1
|
Guan G, Polonowita AK, Mei L, Polonowita DA, Polonowita AD. Chronic orofacial pain and pharmacological management: a clinical guide. Oral Surg Oral Med Oral Pathol Oral Radiol 2025; 140:e1-e21. [PMID: 40199716 DOI: 10.1016/j.oooo.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 02/10/2025] [Indexed: 04/10/2025]
Abstract
Orofacial pain is a widespread health concern that significantly hinders an individual's capacity to engage in daily activities. This type of pain can be classified into three main categories: nociceptive pain, neuropathic pain, and nociplastic pain. Each category involves different mechanisms and requires specific treatment approaches. For optimal treatment of orofacial pain disorders, a multidisciplinary pain management approach is essential. This approach should integrate both nonpharmacological and pharmacological modalities to address the diverse underlying causes and manifestations of pain. In this review, we focus on the current evidence and advancements in the pharmacological management of chronic orofacial pain. We explored the effectiveness of different medications, their mechanisms of action, and their role within a comprehensive pain management plan.
Collapse
Affiliation(s)
- Guangzhao Guan
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Athula K Polonowita
- Sir Peter McCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Li Mei
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| | | | - Ajith D Polonowita
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Ishikawa H, Hoshino T, Hamanaka G, Mandeville ET, Guo S, Kimura S, Fukuda N, Li W, Shindo A, Sakadzic S, Harrington ME, Lo EH, Arai K. Effects of aging on diurnal transcriptome change in the mouse corpus callosum. iScience 2025; 28:111556. [PMID: 39845418 PMCID: PMC11750567 DOI: 10.1016/j.isci.2024.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025] Open
Abstract
The corpus callosum, a major white matter region central to cognitive function, is vulnerable to aging. Using zeitgeber time (ZT) aligned with environmental light/dark cycles, we investigated temporal gene expression patterns in the corpus callosum of young (5-month-old) and aged (24-month-old) mice using RNA-seq. Comparative analysis revealed more differentially expressed genes across ZT pairs in young mice than aged mice. In addition, complement pathway genes, including C4b, C3, C1qa, C1qb, and C1qc, were consistently upregulated in aged mice regardless of ZT. Furthermore, genes such as Etnppl, Tinagl1, Hspa12b, Ppp1r3c, Thbd, Pla2g3, and Tsc22d3 exhibited ZT-dependent rhythmicity in young mice, but their rhythmic patterns were altered with age. This study provides an important dataset of the interplay between aging, diurnal rhythms, and gene expression in the corpus callosum, highlighting potential molecular mechanisms mediating white matter aging. Further investigation is warranted to dissect these gene's specific roles in neurological health during aging.
Collapse
Affiliation(s)
- Hidehiro Ishikawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Tomonori Hoshino
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Emiri T. Mandeville
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Shuzhen Guo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Shintaro Kimura
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Norito Fukuda
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Sava Sakadzic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Eng H. Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
3
|
Corvino A, Caliendo G, Fiorino F, Frecentese F, Valsecchi V, Lombardi G, Anzilotti S, Andreozzi G, Scognamiglio A, Sparaco R, Perissutti E, Severino B, Gargiulo M, Santagada V, Pignataro G. Newly Synthesized Indolylacetic Derivatives Reduce Tumor Necrosis Factor-Mediated Neuroinflammation and Prolong Survival in Amyotrophic Lateral Sclerosis Mice. ACS Pharmacol Transl Sci 2024; 7:1996-2005. [PMID: 39022351 PMCID: PMC11249635 DOI: 10.1021/acsptsci.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
The debilitating neurodegenerative disease known as amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motor neurons (MNs) in the brain, spinal cord, and motor cortex. The ALS neuroinflammatory component is being characterized and includes the overexpression of mediators, such as inducible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α). Currently, there are no effective treatments for ALS. Indeed, riluzole, an N-methyl-D-aspartate (NMDA) glutamate receptor blocker, and edaravone, a reactive oxygen species (ROS) scavenger, are currently the sole two medications approved for ALS treatment. However, their efficacy in extending life expectancy typically amounts to only a few months. In order to improve the medicaments for the treatment of neurodegenerative diseases, preferably ALS, novel substituted 2-methyl-3-indolylacetic derivatives (compounds II-IV) were developed by combining the essential parts of two small molecules, namely, the opioids containing a 4-piperidinyl ring with indomethacin, previously shown to be efficacious in different experimental models of neuroinflammation. The synthesized compounds were evaluated for their potential capability of slowing down neurodegeneration associated with ALS progression in preclinical models of the disease in vitro and in vivo. Notably, we produced data to demonstrate that the treatment with the newly synthesized compound III: (1) prevented the upregulation of TNF-α observed in BV-2 microglial cells exposed to the toxin lipopolysaccharides (LPS), (2) preserved SHSY-5Y cell survival exposed to β-N-methylamino-l-alanine (L-BMAA) neurotoxin, and (3) mitigated motor symptoms and improved survival rate of SOD1G93A ALS mice. In conclusion, the findings of the present work support the potential of the synthesized indolylacetic derivatives II-IV in ALS treatment. Indeed, in the attempt to realize an association between two active molecules, we assumed that the combination of the indispensable moieties of two small molecules (the opioids containing a 4-piperidinyl ring with the FANS indomethacin) might lead to new medicaments potentially useful for the treatment of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Angela Corvino
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Giuseppe Caliendo
