1
|
Zakharova NV, Kononikhin AS, Indeykina MI, Bugrova AE, Strelnikova P, Pekov S, Kozin SA, Popov IA, Mitkevich V, Makarov AA, Nikolaev EN. Mass spectrometric studies of the variety of beta-amyloid proteoforms in Alzheimer's disease. MASS SPECTROMETRY REVIEWS 2025; 44:3-21. [PMID: 35347731 DOI: 10.1002/mas.21775] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This review covers the results of the application of mass spectrometric (MS) techniques to study the diversity of beta-amyloid (Aβ) peptides in human samples. Since Aβ is an important hallmark of Alzheimer's disease (AD), which is a socially significant neurodegenerative disorder of the elderly worldwide, analysis of its endogenous variations is of particular importance for elucidating the pathogenesis of AD, predicting increased risks of the disease onset, and developing effective therapy. MS approaches have no alternative for the study of complex samples, including a wide variety of Aβ proteoforms, differing in length and modifications. Approaches based on matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography with electrospray ionization tandem MS are most common in Aβ studies. However, Aβ forms with isomerized and/or racemized Asp and Ser residues require the use of special methods for separation and extra sensitive and selective methods for detection. Overall, this review summarizes current knowledge of Aβ species found in human brain, cerebrospinal fluid, and blood plasma; focuses on application of different MS approaches for Aβ studies; and considers the potential of MS techniques for further studies of Aβ-peptides.
Collapse
Affiliation(s)
- Natalia V Zakharova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kononikhin
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria I Indeykina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna E Bugrova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Polina Strelnikova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Stanislav Pekov
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Igor A Popov
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- N.N. Semenov Federal Center of Chemical Physics, V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
2
|
Ankeny SE, Bacci JR, Decourt B, Sabbagh MN, Mielke MM. Navigating the Landscape of Plasma Biomarkers in Alzheimer's Disease: Focus on Past, Present, and Future Clinical Applications. Neurol Ther 2024; 13:1541-1557. [PMID: 39244522 PMCID: PMC11541985 DOI: 10.1007/s40120-024-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
As the prevalence of Alzheimer's disease (AD) and its impact on healthcare systems increase, developing tools for accurate diagnosis and monitoring of disease progression is a priority. Recent technological advancements have allowed for the development of blood-based biomarkers (BBMs) to aid in the diagnosis of AD, but many questions remain regarding the clinical implementation of these BBMs. This review outlines the historical timeline of AD BBM development. It highlights key breakthroughs that have transformed the perspective of AD BBMs from theoretically ideal but unattainable markers, to clinically valid and reliable BBMs with potential for implementation in healthcare settings. Technological advancements like single-molecule detection and mass spectrometry methods have significantly improved assay sensitivity and accuracy. High-throughput, fully automated platforms have potential for clinical use. Despite these advancements, however, significant work is needed before AD BBMs can be implemented in widespread clinical practice. Cutpoints must be established, the influence of chronic conditions and medications on BBM levels must be better understood, and guidelines must be created for healthcare providers related to interpreting and communicating information obtained from AD BBMs. Additionally, the development of BBMs for synaptic dysfunction, inflammation, and cerebrovascular disease may provide better precision medicine approaches to treating AD and related dementia. Future research and collaboration between scientists and physicians are essential to addressing these challenges and further advancing AD BBMs, with the goal of integration in clinical practice.
Collapse
Affiliation(s)
- Sarrah E Ankeny
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Julia R Bacci
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marwan N Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
3
|
Dong Y, Song X, Wang X, Wang S, He Z. The early diagnosis of Alzheimer's disease: Blood-based panel biomarker discovery by proteomics and metabolomics. CNS Neurosci Ther 2024; 30:e70060. [PMID: 39572036 PMCID: PMC11581788 DOI: 10.1111/cns.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 11/25/2024] Open
Abstract
Diagnosis and prediction of Alzheimer's disease (AD) are increasingly pressing in the early stage of the disease because the biomarker-targeted therapies may be most effective. Diagnosis of AD largely depends on the clinical symptoms of AD. Currently, cerebrospinal fluid biomarkers and neuroimaging techniques are considered for clinical detection and diagnosis. However, these clinical diagnosis results could provide indications of the middle and/or late stages of AD rather than the early stage, and another limitation is the complexity attached to limited access, cost, and perceived invasiveness. Therefore, the prediction of AD still poses immense challenges, and the development of novel biomarkers is needed for early diagnosis and urgent intervention before the onset of obvious phenotypes of AD. Blood-based biomarkers may enable earlier diagnose and aid detection and prognosis for AD because various substances in the blood are vulnerable to AD pathophysiology. The application of a systematic biological paradigm based on high-throughput techniques has demonstrated accurate alterations of molecular levels during AD onset processes, such as protein levels and metabolite levels, which may facilitate the identification of AD at an early stage. Notably, proteomics and metabolomics have been used to identify candidate biomarkers in blood for AD diagnosis. This review summarizes data on potential blood-based biomarkers identified by proteomics and metabolomics that are closest to clinical implementation and discusses the current challenges and the future work of blood-based candidates to achieve the aim of early screening for AD. We also provide an overview of early diagnosis, drug target discovery and even promising therapeutic approaches for AD.
Collapse
Affiliation(s)
- Yun Dong
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xun Song
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xiao Wang
- Department of PharmacyShenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology)ShenzhenChina
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Health Science CenterShenzhen UniversityShenzhenChina
| | - Zhendan He
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| |
Collapse
|
4
|
Johansson C, Thordardottir S, Laffita-Mesa J, Pannee J, Rodriguez-Vieitez E, Zetterberg H, Blennow K, Graff C. Gene-variant specific effects of plasma amyloid-β levels in Swedish autosomal dominant Alzheimer disease. Alzheimers Res Ther 2024; 16:207. [PMID: 39322953 PMCID: PMC11423518 DOI: 10.1186/s13195-024-01574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Several blood-based biomarkers offer the opportunity of in vivo detection of brain pathology and neurodegeneration in Alzheimer disease with high specificity and sensitivity, but the performance of amyloid-β (Aβ) measurements remains under evaluation. Autosomal dominant Alzheimer disease (ADAD) with mutations in PSEN1, PSEN2 and APP can be studied as a model for sporadic Alzheimer disease. However, clarifying the genetic effects on the Aβ-levels in different matrices such as cerebrospinal fluid or plasma is crucial for generalizability and utility of data. We aimed to explore plasma Aβ concentrations over the Alzheimer disease continuum in a longitudinal cohort of genetic Alzheimer disease. METHODS 92 plasma samples were collected from at-risk individuals (n = 47) in a Swedish cohort of ADAD, including 18 mutation carriers (13 APPswe (p.KM670/671NL) MC), 5 PSEN1 (p.H163Y) MC) and 29 non-carriers (NC) as the reference group. Concentrations of Aβ1-38, Aβ1-40 and Aβ1-42 were analyzed in plasma using immunoprecipitation coupled to tandem liquid chromatography mass spectrometry (IP-LC-MS/MS). Cross-sectional and repeated-measures data analyses were investigated family-wise, applying non-parametric tests as well as mixed-effects models. RESULTS Cross-sectional analysis at baseline showed more than a 3-fold increase in all plasma Aβ peptides in APPswe MC, regardless of clinical status, compared to controls (p < 0.01). PSEN1 (p.H163Y) presymptomatic MC had a decrease of plasma Aβ1-38 compared to controls (p < 0.05). There was no difference in Aβ1-42/1-40 ratio between APPswe MC (PMC and SMC), PSEN1 MC (PMC) and controls at baseline. Notably, both cross-sectional data and repeated-measures analysis suggested that APPswe MC have a stable Aβ1-42/1-40 ratio with increasing age, in contrast to the decrease seen with aging in both controls and PSEN1 (p.H163Y) MC. CONCLUSION These data show very strong mutation-specific effects on Aβ profiles in blood, most likely due to a ubiquitous production outside of the CNS. Hence, analyses in an unselected clinical setting might unintentionally disclose genetic status. Furthermore, our findings suggest that the Aβ ratio might be a poor indicator of brain Aβ pathology in selected genetic cases. The very small sample size is a limitation that needs to be considered but reflects the scarcity of longitudinal in vivo data from genetic cohorts.
Collapse
Affiliation(s)
- Charlotte Johansson
- Department NVS, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Visionsgatan 4, Bioclinicum, Solna, J10:20, 171 64, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Steinunn Thordardottir
- Department NVS, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Visionsgatan 4, Bioclinicum, Solna, J10:20, 171 64, Sweden
| | - José Laffita-Mesa
- Department NVS, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Visionsgatan 4, Bioclinicum, Solna, J10:20, 171 64, Sweden
| | - Josef Pannee
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Elena Rodriguez-Vieitez
- Department NVS, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Visionsgatan 4, Bioclinicum, Solna, J10:20, 171 64, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Pitié-Salpêtrière Hospital, Paris Brain Institute, ICM, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Caroline Graff
- Department NVS, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Visionsgatan 4, Bioclinicum, Solna, J10:20, 171 64, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Karikari T, Chen Y, Zeng X, Olvera-Rojas M, Sehrawat A, Lafferty T, Pascoal T, Villemagne V, Solis-Urra P, Triviño-Ibañez E, Gómez-Rí M, Cohen A, Ikonomovic M, Esteban-Cornejo I, Erickson K, Lopez O, Yates N. A streamlined, resource-efficient immunoprecipitation-mass spectrometry method for quantifying plasma amyloid-β biomarkers in Alzheimer's disease. RESEARCH SQUARE 2024:rs.3.rs-4947448. [PMID: 39281858 PMCID: PMC11398558 DOI: 10.21203/rs.3.rs-4947448/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
High-performance, resource-efficient methods for plasma amyloid-β (Aβ) quantification in Alzheimer's disease are lacking; existing mass spectrometry-based assays are resource- and time-intensive. We developed a streamlined mass spectrometry method with a single immunoprecipitation step, an optimized buffer system, and ≤75% less antibody requirement. Analytical and clinical performances were compared with an in-house reproduced version of a well-known two-step assay. The streamlined assay showed high dilution linearity (r2>0.99) and precision (< 10% coefficient of variation), low quantification limits (Aβ1-40: 12.5 pg/ml; Aβ1-42: 3.125 pg/ml), and high signal correlation (r2~0.7) with the two-step immunoprecipitation assay. The novel single-step assay showed more efficient recovery of Aβ peptides via fewer immunoprecipitation steps, with significantly higher signal-to-noise ratios, even at plasma sample volumes down to 50 pl. Both assays had equivalent performances in distinguishing non-elevated vs. elevated brain Aβ-PET individuals. The new method enables simplified yet robust evaluation of plasma Aβ biomarkers in Alzheimer's disease.
