1
|
Sagarkar S, Bhat N, Rotti D, Subhedar NK. AMPA and NMDA receptors in dentate gyrus mediate memory for sucrose in two port discrimination task. Hippocampus 2024; 34:342-356. [PMID: 38780087 DOI: 10.1002/hipo.23609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/30/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.
Collapse
MESH Headings
- Animals
- Male
- Rats
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Discrimination Learning/drug effects
- Discrimination Learning/physiology
- Discrimination, Psychological/drug effects
- Discrimination, Psychological/physiology
- Excitatory Amino Acid Antagonists/pharmacology
- Memory/physiology
- Memory/drug effects
- Proto-Oncogene Proteins c-fos/metabolism
- Rats, Wistar
- Receptors, AMPA/metabolism
- Receptors, AMPA/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- RNA, Messenger/metabolism
- Self Administration
- Sucrose/administration & dosage
Collapse
Affiliation(s)
- Sneha Sagarkar
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Nagashree Bhat
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Deepa Rotti
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
2
|
Berry MM, Miller B, Kelsen S, Cockrell C, Kohtz AS. Sex differences in hippocampal β-adrenergic receptor subtypes drive retrieval, retention, and learning of cocaine-associated memories. Front Behav Neurosci 2024; 18:1379866. [PMID: 38807929 PMCID: PMC11130369 DOI: 10.3389/fnbeh.2024.1379866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/04/2024] [Indexed: 05/30/2024] Open
Abstract
Background Drug seeking behavior occurs in response to environmental contexts and drug-associated cues. The presence of these pervasive stimuli impedes abstinence success. β-adrenergic receptors (β-ARs) have a long-standing historical implication in driving processes associated with contextual memories, including drug-associated memories in substance use disorders. However, sex differences in the role of β-adrenergic receptors in drug memories remain unknown. Hypothesis Prior reports indicate a selective role for β2-ARs in retrieval and retention of contextual drug memories in males, and substantial sex differences exist in the expression of β-ARs of male and female rats. Therefore, we hypothesized that there are sex differences in selective recruitment of β-ARs during different stages of memory encoding and retrieval. Methods The role of β-ARs in driving retrieval and learning of contextual cocaine memories was investigated using cocaine conditioned place preference (CPP) in adult male and female Sprague-Dawley rats. Rats were infused directly to the dorsal hippocampus with Propranolol (β1 and β2) or ICI-118,551 (β1) and/or Betaxolol (β2), immediately prior to testing (retrieval), or paired to each cocaine (10 mg/kp, IP) conditioning session (learning). Results In males, administration of either β1, β2, or combined β1 and β2-ARs before the initial CPP testing reduced the expression of a CPP compared to vehicle administration. In females, β2-ARs transiently decreased CPP memories, whereas β1 had long lasting but not immediate effects to decrease CPP memories. Additionally, β1 and combined β1 and β2-ARs had immediate and persistent effects to decrease CPP memory expression. DG Fos + neurons predicted cocaine CPP expression in males, whereas CA1 and CA3 Fos + neurons predicted cocaine CPP expression in females. Conclusion There are significant sex differences in the role of dorsal hippocampus β-ARs in the encoding and expression of cocaine conditioned place preference. Furthermore, sub regions of the dorsal hippocampus appear to activate differently between male and female rats during CPP. Therefore DG, CA3, and CA1 may have separate region- and sex-specific impacts on driving drug- associated, or context-associated cues.
