoxemia and infection. Our study reveals a neuro-immune reflex that during acute inflammation is engaged proximally by OLDA acting on neuronal TRPV1, and through a multicellular network that requires circulating monocytes/macrophages, leads to the systemic production of IL-10. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02485-z.
Collapse
Affiliation(s)
- Jérémie Joffre
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Erika Wong
- Pediatric Critical Care Division UCSF Benioff Children's Hospitals, San Francisco, CA, 94158, USA
| | - Samira Lawton
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Elliot Lloyd
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Nina Nguyen
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Cristina Sempio
- Institute of Cognitive Science, CU Boulder, iC42 Integrated Solutions in Systems Biology, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Lester Kobzik
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - Ivana Zlatanova
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA, 94158, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA.,Division of Pain Medicine, UCSF School of Medicine, San Francisco, CA, 94143, USA
| | - Jost Klawitter
- Institute of Cognitive Science, CU Boulder, iC42 Integrated Solutions in Systems Biology, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Katalin Rabl
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Che-Chung Yeh
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, UCSF School of Medicine, 500 Parnassus Ave, Box 0648, San Francisco, CA, 94143, USA.
| |
Collapse
|
6
|
Pentobarbital may protect against neurogenic inflammation after surgery via inhibition of substance P release from peripheral nerves of rats. Neurosci Lett 2022; 771:136467. [DOI: 10.1016/j.neulet.2022.136467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/28/2021] [Accepted: 01/15/2022] [Indexed: 11/23/2022]
|
7
|
Li S, Zhao F, Tang Q, Xi C, He J, Wang Y, Zhu MX, Cao Z. Sarco/endoplasmic reticulum Ca 2+ -ATPase 2b mediates oxidation-induced endoplasmic reticulum stress to regulate neuropathic pain. Br J Pharmacol 2021; 179:2016-2036. [PMID: 34811737 DOI: 10.1111/bph.15744] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/24/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain is a widespread health problem with limited curative treatment. Decreased sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) expression has been reported in dorsal root ganglion (DRG) of animals suffering from neuropathic pain. We aimed to establish the relationship between SERCA expression and the pain responses and to elucidate the underlying molecular mechanism. EXPERIMENTAL APPROACH Neuropathic pain was modeled using rat chronic constriction injury (CCI). Ca2+ imaging and current clamp patch-clamp were used to determine cytosolic Ca2+ levels and action potential firing, respectively. Western blots, immunofluorescence staining and RT-PCR were used to quantitatively assess protein and mRNA expression, respectively. H&E staining and coupled enzyme assay were used to evaluate the nerve injury and SERCA2b activity, respectively. KEY RESULTS SERCA2b is the predominant SERCA isoform in rat DRG and its expression is decreased after CCI at mRNA, protein and activity levels. Whereas inhibiting SERCA with thapsigargin causes neuronal hyperexcitation, nerve injury, ER stress, satellite glial cell activation and mechanical allodynia, activating SERCA by CDN1163 or overexpressing SERCA2b in DRG after CCI produces long-term relief of mechanical and thermal allodynia with accompanied morphological and functional restoration through alleviation of ER stress. Furthermore, the downregulation of DRG SERCA2b in CCI rats is caused by increased production of reactive oxygen species (ROS) through Sp1-dependent transcriptional inhibition. CONCLUSION AND IMPLICATIONS Our findings reveal a novel pathway centering around SERCA2b as the key molecule underlying the mechanism of development and maintenance of neuropathic pain, and SERCA2b activators have the potential for therapeutic treatment of neuropathic pain.