Collapse
|
6
|
Zhang Y, Bi K, Zhou L, Wang J, Huang L, Sun Y, Peng G, Wu W. Advances in Blood Biomarkers for Alzheimer's Disease: Ultra-Sensitive Detection Technologies and Impact on Clinical Diagnosis. Degener Neurol Neuromuscul Dis 2024; 14:85-102. [PMID: 39100640 PMCID: PMC11297492 DOI: 10.2147/dnnd.s471174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease has escalated into a critical public health concern, marked by its neurodegenerative nature that progressively diminishes cognitive abilities. Recognized as a continuously advancing and presently incurable condition, AD underscores the necessity for early-stage diagnosis and interventions aimed at delaying the decline in mental function. Despite the proven efficacy of cerebrospinal fluid and positron emission tomography in diagnosing AD, their broader utility is constrained by significant costs and the invasive nature of these procedures. Consequently, the innovation of blood biomarkers such as Amyloid-beta, phosphorylated-tau, total-tau et al, distinguished by their high sensitivity, minimal invasiveness, accessibility, and cost-efficiency, emerges as a promising avenue for AD diagnosis. The advent of ultra-sensitive detection methodologies, including single-molecule enzyme-linked immunosorbent assay and immunoprecipitation-mass spectrometry, has revolutionized the detection of AD plasma biomarkers, supplanting previous low-sensitivity techniques. This rapid advancement in detection technology facilitates the more accurate quantification of pathological brain proteins and AD-associated biomarkers in the bloodstream. This manuscript meticulously reviews the landscape of current research on immunological markers for AD, anchored in the National Institute on Aging-Alzheimer's Association AT(N) research framework. It highlights a selection of forefront ultra-sensitive detection technologies now integral to assessing AD blood immunological markers. Additionally, this review examines the crucial pre-analytical processing steps for AD blood samples that significantly impact research outcomes and addresses the practical challenges faced during clinical testing. These discussions are crucial for enhancing our comprehension and refining the diagnostic precision of AD using blood-based biomarkers. The review aims to shed light on potential avenues for innovation and improvement in the techniques employed for detecting and investigating AD, thereby contributing to the broader field of neurodegenerative disease research.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Linfu Zhou
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Lingtong Huang
- Department of Critical Care Units, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
7
|
Niimi Y, Janelidze S, Sato K, Tomita N, Tsukamoto T, Kato T, Yoshiyama K, Kowa H, Iwata A, Ihara R, Suzuki K, Kasuga K, Ikeuchi T, Ishii K, Ito K, Nakamura A, Senda M, Day TA, Burnham SC, Iaccarino L, Pontecorvo MJ, Hansson O, Iwatsubo T. Combining plasma Aβ and p-tau217 improves detection of brain amyloid in non-demented elderly. Alzheimers Res Ther 2024; 16:115. [PMID: 38778353 PMCID: PMC11112892 DOI: 10.1186/s13195-024-01469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Maximizing the efficiency to screen amyloid-positive individuals in asymptomatic and non-demented aged population using blood-based biomarkers is essential for future success of clinical trials in the early stage of Alzheimer's disease (AD). In this study, we elucidate the utility of combination of plasma amyloid-β (Aβ)-related biomarkers and tau phosphorylated at threonine 217 (p-tau217) to predict abnormal Aβ-positron emission tomography (PET) in the preclinical and prodromal AD. METHODS We designed the cross-sectional study including two ethnically distinct cohorts, the Japanese trial-ready cohort for preclinica and prodromal AD (J-TRC) and the Swedish BioFINDER study. J-TRC included 474 non-demented individuals (CDR 0: 331, CDR 0.5: 143). Participants underwent plasma Aβ and p-tau217 assessments, and Aβ-PET imaging. Findings in J-TRC were replicated in the BioFINDER cohort including 177 participants (cognitively unimpaired: 114, mild cognitive impairment: 63). In both cohorts, plasma Aβ(1-42) (Aβ42) and Aβ(1-40) (Aβ40) were measured using immunoprecipitation-MALDI TOF mass spectrometry (Shimadzu), and p-tau217 was measured with an immunoassay on the Meso Scale Discovery platform (Eli Lilly). RESULTS Aβ-PET was abnormal in 81 participants from J-TRC and 71 participants from BioFINDER. Plasma Aβ42/Aβ40 ratio and p-tau217 individually showed moderate to high accuracies when detecting abnormal Aβ-PET scans, which were improved by combining plasma biomarkers and by including age, sex and APOE genotype in the models. In J-TRC, the highest AUCs were observed for the models combining p-tau217/Aβ42 ratio, APOE, age, sex in the whole cohort (AUC = 0.936), combining p-tau217, Aβ42/Aβ40 ratio, APOE, age, sex in the CDR 0 group (AUC = 0.948), and combining p-tau217/Aβ42 ratio, APOE, age, sex in the CDR 0.5 group (AUC = 0.955), respectively. Each subgroup results were replicated in BioFINDER, where the highest AUCs were seen for models combining p-tau217, Aβ42/40 ratio, APOE, age, sex in cognitively unimpaired (AUC = 0.938), and p-tau217/Aβ42 ratio, APOE, age, sex in mild cognitive impairment (AUC = 0.914). CONCLUSIONS Combination of plasma Aβ-related biomarkers and p-tau217 exhibits high performance when predicting Aβ-PET positivity. Adding basic clinical information (i.e., age, sex, APOE ε genotype) improved the prediction in preclinical AD, but not in prodromal AD. Combination of Aβ-related biomarkers and p-tau217 could be highly useful for pre-screening of participants in clinical trials of preclinical and prodromal AD.
Collapse
Affiliation(s)
- Yoshiki Niimi
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Kenichiro Sato
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Tomita
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Tadashi Tsukamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kenji Yoshiyama
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisatomo Kowa
- Graduate School of Health Sciences, Kobe University, Hyogo, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Ryoko Ihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kazushi Suzuki
- Division of Neurology, Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Ishii
- Integrated Research Initiative for Living Well With Dementia, Tokyo Metropolitan Institute for Geriatric and Gerontology, Tokyo, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Michio Senda
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, Hyogo, Japan
| | | | | | | | | | - Oskar Hansson
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
- Memory Clinic, Skåne University Hospital, Lund, Sweden.
| | - Takeshi Iwatsubo
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Gobom J, Brinkmalm A, Brinkmalm G, Blennow K, Zetterberg H. Alzheimer's Disease Biomarker Analysis Using Targeted Mass Spectrometry. Mol Cell Proteomics 2024; 23:100721. [PMID: 38246483 PMCID: PMC10926085 DOI: 10.1016/j.mcpro.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by several neuropathological changes, mainly extracellular amyloid aggregates (plaques), intraneuronal inclusions of phosphorylated tau (tangles), as well as neuronal and synaptic degeneration, accompanied by tissue reactions to these processes (astrocytosis and microglial activation) that precede neuronal network disturbances in the symptomatic phase of the disease. A number of biomarkers for these brain tissue changes have been developed, mainly using immunoassays. In this review, we discuss how targeted mass spectrometry (TMS) can be used to validate and further characterize classes of biomarkers reflecting different AD pathologies, such as tau- and amyloid-beta pathologies, synaptic dysfunction, lysosomal dysregulation, and axonal damage, and the prospect of using TMS to measure these proteins in clinical research and diagnosis. TMS advantages and disadvantages in relation to immunoassays are discussed, and complementary aspects of the technologies are discussed.
Collapse
Affiliation(s)
- Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
9
|
Chen YT, Liao WR, Wang HT, Chen HW, Chen SF. Targeted protein quantitation in human body fluids by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2379-2403. [PMID: 35702881 DOI: 10.1002/mas.21788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Human body fluids (biofluids) contain various proteins, some of which reflect individuals' physiological conditions or predict diseases. Therefore, the analysis of biofluids can provide substantial information on novel biomarkers for clinical diagnosis and prognosis. In the past decades, mass spectrometry (MS)-based technologies have been developed as proteomic strategies not only for the identification of protein biomarkers but also for biomarker verification/validation in body fluids for clinical applications. The main advantage of targeted MS-based methodologies is the accurate and specific simultaneous quantitation of multiple biomarkers with high sensitivity. Here, we review MS-based methodologies that are currently used for the targeted quantitation of protein components in human body fluids, especially in plasma, urine, cerebrospinal fluid, and saliva. In addition, the currently used MS-based methodologies are summarized with a specific focus on applicable clinical sample types, MS configurations, and acquisition modes.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Rou Liao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Hsueh-Ting Wang
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiao-Wei Chen
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
10
|
Hampel H, Hu Y, Cummings J, Mattke S, Iwatsubo T, Nakamura A, Vellas B, O'Bryant S, Shaw LM, Cho M, Batrla R, Vergallo A, Blennow K, Dage J, Schindler SE. Blood-based biomarkers for Alzheimer's disease: Current state and future use in a transformed global healthcare landscape. Neuron 2023; 111:2781-2799. [PMID: 37295421 PMCID: PMC10720399 DOI: 10.1016/j.neuron.2023.05.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Timely detection of the pathophysiological changes and cognitive impairment caused by Alzheimer's disease (AD) is increasingly pressing because of the advent of biomarker-guided targeted therapies that may be most effective when provided early in the disease. Currently, diagnosis and management of early AD are largely guided by clinical symptoms. FDA-approved neuroimaging and cerebrospinal fluid biomarkers can aid detection and diagnosis, but the clinical implementation of these testing modalities is limited because of availability, cost, and perceived invasiveness. Blood-based biomarkers (BBBMs) may enable earlier and faster diagnoses as well as aid in risk assessment, early detection, prognosis, and management. Herein, we review data on BBBMs that are closest to clinical implementation, particularly those based on measures of amyloid-β peptides and phosphorylated tau species. We discuss key parameters and considerations for the development and potential deployment of these BBBMs under different contexts of use and highlight challenges at the methodological, clinical, and regulatory levels.
Collapse
Affiliation(s)
- Harald Hampel
- Alzheimer's Disease and Brain Health, Eisai Inc., Nutley, NJ, USA.
| | - Yan Hu
- Alzheimer's Disease and Brain Health, Eisai Inc., Nutley, NJ, USA.
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Soeren Mattke
- Center for Improving Chronic Illness Care, University of Southern California, Los Angeles, CA, USA
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akinori Nakamura
- Department of Biomarker Research, National Center for Geriatrics and Gerontology, Obu, Japan; Department of Cognition and Behavior Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bruno Vellas
- University Paul Sabatier, Gérontopôle, Toulouse University Hospital, UMR INSERM 1285, Toulouse, France
| | - Sid O'Bryant
- Institute for Translational Research, Texas College of Osteopathic Medicine, Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Leslie M Shaw
- Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Min Cho
- Alzheimer's Disease and Brain Health, Eisai Inc., Nutley, NJ, USA
| | - Richard Batrla
- Alzheimer's Disease and Brain Health, Eisai Inc., Nutley, NJ, USA
| | - Andrea Vergallo
- Alzheimer's Disease and Brain Health, Eisai Inc., Nutley, NJ, USA
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeffrey Dage
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Pais MV, Forlenza OV, Diniz BS. Plasma Biomarkers of Alzheimer's Disease: A Review of Available Assays, Recent Developments, and Implications for Clinical Practice. J Alzheimers Dis Rep 2023; 7:355-380. [PMID: 37220625 PMCID: PMC10200198 DOI: 10.3233/adr-230029] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Recently, low-sensitive plasma assays have been replaced by new ultra-sensitive assays such as single molecule enzyme-linked immunosorbent assay (Simoa), the Mesoscale Discovery (MSD) platform, and immunoprecipitation-mass spectrometry (IP-MS) with higher accuracy in the determination of plasma biomarkers of Alzheimer's disease (AD). Despite the significant variability, many studies have established in-house cut-off values for the most promising available biomarkers. We first reviewed the most used laboratory methods and assays to measure plasma AD biomarkers. Next, we review studies focused on the diagnostic performance of these biomarkers to identify AD cases, predict cognitive decline in pre-clinical AD cases, and differentiate AD cases from other dementia. We summarized data from studies published until January 2023. A combination of plasma Aβ42/40 ratio, age, and APOE status showed the best accuracy in diagnosing brain amyloidosis with a liquid chromatography-mass spectrometry (LC-MS) assay. Plasma p-tau217 has shown the best accuracy in distinguishing Aβ-PET+ from Aβ-PET-even in cognitively unimpaired individuals. We also summarized the different cut-off values for each biomarker when available. Recently developed assays for plasma biomarkers have undeniable importance in AD research, with improved analytical and diagnostic performance. Some biomarkers have been extensively used in clinical trials and are now clinically available. Nonetheless, several challenges remain to their widespread use in clinical practice.