Collapse
Affiliation(s)
- Melanie M. Berry
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Beau Miller
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Biological Sciences, Mississippi College, Jackson, MS, United States
| | - Silvia Kelsen
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Carlee Cockrell
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Biological Sciences, Mississippi College, Jackson, MS, United States
| | - Amy Stave Kohtz
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
3
|
Kohtz AS, Zhao J, Aston-Jones G. Serotonin Signaling in Hippocampus during Initial Cocaine Abstinence Drives Persistent Drug Seeking. J Neurosci 2024; 44:e1505212024. [PMID: 38514181 PMCID: PMC11044100 DOI: 10.1523/jneurosci.1505-21.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
The initiation of abstinence after chronic drug self-administration is stressful. Cocaine-seeking behavior on the first day of the absence of the expected drug (Extinction Day 1, ED1) is reduced by blocking 5-HT signaling in dorsal hippocampal cornu ammonis 1 (CA1) in both male and female rats. We hypothesized that the experience of ED1 can substantially influence later relapse behavior and that dorsal raphe (DR) serotonin (5-HT) input to CA1 may be involved. We inhibited 5-HT1A/1B receptors (WAY-100635 plus GR-127935), or DR input (chemogenetics), in CA1 on ED1 to test the role of this pathway on cocaine-seeking persistence 2 weeks later. We also inhibited 5-HT1A or 5-HT1B receptors in CA1 during conditioned place preference (CPP) for cocaine, to examine mechanisms involved in the persistent effects of ED1 manipulations. Inhibition of DR inputs, or 5-HT1A/1B signaling, in CA1 decreased drug seeking on ED1 and decreased cocaine seeking 2 weeks later revealing that 5-HT signaling in CA1 during ED1 contributes to persistent drug seeking during abstinence. In addition, 5-HT1B antagonism alone transiently decreased drug-associated memory performance when given prior to a CPP test, whereas similar antagonism of 5-HT1A alone had no such effect but blocked CPP retrieval on a test 24 h later. These CPP findings are consistent with prior work showing that DR inputs to CA1 augment recall of the drug-associated context and drug seeking via 5-HT1B receptors and prevent consolidation of the updated nondrug context via 5-HT1A receptors. Thus, treatments that modulate 5-HT-dependent memory mechanisms in CA1 during initial abstinence may facilitate later maintenance of abstinence.
Collapse
Affiliation(s)
- Amy S Kohtz
- Brain Health Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Joshua Zhao
- Brain Health Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
4
|
Huang J, Xu F, Yang L, Tuolihong L, Wang X, Du Z, Zhang Y, Yin X, Li Y, Lu K, Wang W. Involvement of the GABAergic system in PTSD and its therapeutic significance. Front Mol Neurosci 2023; 16:1052288. [PMID: 36818657 PMCID: PMC9928765 DOI: 10.3389/fnmol.2023.1052288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The neurobiological mechanism of post-traumatic stress disorder (PTSD) is poorly understood. The inhibition of GABA neurons, especially in the amygdala, is crucial for the precise regulation of the consolidation, expression, and extinction of fear conditioning. The GABAergic system is involved in the pathophysiological process of PTSD, with several studies demonstrating that the function of the GABAergic system decreases in PTSD patients. This paper reviews the preclinical and clinical studies, neuroimaging techniques, and pharmacological studies of the GABAergic system in PTSD and summarizes the role of the GABAergic system in PTSD. Understanding the role of the GABAergic system in PTSD and searching for new drug targets will be helpful in the treatment of PTSD.
Collapse
Affiliation(s)
| | - Fei Xu
- Department of Psychiatry of School of Public Health, Southern Medical University, Guangzhou, China
| | - Liping Yang
- Department of Applied Psychology of School of Public Health, Southern Medical University, Guangzhou, China
| | - Lina Tuolihong
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyu Wang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zibo Du
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiqi Zhang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xuanlin Yin
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Yingjun Li
- Department of Medical Laboratory Science, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Kangrong Lu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
| | - Wanshan Wang
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Mathis VP, Williams M, Fillinger C, Kenny PJ. Networks of habenula-projecting cortical neurons regulate cocaine seeking. SCIENCE ADVANCES 2021; 7:eabj2225. [PMID: 34739312 PMCID: PMC8570600 DOI: 10.1126/sciadv.abj2225] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/17/2021] [Indexed: 05/06/2023]
Abstract
How neurons in the medial prefrontal cortex broadcast stress-relevant information to subcortical brain sites to regulate cocaine relapse remains unclear. The lateral habenula (LHb) serves as a “hub” to filter and propagate stress- and aversion-relevant information in the brain. Here, we show that chemogenetic inhibition of cortical inputs to LHb attenuates relapse-like reinstatement of extinguished cocaine seeking in mice. Using an RNA sequencing–based brain mapping procedure with single-cell resolution, we identify networks of cortical neurons that project to LHb and then preferentially innervate different downstream brain sites, including the ventral tegmental area, median raphe nucleus, and locus coeruleus (LC). By using an intersectional chemogenetics approach, we show that inhibition of cortico-habenular neurons that project to LC, but not to other sites, blocks reinstatement of cocaine seeking. These findings highlight the remarkable complexity of descending cortical inputs to the habenula and identify a cortico-habenulo-hindbrain circuit that regulates cocaine seeking.
