1
|
Kelliny S, Zhou X, Bobrovskaya L. Alzheimer's Disease and Frontotemporal Dementia: A Review of Pathophysiology and Therapeutic Approaches. J Neurosci Res 2025; 103:e70046. [PMID: 40387258 PMCID: PMC12087441 DOI: 10.1002/jnr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/01/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025]
Abstract
Alzheimer's disease (AD) is a devastating form of dementia, with the number of affected individuals rising sharply. The main hallmarks of the disease include amyloid-beta plaque deposits and neurofibrillary tangles consisting of hyperphosphorylated tau protein, besides other pathological features that contribute to the disease's complexity. The causes of sporadic AD are multifactorial and mostly age-related and involve risk factors such as diabetes and cardiovascular or cerebrovascular disorders. Frontotemporal dementia (FTD) is another type of dementia characterized by a spectrum of behaviors, memory, and motor abnormalities and associated with abnormal depositions of protein aggregation, including tau protein. Currently approved medications are symptomatic, and no disease-modifying therapy is available to halt the disease progression. Therefore, the development of multi-targeted therapeutic approaches could hold promise for the treatment of AD and other neurodegenerative disorders, including tauopathies. In this article, we will discuss the pathophysiology of AD and FTD, the proposed hypotheses, and current therapeutic approaches, highlighting the development of novel drug candidates and the progress of clinical trials in this field of research.
Collapse
Affiliation(s)
- Sally Kelliny
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Faculty of PharmacyAssiut UniversityAssiutEgypt
| | - Xin‐Fu Zhou
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Li Z, Gong C. NLRP3 inflammasome in Alzheimer's disease: molecular mechanisms and emerging therapies. Front Immunol 2025; 16:1583886. [PMID: 40260242 PMCID: PMC12009708 DOI: 10.3389/fimmu.2025.1583886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and neuroinflammation, with no definitive cure currently available. The NLRP3 inflammasome, a key mediator of neuroinflammation, has emerged as a critical player in AD pathogenesis, contributing to the accumulation of β-amyloid (Aβ) plaques, tau hyperphosphorylation, and neuronal damage. This review explores the mechanisms by which the NLRP3 inflammasome is activated in AD, including its interactions with Aβ, tau, reactive oxygen species (ROS), and pyroptosis. Additionally, it highlights the role of the ubiquitin system, ion channels, autophagy, and gut microbiota in regulating NLRP3 activation. Therapeutic strategies targeting the NLRP3 inflammasome, such as IL-1β inhibitors, natural compounds, and novel small molecules, are discussed as promising approaches to mitigate neuroinflammation and slow AD progression. This review underscores the potential of NLRP3 inflammasome inhibition as a therapeutic avenue for AD.
Collapse
Affiliation(s)
- Zhitao Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunrong Gong
- Department of Rehabilitation Medicine, Linyi People’s Hospital, Linyi, China
| |
Collapse
|
3
|
Isei MO, Crockett M, Chen E, Rodwell-Bullock J, Carroll T, Girardi PA, Nehrke K, Johnson GVW. Tau phosphorylation suppresses oxidative stress-induced mitophagy via FKBP8 receptor modulation. PLoS One 2025; 20:e0307358. [PMID: 39752365 PMCID: PMC11698316 DOI: 10.1371/journal.pone.0307358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/19/2024] [Indexed: 01/06/2025] Open
Abstract
Neurodegenerative diseases are often characterized by mitochondrial dysfunction. In Alzheimer's disease, abnormal tau phosphorylation disrupts mitophagy, a quality control process through which damaged organelles are selectively removed from the mitochondrial network. The precise mechanism through which this occurs remains unclear. Previously, we showed that tau which has been mutated at Thr-231 to glutamic acid to mimic an Alzheimer's-relevant phospho-epitope expressed early in disease selectively inhibits oxidative stress-induced mitophagy in Caenorhabditis elegans. Here, we use immortalized mouse hippocampal neuronal cell lines to extend that result into mammalian cells. Specifically, we show that phosphomimetic tau at Ser-396/404 (EC) or Thr-231/Ser-235 (EM) partly inhibits mitophagy induction by paraquat, a potent inducer of mitochondrial oxidative stress. Moreover, a combination of immunologic and biochemical approaches demonstrates that the levels of the mitophagy receptor FKBP8, significantly decrease in response to paraquat in cells expressing EC or EM tau mutants, but not in cells expressing wildtype tau. In contrast, paraquat treatment results in a decrease in the levels of the mitophagy receptors FUNDC1 and BNIP3 in the presence of both wildtype tau and the tau mutants. Interestingly, FKBP8 is normally trafficked to the endoplasmic reticulum during oxidative stress induced mitophagy, and our results support a model where this trafficking is impacted by disease-relevant tau, perhaps through a direct interaction. We provide new insights into the molecular mechanisms underlying tau pathology in Alzheimer's disease and highlight FKBP8 receptor as a potential target for mitigating mitochondrial dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael O. Isei
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America
| | - Meredith Crockett
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America