Collapse
Affiliation(s)
- Marcos V. Pais
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo, SP, Brazil
| | - Orestes V. Forlenza
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo, SP, Brazil
| | - Breno S. Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
12
|
Liu L, Lauro BM, He A, Lee H, Bhattarai S, Wolfe MS, Bennett DA, Karch CM, Young-Pearse T, Dominantly Inherited Alzheimer Network (DIAN), Selkoe DJ. Identification of the Aβ37/42 peptide ratio in CSF as an improved Aβ biomarker for Alzheimer's disease. Alzheimers Dement 2023; 19:79-96. [PMID: 35278341 PMCID: PMC9464800 DOI: 10.1002/alz.12646] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Identifying CSF-based biomarkers for the β-amyloidosis that initiates Alzheimer's disease (AD) could provide inexpensive and dynamic tests to distinguish AD from normal aging and predict future cognitive decline. METHODS We developed immunoassays specifically detecting all C-terminal variants of secreted amyloid β-protein and identified a novel biomarker, the Aβ 37/42 ratio, that outperforms the canonical Aβ42/40 ratio as a means to evaluate the γ-secretase activity and brain Aβ accumulation. RESULTS We show that Aβ 37/42 can distinguish physiological and pathological status in (1) presenilin-1 mutant vs wild-type cultured cells, (2) AD vs control brain tissue, and (3) AD versus cognitively normal (CN) subjects in CSF, where 37/42 (AUC 0.9622) outperformed 42/40 (AUC 0.8651) in distinguishing CN from AD. DISCUSSION We conclude that the Aβ 37/42 ratio sensitively detects presenilin/γ-secretase dysfunction and better distinguishes CN from AD than Aβ42/40 in CSF. Measuring this novel ratio alongside promising phospho-tau analytes may provide highly discriminatory fluid biomarkers for AD.
Collapse
Affiliation(s)
- Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Bianca M. Lauro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Amy He
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Sanjay Bhattarai
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS USA
| | - Michael S. Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center Rush University Medical Center, Chicago, IL USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St. Louis, MO USA
- Hope Center for Neurologic Disorders, St. Louis, MO USA
| | - Tracy Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | | | - Dennis J. Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
13
|
Xu C, Zhao L, Dong C. A Review of Application of Aβ42/40 Ratio in Diagnosis and Prognosis of Alzheimer’s Disease. J Alzheimers Dis 2022; 90:495-512. [DOI: 10.3233/jad-220673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The number of patients with Alzheimer’s disease (AD) and non-Alzheimer’s disease (non-AD) has drastically increased over recent decades. The amyloid cascade hypothesis attributes a vital role to amyloid-β protein (Aβ) in the pathogenesis of AD. As the main pathological hallmark of AD, amyloid plaques consist of merely the 42 and 40 amino acid variants of Aβ (Aβ 42 and Aβ 40). The cerebrospinal fluid (CSF) biomarker Aβ 42/40 has been extensively investigated and eventually integrated into important diagnostic tools to support the clinical diagnosis of AD. With the development of highly sensitive assays and technologies, blood-based Aβ 42/40, which was obtained using a minimally invasive and cost-effective method, has been proven to be abnormal in synchrony with CSF biomarker values. This paper presents the recent progress of the CSF Aβ 42/40 ratio and plasma Aβ 42/40 for AD as well as their potential clinical application as diagnostic markers or screening tools for dementia.
Collapse
Affiliation(s)
- Chang Xu
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Li Zhao
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunbo Dong
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Huang Y, Li Y, Xie F, Guo Q. Associations of plasma phosphorylated tau181 and neurofilament light chain with brain amyloid burden and cognition in objectively defined subtle cognitive decline patients. CNS Neurosci Ther 2022; 28:2195-2205. [PMID: 36074638 PMCID: PMC9627371 DOI: 10.1111/cns.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS There is increasing evidence that plasma biomarkers are specific biomarkers for Alzheimer's disease (AD) pathology, but their potential utility in Obj-SCD (objectively defined subtle cognitive decline) remains unclear. METHODS A total of 234 subjects, including 65 with brain amyloid beta (Aβ) negative normal cognition (Aβ- NC), 58 with Aβ-positive NC (Aβ+ NC), 63 with Aβ- Obj-SCD, and 48 with Aβ+ Obj-SCD were enrolled. Plasma Aβ42, Aβ40, Aβ42/Aβ40 ratio, phosphorylated tau181 (p-tau181), neurofilament light chain (NfL), and total tau (T-tau) were measured using Simoa assays. Logistic and linear regression analyses were used to examine the relationship between plasma biomarkers and brain amyloid, cognition, and imaging measures adjusting for age, sex, education, APOE ε4 status, and vascular risk scores. Receiver operating characteristics were used to evaluate the discriminative validity of biomarkers. RESULTS After adjustment, only plasma p-tau181 and NfL were significantly elevated in Aβ+ Obj-SCD participants compared to Aβ- NC group. Elevated p-tau181 was associated with brain amyloid accumulation, worse cognitive performance (visual episodic memory, executive function, and visuospatial function), and hippocampal atrophy. These associations mainly occurred in Aβ+ individuals. In contrast, higher NfL was correlated with brain amyloid burden and verbal memory decline. These associations predominantly occurred in Aβ- individuals. The adjusted diagnostic model combining p-tau181 and NfL levels showed the best performance in identifying Aβ+ Obj-SCD from Aβ- NC [area under the curve (AUC) = 0.814], which did not differ from the adjusted p-tau181 model (AUC = 0.763). CONCLUSIONS Our findings highlight that plasma p-tau181, alone or combined with NfL, contributes to identifying high-risk AD populations.
Collapse
Affiliation(s)
- Yanlu Huang
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yuehua Li
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Fang Xie
- PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
15
|
Mumtaz I, Ayaz MO, Khan MS, Manzoor U, Ganayee MA, Bhat AQ, Dar GH, Alghamdi BS, Hashem AM, Dar MJ, Ashraf GM, Maqbool T. Clinical relevance of biomarkers, new therapeutic approaches, and role of post-translational modifications in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2022; 14:977411. [PMID: 36158539 PMCID: PMC9490081 DOI: 10.3389/fnagi.2022.977411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive loss of cognitive functions like thinking, memory, reasoning, behavioral abilities, and social skills thus affecting the ability of a person to perform normal daily functions independently. There is no definitive cure for this disease, and treatment options available for the management of the disease are not very effective as well. Based on histopathology, AD is characterized by the accumulation of insoluble deposits of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although several molecular events contribute to the formation of these insoluble deposits, the aberrant post-translational modifications (PTMs) of AD-related proteins (like APP, Aβ, tau, and BACE1) are also known to be involved in the onset and progression of this disease. However, early diagnosis of the disease as well as the development of effective therapeutic approaches is impeded by lack of proper clinical biomarkers. In this review, we summarized the current status and clinical relevance of biomarkers from cerebrospinal fluid (CSF), blood and extracellular vesicles involved in onset and progression of AD. Moreover, we highlight the effects of several PTMs on the AD-related proteins, and provide an insight how these modifications impact the structure and function of proteins leading to AD pathology. Finally, for disease-modifying therapeutics, novel approaches, and targets are discussed for the successful treatment and management of AD.
Collapse
Affiliation(s)
- Ibtisam Mumtaz
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Mohamad Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umar Manzoor
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
| | - Mohd Azhardin Ganayee
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Ghulam Hassan Dar
- Sri Pratap College, Cluster University Srinagar, Jammu and Kashmir, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Gulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
16
|
Hansen N, Rauter C, Wiltfang J. [Blood Based Biomarker for Optimization of Early and Differential Diagnosis of Alzheimer's Dementia]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2022; 90:326-335. [PMID: 35858611 DOI: 10.1055/a-1839-6237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AIM Dementia in Alzheimer´s disease is a global challenge. There is growing evidence that investigating blood biomarkers to diagnose Alzheimer´s disease is a promising fast, minimally invasive, and less costly method. The aim of this study was to review available studies on promising biomarkers for Alzheimer´s disease. METHOD The latest studies were collated for this review. RESULTS Immunoassays followed by mass spectrometry and immunomagnetic reduction were reported to be highly relevant methods for detecting amyloid-ß 42 (Aß42) and amyloid-ß 40 (Aß40) to calculate the Aß42/Aß40 ratio, thereby improving the early diagnosis of Alzheimer´s disease. Amyloid-ß (Aß) peptides in blood plasma were considered as potential markers, as they correlated with the brain's Aß pathology. Phosphorylated tau protein 181 (p-tau181), phosphorylated tau protein 217 (p-tau217) and phosphorylated tau protein 231 (p-tau231) in blood samples assessed via Simoa technology served as parameters for the early and differential diagnosis of AD, and were markers of tau pathology in the brain. Neurofilament light chain (Nfl) and glial fibrillary acid protein (GFAP) were additional markers possibly facilitating the assessment of axonal and astroglial brain damage in Alzheimer´s disease. GFAP in blood was useful as an additional marker to detect early and to predict the time course of Alzheimer´s disease. CONCLUSIONS Determining blood biomarkers represents less invasive and less costly diagnostics for Alzheimer´s disease. The investigation of blood biomarkers such as the Aß42/Aß40 ratio, p-tau217, p-tau231, Nfl and GFAP have been promising in establishing the AT(N) classification for Alzheimer´s disease. High-throughput methods should be evaluated in large patient cohort studies and via meta-analyses of studies. Consensus criteria with standard protocols for measuring these biomarkers while considering ethical issues and Alzheimer´s phenotype should unify normative values from different laboratories. The AT(N) classification of Alzheimer´s disease in blood would be a key element towards the implementation of minimally-invasive precision medicine.
Collapse
Affiliation(s)
- Niels Hansen
- Klinik für Psychiatrie und Psychotherapie, Universitätsmedizin, Göttingen, Deutschland
| | - Carolin Rauter
- Klinik für Psychiatrie und Psychotherapie, Universitätsmedizin, Göttingen, Deutschland
| | - Jens Wiltfang
- Klinik für Psychiatrie und Psychotherapie, Universitätsmedizin, Göttingen, Deutschland.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Deutschland.,Neurosciences and Signaling Group, Biomedizinisches Institut (iBiMED), Abteilung für medizinische Wissenschaft, Universität Aveiro, Aveiro, Portugal
| |
Collapse
|
17
|
Alawode DOT, Fox NC, Zetterberg H, Heslegrave AJ. Alzheimer’s Disease Biomarkers Revisited From the Amyloid Cascade Hypothesis Standpoint. Front Neurosci 2022; 16:837390. [PMID: 35573283 PMCID: PMC9091905 DOI: 10.3389/fnins.2022.837390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Amyloid beta (Aβ) is one of the proteins which aggregate in AD, and its key role in the disease pathogenesis is highlighted in the amyloid cascade hypothesis, which states that the deposition of Aβ in the brain parenchyma is a crucial initiating step in the future development of AD. The sensitivity of instruments used to measure proteins in blood and cerebrospinal fluid has significantly improved, such that Aβ can now successfully be measured in plasma. However, due to the peripheral production of Aβ, there is significant overlap between diagnostic groups. The presence of pathological Aβ within the AD brain has several effects on the cells and surrounding tissue. Therefore, there is a possibility that using markers of tissue responses to Aβ may reveal more information about Aβ pathology and pathogenesis than looking at plasma Aβ alone. In this manuscript, using the amyloid cascade hypothesis as a starting point, we will delve into how the effect of Aβ on the surrounding tissue can be monitored using biomarkers. In particular, we will consider whether glial fibrillary acidic protein, triggering receptor expressed on myeloid cells 2, phosphorylated tau, and neurofilament light chain could be used to phenotype and quantify the tissue response against Aβ pathology in AD.