Collapse
Affiliation(s)
| | - Maya Williams
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | |
Collapse
|
6
|
Mañas‐Padilla MC, Gil‐Rodríguez S, Sampedro‐Piquero P, Ávila‐Gámiz F, Rodríguez de Fonseca F, Santín LJ, Castilla‐Ortega E. Remote memory of drug experiences coexists with cognitive decline and abnormal adult neurogenesis in an animal model of cocaine-altered cognition. Addict Biol 2021; 26:e12886. [PMID: 32090424 DOI: 10.1111/adb.12886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/23/2019] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
Cocaine addiction is a chronic disorder in which the person loses control over drug use. The past memories of the stimuli associated with the drug are a relevant clinical problem, since they trigger compulsive drug-seeking and drug-taking habits. Furthermore, these persistent drug-related memories seemingly coexist with cognitive decline that predicts worse therapeutic output. Here, we use a new animal model of cocaine-altered cognition that allowed to observe these events in the same individual and study their relationship. Mice were chronically administered cocaine in a conditioned place preference (CPP) apparatus for 14 days, and control mice received saline. After 28 days of cocaine withdrawal, animals were tested for retrieval of remote drug-associated memory as well as for cognitive performance in a battery of tests, including novel object and place recognition and spatial memory. The cocaine-withdrawn mice showed persistent CPP memory while impaired in the cognitive tasks, displaying deficits in reference memory acquisition and working memory. However, the CPP expression was not associated with the defective cognitive performance, indicating that they were concomitant but independent occurrences. After completion of the experiment, adult hippocampal neurogenesis (AHN) was studied as a relevant neurobiological correlate due to its potential role in both learning and drug addiction. Results suggested a preserved basal AHN in the cocaine-withdrawn mice but an aberrant learning-induced regulation of these neurons. This paradigm may be useful to investigate maladaptive cognition in drug addiction as well as related therapies.
Collapse
Affiliation(s)
- M. Carmen Mañas‐Padilla
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Sara Gil‐Rodríguez
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Patricia Sampedro‐Piquero
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Fabiola Ávila‐Gámiz
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Unidad de Gestión Clínica de Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Luis J. Santín
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Estela Castilla‐Ortega
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Unidad de Gestión Clínica de Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
7
|
Krueger JN, Wilmot JH, Teratani-Ota Y, Puhger KR, Nemes SE, Crestani AP, Lafreniere MM, Wiltgen BJ. Amnesia for context fear is caused by widespread disruption of hippocampal activity. Neurobiol Learn Mem 2020; 175:107295. [PMID: 32822864 PMCID: PMC8562570 DOI: 10.1016/j.nlm.2020.107295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022]
Abstract
The hippocampus plays an essential role in the formation and retrieval of episodic memories in humans and contextual memories in animals. However, amnesia is not always observed when this structure is compromised. To determine why this is the case, we compared the effects of several different circuit manipulations on memory retrieval and hippocampal activity. Mice were first trained on context fear conditioning and then optogenetic and chemogenetic tools were used to alter activity during memory retrieval. We found that retrieval was only impaired when manipulations caused widespread changes (increases or decreases) in hippocampal activity. Widespread increases occurred when pyramidal cells were excited and widespread decreases were found when GABAergic neurons were stimulated. Direct hyperpolarization of excitatory neurons only moderately reduced activity and did not produce amnesia. Surprisingly, widespread decreases in hippocampal activity did not prevent retrieval if they occurred gradually prior to testing. This suggests that intact brain regions can express contextual memories if they are given adequate time to compensate for the loss of the hippocampus.