Collapse
Affiliation(s)
- Shaoheng Li
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qinglian Tang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chuchu Xi
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jing He
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yujing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Achenbach J, Rhein M, Gombert S, Meyer-Bockenkamp F, Buhck M, Eberhardt M, Leffler A, Frieling H, Karst M. Childhood traumatization is associated with differences in TRPA1 promoter methylation in female patients with multisomatoform disorder with pain as the leading bodily symptom. Clin Epigenetics 2019; 11:126. [PMID: 31455424 PMCID: PMC6712620 DOI: 10.1186/s13148-019-0731-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Background The construct of multisomatoform disorder (MSD) is a common point of reference for patients in different somatic and psychosomatic specialties and therefore useful in studying large well-characterized cohorts of a prototype of a somatoform disorder and in parallel as a functional somatic syndrome (FSS). This disorder is characterized by distressing and functionally disabling somatic symptoms with chronic pain as the most frequent and clinically relevant complaint. Pain is perceived by nociceptive nerve fibers and transferred through the generation of action potentials by different receptor molecules known to determine pain sensitivity in pathophysiological processes. Previous studies have shown that for the transient receptor potential ankyrin 1 (TRPA1), receptor methylation of a particular CpG dinucleotide in the promoter region is inversely associated with both heat pain and pressure pain thresholds. In this study, we hypothesized that TRPA1 promoter methylation regulates pain sensitivity of patients with multisomatoform disorder (MSD). A cohort of 151 patients with MSD and 149 matched healthy volunteers were evaluated using quantitative sensory testing, clinical and psychometric assessment, and methylation analysis using DNA isolated from whole blood. Results We found CpG -628 to be correlated with mechanical pain threshold and CpG -411 to be correlated with mechanical pain threshold in female volunteers, i.e., higher methylation levels lead to higher pain thresholds. A novel finding is that methylation levels were significantly different between patients with no and severe levels of childhood trauma. CpG methylation also correlated with psychometric assessment of pain and pain levels rated on a visual analog scale. Conclusion Our findings support the hypothesis that epigenetic regulation of TRPA1 plays a role in mechanical pain sensitivities in healthy volunteers. They further provide evidence for the possible influence of childhood traumatic experiences on the epigenetic regulation of TRPA1 in patients with MSD. Electronic supplementary material The online version of this article (10.1186/s13148-019-0731-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Achenbach
- Department of Anesthesiology and Intensive Care Medicine, Pain Clinic, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Mathias Rhein
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Sara Gombert
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Fiona Meyer-Bockenkamp
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Miro Buhck
- Department of Anesthesiology and Intensive Care Medicine, Pain Clinic, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mirjam Eberhardt
- Department of Anesthesiology and Intensive Care Medicine, Pain Clinic, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Pain Clinic, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Helge Frieling
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Matthias Karst
- Department of Anesthesiology and Intensive Care Medicine, Pain Clinic, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
9
|
Gómez K, Sandoval A, Barragán-Iglesias P, Granados-Soto V, Delgado-Lezama R, Felix R, González-Ramírez R. Transcription Factor Sp1 Regulates the Expression of Calcium Channel α 2δ-1 Subunit in Neuropathic Pain. Neuroscience 2019; 412:207-215. [PMID: 31220545 DOI: 10.1016/j.neuroscience.2019.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/15/2019] [Accepted: 06/09/2019] [Indexed: 01/08/2023]
Abstract
High voltage-activated (HVA) Ca2+ (CaV) channels are oligomeric complexes formed by an ion-conducting main subunit (Cavα1) and at least two auxiliary subunits (Cavβ and CaVα2δ). It has been reported that the expression of CaVα2δ1 increases in the dorsal root ganglia (DRGs) of animals with mechanical allodynia, and that the transcription factor Sp1 regulates the expression of the auxiliary subunit. Hence, the main aim of this work was to investigate the role of Sp1 as a molecular determinant of the exacerbated expression of CaVα2δ-1 in the nerve ligation-induced model of mechanical allodynia. Our results show that ligation of L5/L6 spinal nerves (SNL) produced allodynia and increased the expression of Sp1 and CaVα2δ-1 in the DRGs. Interestingly, intrathecal administration of the Sp1 inhibitor mithramycin A (Mth) prevented allodynia and decreased the expression of Sp1 and CaVα2δ-1. Likewise, electrophysiological recordings showed that incubation with Mth decreased Ca2+ current density in the DRG neurons, acting mostly on HVA channels. These results suggest that L5/L6 SNL produces mechanical allodynia and increases the expression of the transcription factor Sp1 and the subunit CaVα2δ-1 in the DRGs, while Mth decreases mechanical allodynia and Ca2+ currents through HVA channels in sensory neurons by reducing the functional expression of the CaVα2δ-1 subunit.
Collapse
Affiliation(s)
- Kimberly Gómez
- Department of Physiology, Biophysics and Neuroscience, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| | - Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | - Rodolfo Delgado-Lezama
- Department of Physiology, Biophysics and Neuroscience, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Cinvestav, Mexico City, Mexico.