Collapse
Affiliation(s)
- Deborah O. T. Alawode
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- *Correspondence: Deborah O. T. Alawode,
| | - Nick C. Fox
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Amanda J. Heslegrave
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Amanda J. Heslegrave,
| |
Collapse
|
18
|
Mahaman YAR, Embaye KS, Huang F, Li L, Zhu F, Wang JZ, Liu R, Feng J, Wang X. Biomarkers used in Alzheimer's disease diagnosis, treatment, and prevention. Ageing Res Rev 2022; 74:101544. [PMID: 34933129 DOI: 10.1016/j.arr.2021.101544] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), being the number one in terms of dementia burden, is an insidious age-related neurodegenerative disease and is presently considered a global public health threat. Its main histological hallmarks are the Aβ senile plaques and the P-tau neurofibrillary tangles, while clinically it is marked by a progressive cognitive decline that reflects the underlying synaptic loss and neurodegeneration. Many of the drug therapies targeting the two pathological hallmarks namely Aβ and P-tau have been proven futile. This is probably attributed to the initiation of therapy at a stage where cognitive alterations are already obvious. In other words, the underlying neuropathological changes are at a stage where these drugs lack any therapeutic value in reversing the damage. Therefore, there is an urgent need to start treatment in the very early stage where these changes can be reversed, and hence, early diagnosis is of primordial importance. To this aim, the use of robust and informative biomarkers that could provide accurate diagnosis preferably at an earlier phase of the disease is of the essence. To date, several biomarkers have been established that, to a different extent, allow researchers and clinicians to evaluate, diagnose, and more specially exclude other related pathologies. In this study, we extensively reviewed data on the currently explored biomarkers in terms of AD pathology-specific and non-specific biomarkers and highlighted the recent developments in the diagnostic and theragnostic domains. In the end, we have presented a separate elaboration on aspects of future perspectives and concluding remarks.
Collapse
|
19
|
Leuzy A, Mattsson‐Carlgren N, Palmqvist S, Janelidze S, Dage JL, Hansson O. Blood-based biomarkers for Alzheimer's disease. EMBO Mol Med 2022; 14:e14408. [PMID: 34859598 PMCID: PMC8749476 DOI: 10.15252/emmm.202114408] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/01/2022] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) represent a mounting public health challenge. As these diseases are difficult to diagnose clinically, biomarkers of underlying pathophysiology are playing an ever-increasing role in research, clinical trials, and in the clinical work-up of patients. Though cerebrospinal fluid (CSF) and positron emission tomography (PET)-based measures are available, their use is not widespread due to limitations, including high costs and perceived invasiveness. As a result of rapid advances in the development of ultra-sensitive assays, the levels of pathological brain- and AD-related proteins can now be measured in blood, with recent work showing promising results. Plasma P-tau appears to be the best candidate marker during symptomatic AD (i.e., prodromal AD and AD dementia) and preclinical AD when combined with Aβ42/Aβ40. Though not AD-specific, blood NfL appears promising for the detection of neurodegeneration and could potentially be used to detect the effects of disease-modifying therapies. This review provides an overview of the progress achieved thus far using AD blood-based biomarkers, highlighting key areas of application and unmet challenges.
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
| | - Niklas Mattsson‐Carlgren
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Department of NeurologySkåne University HospitalLundSweden
- Wallenberg Centre for Molecular MedicineLund UniversityLundSweden
| | - Sebastian Palmqvist
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Shorena Janelidze
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
| | - Jeffrey L Dage
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisINUSA
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Memory ClinicSkåne University HospitalLundSweden
| |
Collapse
|
20
|
Kulichikhin KY, Fedotov SA, Rubel MS, Zalutskaya NM, Zobnina AE, Malikova OA, Neznanov NG, Chernoff YO, Rubel AA. Development of molecular tools for diagnosis of Alzheimer's disease that are based on detection of amyloidogenic proteins. Prion 2021; 15:56-69. [PMID: 33910450 PMCID: PMC8096329 DOI: 10.1080/19336896.2021.1917289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that usually occurs among older people. AD results from neuronal degeneration that leads to the cognitive impairment and death. AD is incurable, typically develops over the course of many years and is accompanied by a loss of functional autonomy, making a patient completely dependent on family members and/or healthcare workers. Critical features of AD are pathological polymerization of Aβ peptide and microtubule-associated protein tau, accompanied by alterations of their conformations and resulting in accumulation of cross-β fibrils (amyloids) in human brains. AD apparently progresses asymptomatically for years or even decades before the appearance of symptoms. Therefore, development of the early AD diagnosis at a pre-symptomatic stage is essential for potential therapies. This review is focused on current and potential molecular tools (including non-invasive methods) that are based on detection of amyloidogenic proteins and can be applicable to early diagnosis of AD.Abbreviations: Aβ - amyloid-β peptide; AβO - amyloid-β oligomers; AD - Alzheimer's disease; ADRDA - Alzheimer's Disease and Related Disorders Association; APH1 - anterior pharynx defective 1; APP - amyloid precursor protein; BACE1 - β-site APP-cleaving enzyme 1; BBB - brain blood barrier; CJD - Creutzfeldt-Jakob disease; CRM - certified reference material; CSF - cerebrospinal fluid; ELISA - enzyme-linked immunosorbent assay; FGD - 18F-fluorodesoxyglucose (2-deoxy-2-[18F]fluoro-D-glucose); IP-MS - immunoprecipitation-mass spectrometry assay; MCI - mild cognitive impairment; MDS - multimer detection system; MRI - magnetic resonance imaging; NIA-AA - National Institute on Ageing and Alzheimer's Association; NINCDS - National Institute of Neurological and Communicative Disorders and Stroke; PEN2 - presenilin enhancer 2; PET - positron emission tomography; PiB - Pittsburgh Compound B; PiB-SUVR - PIB standardized uptake value ratio; PMCA - Protein Misfolding Cycling Amplification; PrP - Prion Protein; P-tau - hyperphosphorylated tau protein; RMP - reference measurement procedure; RT-QuIC - real-time quaking-induced conversion; SiMoA - single-molecule array; ThT - thioflavin T; TSEs - Transmissible Spongiform Encephslopathies; T-tau - total tau protein.
Collapse
Affiliation(s)
| | - Sergei A. Fedotov
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
- I.P Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Maria S. Rubel
- SCAMT Institute, ITMO University, St. Petersburg, Russia
| | - Natalia M. Zalutskaya
- V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - Anastasia E. Zobnina
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
- Sirius University of Science and Technology, Sochi, Russia
| | - Oksana A. Malikova
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
- Sirius University of Science and Technology, Sochi, Russia
| | - Nikolay G. Neznanov
- V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - Yury O. Chernoff
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
- Sirius University of Science and Technology, Sochi, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
21
|
Chong JR, Ashton NJ, Karikari TK, Tanaka T, Schöll M, Zetterberg H, Blennow K, Chen CP, Lai MKP. Blood-based high sensitivity measurements of beta-amyloid and phosphorylated tau as biomarkers of Alzheimer's disease: a focused review on recent advances. J Neurol Neurosurg Psychiatry 2021; 92:1231-1241. [PMID: 34510001 DOI: 10.1136/jnnp-2021-327370] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023]
Abstract
Discovery and development of clinically useful biomarkers for Alzheimer's disease (AD) and related dementias have been the focus of recent research efforts. While cerebrospinal fluid and positron emission tomography or MRI-based neuroimaging markers have made the in vivo detection of AD pathology and its consequences possible, the high cost and invasiveness have limited their widespread use in the clinical setting. On the other hand, advances in potentially more accessible blood-based biomarkers had been impeded by lack of sensitivity in detecting changes in markers of the hallmarks of AD, including amyloid-β (Aβ) peptides and phosphorylated tau (P-tau). More recently, however, emerging technologies with superior sensitivity and specificity for measuring Aβ and P-tau have reported high concordances with AD severity. In this focused review, we describe several emerging technologies, including immunoprecipitation-mass spectrometry (IP-MS), single molecule array and Meso Scale Discovery immunoassay platforms, and appraise the current literature arising from their use to identify plaques, tangles and other AD-associated pathology. While there is potential clinical utility in adopting these technologies, we also highlight the further studies needed to establish Aβ and P-tau as blood-based biomarkers for AD, including validation with existing large sample sets, new independent cohorts from diverse backgrounds as well as population-based longitudinal studies. In conclusion, the availability of sensitive and reliable measurements of Aβ peptides and P-tau species in blood holds promise for the diagnosis, prognosis and outcome assessments in clinical trials for AD.
Collapse
Affiliation(s)
- Joyce R Chong
- Memory, Aging and Cognition Centre, National University Health Systems, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Psychology and Neuroscience, King's College London, Institute of Psychiatry, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia, South London and Maudsley NHS Foundation, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tomotaka Tanaka
- Memory, Aging and Cognition Centre, National University Health Systems, Singapore.,Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.,UK Dementia Research Institute at UCL, University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,UK Dementia Research Institute at UCL, University College London, London, UK
| | - Christopher P Chen
- Memory, Aging and Cognition Centre, National University Health Systems, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Memory, Aging and Cognition Centre, National University Health Systems, Singapore .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
22
|
Korecka M, Shaw LM. Mass spectrometry-based methods for robust measurement of Alzheimer's disease biomarkers in biological fluids. J Neurochem 2021; 159:211-233. [PMID: 34244999 PMCID: PMC9057379 DOI: 10.1111/jnc.15465] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting 60%-70% of people afflicted with this disease. Accurate antemortem diagnosis is urgently needed for early detection of AD to enable reliable estimation of prognosis, intervention, and monitoring of the disease. The National Institute on Aging/Alzheimer's Association sponsored the 'Research Framework: towards a biological definition of AD', which recommends using different biomarkers in living persons for a biomarker-based definition of AD regardless of clinical status. Fluid biomarkers represent one of key groups of them. Since cerebrospinal fluid (CSF) is in direct contact with brain and many proteins present in the brain can be detected in CSF, this fluid has been regarded as the best biofluid in which to measure AD biomarkers. Recently, technological advancements in protein detection made possible the effective study of plasma AD biomarkers despite their significantly lower concentrations versus to that in CSF. This and other challenges that face plasma-based biomarker measurements can be overcome by using mass spectrometry. In this review, we discuss AD biomarkers which can be reliably measured in CSF and plasma using targeted mass spectrometry coupled to liquid chromatography (LC/MS/MS). We describe progress in LC/MS/MS methods' development, emphasize the challenges, and summarize major findings. We also highlight the role of mass spectrometry and progress made in the process of global standardization of the measurement of Aβ42/Aβ40. Finally, we briefly describe exploratory proteomics which seek to identify new biomarkers that can contribute to detection of co-pathological processes that are common in sporadic AD.