Collapse
Affiliation(s)
- Jamie N Krueger
- Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, United States.
| | - Jacob H Wilmot
- Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Yusuke Teratani-Ota
- Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Kyle R Puhger
- Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Sonya E Nemes
- Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, United States.
| | - Ana P Crestani
- Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| | - Marrisa M Lafreniere
- Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, United States.
| | - Brian J Wiltgen
- Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, United States; Department of Psychology, University of California Davis, 135 Young Hall, Davis, CA 95616, United States.
| |
Collapse
|
8
|
Epigenetic upregulation of hippocampal CXCL12 contributes to context spatial memory-associated morphine conditioning. Brain Behav Immun 2020; 84:72-79. [PMID: 31751616 DOI: 10.1016/j.bbi.2019.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022] Open
Abstract
Conditioned place preference (CPP) is a learned behavior, in which animals learn to associate environmental contexts with rewarding effects. The formation of CPP is an integrated outcome of multiple learning processes. Although multiple anatomical substrates underlying this contextual learning have been proposed, it remains unknown whether a specific molecular signaling pathway within CA1 mediates context learning associated with morphine conditioning. Here, we showed that repeated context learning associated with morphine conditioning significantly increased CXCL12 levels in hippocampal CA1 neurons, and the inhibition of CXCL12 expression ameliorated the CPP behavior following context exposure with morphine conditioning. Additionally, repeated context exposure with morphine conditioning increased the phosphorylation of STAT3 and the acetylation of histone H4 in CXCL12-expressing neurons in CA1. Immunoprecipitation and chromatin immunoprecipitation assays demonstrated that repeated context exposure with morphine conditioning increased the binding of STAT3 to the CXCL12 gene promoter and the interaction between STAT3 and p300, which contributed to the enhanced transcription of CXCL12 by increasing the acetylation of histone H4 in the CXCL12 gene promoter. The inhibition of STAT3 by intrathecal injection of S3I-201 suppressed the acetylation of histone H4. These data demonstrated the epigenetic upregulation of CXCL12 following repeated context exposure with morphine conditioning, which potentially contributed to the spatial memory consolidation associated with conditioned place preference induced by morphine conditioning.
Collapse
|
9
|
Santarelli AJ, Khan AM, Poulos AM. Contextual fear retrieval-induced Fos expression across early development in the rat: An analysis using established nervous system nomenclature ontology. Neurobiol Learn Mem 2018; 155:42-49. [PMID: 29807127 DOI: 10.1016/j.nlm.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 02/07/2023]
Abstract
The neural circuits underlying the acquisition, retention and retrieval of contextual fear conditioning have been well characterized in the adult animal. A growing body of work in younger rodents indicates that context-mediated fear expression may vary across development. However, it remains unclear how this expression may be defined across the full range of key developmental ages. Nor is it fully clear whether the structure of the adult context fear network generalizes to earlier ages. In this study, we compared context fear retrieval-induced behavior and neuroanatomically constrained immediate early-gene expression across infant (P19), early and late juvenile (P24 and P35), and adult (P90) male Long-Evans rats. We focused our analysis on neuroanatomically defined subregions and nuclei of the basolateral complex of the amygdala (BLA complex), dorsal and ventral portions of the hippocampus and the subregions of the medial prefrontal cortex as defined by the nomenclature of the Swanson (2004) adult rat brain atlas. Relative to controls and across all ages tested, there were greater numbers of Fos immunoreactive (Fos-ir) neurons in the posterior part of the basolateral amygdalar nuclei (BLAp) following context fear retrieval that correlated statistically with the expression of freezing. However, Fos-ir within regions having known connections with the BLA complex was differentially constrained by developmental age: early juvenile, but not adult rats exhibited an increase of context fear-dependent Fos-ir neurons in prelimbic and infralimbic areas, while adult, but not juvenile rats displayed increases in Fos-ir neurons within the ventral CA1 hippocampus. These results suggest that juvenile and adult rodents may recruit developmentally unique pathways in the acquisition and retrieval of contextual fear. This study extends prior work by providing a broader set of developmental ages and a rigorously defined neuroanatomical ontology within which the contextual fear network can be studied further.