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico.
| |
Collapse
|
10
|
Sheehan K, Lee J, Chong J, Zavala K, Sharma M, Philipsen S, Maruyama T, Xu Z, Guan Z, Eilers H, Kawamata T, Schumacher M. Transcription factor Sp4 is required for hyperalgesic state persistence. PLoS One 2019; 14:e0211349. [PMID: 30811405 PMCID: PMC6392229 DOI: 10.1371/journal.pone.0211349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Understanding how painful hypersensitive states develop and persist beyond the initial hours to days is critically important in the effort to devise strategies to prevent and/or reverse chronic painful states. Changes in nociceptor transcription can alter the abundance of nociceptive signaling elements, resulting in longer-term change in nociceptor phenotype. As a result, sensitized nociceptive signaling can be further amplified and nocifensive behaviors sustained for weeks to months. Building on our previous finding that transcription factor Sp4 positively regulates the expression of the pain transducing channel TRPV1 in Dorsal Root Ganglion (DRG) neurons, we sought to determine if Sp4 serves a broader role in the development and persistence of hypersensitive states in mice. We observed that more than 90% of Sp4 staining DRG neurons were small to medium sized, primarily unmyelinated (NF200 neg) and the majority co-expressed nociceptor markers TRPV1 and/or isolectin B4 (IB4). Genetically modified mice (Sp4+/-) with a 50% reduction of Sp4 showed a reduction in DRG TRPV1 mRNA and neuronal responses to the TRPV1 agonist-capsaicin. Importantly, Sp4+/- mice failed to develop persistent inflammatory thermal hyperalgesia, showing a reversal to control values after 6 hours. Despite a reversal of inflammatory thermal hyperalgesia, there was no difference in CFA-induced hindpaw swelling between CFA Sp4+/- and CFA wild type mice. Similarly, Sp4+/- mice failed to develop persistent mechanical hypersensitivity to hind-paw injection of NGF. Although Sp4+/- mice developed hypersensitivity to traumatic nerve injury, Sp4+/- mice failed to develop persistent cold or mechanical hypersensitivity to the platinum-based chemotherapeutic agent oxaliplatin, a non-traumatic model of neuropathic pain. Overall, Sp4+/- mice displayed a remarkable ability to reverse the development of multiple models of persistent inflammatory and neuropathic hypersensitivity. This suggests that Sp4 functions as a critical control point for a network of genes that conspire in the persistence of painful hypersensitive states.
Collapse
Affiliation(s)
- Kayla Sheehan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Jessica Lee
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Jillian Chong
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Kathryn Zavala
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Manohar Sharma
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tomoyuki Maruyama
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Zheyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Helge Eilers
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Tomoyuki Kawamata
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Amachi R, Hiasa M, Teramachi J, Harada T, Oda A, Nakamura S, Hanson D, Watanabe K, Fujii S, Miki H, Kagawa K, Iwasa M, Endo I, Kondo T, Yoshida S, Aihara KI, Kurahashi K, Kuroda Y, Horikawa H, Tanaka E, Matsumoto T, Abe M. A vicious cycle between acid sensing and survival signaling in myeloma cells: acid-induced epigenetic alteration. Oncotarget 2018; 7:70447-70461. [PMID: 27626482 PMCID: PMC5342564 DOI: 10.18632/oncotarget.11927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023] Open
Abstract
Myeloma (MM) cells and osteoclasts are mutually interacted to enhance MM growth while creating acidic bone lesions. Here, we explored acid sensing of MM cells and its role in MM cell response to acidic conditions. Acidic conditions activated the PI3K-Akt signaling in MM cells while upregulating the pH sensor transient receptor potential cation channel subfamily V member 1 (TRPV1) in a manner inhibitable by PI3K inhibition. The acid-activated PI3K-Akt signaling facilitated the nuclear localization of the transcription factor Sp1 to trigger the expression of its target genes, including TRPV1 and HDAC1. Consistently, histone deacetylation was enhanced in MM cells in acidic conditions, while repressing a wide variety of genes, including DR4. Indeed, acidic conditions deacetylated histone H3K9 in a DR4 gene promoter and curtailed DR4 expression in MM cells. However, inhibition of HDAC as well as either Sp1 or PI3K was able to restore DR4 expression in MM cells suppressed in acidic conditions. These results collectively demonstrate that acid activates the TRPV1-PI3K-Akt-Sp1 signaling in MM cells while inducing HDAC-mediated gene repression, and suggest that a positive feedback loop between acid sensing and the PI3K-Akt signaling is formed in MM cells, leading to MM cell response to acidic bone lesions.