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Ferdinando Fiorino
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Francesco Frecentese
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Valeria Valsecchi
- Division
of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological
Sciences, School of Medicine, “Federico
II” University of Naples, Via S. Pansini 5 ,Naples 80131, Italy
| | - Giovanna Lombardi
- Division
of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological
Sciences, School of Medicine, “Federico
II” University of Naples, Via S. Pansini 5 ,Naples 80131, Italy
| | - Serenella Anzilotti
- Department
of Science and Technology, University of
Sannio, 82100Benevento, Italy
| | - Giorgia Andreozzi
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Antonia Scognamiglio
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Rosa Sparaco
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Elisa Perissutti
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Beatrice Severino
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Michele Gargiulo
- Miuli
Pharma S.r.l., via Circumvallazione, Nola 310 80035, Italy
| | - Vincenzo Santagada
- Department
of Pharmacy, School of Medicine, “Federico
II” University of Naples, Via D. Montesano, 49, Naples 80131, Italy
| | - Giuseppe Pignataro
- Division
of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological
Sciences, School of Medicine, “Federico
II” University of Naples, Via S. Pansini 5 ,Naples 80131, Italy
| |
Collapse
|
4
|
Na AY, Lee H, Min EK, Paudel S, Choi SY, Sim H, Liu KH, Kim KT, Bae JS, Lee S. Novel Time-dependent Multi-omics Integration in Sepsis-associated Liver Dysfunction. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1101-1116. [PMID: 37084954 PMCID: PMC11082264 DOI: 10.1016/j.gpb.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
The recently developed technologies that allow the analysis of each single omics have provided an unbiased insight into ongoing disease processes. However, it remains challenging to specify the study design for the subsequent integration strategies that can associate sepsis pathophysiology and clinical outcomes. Here, we conducted a time-dependent multi-omics integration (TDMI) in a sepsis-associated liver dysfunction (SALD) model. We successfully deduced the relation of the Toll-like receptor 4 (TLR4) pathway with SALD. Although TLR4 is a critical factor in sepsis progression, it is not specified in single-omics analyses but only in the TDMI analysis. This finding indicates that the TDMI-based approach is more advantageous than single-omics analyses in terms of exploring the underlying pathophysiological mechanism of SALD. Furthermore, TDMI-based approach can be an ideal paradigm for insightful biological interpretations of multi-omics datasets that will potentially reveal novel insights into basic biology, health, and diseases, thus allowing the identification of promising candidates for therapeutic strategies.
Collapse
Affiliation(s)
- Ann-Yae Na
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sanjita Paudel
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So Young Choi
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - HyunChae Sim
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang-Hyeon Liu
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jong-Sup Bae
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangkyu Lee
- Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Zhu SM, Xue R, Chen YF, Zhang Y, Du J, Luo FY, Ma H, Yang Y, Xu R, Li JC, Li S, Li CW, Gao X, Zhang YZ. Antidepressant-like effects of L-menthol mediated by alleviating neuroinflammation and upregulating the BDNF/TrkB signaling pathway in subchronically lipopolysaccharide-exposed mice. Brain Res 2023; 1816:148472. [PMID: 37393011 DOI: 10.1016/j.brainres.2023.148472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Affiliation(s)
- Shuai-Ming Zhu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yi-Fei Chen
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jun Du
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Fu-Yao Luo
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hao Ma
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yu Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Rui Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jing-Cao Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shuo Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chang-Wei Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiang Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - You-Zhi Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
6
|
Polarized Anti-Inflammatory Mesenchymal Stem Cells Increase Hippocampal Neurogenesis and Improve Cognitive Function in Aged Mice. Int J Mol Sci 2023; 24:ijms24054490. [PMID: 36901920 PMCID: PMC10003244 DOI: 10.3390/ijms24054490] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Age-related decline in cognitive functions is associated with reduced hippocampal neurogenesis caused by changes in the systemic inflammatory milieu. Mesenchymal stem cells (MSC) are known for their immunomodulatory properties. Accordingly, MSC are a leading candidate for cell therapy and can be applied to alleviate inflammatory diseases as well as aging frailty via systemic delivery. Akin to immune cells, MSC can also polarize into pro-inflammatory MSC (MSC1) and anti-inflammatory MSC (MSC2) following activation of Toll-like receptor 4 (TLR4) and TLR3, respectively. In the present study, we apply pituitary adenylate cyclase-activating peptide (PACAP) to polarize bone-marrow-derived MSC towards an MSC2 phenotype. Indeed, we found that polarized anti-inflammatory MSC were able to reduce the plasma levels of aging related chemokines in aged mice (18-months old) and increased hippocampal neurogenesis following systemic administration. Similarly, aged mice treated with polarized MSC displayed improved cognitive function in the Morris water maze and Y-maze assays compared with vehicle- and naïve-MSC-treated mice. Changes in neurogenesis and Y-maze performance were negatively and significantly correlated with sICAM, CCL2 and CCL12 serum levels. We conclude that polarized PACAP-treated MSC present anti-inflammatory properties that can mitigate age-related changes in the systemic inflammatory milieu and, as a result, ameliorate age related cognitive decline.