Collapse
Affiliation(s)
- Magdalena Korecka
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
23
|
Alawode DOT, Heslegrave AJ, Ashton NJ, Karikari TK, Simrén J, Montoliu‐Gaya L, Pannee J, O´Connor A, Weston PSJ, Lantero‐Rodriguez J, Keshavan A, Snellman A, Gobom J, Paterson RW, Schott JM, Blennow K, Fox NC, Zetterberg H. Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease. J Intern Med 2021; 290:583-601. [PMID: 34021943 PMCID: PMC8416781 DOI: 10.1111/joim.13332] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence, now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. While these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N) and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
Collapse
Affiliation(s)
- D. O. T. Alawode
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - A. J. Heslegrave
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - N. J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Old Age PsychiatryInstitute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - T. K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Simrén
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - L. Montoliu‐Gaya
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Pannee
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - A. O´Connor
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - P. S. J. Weston
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. Lantero‐Rodriguez
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - A. Keshavan
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - A. Snellman
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - J. Gobom
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - R. W. Paterson
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - J. M. Schott
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - K. Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - N. C. Fox
- UK Dementia Research Institute at UCLLondonUK
- Dementia Research CentreDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - H. Zetterberg
- From theDepartment of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| |
Collapse
|
24
|
Michno W, Blennow K, Zetterberg H, Brinkmalm G. Refining the amyloid β peptide and oligomer fingerprint ambiguities in Alzheimer's disease: Mass spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma. J Neurochem 2021; 159:234-257. [PMID: 34245565 DOI: 10.1111/jnc.15466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
Since its discovery, amyloid-β (Aβ) has been the principal target of investigation of in Alzheimer's disease (AD). Over the years however, no clear correlation was found between the Aβ plaque burden and location, and AD-associated neurodegeneration and cognitive decline. Instead, diagnostic potential of specific Aβ peptides and/or their ratio, was established. For instance, a selective reduction in the concentration of the aggregation-prone 42 amino acid-long Aβ peptide (Aβ42) in cerebrospinal fluid (CSF) was put forward as reflective of Aβ peptide aggregation in the brain. With time, Aβ oligomers-the proposed toxic Aβ intermediates-have emerged as potential drivers of synaptic dysfunction and neurodegeneration in the disease process. Oligomers are commonly agreed upon to come in different shapes and sizes, and are very poorly characterized when it comes to their composition and their "toxic" properties. The concept of structural polymorphism-a diversity in conformational organization of amyloid aggregates-that depends on the Aβ peptide backbone, makes the characterization of Aβ aggregates and their role in AD progression challenging. In this review, we revisit the history of Aβ discovery and initial characterization and highlight the crucial role mass spectrometry (MS) has played in this process. We critically review the common knowledge gaps in the molecular identity of the Aβ peptide, and how MS is aiding the characterization of higher order Aβ assemblies. Finally, we go on to present recent advances in MS approaches for characterization of Aβ as single peptides and oligomers, and convey our optimism, as to how MS holds a promise for paving the way for progress toward a more comprehensive understanding of Aβ in AD research.
Collapse
Affiliation(s)
- Wojciech Michno
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
25
|
Ashton NJ, Leuzy A, Karikari TK, Mattsson-Carlgren N, Dodich A, Boccardi M, Corre J, Drzezga A, Nordberg A, Ossenkoppele R, Zetterberg H, Blennow K, Frisoni GB, Garibotto V, Hansson O. The validation status of blood biomarkers of amyloid and phospho-tau assessed with the 5-phase development framework for AD biomarkers. Eur J Nucl Med Mol Imaging 2021; 48:2140-2156. [PMID: 33677733 PMCID: PMC8175325 DOI: 10.1007/s00259-021-05253-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The development of blood biomarkers that reflect Alzheimer's disease (AD) pathophysiology (phosphorylated tau and amyloid-β) has offered potential as scalable tests for dementia differential diagnosis and early detection. In 2019, the Geneva AD Biomarker Roadmap Initiative included blood biomarkers in the systematic validation of AD biomarkers. METHODS A panel of experts convened in November 2019 at a two-day workshop in Geneva. The level of maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of blood biomarkers was assessed based on the Biomarker Roadmap methodology and discussed fully during the workshop which also evaluated cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers. RESULTS Plasma p-tau has shown analytical validity (phase 2 primary aim 1) and first evidence of clinical validity (phase 3 primary aim 1), whereas the maturity level for Aβ remains to be partially achieved. Full and partial achievement has been assigned to p-tau and Aβ, respectively, in their associations to ante-mortem measures (phase 2 secondary aim 2). However, only preliminary evidence exists for the influence of covariates, assay comparison and cut-off criteria. CONCLUSIONS Despite the relative infancy of blood biomarkers, in comparison to CSF biomarkers, much has already been achieved for phases 1 through 3 - with p-tau having greater success in detecting AD and predicting disease progression. However, sufficient data about the effect of covariates on the biomarker measurement is lacking. No phase 4 (real-world performance) or phase 5 (assessment of impact/cost) aim has been tested, thus not achieved.
Collapse
Affiliation(s)
- N J Ashton
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden.
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - A Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - T K Karikari
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
| | - N Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - A Dodich
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Center for Neurocognitive Rehabilitation (CeRiN), CIMeC, University of Trento, Trento, Italy
| | - M Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Rostock, Germany
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
| | - J Corre
- Centre National de la Recherche Scientifique, Montpellier, France
| | - A Drzezga
- Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - A Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - R Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - H Zetterberg
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - K Blennow
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - G B Frisoni
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Rostock, Germany
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - V Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
| | - O Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
- UK Dementia Research Institute at UCL, London, UK.
- Memory Clinic, Skåne University Hospital, SE-205 02, Malmö, Sweden.
| |
Collapse
|
26
|
A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat Commun 2021; 12:3400. [PMID: 34099648 PMCID: PMC8185001 DOI: 10.1038/s41467-021-23620-z] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King’s College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs. Cerebrospinal fluid neurofilament light (NfL) is a biomarker for neurodegeneration that can also be assessed in blood. Here the authors show in a validation study the potential for plasma NfL as a biomarker for several neurodegenerative diseases.
Collapse
|
27
|
Pyun JM, Kang MJ, Ryoo N, Suh J, Youn YC, Park YH, Kim S. Amyloid Metabolism and Amyloid-Targeting Blood-Based Biomarkers of Alzheimer's Disease. J Alzheimers Dis 2021; 75:685-696. [PMID: 32390633 DOI: 10.3233/jad-200104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyloid-β (Aβ) is a key protein in Alzheimer's disease (AD) in that its accumulation induces complex pathological changes. Although there has been extensive research on the metabolism of Aβ in AD, new compelling results have recently emerged. Historically, the production and clearance of Aβ have been thought to originate in the central nervous system (CNS). However, recent evidence suggests that the production and clearance of Aβ can also occur in the peripheral system, and that the peripherally driven Aβ migrates to the CNS and induces amyloidopathy with subsequent AD pathologic changes in the brain. This concept implies that AD is not restricted to the CNS but is a systemic disease instead. As such, the development of blood-based biomarkers targeting Aβ is of great interest. Central and peripheral Aβ are both active contributors to the pathology of AD and interact bidirectionally. Measuring peripheral Aβ is not just observing the reflection of the residual Aβ removed from the CNS but also tracking the ongoing process of AD pathology. Additionally, blood-based biomarkers could be a more accessible tool in clinical and research settings. Through arduous research, several blood-based biomarker assays have demonstrated notable results. In this review, we describe the metabolism of Aβ and the amyloid-targeting blood-based biomarkers of AD.
Collapse
Affiliation(s)
- Jung-Min Pyun
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Nayoung Ryoo
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Jeewon Suh
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| |
Collapse
|
28
|
O'Connor A, Pannee J, Poole T, Arber C, Portelius E, Swift IJ, Heslegrave AJ, Abel E, Willumsen N, Rice H, Weston PSJ, Ryan NS, Polke JM, Nicholas JM, Mead S, Wray S, Chávez-Gutiérrez L, Frost C, Blennow K, Zetterberg H, Fox NC. Plasma amyloid-β ratios in autosomal dominant Alzheimer's disease: the influence of genotype. Brain 2021; 144:2964-2970. [PMID: 33892504 PMCID: PMC8634092 DOI: 10.1093/brain/awab166] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/14/2022] Open
Abstract
In-vitro studies of autosomal dominant Alzheimer's disease implicate longer amyloid-beta peptides in disease pathogenesis, however less is known about the behaviour of these mutations in-vivo. In this cross-sectional cohort study, we used liquid chromatography-tandem mass spectrometry to analyse 66 plasma samples from individuals who were at-risk of inheriting a mutation or were symptomatic. We tested for differences in amyloid-beta42:38, 42:40 and 38:40 ratios between presenilin1 and amyloid precursor protein carriers. We examined the relationship between plasma and in-vitro models of amyloid-beta processing and tested for associations with parental age at onset. 39 participants were mutation carriers (28 presenilin1 and 11 amyloid precursor protein). Age- and sex-adjusted models showed marked differences in plasma amyloid-beta between genotypes: higher amyloid-beta42:38 in presenilin1 versus amyloid precursor protein (p < 0.001) and non-carriers (p < 0.001); higher amyloid-beta38:40 in amyloid precursor protein versus presenilin1 (p < 0.001) and non-carriers (p < 0.001); while amyloid-beta42:40 was higher in both mutation groups compared to non-carriers (both p < 0.001). Amyloid-beta profiles were reasonably consistent in plasma and cell lines. Within presenilin1, models demonstrated associations between amyloid-beta42:38, 42:40 and 38:40 ratios and parental age at onset. In-vivo differences in amyloid-beta processing between presenilin1 and amyloid precursor protein carriers provide insights into disease pathophysiology, which can inform therapy development.
Collapse
Affiliation(s)
- Antoinette O'Connor
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London, WC1E 6AU, UK
| | - Josef Pannee
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, S-431 80 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
| | - Teresa Poole
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.,Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, S-431 80 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
| | - Imogen J Swift
- UK Dementia Research Institute at UCL, London, WC1E 6AU, UK
| | | | - Emily Abel
- UK Dementia Research Institute at UCL, London, WC1E 6AU, UK
| | - Nanet Willumsen
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Helen Rice
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London, WC1E 6AU, UK
| | - Philip S J Weston
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Natalie S Ryan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London, WC1E 6AU, UK
| | - James M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK
| | - Jennifer M Nicholas
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.,Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Simon Mead
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK.,MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W 7FF, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.,Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Chris Frost
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, S-431 80 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, WC1E 6AU, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, S-431 80 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London, WC1E 6AU, UK
| |
Collapse
|
29
|
Powers Carson J. A Simpler and Sensitive Mass Spectrometry Method for Quantitation of Plasma Amyloid Peptides? J Appl Lab Med 2021; 6:816-819. [PMID: 33837388 DOI: 10.1093/jalm/jfab019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/05/2021] [Indexed: 11/14/2022]
Affiliation(s)
- Jennifer Powers Carson
- Department of Medicine; Division of Endocrinology, Metabolism, and Lipid Research, Core Laboratory for Clinical Studies, Washington University, St Louis, MO, USA
| |
Collapse
|
30
|
Janeiro MH, Ardanaz CG, Sola-Sevilla N, Dong J, Cortés-Erice M, Solas M, Puerta E, Ramírez MJ. Biomarkers in Alzheimer's disease. ADVANCES IN LABORATORY MEDICINE 2021; 2:27-50. [PMID: 37359199 PMCID: PMC10197496 DOI: 10.1515/almed-2020-0090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 06/28/2023]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disease. AD is the main cause of dementia worldwide and aging is the main risk factor for developing the illness. AD classical diagnostic criteria rely on clinical data. However, the development of a biological definition of AD using biomarkers that reflect the underling neuropathology is needed. Content The aim of this review is to describe the main outcomes when measuring classical and novel biomarkers in biological fluids or neuroimaging. Summary Nowadays, there are three classical biomarkers for the diagnosis of AD: Aβ42, t-Tau and p-Tau. The diagnostic use of cerebrospinal fluid biomarkers is limited due to invasive collection by lumbar puncture with potential side effects. Plasma/serum measurements are the gold standard in clinics, because they are minimally invasive and, in consequence, easily collected and processed. The two main proteins implicated in the pathological process, Aβ and Tau, can be visualized using neuroimaging techniques, such as positron emission tomography. Outlook As it is currently accepted that AD starts decades before clinical symptoms could be diagnosed, the opportunity to detect biological alterations prior to clinical symptoms would allow early diagnosis or even perhaps change treatment possibilities.