| | - Emily Chen
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America
| | - Joel Rodwell-Bullock
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America
| | - Trae Carroll
- Nephrology Division, Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Peter A. Girardi
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America
| | - Keith Nehrke
- Nephrology Division, Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Gail V. W. Johnson
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
4
|
Dhar KS, Townsend B, Montgomery AP, Danon JJ, Pagan JK, Kassiou M. Enhancing CNS mitophagy: drug development and disease-relevant models. Trends Pharmacol Sci 2024; 45:982-996. [PMID: 39419743 DOI: 10.1016/j.tips.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Mitophagy, the selective degradation of mitochondria, is impaired in many neurodegenerative diseases (NDs), resulting in an accumulation of dysfunctional mitochondria and neuronal damage. Although enhancing mitophagy shows promise as a therapeutic strategy, the clinical significance of mitophagy activators remains uncertain due to limited understanding and poor representation of mitophagy in the central nervous system (CNS). This review explores recent insights into which mitophagy pathways to target and the extent of modulation necessary to be therapeutic towards NDs. We also highlight the complexities of mitophagy in the CNS, highlighting the need for disease-relevant models. Last, we outline crucial aspects of in vitro models to consider during drug discovery, aiming to bridge the gap between preclinical research and clinical applications in treating NDs through mitophagy modulation.
Collapse
Affiliation(s)
- Krishayant S Dhar
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Brendan Townsend
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Andrew P Montgomery
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan J Danon
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Julia K Pagan
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Sheng L, Bhalla R. Biomarkers and Target-Specific Small-Molecule Drugs in Alzheimer's Diagnostic and Therapeutic Research: From Amyloidosis to Tauopathy. Neurochem Res 2024; 49:2273-2302. [PMID: 38844706 PMCID: PMC11310295 DOI: 10.1007/s11064-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 08/09/2024]
Abstract
Alzheimer's disease (AD) is the most common type of human dementia and is responsible for over 60% of diagnosed dementia cases worldwide. Abnormal deposition of β-amyloid and the accumulation of neurofibrillary tangles have been recognised as the two pathological hallmarks targeted by AD diagnostic imaging as well as therapeutics. With the progression of pathological studies, the two hallmarks and their related pathways have remained the focus of researchers who seek for AD diagnostic and therapeutic strategies in the past decades. In this work, we reviewed the development of the AD biomarkers and their corresponding target-specific small molecule drugs for both diagnostic and therapeutic applications, underlining their success, failure, and future possibilities.
Collapse
Affiliation(s)
- Li Sheng
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
6
|
Pérez Gutiérrez RM, Rodríguez-Serrano LM, Laguna-Chimal JF, de la Luz Corea M, Paredes Carrera SP, Téllez Gomez J. Geniposide and Harpagoside Functionalized Cerium Oxide Nanoparticles as a Potential Neuroprotective. Int J Mol Sci 2024; 25:4262. [PMID: 38673848 PMCID: PMC11049985 DOI: 10.3390/ijms25084262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease is associated with protein aggregation, oxidative stress, and the role of acetylcholinesterase in the pathology of the disease. Previous investigations have demonstrated that geniposide and harpagoside protect the brain neurons, and cerium nanoparticles (CeO2 NPs) have potent redox and antioxidant properties. Thus, the effect of nanoparticles of Ce NPs and geniposide and harpagoside (GH/CeO2 NPs) on ameliorating AD pathogenesis was established on AlCl3-induced AD in mice and an aggregation proteins test in vitro. Findings of spectroscopy analysis have revealed that GH/CeO2 NPs are highly stable, nano-size, spherical in shape, amorphous nature, and a total encapsulation of GH in cerium. Treatments with CeO2 NPs, GH/CeO2 NPs, and donepezil used as positive control inhibit fibril formation and protein aggregation, protect structural modifications in the BSA-ribose system, have the ability to counteract Tau protein aggregation and amyloid-β1-42 aggregation under fibrillation condition, and are able to inhibit AChE and BuChE. While the GH/CeO2 NPs, treatment in AD induced by AlCl3 inhibited amyloid-β1-42, substantially enhanced the memory, the cognition coordination of movement in part AD pathogenesis may be alleviated through reducing amyloidogenic pathway and AChE and BuChE activities. The findings of this work provide important comprehension of the chemoprotective activities of iridoids combined with nanoparticles. This could be useful in the development of new therapeutic methods for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rosa Martha Pérez Gutiérrez
- Natural Products Research Laboratory, Higher School of Chemical Engineering and Extractive Industries, National Polytechnic Institute (IPN), Av. National Polytechnic Institute S/N, Mexico City 07708, Mexico
| | - Luis Miguel Rodríguez-Serrano
- Faculty of Psychology, Universidad Anáhuac México Norte, Huixquilucan 52786, CP, Mexico; (L.M.R.-S.); (J.F.L.-C.); (J.T.G.)