Collapse
|
7
|
Lu H, Gong L, Xu H, Zhou Q, Zhao H, Wu S, Hu R, Li X. Environmental Enrichment Protects Offspring of a Rat Model of Preeclampsia from Cognitive Decline. Cell Mol Neurobiol 2023; 43:381-394. [PMID: 35119541 PMCID: PMC11415177 DOI: 10.1007/s10571-022-01192-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/07/2022] [Indexed: 01/07/2023]
Abstract
Preeclampsia affects 5-7% of all pregnancies and contributes to adverse pregnancy and birth outcomes. In addition to the short-term effects of preeclampsia, preeclampsia can exert long-term adverse effects on offspring. Numerous studies have demonstrated that offspring of preeclamptic women exhibit cognitive deficits from childhood to old age. However, effective ways to improve the cognitive abilities of these offspring remain to be investigated. The aim of this study was to explore whether environmental enrichment in early life could restore the cognitive ability of the offspring of a rat model of preeclampsia and to investigate the cellular and molecular mechanisms by which EE improves cognitive ability. L-NAME was used to establish a rat model of preeclampsia. The spatial learning and memory abilities and recognition memory of 56-day-old offspring were evaluated by the Morris water maze and Novel object recognition (NOR) task. Immunofluorescence was performed to evaluate cell proliferation and apoptosis in the DG region of the hippocampus. qRT-PCR was performed to examine the expression levels of neurogenesis-associated genes, pre- and postsynaptic proteins and inflammatory cytokines. An enzyme-linked immune absorbent assay was performed to evaluate the concentration of vascular endothelial growth factor (VEGF) and inflammatory cytokines in the hippocampus. The administration of L-NAME led to increased systolic blood pressure and urine protein levels in pregnant rats. Offspring in the L-NAME group exhibited impaired spatial learning ability and memory as well as NOR memory. Hippocampal neurogenesis and synaptic plasticity were impaired in offspring from the L-NAME group. Furthermore, cell apoptosis in the hippocampus was increased in the L-NAME group. The hippocampus was skewed to a proinflammatory profile, as shown by increased inflammatory cytokine levels. EE improved the cognitive ability of offspring in the L-NAME group and resulted in increased hippocampal neurogenesis and synaptic protein expression levels and decreased apoptosis and inflammatory cytokine levels. Environmental enrichment resolves cognitive impairment in the offspring of a rat model of preeclampsia by improving hippocampal neurogenesis and synaptic plasticity and normalizing the apoptosis level and the inflammatory balance.
Collapse
Affiliation(s)
- Huiqing Lu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Lili Gong
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Huangfang Xu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Huanqiang Zhao
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Suwen Wu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Rong Hu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China.
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China.
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.
| |
Collapse
|
8
|
Restoring Age-Related Cognitive Decline through Environmental Enrichment: A Transcriptomic Approach. Cells 2022; 11:cells11233864. [PMID: 36497123 PMCID: PMC9736066 DOI: 10.3390/cells11233864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive decline is one of the greatest health threats of old age and the maintenance of optimal brain function across a lifespan remains a big challenge. The hippocampus is considered particularly vulnerable but there is cross-species consensus that its functional integrity benefits from the early and continuous exercise of demanding physical, social and mental activities, also referred to as environmental enrichment (EE). Here, we investigated the extent to which late-onset EE can improve the already-impaired cognitive abilities of lifelong deprived C57BL/6 mice and how it affects gene expression in the hippocampus. To this end, 5- and 24-month-old mice housed in standard cages (5mSC and 24mSC) and 24-month-old mice exposed to EE in the last 2 months of their life (24mEE) were subjected to a Barnes maze task followed by next-generation RNA sequencing of the hippocampal tissue. Our analyses showed that late-onset EE was able to restore deficits in spatial learning and short-term memory in 24-month-old mice. These positive cognitive effects were reflected by specific changes in the hippocampal transcriptome, where late-onset EE affected transcription much more than age (24mSC vs. 24mEE: 1311 DEGs, 24mSC vs. 5mSC: 860 DEGs). Remarkably, a small intersection of 72 age-related DEGs was counter-regulated by late-onset EE. Of these, Bcl3, Cttnbp2, Diexf, Esr2, Grb10, Il4ra, Inhba, Rras2, Rps6ka1 and Socs3 appear to be particularly relevant as key regulators involved in dendritic spine plasticity and in age-relevant molecular signaling cascades mediating senescence, insulin resistance, apoptosis and tissue regeneration. In summary, our observations suggest that the brains of aged mice in standard cage housing preserve a considerable degree of plasticity. Switching them to EE proved to be a promising and non-pharmacological intervention against cognitive decline.
Collapse
|
9
|
Reddy DS, Abeygunaratne HN. Experimental and Clinical Biomarkers for Progressive Evaluation of Neuropathology and Therapeutic Interventions for Acute and Chronic Neurological Disorders. Int J Mol Sci 2022; 23:11734. [PMID: 36233034 PMCID: PMC9570151 DOI: 10.3390/ijms231911734] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
This article describes commonly used experimental and clinical biomarkers of neuronal injury and neurodegeneration for the evaluation of neuropathology and monitoring of therapeutic interventions. Biomarkers are vital for diagnostics of brain disease and therapeutic monitoring. A biomarker can be objectively measured and evaluated as a proxy indicator for the pathophysiological process or response to therapeutic interventions. There are complex hurdles in understanding the molecular pathophysiology of neurological disorders and the ability to diagnose them at initial stages. Novel biomarkers for neurological diseases may surpass these issues, especially for early identification of disease risk. Validated biomarkers can measure the severity and progression of both acute neuronal injury and chronic neurological diseases such as epilepsy, migraine, Alzheimer's disease, Parkinson's disease, Huntington's disease, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and other brain diseases. Biomarkers are deployed to study progression and response to treatment, including noninvasive imaging tools for both acute and chronic brain conditions. Neuronal biomarkers are classified into four core subtypes: blood-based, immunohistochemical-based, neuroimaging-based, and electrophysiological biomarkers. Neuronal conditions have progressive stages, such as acute injury, inflammation, neurodegeneration, and neurogenesis, which can serve as indices of pathological status. Biomarkers are critical for the targeted identification of specific molecules, cells, tissues, or proteins that dramatically alter throughout the progression of brain conditions. There has been tremendous progress with biomarkers in acute conditions and chronic diseases affecting the central nervous system.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hasara Nethma Abeygunaratne