Collapse
Affiliation(s)
- Manuel H. Janeiro
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - Carlos G. Ardanaz
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - Noemí Sola-Sevilla
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - Jinya Dong
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - María Cortés-Erice
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| | - María J. Ramírez
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IDISNA, Navarra’s Health Research Institute, Pamplona, Spain
| |
Collapse
|
31
|
Natarajan K, Ullgren A, Khoshnood B, Johansson C, Laffita-Mesa JM, Pannee J, Zetterberg H, Blennow K, Graff C. Plasma metabolomics of presymptomatic PSEN1-H163Y mutation carriers: a pilot study. Ann Clin Transl Neurol 2021; 8:579-591. [PMID: 33476461 PMCID: PMC7951103 DOI: 10.1002/acn3.51296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE PSEN1-H163Y carriers, at the presymptomatic stage, have reduced 18 FDG-PET binding in the cerebrum of the brain (Scholl et al., Neurobiol Aging 32:1388-1399, 2011). This could imply dysfunctional energy metabolism in the brain. In this study, plasma of presymptomatic PSEN1 mutation carriers was analyzed to understand associated metabolic changes. METHODS We analyzed plasma from noncarriers (NC, n = 8) and presymptomatic PSEN1-H163Y mutation carriers (MC, n = 6) via untargeted metabolomics using gas and liquid chromatography coupled with mass spectrometry, which identified 1199 metabolites. All the metabolites were compared between MC and NC using univariate analysis, as well as correlated with the ratio of Aβ1-42/A β 1-40 , using Spearman's correlation. Altered metabolites were subjected to Ingenuity Pathway Analysis (IPA). RESULTS Based on principal component analysis the plasma metabolite profiles were divided into dataset A and dataset B. In dataset A, when comparing between presymptomatic MC and NC, the levels of 79 different metabolites were altered. Out of 79, only 14 were annotated metabolites. In dataset B, 37 metabolites were significantly altered between presymptomatic MC and NC and nine metabolites were annotated. In both datasets, annotated metabolites represent amino acids, fatty acyls, bile acids, hexoses, purine nucleosides, carboxylic acids, and glycerophosphatidylcholine species. 1-docosapentaenoyl-GPC was positively correlated, uric acid and glucose were negatively correlated with the ratio of plasma Aβ1-42 /Aβ1-40 (P < 0.05). INTERPRETATION This study finds dysregulated metabolite classes, which are changed before the disease symptom onset. Also, it provides an opportunity to compare with sporadic Alzheimer's Disease. Observed findings in this study need to be validated in a larger and independent Familial Alzheimer's Disease (FAD) cohort.
Collapse
Affiliation(s)
- Karthick Natarajan
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Abbe Ullgren
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Behzad Khoshnood
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Charlotte Johansson
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - José M Laffita-Mesa
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Josef Pannee
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, England
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Caroline Graff
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| |
Collapse
|
32
|
Iino T, Watanabe S, Yamashita K, Tamada E, Hasegawa T, Irino Y, Iwanaga S, Harada A, Noda K, Suto K, Yoshida T. Quantification of Amyloid-β in Plasma by Simple and Highly Sensitive Immunoaffinity Enrichment and LC-MS/MS Assay. J Appl Lab Med 2021; 6:834-845. [DOI: 10.1093/jalm/jfaa225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Abstract
Background
Numerous immunoassays have been developed to quantify amyloid β1-40 (Aβ40) and amyloid β1-42 (Aβ42). Nevertheless, given the low concentration of Aβ and the high levels of interfering factors in plasma, quantification of plasma Aβ is still challenging. To overcome the problems related to the specificity of Aβ immunoassays, this study aimed to develop an immunoaffinity enrichment and LC-MS/MS (IA-MS) assay.
Methods
We developed an IA-MS assay using antibody-labeled magnetic beads for purification and LC-MS/MS for Aβ quantification. To avoid the loss of Aβ due to aggregation in acidic buffer, we used alkaline elution buffer for immunoaffinity enrichment. The concentrations of the Aβs in plasma samples were measured, and the correlation between the plasma and cerebrospinal fluid (CSF) Aβ42/Aβ40 ratio was also evaluated.
Results
The intensities of the Aβ mass peaks were significantly higher with the alkaline elution buffer than with the acidic elution buffer (Aβ40: 3.6-fold, Aβ42: 5.4-fold). This assay exhibited high reproducibility (intra-assay and inter-assay precision, %CV <15), and the working ranges of Aβ40 and Aβ42 were determined to be 21.7 to 692.8 pg/mL and 5.6 to 180.6 pg/mL, respectively. The concentrations of Aβ40 and Aβ42 in plasma were measured by IA-MS, and the plasma Aβ42/Aβ40 ratio was correlated with the CSF Aβ42/Aβ40 ratio (rs = 0.439, P < 0.01).
Conclusions
The IA-MS assay has sufficient analytic performance for measuring endogenous Aβ40 and Aβ42 in plasma. This assay can lead to new lines of clinical discovery related to amyloid pathology.
Collapse
Affiliation(s)
- Takuya Iino
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | | | | | - Eiya Tamada
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | | | - Yasuhiro Irino
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Shigeki Iwanaga
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Amane Harada
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Kenta Noda
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Kouzou Suto
- Bio-Diagnostic Reagent Technology Center, Sysmex Corporation, Kobe, Japan
| | | |
Collapse
|
33
|
Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: Sensitivity, Specificity and Potential for Clinical Use. J Pers Med 2020; 10:jpm10030116. [PMID: 32911755 PMCID: PMC7565390 DOI: 10.3390/jpm10030116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, affecting more than 5 million Americans, with steadily increasing mortality and incredible socio-economic burden. Not only have therapeutic efforts so far failed to reach significant efficacy, but the real pathogenesis of the disease is still obscure. The current theories are based on pathological findings of amyloid plaques and tau neurofibrillary tangles that accumulate in the brain parenchyma of affected patients. These findings have defined, together with the extensive neurodegeneration, the diagnostic criteria of the disease. The ability to detect changes in the levels of amyloid and tau in cerebrospinal fluid (CSF) first, and more recently in blood, has allowed us to use these biomarkers for the specific in-vivo diagnosis of AD in humans. Furthermore, other pathological elements of AD, such as the loss of neurons, inflammation and metabolic derangement, have translated to the definition of other CSF and blood biomarkers, which are not specific of the disease but, when combined with amyloid and tau, correlate with the progression from mild cognitive impairment to AD dementia, or identify patients who will develop AD pathology. In this review, we discuss the role of current and hypothetical biomarkers of Alzheimer's disease, their specificity, and the caveats of current high-sensitivity platforms for their peripheral detection.
Collapse
|
34
|
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia and there is no cure to date. Biomarkers in cerebrospinal fluid (CSF) are already included in the diagnostic work-up of symptomatic patients but markers for preclinical diagnosis and disease progression are not available. Furthermore, blood biomarkers are highly appreciated because they are minimally invasive and more accessible in primary care and in clinical studies. Mass spectrometry (MS) is an established tool for the measurement of various analytes in biological fluids such as blood. Its major strength is the high selectivity which is why it is also preferred as a reference method for immunoassays. MS has been used in several studies in the past for blood biomarker discovery and validation in AD using targeted MS such as multiple/selected reaction monitoring (MRM/SRM) or unbiased approaches (proteomics, metabolomics). In this short review, we give an overview on the status of current MS-based biomarker candidates for AD in blood plasma and serum.Plain Language Summary: Plain language summary available for this article.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany.
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
35
|
Naveed M, Mubeen S, Khan A, Ibrahim S, Meer B. Plasma Biomarkers: Potent Screeners of Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2019; 34:290-301. [PMID: 31072117 PMCID: PMC10852434 DOI: 10.1177/1533317519848239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), a neurological disorder, is as a complex chronic disease of brain cell death that usher to cognitive decline and loss of memory. Its prevalence differs according to risk factors associated with it and necropsy performs vital role in its definite diagnosis. The stages of AD vary from preclinical to severe that proceeds to death of patient with no availability of treatment. Biomarker may be a biochemical change that can be recognized by different emerging technologies such as proteomics and metabolomics. Plasma biomarkers, 5-protein classifiers, are readily being used for the diagnosis of AD and can also predict its progression with a great accuracy, specificity, and sensitivity. In this review, upregulation or downregulation of few plasma proteins in patients with AD has also been discussed, when juxtaposed with control, and thus serves as potent biomarker in the diagnosis of AD.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Shamsa Mubeen
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, Pakistan
| | - Abeer Khan
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sehrish Ibrahim
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Bisma Meer
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| |
Collapse
|
36
|
Blennow K, Zetterberg H. Fluid biomarker-based molecular phenotyping of Alzheimer's disease patients in research and clinical settings. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:3-23. [PMID: 31699324 DOI: 10.1016/bs.pmbts.2019.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is very difficult to diagnose on pure clinical grounds, especially in the earlier phases of the disease. At the same time, lessons from recent clinical trials suggest that treatments have to be initiated very early, to have a chance to show clinical efficacy. Therefore, biomarkers reflecting core AD pathophysiology have a key position in clinical trials and clinical management. The core AD cerebrospinal fluid (CSF) biomarker toolbox include amyloid β (Aβ42 and the Aβ42/40 ratio) reflecting brain amyloidosis, total tau (T-tau) reflecting neurodegeneration intensity, and phosphorylated tau (P-tau) that is related to tau pathology. These CSF biomarkers have very consistently been found to have high diagnostic accuracy, also in earlier disease stages. Importantly, CSF Aβ42 and Aβ42/40 ratio show excellent agreement with amyloid PET readouts, indicating that these biomarker tests can be used interchangeably. Intense collaborative standardization efforts have given Certified Reference Materials (CRMs) to harmonize assay formats for CSF Aβ42, the most central AD biomarker, and CRMs for Aβ40 are under development. The core AD biomarkers are today available on high-precision fully automated analytical platforms, which will serve to introduce uniform cut-off levels and enable the large-scale introduction of CSF biomarkers for routine disease diagnosis. Of novel biomarker candidates, synaptic proteins, such as the dendritic protein neurogranin, show promise as tools to monitor synaptic degeneration, an important aspect of AD pathophysiology. Recent studies show that the core AD biomarkers also can be measured in blood samples. Ultra-sensitive assays that allow for quantification of neuronal proteins, such as tau and neurofilament light (NFL) in blood samples. Further, plasma Aβ42 and Aβ42/40 show high concordance with brain amyloidosis evaluated by PET scans. In the future, blood biomarkers may have value as screening tools, especially to rule out patients without biomarker evidence of AD pathology.
Collapse
Affiliation(s)
- Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology;the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology;the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, United Kingdom; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.
| |
Collapse
|
37
|
Richard BC, Bayer TA, Lind SB, Shevchenko G, Bergquist J. A simplified and sensitive immunoprecipitation mass spectrometry protocol for the analysis of amyloid-beta peptides in brain tissue. CLINICAL MASS SPECTROMETRY 2019; 14 Pt B:83-88. [PMID: 34917764 DOI: 10.1016/j.clinms.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
In the field of Alzheimer's disease, there is an urgent need for novel analytical tools to identify disease-specific biomarkers and to evaluate therapeutics. Preclinical trials commonly employ amyloid beta (Aβ) peptide signatures as a read-out. In this paper, we report a simplified and detailed protocol for robust immunoprecipitation of Aβ in brain tissue prior to mass spectrometric detection exemplified by a study using transgenic mice. The established method employed murine monoclonal and rabbit polyclonal antibodies and was capable of yielding well-reproducible peaks of high intensity with low background signal intensities corresponding to various Aβ forms.