Collapse
Affiliation(s)
- Anthony J Santarelli
- Department of Psychology, Center for Neuroscience, State University of New York, University at Albany, Albany, NY 12222, USA
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Andrew M Poulos
- Department of Psychology, Center for Neuroscience, State University of New York, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
10
|
Hitchcock LN, Lattal KM. Involvement of the dorsal hippocampus in expression and extinction of cocaine-induced conditioned place preference. Hippocampus 2018; 28:226-238. [PMID: 29341327 DOI: 10.1002/hipo.22826] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 12/31/2022]
Abstract
A key aspect of substance abuse is that drug taking often occurs in a specific context. As a consequence, exposure to drug-associated contexts can trigger cravings and relapse, even after long periods of abstinence. Although many studies have demonstrated that the hippocampus is critical for developing and retrieving contextual and spatial memories, comparatively little is known about the role of the hippocampus in acquiring and inhibiting memories involving contexts and drugs of abuse. We examined the effects of hippocampal inactivation on expression of cocaine-induced conditioned place preference (CPP) after initial acquisition or extinction of CPP in C57BL/6 mice. During acquisition of CPP, distinct tactile cues were paired with cocaine (20 mg kg-1 , intraperitoneal, CS+) and different tactile cues were paired with saline (CS-) on alternate days. Groups differed in whether the CS+ and CS- cues were presented in the same large space (one-compartment procedure) or distinct small spaces (two-compartment procedure), as previous findings demonstrate that a two-compartment configuration facilitates acquisition and attenuates extinction of a cocaine-induced CPP. Microinjection of the GABAA agonist, muscimol, into the dorsal hippocampus impaired (1) retrieval of a place preference after acquisition, (2) extinction of a place preference, and (3) retrieval of extinction. These effects differed depending on the spatial configuration during acquisition or extinction, suggesting that the dorsal hippocampus may differentially modulate drug seeking during retrieval and extinction of CPP.
Collapse
Affiliation(s)
- Leah N Hitchcock
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
11
|
Roy DS, Kitamura T, Okuyama T, Ogawa SK, Sun C, Obata Y, Yoshiki A, Tonegawa S. Distinct Neural Circuits for the Formation and Retrieval of Episodic Memories. Cell 2017; 170:1000-1012.e19. [PMID: 28823555 PMCID: PMC5586038 DOI: 10.1016/j.cell.2017.07.013] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/01/2017] [Accepted: 07/12/2017] [Indexed: 01/26/2023]
Abstract
The formation and retrieval of a memory is thought to be accomplished by activation and reactivation, respectively, of the memory-holding cells (engram cells) by a common set of neural circuits, but this hypothesis has not been established. The medial temporal-lobe system is essential for the formation and retrieval of episodic memory for which individual hippocampal subfields and entorhinal cortex layers contribute by carrying out specific functions. One subfield whose function is poorly known is the subiculum. Here, we show that dorsal subiculum and the circuit, CA1 to dorsal subiculum to medial entorhinal cortex layer 5, play a crucial role selectively in the retrieval of episodic memories. Conversely, the direct CA1 to medial entorhinal cortex layer 5 circuit is essential specifically for memory formation. Our data suggest that the subiculum-containing detour loop is dedicated to meet the requirements associated with recall such as rapid memory updating and retrieval-driven instinctive fear responses.