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
10
|
Vitali R, Prioreschi C, Lorenzo Rebenaque L, Colantoni E, Giovannini D, Frusciante S, Diretto G, Marco-Jiménez F, Mancuso M, Casciati A, Pazzaglia S. Gut–Brain Axis: Insights from Hippocampal Neurogenesis and Brain Tumor Development in a Mouse Model of Experimental Colitis Induced by Dextran Sodium Sulfate. Int J Mol Sci 2022; 23:ijms231911495. [PMID: 36232813 PMCID: PMC9569494 DOI: 10.3390/ijms231911495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic inflammatory bowel disorders (IBD) are idiopathic diseases associated with altered intestinal permeability, which in turn causes an exaggerated immune response to enteric antigens in a genetically susceptible host. A rise in psych cognitive disorders, such as anxiety and depression, has been observed in IBD patients. We here report investigations on a model of chemically induced experimental colitis by oral administration of sodium dextran sulfate (DSS) in C57BL/6 mice. We investigate, in vivo, the crosstalk between the intestine and the brain, evaluating the consequences of intestinal inflammation on neuroinflammation and hippocampal adult neurogenesis. By using different DSS administration strategies, we are able to induce acute or chronic colitis, simulating clinical characteristics observed in IBD patients. Body weight loss, colon shortening, alterations of the intestinal mucosa and fecal metabolic changes in amino acids-, lipid- and thiamine-related pathways are observed in colitis. The activation of inflammatory processes in the colon is confirmed by macrophage infiltration and increased expression of the proinflammatory cytokine and oxidative stress marker (Il-6 and iNOS). Interestingly, in the hippocampus of acutely DSS-treated mice, we report the upregulation of inflammatory-related genes (Il-6, Il-1β, S-100, Tgf-β and Smad-3), together with microgliosis. Chronic DSS treatment also resulted in neuroinflammation in the hippocampus, indicated by astrocyte activation. Evaluation of stage-specific neurogenesis markers reveals deficits in the dentate gyrus after acute and chronic DSS treatments, indicative of defective adult hippocampal neurogenesis. Finally, based on a possible causal relationship between gut-related inflammation and brain cancer, we investigate the impact of DSS-induced colitis on oncogenesis, using the Ptch1+/−/C57BL/6 mice, a well-established medulloblastoma (MB) mouse model, finding no differences in MB development between untreated and DSS-treated mice. In conclusion, in our experimental model, the intestinal inflammation associated with acute and chronic colitis markedly influences brain homeostasis, impairing hippocampal neurogenesis but not MB oncogenesis.
Collapse
Affiliation(s)
- Roberta Vitali
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Clara Prioreschi
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Laura Lorenzo Rebenaque
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Universidad CEU-Cardenal Herrera, 46115 Valencia, Spain
| | - Eleonora Colantoni
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Daniela Giovannini
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Sarah Frusciante
- Biotechnology Laboratory, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Gianfranco Diretto
- Biotechnology Laboratory, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Francisco Marco-Jiménez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Mariateresa Mancuso
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Arianna Casciati
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
- Correspondence: (A.C.); (S.P.)
| | - Simonetta Pazzaglia
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
- Correspondence: (A.C.); (S.P.)
| |
Collapse
|
11
|
Voluntary Wheel Running in Old C57BL/6 Mice Reduces Age-Related Inflammation in the Colon but Not in the Brain. Cells 2022; 11:cells11030566. [PMID: 35159375 PMCID: PMC8834481 DOI: 10.3390/cells11030566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Inflammation is considered a possible cause of cognitive decline during aging. This study investigates the influence of physical activity and social isolation in old mice on their cognitive functions and inflammation. The Barnes maze task was performed to assess spatial learning and memory in 3, 9, 15, 24, and 28 months old male C57BL/6 mice as well as following voluntary wheel running (VWR) and social isolation (SI) in 20 months old mice. Inflammatory gene expression was analyzed in hippocampal and colonic samples by qPCR. Cognitive decline occurs in mice between 15 and 24 months of age. VWR improved cognitive functions while SI had negative effects. Expression of inflammatory markers changed during aging in the hippocampus (Il1a/Il6/S100b/Iba1/Adgre1/Cd68/Itgam) and colon (Tnf/Il6/Il1ra/P2rx7). VWR attenuates inflammaging specifically in the colon (Ifng/Il10/Ccl2/S100b/Iba1), while SI regulates intestinal Il1b and Gfap. Inflammatory markers in the hippocampus were not altered following VWR and SI. The main finding of our study is that both the hippocampus and colon exhibit an increase in inflammatory markers during aging, and that voluntary wheel running in old age exclusively attenuates intestinal inflammation. Based on the existence of the gut-brain axis, our results extend therapeutic approaches preserving cognitive functions in the elderly to the colon.
Collapse
|
12
|
Boehme M, Guzzetta KE, Bastiaanssen TFS, van de Wouw M, Moloney GM, Gual-Grau A, Spichak S, Olavarría-Ramírez L, Fitzgerald P, Morillas E, Ritz NL, Jaggar M, Cowan CSM, Crispie F, Donoso F, Halitzki E, Neto MC, Sichetti M, Golubeva AV, Fitzgerald RS, Claesson MJ, Cotter PD, O'Leary OF, Dinan TG, Cryan JF. Microbiota from young mice counteracts selective age-associated behavioral deficits. NATURE AGING 2021; 1:666-676. [PMID: 37117767 DOI: 10.1038/s43587-021-00093-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/25/2021] [Indexed: 04/30/2023]
Abstract
The gut microbiota is increasingly recognized as an important regulator of host immunity and brain health. The aging process yields dramatic alterations in the microbiota, which is linked to poorer health and frailty in elderly populations. However, there is limited evidence for a mechanistic role of the gut microbiota in brain health and neuroimmunity during aging processes. Therefore, we conducted fecal microbiota transplantation from either young (3-4 months) or old (19-20 months) donor mice into aged recipient mice (19-20 months). Transplant of a microbiota from young donors reversed aging-associated differences in peripheral and brain immunity, as well as the hippocampal metabolome and transcriptome of aging recipient mice. Finally, the young donor-derived microbiota attenuated selective age-associated impairments in cognitive behavior when transplanted into an aged host. Our results reveal that the microbiome may be a suitable therapeutic target to promote healthy aging.