Collapse
Key Words
- AD, Alzheimer’s disease
- APP, amyloid precursor protein
- Amyloid beta peptides
- Aβ, amyloid beta
- BSA, bovine serum albumine
- Brain
- FA, formic acid
- IP, Immunoprecipitation
- Immunoprecipitation
- MALDI-TOF MS
- MALDI-TOF MS, matrix-assisted-laser-desorption time-of-flight mass spectrometry
- MS, mass spectrometry
- PBS, phosphate buffered saline
- S/N, signal-to-noice ratio
- SA, sinapinic acid
- VD, volume of Dynabeads suspension
- Wt, wild type
Collapse
Affiliation(s)
- B C Richard
- Department of Neuropathology - AG Heppner, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitäplatz 1, DE-10117 Berlin, Germany.,Department of Psychiatry and Psychotherapy, Universitätsmedizin Göttingen, von Siebold Strasse 5, DE-37075 Göttingen, Germany
| | - T A Bayer
- Department of Neuropathology - AG Heppner, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitäplatz 1, DE-10117 Berlin, Germany.,Department of Psychiatry and Psychotherapy, Universitätsmedizin Göttingen, von Siebold Strasse 5, DE-37075 Göttingen, Germany
| | - S Bergström Lind
- Analytical Chemistry and Neurochemistry, Department of Chemistry - BMC, Uppsala University, Box 599, SE-75124 Uppsala, Sweden
| | - G Shevchenko
- Analytical Chemistry and Neurochemistry, Department of Chemistry - BMC, Uppsala University, Box 599, SE-75124 Uppsala, Sweden
| | - J Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry - BMC, Uppsala University, Box 599, SE-75124 Uppsala, Sweden
| |
Collapse
|
38
|
Abstract
Following the development of the first methods to measure the core Alzheimer’s disease (AD) cerebrospinal fluid (CSF) biomarkers total-tau (T-tau), phosphorylated tau (P-tau) and the 42 amino acid form of amyloid-β (Aβ42), there has been an enormous expansion of this scientific research area. Today, it is generally acknowledged that these biochemical tests reflect several central pathophysiological features of AD and contribute diagnostically relevant information, also for prodromal AD. In this article in the 20th anniversary issue of the Journal of Alzheimer’s Disease, we review the AD biomarkers, from early assay development to their entrance into diagnostic criteria. We also summarize the long journey of standardization and the development of assays on fully automated instruments, where we now have high precision and stable assays that will serve as the basis for common cut-off levels and a more general introduction of these diagnostic tests in clinical routine practice. We also discuss the latest expansion of the AD CSF biomarker toolbox that now also contains synaptic proteins such as neurogranin, which seemingly is specific for AD and predicts rate of future cognitive deterioration. Last, we are at the brink of having blood biomarkers that may be implemented as screening tools in the early clinical management of patients with cognitive problems and suspected AD. Whether this will become true, and whether it will be plasma Aβ42, the Aβ42/40 ratio, or neurofilament light, or a combination of these, remains to be established in future clinical neurochemical studies.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
39
|
Liebsch F, Kulic L, Teunissen C, Shobo A, Ulku I, Engelschalt V, Hancock MA, van der Flier WM, Kunach P, Rosa-Neto P, Scheltens P, Poirier J, Saftig P, Bateman RJ, Breitner J, Hock C, Multhaup G. Aβ34 is a BACE1-derived degradation intermediate associated with amyloid clearance and Alzheimer's disease progression. Nat Commun 2019; 10:2240. [PMID: 31110178 PMCID: PMC6527709 DOI: 10.1038/s41467-019-10152-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
The beta-site APP cleaving enzyme 1 (BACE1) is known primarily for its initial cleavage of the amyloid precursor protein (APP), which ultimately leads to the generation of Aβ peptides. Here, we provide evidence that altered BACE1 levels and activity impact the degradation of Aβ40 and Aβ42 into a common Aβ34 intermediate. Using human cerebrospinal fluid (CSF) samples from the Amsterdam Dementia Cohort, we show that Aβ34 is elevated in individuals with mild cognitive impairment who later progressed to dementia. Furthermore, Aβ34 levels correlate with the overall Aβ clearance rates in amyloid positive individuals. Using CSF samples from the PREVENT-AD cohort (cognitively normal individuals at risk for Alzheimer’s disease), we further demonstrate that the Aβ34/Aβ42 ratio, representing Aβ degradation and cortical deposition, associates with pre-clinical markers of neurodegeneration. We propose that Aβ34 represents a marker of amyloid clearance and may be helpful for the characterization of Aβ turnover in clinical samples. Aβ34 is generated from degradation of Aβ40 and Aβ42 by β-secretase. Here, the authors show that Aβ34 is a marker for amyloid clearance and is elevated in the CSF of patients that go on to convert from mild cognitive impairment to Alzheimer’s disease, suggesting it may be a useful biomarker.
Collapse
Affiliation(s)
- Filip Liebsch
- Department of Pharmacology and Therapeutics and Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Luka Kulic
- Institute for Regenerative Medicine, University of Zurich, CH-8952, Schlieren, Switzerland
| | - Charlotte Teunissen
- Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HZ, Amsterdam, The Netherlands
| | - Adeola Shobo
- Department of Pharmacology and Therapeutics and Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Irem Ulku
- Department of Pharmacology and Therapeutics and Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Vivienne Engelschalt
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Mark A Hancock
- SPR-MS Facility, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1081HZ, The Netherlands
| | - Peter Kunach
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, McGill University, Montreal, H4H 1R3, QC, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, McGill University, Montreal, H4H 1R3, QC, Canada
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1081HZ, The Netherlands
| | - Judes Poirier
- Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Paul Saftig
- Biochemisches Institut, Christian-Albrechts-Universität-Kiel, 24118, Kiel, Germany
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - John Breitner
- Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, CH-8952, Schlieren, Switzerland.,Neurimmune, CH-8952, Schlieren, Switzerland
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics and Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
40
|
A distinct brain beta amyloid signature in cerebral amyloid angiopathy compared to Alzheimer’s disease. Neurosci Lett 2019; 701:125-131. [DOI: 10.1016/j.neulet.2019.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 11/22/2022]
|
41
|
Spodzieja M, Rodziewicz-Motowidło S, Szymanska A. Hyphenated Mass Spectrometry Techniques in the Diagnosis of Amyloidosis. Curr Med Chem 2019; 26:104-120. [DOI: 10.2174/0929867324666171003113019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022]
Abstract
Amyloidoses are a group of diseases caused by the extracellular deposition of proteins forming amyloid fibrils. The amyloidosis is classified according to the main protein or peptide that constitutes the amyloid fibrils. The most effective methods for the diagnosis of amyloidosis are based on mass spectrometry. Mass spectrometry enables confirmation of the identity of the protein precursor of amyloid fibrils in biological samples with very high sensitivity and specificity, which is crucial for proper amyloid typing. Due to the fact that biological samples are very complex, mass spectrometry is usually connected with techniques such as liquid chromatography or capillary electrophoresis, which enable the separation of proteins before MS analysis. Therefore mass spectrometry constitutes an important part of the so called “hyphenated techniques” combining, preferentially in-line, different analytical methods to provide comprehensive information about the studied problem. Hyphenated methods are very useful in the discovery of biomarkers in different types of amyloidosis. In systemic forms of amyloidosis, the analysis of aggregated proteins is usually performed based on the tissues obtained during a biopsy of an affected organ or a subcutaneous adipose tissue. In some cases, when the diagnostic biopsy is not possible due to the fact that amyloid fibrils are formed in organs like the brain (Alzheimer’s disease), the study of biomarkers presented in body fluids can be carried out. Currently, large-scale studies are performed to find and validate more effective biomarkers, which can be used in diagnostic procedures. We would like to present the methods connected with mass spectrometry which are used in the diagnosis of amyloidosis based on the analysis of proteins occurring in tissues, blood and cerebrospinal fluid.
Collapse
Affiliation(s)
- Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sylwia Rodziewicz-Motowidło
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Aneta Szymanska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
42
|
Chiu MJ, Lue LF, Sabbagh MN, Chen TF, Chen H, Yang SY. Long-Term Storage Effects on Stability of Aβ 1-40, Aβ 1-42, and Total Tau Proteins in Human Plasma Samples Measured with Immunomagnetic Reduction Assays. Dement Geriatr Cogn Dis Extra 2019; 9:77-86. [PMID: 31043966 PMCID: PMC6477481 DOI: 10.1159/000496099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/07/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The stability of Alzheimer's disease (AD) biomarkers in plasma, measured by immunomagnetic reduction (IMR) after long-term storage at -80°C, has not been established before. METHOD Ninety-nine human plasma samples from 53 normal controls (NCs), 5 patients with amnestic mild cognitive impairment (aMCI), and 41 AD patients were collected. Each plasma sample was aliquoted and stored as single-use aliquots at -80°C. The baseline measurements for Aβ1-40, Aβ1-42, and total Tau protein (T-Tau) concentrations for each sample were done within 3 months of blood draw by IMR. They are referred to as baseline concentrations. A separate aliquot from each sample was assayed with IMR to assess the stability of the measured analytes during storage at -80°C between 1.1 and 5.4 years. This is referred to as a repeated result. RESULTS IMR shows that plasma levels of Aβ1-40 and Aβ1-42 exhibit stability over 5-year storage at -80°C and that plasma levels of T-Tau are less stable (approximately 1.5 years). CONCLUSION Although the measured concentrations of T-Tau in human plasma may alter during storage, the diagnostic utility of the results are only slightly affected when the product of Aβ1-42 and T-Tau concentrations are used. The results show that the overall agreement between baseline and repeated measurements in the ability of discriminating NCs from aMCI/AD patients is higher than 80%.
Collapse
Affiliation(s)
- Ming-Jang Chiu
- Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Lih-Fen Lue
- Laboratory of Neuroregeneration, Banner Sun Health Research Institute, Sun City, Arizona, USA
- Biodesign Institute, Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Marwan N. Sabbagh
- Lou Ruvo Center for Brain Health Cleveland Clinic, Las Vegas, Nevada, USA
| | - Ta-Fu Chen
- Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - H.H. Chen
- MagQu Co., Ltd, New Taipei City, Taiwan
| | | |
Collapse
|
43
|
Molinuevo JL, Ayton S, Batrla R, Bednar MM, Bittner T, Cummings J, Fagan AM, Hampel H, Mielke MM, Mikulskis A, O'Bryant S, Scheltens P, Sevigny J, Shaw LM, Soares HD, Tong G, Trojanowski JQ, Zetterberg H, Blennow K. Current state of Alzheimer's fluid biomarkers. Acta Neuropathol 2018; 136:821-853. [PMID: 30488277 PMCID: PMC6280827 DOI: 10.1007/s00401-018-1932-x] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with a complex and heterogeneous pathophysiology. The number of people living with AD is predicted to increase; however, there are no disease-modifying therapies currently available and none have been successful in late-stage clinical trials. Fluid biomarkers measured in cerebrospinal fluid (CSF) or blood hold promise for enabling more effective drug development and establishing a more personalized medicine approach for AD diagnosis and treatment. Biomarkers used in drug development programmes should be qualified for a specific context of use (COU). These COUs include, but are not limited to, subject/patient selection, assessment of disease state and/or prognosis, assessment of mechanism of action, dose optimization, drug response monitoring, efficacy maximization, and toxicity/adverse reactions identification and minimization. The core AD CSF biomarkers Aβ42, t-tau, and p-tau are recognized by research guidelines for their diagnostic utility and are being considered for qualification for subject selection in clinical trials. However, there is a need to better understand their potential for other COUs, as well as identify additional fluid biomarkers reflecting other aspects of AD pathophysiology. Several novel fluid biomarkers have been proposed, but their role in AD pathology and their use as AD biomarkers have yet to be validated. In this review, we summarize some of the pathological mechanisms implicated in the sporadic AD and highlight the data for several established and novel fluid biomarkers (including BACE1, TREM2, YKL-40, IP-10, neurogranin, SNAP-25, synaptotagmin, α-synuclein, TDP-43, ferritin, VILIP-1, and NF-L) associated with each mechanism. We discuss the potential COUs for each biomarker.