Collapse
Affiliation(s)
- Dheeraj S Roy
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Takashi Kitamura
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teruhiro Okuyama
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sachie K Ogawa
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chen Sun
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuichi Obata
- RIKEN BioResource Center, 3-1-1 Koyadai, Ibaraki 305-0074, Japan
| | - Atsushi Yoshiki
- RIKEN BioResource Center, 3-1-1 Koyadai, Ibaraki 305-0074, Japan
| | - Susumu Tonegawa
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
12
|
Sierra RO, Pedraza LK, Zanona QK, Santana F, Boos FZ, Crestani AP, Haubrich J, de Oliveira Alvares L, Calcagnotto ME, Quillfeldt JA. Reconsolidation-induced rescue of a remote fear memory blocked by an early cortical inhibition: Involvement of the anterior cingulate cortex and the mediation by the thalamic nucleus reuniens. Hippocampus 2017; 27:596-607. [DOI: 10.1002/hipo.22715] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Rodrigo O. Sierra
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Lizeth K. Pedraza
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Neurobiology of Memory Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Querusche K. Zanona
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Fabiana Santana
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Flávia Z. Boos
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Ana P. Crestani
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Josué Haubrich
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Lucas de Oliveira Alvares
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Neurobiology of Memory Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Lab; Biochemistry Department, ICBS, CEP 90.030-003, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - Jorge A. Quillfeldt
- Psychobiology and Neurocomputing Lab; Biophysics Department, IB, CEP 91.501-970, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Graduate Program in Neuroscience; ICBS, CEP 90.046-900, Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
13
|
Cocaine Seeking During Initial Abstinence Is Driven by Noradrenergic and Serotonergic Signaling in Hippocampus in a Sex-Dependent Manner. Neuropsychopharmacology 2017; 42:408-418. [PMID: 27515792 PMCID: PMC5399231 DOI: 10.1038/npp.2016.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 08/02/2016] [Accepted: 08/07/2016] [Indexed: 11/08/2022]
Abstract
There is evidence for sex differences in cocaine addiction from both clinical and preclinical studies. In particular, preclinical studies indicate that females may be more sensitive than males to stress-induced drug seeking. The dorsal hippocampus (DH) is prominently involved in the stress response, as are the locus coeruleus norepinephrine (LC-NE) and dorsal raphe serotonin (DR 5-HT) systems. Moreover, DH receives strong inputs from LC-NE and DR 5-HT neurons. We hypothesized that the stress associated with non-reinforced drug seeking during early abstinence (on extinction day 1 (ED1)) may contribute to drug seeking via β-adrenergic and 5-HT neurotransmission in DH. We observed decreased drug-seeking behavior on ED1 following 10 mg/kg S-propranolol (β-adrenergic and 5-HT1A/1B receptor antagonist), R-propranolol (5-HT1A/1B receptor antagonist), or racemic propranolol in both male and female rats. ED1 increased Fos expression in DH, LC, and DR, and DH Fos was decreased by systemic S-propranolol. Based on these results, we investigated the effects of blocking 5-HT and β-adrenoceptor transmission in DH on drug seeking during ED1 by infusing a cocktail of WAY100635 plus GR127935 (5-HT1A/1B receptor antagonists), betaxolol plus ICI-118 551 (β1 and β2 antagonists), or S-propranolol alone. In males, WAY100635/GR127935 was most effective in reducing drug-seeking on ED1, whereas betaxolol/ICI-118 551 was ineffective. In contrast, S-propranolol was most effective in females in reducing drug seeking on ED1, and WAY100635/GR127935 and betaxolol/ICI-118 551 were each partially effective. Our results indicate that drug seeking during initial abstinence involves 5-HT and β-adrenergic signaling in female DH, but only 5-HT signaling in male DH.