Collapse
Affiliation(s)
- Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Katherine E Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | | | | | - Nathaniel L Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Francisco Donoso
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Evelyn Halitzki
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marta C Neto
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marzia Sichetti
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Rachel S Fitzgerald
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Olivia F O'Leary
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
13
|
Layered double hydroxide–indomethacin hybrid: A promising biocompatible compound for the treatment of neuroinflammatory diseases. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Chintamen S, Imessadouene F, Kernie SG. Immune Regulation of Adult Neurogenic Niches in Health and Disease. Front Cell Neurosci 2021; 14:571071. [PMID: 33551746 PMCID: PMC7855589 DOI: 10.3389/fncel.2020.571071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Microglia regulate neuronal development during embryogenesis, postnatal development, and in specialized microenvironments of the adult brain. Recent evidence demonstrates that in adulthood, microglia secrete factors which modulate adult hippocampal neurogenesis by inhibiting cell proliferation and survival both in vitro and in vivo, maintaining a balance between cell division and cell death in neurogenic niches. These resident immune cells also shape the nervous system by actively pruning synapses during critical periods of learning and engulfing excess neurons. In neurodegenerative diseases, aberrant microglial activity can impede the proper formation and prevent the development of appropriate functional properties of adult born granule cells. Ablating microglia has been presented as a promising therapeutic approach to alleviate the brain of maladaptive immune response. Here, we review key mechanisms through which the immune system actively shapes neurogenic niches throughout the lifespan of the mammalian brain in both health and disease. We discuss how interactions between immune cells and developing neurons may be leveraged for pharmacological intervention and as a means to preserve adult neurogenesis.
Collapse
Affiliation(s)
- Sana Chintamen
- Neurobiology and Behavior, Columbia University Irving Medical Center, New York, NY, United States.,Department of Pediatrics, Columbia University Irving Fefere Medical Center, New York, NY, United States
| | - Fatima Imessadouene
- Department of Pediatrics, Columbia University Irving Fefere Medical Center, New York, NY, United States
| | - Steven G Kernie
- Department of Pediatrics, Columbia University Irving Fefere Medical Center, New York, NY, United States
| |
Collapse
|
15
|
Valproic Acid Promotes Early Neural Differentiation in Adult Mesenchymal Stem Cells Through Protein Signalling Pathways. Cells 2020; 9:cells9030619. [PMID: 32143420 PMCID: PMC7140408 DOI: 10.3390/cells9030619] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/01/2022] Open
Abstract
Regenerative medicine is a rapidly expanding area in research and clinical applications. Therapies involving the use of small molecule chemicals aim to simplify the creation of specific drugs for clinical applications. Adult mesenchymal stem cells have recently shown the capacity to differentiate into several cell types applicable for regenerative medicine (specifically neural cells, using chemicals). Valproic acid was an ideal candidate due to its clinical stability. It has been implicated in the induction of neural differentiation; however, the mechanism and the downstream events were not known. In this study, we showed that using valproic acid on adult mesenchymal stem cells induced neural differentiation within 24 h by upregulating the expression of suppressor of cytokine signaling 5 (SOCS5) and Fibroblast growth factor 21 (FGF21), without increasing the potential death rate of the cells. Through this, the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway is downregulated, and the mitogen-activated protein kinase (MAPK) cascade is activated. The bioinformatics analyses revealed the expression of several neuro-specific proteins as well as a range of functional and structural proteins involved in the formation and development of the neural cells.
Collapse
|
16
|
Monleón S, Duque A, Vinader-Caerols C. Emotional memory impairment produced by binge drinking in mice is counteracted by the anti-inflammatory indomethacin. Behav Brain Res 2020; 381:112457. [PMID: 31891744 DOI: 10.1016/j.bbr.2019.112457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 01/13/2023]
Abstract
The Binge Drinking (BD) pattern of alcohol consumption, prevalent in adolescents and young adults, has been associated with memory impairment. In addition, evidence shows that alcohol abuse causes neuroinflammation, which may contribute to the brain damage produced by alcohol and explain its cognitive consequences. In this study, we evaluated the effectiveness of the anti-inflammatory indomethacin in counteracting the memory impairment produced by alcohol (ethanol) in adolescent mice of both sexes. Animals were randomly assigned to one of four groups for each sex: SS (saline + saline), SA (saline + alcohol), SI (saline + indomethacin) and AI (alcohol + indomethacin). They were injected acutely (Experiment 1) or chronically intermittent (Experiment 2) with saline, ethanol (3 g/kg) and indomethacin (10 mg/kg). All subjects were evaluated in an inhibitory avoidance task 96 h after treatment. With acute administration, SA groups showed significantly lower Test latencies than SS groups, while AI groups had similar latencies to controls. The chronic-intermittent administration of alcohol, an animal model of BD, produced significant emotional memory impairment -blocking learning in males- which was counteracted by indomethacin, as the AI groups had similar latencies to the SS groups. No significant differences were observed in locomotor activity or analgesia. In conclusion, alcohol BD (one or several episodes) impairs emotional memory in mice. This impairment is not secondary to the effects of alcohol BD on locomotor activity or pain sensitivity, and it is counteracted by indomethacin. Therefore, the memory impairment produced by alcohol BD seems to be mediated, in part, by neuroinflammatory processes. These findings open a window for new treatments for alcohol use disorders.