Collapse
Affiliation(s)
- José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Fundació Pasqual Maragall, Universitat Pompeu Fabra, Barcelona, Spain
- Unidad de Alzheimer y otros trastornos cognitivos, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Richard Batrla
- Roche Centralised and Point of Care Solutions, Roche Diagnostics International, Rotkreuz, Switzerland
| | - Martin M Bednar
- Neuroscience Therapeutic Area Unit, Takeda Development Centre Americas Ltd, Cambridge, MA, USA
| | - Tobias Bittner
- Genentech, A Member of the Roche Group, Basel, Switzerland
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC No 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Michelle M Mielke
- Departments of Epidemiology and Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Sid O'Bryant
- Department of Pharmacology and Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeffrey Sevigny
- Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly D Soares
- Clinical Development Neurology, AbbVie, North Chicago, IL, USA
| | | | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden.
| |
Collapse
|
44
|
Blennow K, Zetterberg H. Biomarkers for Alzheimer's disease: current status and prospects for the future. J Intern Med 2018; 284:643-663. [PMID: 30051512 DOI: 10.1111/joim.12816] [Citation(s) in RCA: 573] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Accumulating data from the clinical research support that the core Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers amyloid-β (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau) reflect key elements of AD pathophysiology. Importantly, a large number of clinical studies very consistently show that these biomarkers contribute with diagnostically relevant information, also in the early disease stages. Recent technical developments have made it possible to measure these biomarkers using fully automated assays with high precision and stability. Standardization efforts have given certified reference materials for CSF Aβ42, with the aim to harmonize results between assay formats that would allow for uniform global reference limits and cut-off values. These encouraging developments have led to that the core AD CSF biomarkers have a central position in the novel diagnostic criteria for the disease and in the recent National Institute on Aging and Alzheimer's Association biological definition of AD. Taken together, this progress will likely serve as the basis for a more general introduction of these diagnostic tests in clinical routine practice. However, the heterogeneity of pathology in late-onset AD calls for an expansion of the AD CSF biomarker toolbox with additional biomarkers reflecting additional aspects of AD pathophysiology. One promising candidate is the synaptic protein neurogranin that seems specific for AD and predicts future rate of cognitive deterioration. Further, recent studies bring hope for easily accessible and cost-effective screening tools in the early diagnostic evaluation of patients with cognitive problems (and suspected AD) in primary care. In this respect, technical developments with ultrasensitive immunoassays and novel mass spectrometry techniques give promise of biomarkers to monitor brain amyloidosis (the Aβ42/40 or APP669-711/Aβ42 ratios) and neurodegeneration (tau and neurofilament light proteins) in plasma samples, but future studies are warranted to validate these promising results further.
Collapse
Affiliation(s)
- K Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
45
|
Hampel H, O'Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, Kiddle SJ, Batrla R, Blennow K. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol 2018; 14:639-652. [PMID: 30297701 PMCID: PMC6211654 DOI: 10.1038/s41582-018-0079-7] [Citation(s) in RCA: 452] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomarker discovery and development for clinical research, diagnostics and therapy monitoring in clinical trials have advanced rapidly in key areas of medicine - most notably, oncology and cardiovascular diseases - allowing rapid early detection and supporting the evolution of biomarker-guided, precision-medicine-based targeted therapies. In Alzheimer disease (AD), breakthroughs in biomarker identification and validation include cerebrospinal fluid and PET markers of amyloid-β and tau proteins, which are highly accurate in detecting the presence of AD-associated pathophysiological and neuropathological changes. However, the high cost, insufficient accessibility and/or invasiveness of these assays limit their use as viable first-line tools for detecting patterns of pathophysiology. Therefore, a multistage, tiered approach is needed, prioritizing development of an initial screen to exclude from these tests the high numbers of people with cognitive deficits who do not demonstrate evidence of underlying AD pathophysiology. This Review summarizes the efforts of an international working group that aimed to survey the current landscape of blood-based AD biomarkers and outlines operational steps for an effective academic-industry co-development pathway from identification and assay development to validation for clinical use.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France.
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
- Brain & Spine Institute (ICM), INSERM U 1127, Paris, France.
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
| | - Sid E O'Bryant
- University of North Texas Health Science Center, Fort Worth, TX, USA
| | - José L Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Melbourne, Australia
| | - Simone Lista
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Steven J Kiddle
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | | | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| |
Collapse
|
46
|
Krasinski C, Ivancic VA, Zheng Q, Spratt DE, Lazo ND. Resveratrol Sustains Insulin-Degrading Enzyme Activity toward Aβ42. ACS OMEGA 2018; 3:13275-13282. [PMID: 30411033 PMCID: PMC6210067 DOI: 10.1021/acsomega.8b01913] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 05/06/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia in the elderly, is the sixth leading cause of death in the United States. We hypothesize that the impaired clearance of Aβ42 from the brain is partly responsible for the onset of sporadic AD. In this work, we evaluated the activity of insulin-degrading enzyme (IDE) toward Aβ42 in the presence of resveratrol, a polyphenol found in red wine and grape juice. By liquid chromatography/mass spectrometry, we identified initial cleavage sites in the absence and presence of resveratrol that carry biological relevance connected to the amyloidogenic properties of Aβ42. Incubation with resveratrol results in a substantial increase in Aβ42 fragmentation compared to the control, signifying that the polyphenol sustains IDE-dependent degradation of Aβ42 and its fragments. Our findings suggest that therapeutic and/or preventative approaches combining resveratrol and IDE may hold promise for sporadic AD.
Collapse
|
47
|
Zetterberg H. Blood-based biomarkers for Alzheimer's disease-An update. J Neurosci Methods 2018; 319:2-6. [PMID: 30352211 DOI: 10.1016/j.jneumeth.2018.10.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) are in clinical use in many parts of the world and show good to excellent diagnostic accuracy in regards to identifying cerebral amyloid β (Aβ) and tau pathology irrespective of the clinical stage of the disease. However, CSF sampling is more difficult than a blood draw and a procedure only rarely performed by general practitioners. Since AD is such a common disease and since intense research on novel treatments that hopefully will be directed against underlying pathologies is moving forward, it would be excellent if the CSF tests for AD could be transformed into blood tests, as well as if novel blood biomarkers could be discovered. Brain-derived molecules are, however, present at much lower concentrations in blood than in CSF, which poses an analytical challenge. There are also additional issues with blood as a biofluid in which to measure biomarkers for central nervous system disease. Nevertheless, the past few years have seen an enormous development in the field of ultrasensitive measurement techniques. There is also much better availability of deeply phenotyped clinical cohorts for biomarker discovery and validation. This review gives an updated account of the current state of research on blood biomarkers for AD and related neurodegenerative dementias with special emphasis on findings that have been replicated by more than one research group.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK.
| |
Collapse
|
48
|
Zakharova NV, Bugrova AE, Kononikhin AS, Indeykina MI, Popov IA, Nikolaev EN. Mass spectrometry analysis of the diversity of Aβ peptides: difficulties and future perspectives for AD biomarker discovery. Expert Rev Proteomics 2018; 15:773-775. [PMID: 30253669 DOI: 10.1080/14789450.2018.1525296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Natalia V Zakharova
- a Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia
- b Emanuel Institute for Biochemical Physics , Russian Academy of Sciences , Moscow , Russia
| | - Anna E Bugrova
- b Emanuel Institute for Biochemical Physics , Russian Academy of Sciences , Moscow , Russia
| | - Alexey S Kononikhin
- a Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia
- c V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , Moscow , Russia
| | - Maria I Indeykina
- a Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia
- b Emanuel Institute for Biochemical Physics , Russian Academy of Sciences , Moscow , Russia
| | - Igor A Popov
- a Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia
- c V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , Moscow , Russia
| | - Eugene N Nikolaev
- a Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia
- c V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , Moscow , Russia
- d Skolkovo Institute of Science and Technology , Center of Life Sciences , Moscow , Russia
| |
Collapse
|
49
|
Boersema PJ, Melnik A, Hazenberg BPC, Rezeli M, Marko-Varga G, Kamiie J, Portelius E, Blennow K, Zubarev RA, Polymenidou M, Picotti P. Biology/Disease-Driven Initiative on Protein-Aggregation Diseases of the Human Proteome Project: Goals and Progress to Date. J Proteome Res 2018; 17:4072-4084. [PMID: 30137990 DOI: 10.1021/acs.jproteome.8b00401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Biology/Disease-driven (B/D) working groups of the Human Proteome Project are alliances of research groups aimed at developing or improving proteomic tools to support specific biological or disease-related research areas. Here, we describe the activities and progress to date of the B/D working group focused on protein aggregation diseases (PADs). PADs are characterized by the intra- or extracellular accumulation of aggregated proteins and include devastating diseases such as Parkinson's and Alzheimer's disease and systemic amyloidosis. The PAD B/D working group aims for the development of proteomic assays for the quantification of aggregation-prone proteins involved in PADs to support basic and clinical research on PADs. Because the proteins in PADs undergo aberrant conformational changes, a goal is to quantitatively resolve altered protein structures and aggregation states in complex biological specimens. We have developed protein-extraction protocols and a set of mass spectrometric (MS) methods that enable the detection and quantification of proteins involved in the systemic and localized amyloidosis and the probing of aberrant protein conformational transitions in cell and tissue extracts. In several studies, we have demonstrated the potential of MS-based proteomics approaches for specific and sensitive clinical diagnoses and for the subtyping of PADs. The developed methods have been detailed in both protocol papers and manuscripts describing applications to facilitate implementation by nonspecialized laboratories, and assay coordinates are shared through public repositories and databases. Clinicians actively involved in the PAD working group support the transfer to clinical practice of the developed methods, such as assays to quantify specific disease-related proteins and their fragments in biofluids and multiplexed MS-based methods for the diagnosis and typing of systemic amyloidosis. We believe that the increasing availability of tools to precisely measure proteins involved in PADs will positively impact research on the molecular bases of these diseases and support early disease diagnosis and a more-confident subtyping.
Collapse
Affiliation(s)
- Paul J Boersema
- Institute of Molecular Systems Biology, Department of Biology , ETH Zurich , Otto-Stern-Weg 3 , 8093 Zurich , Switzerland
| | - Andre Melnik
- Institute of Molecular Systems Biology, Department of Biology , ETH Zurich , Otto-Stern-Weg 3 , 8093 Zurich , Switzerland
| | - Bouke P C Hazenberg
- Department of Rheumatology & Clinical Immunology , University of Groningen, University Medical Center Groningen , Hanzeplein 1 , 9713 GZ Groningen , The Netherlands
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Department of Biomedical Engineering , Lund University, BMC D13 , 221 84 Lund , Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Department of Biomedical Engineering , Lund University, BMC D13 , 221 84 Lund , Sweden
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology , Azabu University , 1-17-71 Fuchinobe , Chuo-ku, Sagamihara , Kanagawa 252-5201 , Japan
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at University of Gothenburg , S-431 80 Mölndal , Sweden.,Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal S-431 80 , Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at University of Gothenburg , S-431 80 Mölndal , Sweden.,Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal S-431 80 , Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics , Karolinska Institute , 17177 Stockholm , Sweden
| | - Magdalini Polymenidou
- Institute of Molecular Life Sciences, University of Zürich , Winterthurerstrasse 190 , Zürich , Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology , ETH Zurich , Otto-Stern-Weg 3 , 8093 Zurich , Switzerland
| |
Collapse
|
50
|
Zetterberg H, Blennow K. From Cerebrospinal Fluid to Blood: The Third Wave of Fluid Biomarkers for Alzheimer’s Disease. J Alzheimers Dis 2018; 64:S271-S279. [DOI: 10.3233/jad-179926] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|