Collapse
|
14
|
Tzeng WY, Cherng CFG, Yu L, Wang CY. Basolateral amygdalar D2 receptor activation is required for the companions-exerted suppressive effect on the cocaine conditioning. Neurobiol Learn Mem 2017; 137:48-55. [DOI: 10.1016/j.nlm.2016.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
15
|
Castilla-Ortega E, Serrano A, Blanco E, Araos P, Suárez J, Pavón FJ, Rodríguez de Fonseca F, Santín LJ. A place for the hippocampus in the cocaine addiction circuit: Potential roles for adult hippocampal neurogenesis. Neurosci Biobehav Rev 2016; 66:15-32. [PMID: 27118134 DOI: 10.1016/j.neubiorev.2016.03.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
Cocaine addiction is a chronic brain disease in which the drug seeking habits and profound cognitive, emotional and motivational alterations emerge from drug-induced neuroadaptations on a vulnerable brain. Therefore, a 'cocaine addiction brain circuit' has been described to explain this disorder. Studies in both cocaine patients and rodents reveal the hippocampus as a main node in the cocaine addiction circuit. The contribution of the hippocampus to cocaine craving and the associated memories is essential to understand the chronic relapsing nature of addiction, which is the main obstacle for the recovery. Interestingly, the hippocampus holds a particular form of plasticity that is rare in the adult brain: the ability to generate new functional neurons. There is an active scientific debate on the contributions of these new neurons to the addicted brain. This review focuses on the potential role(s) of adult hippocampal neurogenesis (AHN) in cocaine addiction. Although the current evidence primarily originates from animal research, these preclinical studies support AHN as a relevant component for the hippocampal effects of cocaine.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Eduardo Blanco
- Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de Lleida, Spain
| | - Pedro Araos
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| |
Collapse
|
16
|
Neuroscience of learning and memory for addiction medicine: from habit formation to memory reconsolidation. PROGRESS IN BRAIN RESEARCH 2015; 223:91-113. [PMID: 26806773 DOI: 10.1016/bs.pbr.2015.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Identifying effective pharmacological treatments for addictive disorders has remained an elusive goal. Many different classes of drugs have shown some efficacy in preclinical models, but the number of effective clinical therapeutics has remained stubbornly low. The persistence of drug use and the high frequency of relapse is at least partly attributable to the enduring ability of environmental stimuli associated with drug use to maintain behavioral patterns of drug use and induce craving during abstinence. We propose that stimuli associated with drug use exert such powerful control over behavior through the development of abnormally strong memories, and their ability to initiate subconscious sequences of motor actions (habits) that promote uncontrolled drug use. In this chapter, we will review the evidence suggesting that drugs of abuse strengthen associations with cues in the environment and facilitate habit formation. We will also discuss potential mechanisms for disrupting memories associated with drug use to help improve treatments for addiction.
Collapse
|
17
|
The learning of fear extinction. Neurosci Biobehav Rev 2015; 47:670-83. [PMID: 25452113 DOI: 10.1016/j.neubiorev.2014.10.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 11/23/2022]
Abstract
Recent work on the extinction of fear-motivated learning places emphasis on its putative circuitry and on its modulation. Extinction is the learned inhibition of retrieval of previously acquired responses. Fear extinction is used as a major component of exposure therapy in the treatment of fear memories such as those of the posttraumatic stress disorder (PTSD). It is initiated and maintained by interactions between the hippocampus, basolateral amygdala and ventromedial prefrontal cortex, which involve feedback regulation of the latter by the other two areas. Fear extinction depends on NMDA receptor activation. It is positively modulated by d-serine acting on the glycine site of NMDA receptors and blocked by AP5 (2-amino-5-phosphono propionate) in the three structures. In addition, histamine acting on H2 receptors and endocannabinoids acting on CB1 receptors in the three brain areas mentioned, and muscarinic cholinergic fibers from the medial septum to hippocampal CA1 positively modulate fear extinction. Importantly, fear extinction can be made state-dependent on circulating epinephrine, which may play a role in situations of stress. Exposure to a novel experience can strongly enhance the consolidation of fear extinction through a synaptic tagging and capture mechanism; this may be useful in the therapy of states caused by fear memory like PTSD.