Collapse
Affiliation(s)
- Santiago Monleón
- Department of Psychobiology, University of Valencia, Valencia, Spain.
| | - Aranzazu Duque
- Department of Psychology, Universidad Internacional de Valencia, Valencia, Spain
| | | |
Collapse
|
17
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2692] [Impact Index Per Article: 448.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
A combination of indomethacin and atorvastatin ameliorates cognitive and pathological deterioration in PrP-hAβPPswe/PS1 ΔE9 transgenic mice. J Neuroimmunol 2019; 330:108-115. [PMID: 30870684 DOI: 10.1016/j.jneuroim.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023]
Abstract
Mounting evidence has shown that inflammation might drive Alzheimer's disease (AD) pathology and contribute to its exacerbation. Previous studies have indicated that indomethacin or atorvastatin are beneficial in treating AD; however, no significant clinical effects have been shown. Furthermore, no study has investigated the efficacy of combining these agents for treating AD. This study sought to determine the effect of a combination of indomethacin and atorvastatin in the PrP-hAβPPswe/PS1ΔE9 (APP/PS1) transgenic AD mouse model. Treatment with indomethacin and atorvastatin ameliorated impairments in spatial learning and memory, and the active avoidance response in APP/PS1 mice. Moreover, we found a suppression of Aβ plaques and decreased concentration of Aβ1-42 in the hippocampus of APP/PS1 mice following treatment. In addition, indomethacin and atorvastatin ameliorated abnormal cytokine secretion, lymphocyte subset disorder, and hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axis imbalances in APP/PS1 mice. The combination of indomethacin and atorvastatin restored immune and neuroendocrine processes, attenuated pathologic changes and cognitive impairments in APP/PS1 transgenic mice, and could thus be a potential therapeutic agent for AD.
Collapse
|
19
|
Kelly ÁM. Exercise-Induced Modulation of Neuroinflammation in Models of Alzheimer's Disease. Brain Plast 2018; 4:81-94. [PMID: 30564548 PMCID: PMC6296260 DOI: 10.3233/bpl-180074] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD), a progressive, neurodegenerative condition characterised by accumulation of toxic βeta-amyloid (Aβ) plaques, is one of the leading causes of dementia globally. The cognitive impairment that is a hallmark of AD may be caused by inflammation in the brain triggered and maintained by the presence of Aβ protein, ultimately leading to neuronal dysfunction and loss. Since there is a significant inflammatory component to AD, it is postulated that anti-inflammatory strategies may be of prophylactic or therapeutic benefit in AD. One such strategy is that of regular physical activity, which has been shown in epidemiological studies to be protective against various forms of dementia including AD. Exercise induces an anti-inflammatory environment in peripheral organs and also increases expression of anti-inflammatory molecules within the brain. Here we review the evidence, mainly from animal models of AD, supporting the hypothesis that exercise can reduce or slow the cellular and cognitive impairments associated with AD by modulating neuroinflammation.
Collapse
Affiliation(s)
- Áine M. Kelly
- Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Zhang L, Zhang J, You Z. Switching of the Microglial Activation Phenotype Is a Possible Treatment for Depression Disorder. Front Cell Neurosci 2018; 12:306. [PMID: 30459555 PMCID: PMC6232769 DOI: 10.3389/fncel.2018.00306] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Major depressive disorder (MDD) is a common emotional cognitive disorder that seriously affects people's physical and mental health and their quality of life. Due to its clinical and etiological heterogeneity, the molecular mechanisms underpinning MDD are complex and they are not fully understood. In addition, the effects of traditional drug therapy are not ideal. However, postmortem and animal studies have shown that overactivated microglia can inhibit neurogenesis in the hippocampus and induce depressive-like behaviors. Nonetheless, the molecular mechanisms by which microglia regulate nerve regeneration and determine depressive-like behaviors remain unclear. As the immune cells of the central nervous system (CNS), microglia could influence neurogenesis through the M1 and M2 subtypes, and these may promote depressive-like behaviors. Microglia may be divided into four main states or phenotypes. Under stress, microglial cells are induced into the M1 type, releasing inflammatory factors and causing neuroinflammatory responses. After the inflammation fades away, microglia shift into the alternative activated M2 phenotypes that play a role in neuroprotection. These activated M2 subtypes consist of M2a, M2b and M2c and their functions are different in the CNS. In this article, we mainly introduce the relationship between microglia and MDD. Importantly, this article elucidates a plausible mechanism by which microglia regulate inflammation and neurogenesis in ameliorating MDD. This could provide a reliable basis for the treatment of MDD in the future.
Collapse
Affiliation(s)
| | | | - Zili You
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
Klein B, Mrowetz H, Barker CM, Lange S, Rivera FJ, Aigner L. Age Influences Microglial Activation After Cuprizone-Induced Demyelination. Front Aging Neurosci 2018; 10:278. [PMID: 30297998 PMCID: PMC6160739 DOI: 10.3389/fnagi.2018.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/28/2018] [Indexed: 01/17/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory CNS disease, which causes demyelinated lesions and damages white and gray matter regions. Aging is a significant factor in the progression of MS, and microglia, the immune cells of the CNS tissue, play an important role in all disease stages. During aging, microglia are functionally altered. These age-related changes probably already begin early and might influence the progression of CNS pathologies. The aim of the present study was to investigate whether microglia in the middle-aged CNS already react differently to demyelination. For this purpose, several microglia markers (ionized calcium binding adaptor molecule 1 (Iba-1), P2RY12, F4/80, CD68, major histocompatibility complex II (MHCII), macrophage receptor with collagenous structure (Marco), Translocator protein 18 kD (TSPO), CD206, and CD163) were analyzed in the acute cuprizone demyelination model in young (2-month-old) and middle-aged (10-month-old) mice. In addition, microglial proliferation was quantified using double-labeling with proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU), which was injected with the onset of remyelination. To compare age-related microglial changes during de- and remyelination in both gray and white matter, the hilus of the dorsal hippocampal dentate gyrus (DG) and the splenium of the corpus callosum (CC) were analyzed in parallel. Age-related changes in microglia of healthy controls were more pronounced in the analyzed gray matter region (higher levels of F4/80 and Marco as well as lower expression of CD68 in middle-aged mice). During de- and remyelination, a stronger increase of the microglial markers Iba-1, CD68 and TSPO was observed in the splenium of the younger groups. There was a significant reduction of P2RY12 during demyelination, however, this was age- and region-dependent. The induction of the anti-inflammatory markers CD206 and CD163 was stronger in the middle-aged group, but also differed between the two analyzed regions. De- and remyelination led to a significant increase in PCNA+ microglia only in young groups within the white matter region. The number of BrdU+ microglia was not changed during de- or remyelination. These results clearly show that microglia are already altered during middle-age and also react differently to CNS demyelination, however, this is highly region-dependent.