Collapse
Affiliation(s)
- Ryota Amachi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan.,Department of Biomaterials and Bioengineerings, Tokushima University Graduate School, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Histology and Oral Histology, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Shingen Nakamura
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Derek Hanson
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Keiichiro Watanabe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Hirokazu Miki
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Division of Transfusion medicine and cell therapy, Tokushima University hospital, Tokushima, Japan
| | - Kumiko Kagawa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Masami Iwasa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Itsuro Endo
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Kondo
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Sumiko Yoshida
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-Ichi Aihara
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Kiyoe Kurahashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshiaki Kuroda
- Department of Hematology and Oncology, RIRBM, Hiroshima University, Hiroshima, Japan
| | - Hideaki Horikawa
- Support Center for Advanced Medical Sciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan
| | - Toshio Matsumoto
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Fujii Memorial Institute for Medical Research Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
12
|
Wei C, Zhang W, Zhou Q, Zhao C, Du Y, Yan Q, Li Z, Miao J. Mithramycin A Alleviates Cognitive Deficits and Reduces Neuropathology in a Transgenic Mouse Model of Alzheimer's Disease. Neurochem Res 2016; 41:1924-38. [PMID: 27072684 DOI: 10.1007/s11064-016-1903-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/24/2016] [Accepted: 03/24/2016] [Indexed: 01/13/2023]
Abstract
Increasing evidence has shown that specificity protein 1 (Sp1) is abnormally increased in the brains of subjects with Alzheimer's disease (AD) and transgenic AD models. However, whether the Sp1 activation plays a critical role in the AD pathogenesis and selective inhibition of Sp1 activation may have a disease-modifying effect on the AD-like phenotypes remain elusive. In this study, we reported that Sp1 mRNA and protein expression were markedly increased in the brain of APPswe/PS1dE9 transgenic mice, whereas chronic administration of mithramycin A (MTM), a selective Sp1 inhibitor, potently inhibited Sp1 activation in the APPswe/PS1dE9 mice down to the levels of wild-type mice. Specifically, we found that MTM treatment resulted in a significant improvement of learning and memory deficits, a dramatic reduction in cerebral Aβ levels and plaque burden, a profound reduction in tau hyperphosphorylation, and a marked increase in synaptic marker in the APPswe/PS1dE9 mice. In addition, MTM treatment was powerfully effective in inhibiting amyloid precursor protein (APP) processing via suppressing APP, beta-site APP cleaving enzyme 1 (BACE1), and presenilin-1 (PS1) mRNA and protein expression to preclude Aβ production in the APPswe/PS1dE9 mice. Furthermore, MTM treatment strongly inhibited phosphorylated CDK5 and GSK3β signal pathways to reduce tau hyperphosphorylation in the APPswe/PS1dE9 mice. Collectively, our findings provide evidence that Sp1 activation may contribute to the AD pathogenesis and may serve as a novel therapeutic target in the treatment of AD. The present study highlights that selective Sp1 inhibitors may be considered as disease-modifying therapeutic agents for AD.
Collapse
Affiliation(s)
- Chao Wei
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Qiong Zhou
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Chao Zhao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Ying Du
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Qi Yan
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China. .,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.
| | - Jianting Miao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.
| |
Collapse
|
13
|
Yaksh TL. TRPV1 expression regulation… A further step in defining its biology: commentary for K. Zavala et al. "The anticancer antibiotic mithramycin-A inhibits TRPV1 expression in dorsal root ganglion neurons" [Neurosci. Lett. (2014) doi: 10.1016/j.neulet.2014.01.021]. Neurosci Lett 2014; 578:209-10. [PMID: 24769421 DOI: 10.1016/j.neulet.2014.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 11/16/2022]
Affiliation(s)
- Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, United States.
| |
Collapse
|
14
|
Wilhelmsen K, Khakpour S, Tran A, Sheehan K, Schumacher M, Xu F, Hellman J. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55,212-2 abate the inflammatory activation of human endothelial cells. J Biol Chem 2014; 289:13079-100. [PMID: 24644287 DOI: 10.1074/jbc.m113.536953] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although cannabinoids, such as Δ(9)-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation.
Collapse
|