Collapse
|
18
|
de Carvalho Myskiw J, Furini CRG, Schmidt B, Ferreira F, Izquierdo I. Extinction learning, which consists of the inhibition of retrieval, can be learned without retrieval. Proc Natl Acad Sci U S A 2015; 112:E230-3. [PMID: 25550507 PMCID: PMC4299186 DOI: 10.1073/pnas.1423465112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the present study we test the hypothesis that extinction is not a consequence of retrieval in unreinforced conditioned stimulus (CS) presentation but the mere perception of the CS in the absence of a conditioned response. Animals with cannulae implanted in the CA1 region of hippocampus were subjected to extinction of contextual fear conditioning. Muscimol infused intra-CA1 before an extinction training session of contextual fear conditioning (CFC) blocks retrieval but not consolidation of extinction measured 24 h later. Additionally, this inhibition of retrieval does not affect early persistence of extinction when tested 7 d later or its spontaneous recovery after 2 wk. Furthermore, both anisomycin, an inhibitor of ribosomal protein synthesis, and rapamycin, an inhibitor of extraribosomal protein synthesis, given into the CA1, impair extinction of CFC regardless of whether its retrieval was blocked by muscimol. Therefore, retrieval performance in the first unreinforced session is not necessary for the installation, maintenance, or spontaneous recovery of extinction of CFC.
Collapse
Affiliation(s)
- Jociane de Carvalho Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Cristiane Regina Guerino Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Bianca Schmidt
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Flávia Ferreira
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Abstract
Many psychiatric disorders are characterized by intrusive, distracting, and disturbing memories that either perpetuate the illness or hinder successful treatment. For example, posttraumatic stress disorder (PTSD) involves such strong reemergence of memories associated with a traumatic event that the individual feels like the event is happening again. Furthermore, drug addiction is characterized by compulsive use and repeated relapse that is often driven by internal memories of drug use and/or by exposure to external stimuli that were associated with drug use. Therefore, identifying pharmacological methods to weaken the strength of maladaptive memories is a major goal of research efforts aimed at finding new treatments for these disorders. The primary mechanism by which memories could be pharmacologically disrupted or altered is through manipulation of memory reconsolidation. Reconsolidation occurs when an established memory is remembered or reactivated, reentering a labile state before again being consolidated into long-term memory storage. Memories are subject to disruption during this labile state. In this chapter we will discuss the preclinical and clinical studies identifying potential pharmacological methods for disrupting the integrity of maladaptive memory to treat mental illness.
Collapse
Affiliation(s)
- Jane R Taylor
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
20
|
Ferland JMN, Zeeb FD, Yu K, Kaur S, Taves MD, Winstanley CA. Greater sensitivity to novelty in rats is associated with increased motor impulsivity following repeated exposure to a stimulating environment: implications for the etiology of impulse control deficits. Eur J Neurosci 2014; 40:3746-56. [PMID: 25308904 DOI: 10.1111/ejn.12748] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/25/2014] [Accepted: 09/08/2014] [Indexed: 01/23/2023]
Abstract
Heightened motor impulsivity and increased novelty-seeking commonly co-occur in psychiatric disorders, including drug addiction. However, the relationship between these two phenomena remains unclear. One-time tests of novelty sensitivity commonly used in preclinical experiments, such as the open-field or novel-object test, fail to capture the fact that novelty-seekers repeatedly experience novel, stimulating situations. The present study therefore investigated whether repeated exposure to a novel, stimulating environment (SE) altered impulsive action. Male Long-Evans rats were trained to perform the five-choice serial reaction time task (5CSRTT) which measures motor impulsivity in the form of premature responding as well as attention and motivation. Animals were then exposed to a novel SE (1 h/day for 16 days) immediately prior to the 5CSRTT. Significant increases in premature responding were observed in a subgroup of reactive animals termed high responders (HR-SE). These rats were not more impulsive at baseline, and levels of impulsivity normalised once exposure to the SE was discontinued. No other aspect of 5CSRTT performance was affected by the SE challenge. We also determined that HR-SE rats were hyperactive in a novel environment. Biochemical analyses revealed changes in gene and protein expression within the dorsal hippocampus of HR-SE rats, including decreases in mRNA encoding the dopamine D1 receptor and brain-derived neurotrophic factor. These results indicate a novel mechanism by which impulsivity and novelty-reactivity interact that may enhance addiction vulnerability synergistically. Furthermore, studying such context-induced impulsivity may provide insight into the process by which environmental load precipitates psychiatric symptoms in impulse control disorders.
Collapse
Affiliation(s)
- Jacqueline-Marie N Ferland
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|