Collapse
Affiliation(s)
- Barbara Klein
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Conor Michael Barker
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Simona Lange
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
22
|
Hain EG, Sparenberg M, Rasińska J, Klein C, Akyüz L, Steiner B. Indomethacin promotes survival of new neurons in the adult murine hippocampus accompanied by anti-inflammatory effects following MPTP-induced dopamine depletion. J Neuroinflammation 2018; 15:162. [PMID: 29803225 PMCID: PMC5970532 DOI: 10.1186/s12974-018-1179-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 04/25/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by dopaminergic cell loss and inflammation in the substantia nigra (SN) leading to motor deficits but also to hippocampus-associated non-motor symptoms such as spatial learning and memory deficits. The cognitive decline is correlated with impaired adult hippocampal neurogenesis resulting from dopamine deficit and inflammation, represented in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) mouse model of PD. In the inflammatory tissue, cyclooxygenase (COX) is upregulated leading to an ongoing inflammatory process such as prostaglandin-mediated increased cytokine levels. Therefore, inhibition of COX by indomethacin may prevent the inflammatory response and the impairment of adult hippocampal neurogenesis. METHODS Wildtype C57Bl/6 and transgenic Nestin-GFP mice were treated with MPTP followed by short-term or long-term indomethacin treatment. Then, aspects of inflammation and neurogenesis were evaluated by cell counts using immunofluorescence and immunohistochemical stainings in the SN and dentate gyrus (DG). Furthermore, hippocampal mRNA expression of neurogenesis-related genes of the Notch, Wnt, and sonic hedgehog signaling pathways and neurogenic factors were assessed, and protein levels of serum cytokines were measured. RESULTS Indomethacin restored the reduction of the survival rate of new mature neurons and reduced the amount of amoeboid CD68+ cells in the DG after MPTP treatment. Indomethacin downregulated genes of the Wnt and Notch signaling pathways and increased neuroD6 expression. In the SN, indomethacin reduced the pro-inflammatory cellular response without reversing dopaminergic cell loss. CONCLUSION Indomethacin has a pro-neurogenic and thereby restorative effect and an anti-inflammatory effect on the cellular level in the DG following MPTP treatment. Therefore, COX inhibitors such as indomethacin may represent a therapeutic option to restore adult neurogenesis in PD.
Collapse
Affiliation(s)
- Elisabeth G Hain
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Maria Sparenberg
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Justyna Rasińska
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Charlotte Klein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Levent Akyüz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Barbara Steiner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
23
|
Xue P, Chen L, Lu X, Zhang J, Bao G, Xu G, Sun Y, Guo X, Jiang J, Gu H, Cui Z. Vimentin Promotes Astrocyte Activation After Chronic Constriction Injury. J Mol Neurosci 2017; 63:91-99. [PMID: 28791619 DOI: 10.1007/s12031-017-0961-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022]
Abstract
Vimentin, among the family of the intermediate filament, plays as the organizer of some critical proteins involved in migration, attachment, and cell signaling. In this study, the role of vimentin in chronic constriction injury (CCI) was investigated. Western blot revealed increased protein level of vimentin following CCI, peaking at 7 days. Double immunofluorescent staining showed that vimentin was mostly co-localized with astrocytes, not with neurons or microglia. In vitro, sensory neuronal injury stimulated astrocytes to produce more pro-inflammation cytokines, p-ERK (phosphorylated extracellular signal-regulated protein kinase), and vimentin. However, vimentin knockdown by siRNA (small interfering RNA) reversed the upregulation of p-ERK and vimentin expression and reduced the release of pro-inflammatory cytokines. Overall, stimulated astrocytes might release pro-inflammatory cytokines to promote the development of neuropathic pain via vimentin/ERK signaling.
Collapse
Affiliation(s)
- Pengfei Xue
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Liming Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Xiongsong Lu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Xiaofeng Guo
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Jiawei Jiang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Haiyan Gu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Haier Lane North Road No. 6, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
24
|
Abstract
Adult neurogenesis is the process of producing new neurons from neural stem cells (NSCs) for integration into the brain circuitry. Neurogenesis occurs throughout life in the ventricular-subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus. However, during aging, NSCs and their progenitors exhibit reduced proliferation and neuron production, which is thought to contribute to age-related cognitive impairment and reduced plasticity that is necessary for some types of brain repair. In this review, we describe NSCs and their niches during tissue homeostasis and how they undergo age-associated remodeling and dysfunction. We also discuss some of the functional ramifications in the brain from NSC aging. Finally, we discuss some recent insights from interventions in NSC aging that could eventually translate into therapies for healthy brain aging.
Collapse
Affiliation(s)
- Deana M Apple
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; The Barshop Institute on Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Rene Solano-Fonseca
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; The Barshop Institute on Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; The Barshop Institute on Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States.
| |
Collapse
|
25
|
Huanglian-Jie-Du-Tang Extract Ameliorates Depression-Like Behaviors through BDNF-TrkB-CREB Pathway in Rats with Chronic Unpredictable Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7903918. [PMID: 28694833 PMCID: PMC5488320 DOI: 10.1155/2017/7903918] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 01/23/2023]
Abstract
Neuroinflammation is considered as one of the common pathogeneses of depression. Huanglian-Jie-Du-Tang (HJDT) is a traditional Chinese herbal formula. The present study investigates the antidepressant-like effect of HJDT and its possible mechanism in rats. Rats were given HJDT (2, 4, and 8 g/kg, intragastrically), paroxetine (1.8 mg/kg, intragastrically), or an equivalent volume of saline for 42 days. The depression-related behaviors, including sucrose preference test (SPT), open field test (OFT), novel objective recognition task (NORT), and forced swimming test (FST), were detected. 5-Hydroxytryptamine (5-HT) and dopamine (DA) contents, microglial activation, proinflammatory cytokines, and brain derived neurotrophic factor (BDNF), tropomyosin receptor kinases B (TrkB), and cAMP-responsive element binding protein (CREB) expression were investigated. The results indicated HJDT (2 and 4 g/kg) dramatically ameliorated the depression-like behaviors. Also HJDT decreased the number of microglia and the proinflammatory cytokines in hippocampus. Western-blotting analysis displayed HJDT upregulated BDNF, TrkB, and pCREB/CREB expression in hippocampus. Particularly, pCREB DNA activity enhanced with HJDT treatment in hippocampus. But there was no difference in the 5-HT and DA contents with HJDT treatment. In conclusion, it was supposed that HJDT might be a potential Chinese medicine decoction for treating or alleviating complex symptoms of depression through BDNF-TrkB-CREB pathway.
Collapse
|
26
|
Duque A, Vinader-Caerols C, Monleón S. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice. PLoS One 2017; 12:e0173182. [PMID: 28278165 PMCID: PMC5344348 DOI: 10.1371/journal.pone.0173182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/16/2017] [Indexed: 12/15/2022] Open
Abstract
We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10–12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity.
Collapse
Affiliation(s)
- Aránzazu Duque
- Department of Psychobiology, University of Valencia, Valencia, Spain
| | | | - Santiago Monleón
- Department of Psychobiology, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
27
|
Ryan SM, Kelly ÁM. Exercise as a pro-cognitive, pro-neurogenic and anti-inflammatory intervention in transgenic mouse models of Alzheimer's disease. Ageing Res Rev 2016; 27:77-92. [PMID: 27039886 DOI: 10.1016/j.arr.2016.03.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 12/20/2022]
Abstract
It is now well established, at least in animal models, that exercise elicits potent pro-cognitive and pro-neurogenic effects. Alzheimer's disease (AD) is one of the leading causes of dementia and represents one of the greatest burdens on healthcare systems worldwide, with no effective treatment for the disease to date. Exercise presents a promising non-pharmacological option to potentially delay the onset of or slow down the progression of AD. Exercise interventions in mouse models of AD have been explored and have been found to reduce amyloid pathology and improve cognitive function. More recent studies have expanded the research question by investigating potential pro-neurogenic and anti-inflammatory effects of exercise. In this review we summarise studies that have examined exercise-mediated effects on AD pathology, cognitive function, hippocampal neurogenesis and neuroinflammation in transgenic mouse models of AD. Furthermore, we attempt to identify the optimum exercise conditions required to elicit the greatest benefits, taking into account age and pathology of the model, as well as type and duration of exercise.
Collapse
|
28
|
Witte OW, Kossut M. Impairment of Brain Plasticity by Brain Inflammation. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2016. [DOI: 10.1027/2151-2604/a000247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. The ability to learn and the ability to reshape brain circuits are regarded as some of the most remarkable and important features of the brain. This ability declines with age due to largely unknown reasons, and it also is altered following stroke. Brain aging is associated with a progressive increase of the levels of inflammatory cytokine in the brain. Likewise, stroke causes pronounced increases of inflammatory cytokines in the brain. Following stroke, plasticity of the cortical representation following sensory deprivation and visualized with [14C]-2-deoxyglucose autoradiography is impaired for several weeks. Likewise, plasticity of visual acuity induced by occlusion of the ipsilateral eye is impaired. Both forms of plasticity may be rescued by treatment with anti-inflammatory drugs. In contrast to this, ocular dominance plasticity which is also induced by visual occlusion is not rescued by this intervention, neither following stroke nor in aged brains. Antiinflammatory interventions may therefore be a useful tool to enhance brain plasticity following stroke, but need to be supplemented by additional strategies to enhance brain plasticity.
Collapse
Affiliation(s)
- Otto W. Witte
- Hans Berger Department of Neurology, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Malgorzata Kossut
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| |
Collapse
|
29
|
YE YL, YU K, LIN XD, WANG Y, WU LJ, XU JN, LIU DD, ZHONG K, ZHANG Q, LV GY. Mesenchymal stem cells transplantation delays functional deteriorationby inhibiting neuroinflammation response in aged mice. Turk J Biol 2016. [DOI: 10.3906/biy-1507-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
30
|
The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 2015; 38:145-57. [PMID: 25579391 DOI: 10.1016/j.tins.2014.12.006] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/20/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022]
Abstract
Neurogenesis is an important process in the regulation of brain function and behaviour, highly active in early development and continuing throughout life. Recent studies have shown that neurogenesis is modulated by inflammatory cytokines in response to an activated immune system. To disentangle the effects of the different cytokines on neurogenesis, here we summarise and discuss in vitro studies on individual cytokines. We show that inflammatory cytokines have both a positive and negative role on proliferation and neuronal differentiation. Hence, this strengthens the notion that inflammation is involved in molecular and cellular mechanisms associated with complex cognitive processes and, therefore, that alterations in brain-immune communication are relevant to the development of neuropsychiatric disorders.
Collapse
|