| | - José Fidel Laguna-Chimal
- Faculty of Psychology, Universidad Anáhuac México Norte, Huixquilucan 52786, CP, Mexico; (L.M.R.-S.); (J.F.L.-C.); (J.T.G.)
| | - Mónica de la Luz Corea
- Polymer Research Laboratory, Higher School of Chemical Engineering and Extractive Industries, National Polytechnic Institute (IPN), Av. Instituto Politécnico Nacional S/N, Mexico City 07708, Mexico;
| | - Silvia Patricia Paredes Carrera
- Sustainable Nanomaterials Laboratory, Higher School of Chemical Engineering and Industries Extractives, National Polytechnic Institute (IPN), Av. National Polytechnic Institute S/N, Mexico City 07708, Mexico;
| | - Julio Téllez Gomez
- Faculty of Psychology, Universidad Anáhuac México Norte, Huixquilucan 52786, CP, Mexico; (L.M.R.-S.); (J.F.L.-C.); (J.T.G.)
| |
Collapse
|
7
|
Yao J, He Z, You G, Liu Q, Li N. The Deficits of Insulin Signal in Alzheimer's Disease and the Mechanisms of Vanadium Compounds in Curing AD. Curr Issues Mol Biol 2023; 45:6365-6382. [PMID: 37623221 PMCID: PMC10453015 DOI: 10.3390/cimb45080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Vanadium is a well-known essential trace element, which usually exists in oxidation states in the form of a vanadate cation intracellularly. The pharmacological study of vanadium began with the discovery of its unexpected inhibitory effect on ATPase. Thereafter, its protective effects on β cells and its ability in glucose metabolism regulation were observed from the vanadium compound, leading to the application of vanadium compounds in clinical trials for curing diabetes. Alzheimer's disease (AD) is the most common dementia disease in elderly people. However, there are still no efficient agents for treating AD safely to date. This is mainly because of the complexity of the pathology, which is characterized by senile plaques composed of the amyloid-beta (Aβ) protein in the parenchyma of the brain and the neurofibrillary tangles (NFTs), which are derived from the hyperphosphorylated tau protein in the neurocyte, along with mitochondrial damage, and eventually the central nervous system (CNS) atrophy. AD was also illustrated as type-3 diabetes because of the observations of insulin deficiency and the high level of glucose in cerebrospinal fluid (CSF), as well as the impaired insulin signaling in the brain. In this review, we summarize the advances in applicating the vanadium compound to AD treatment in experimental research and point out the limitations of the current study using vanadium compounds in AD treatment. We hope this will help future studies in this field.
Collapse
Affiliation(s)
- Jinyi Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Guanying You
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
8
|
The Strategies for Treating "Alzheimer's Disease": Insulin Signaling May Be a Feasible Target. Curr Issues Mol Biol 2022; 44:6172-6188. [PMID: 36547082 PMCID: PMC9777526 DOI: 10.3390/cimb44120421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by senile plaques formed by amyloid-beta (Aβ) extracellularly and neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau protein intracellularly. Apart from these two features, insulin deficiency and insulin resistance have also been observed in AD brains. Thus, AD has also been referred to as type 3 diabetes by some of the scientists in this field. Insulin plays a pivotal role in learning and memory and is involved in regulating tau phosphorylation though the PI3KAkt-GSK3b signaling pathway. Interestingly, recent studies revealed that in AD brains the microglia transformed into a disease-associated microglia (DAM) status in a TREM2-dependent manner to restrain the toxicity of Aβ and propagation of tau. This also correlated with PI3K-Akt signaling through the adaptor of TREM2. Whether insulin has any effect on microglia activation in AD pathology is unclear so far. However, many studies demonstrated that diabetes increased the risk of AD. In this review, we summarize the main strategies for curing AD, including lowering the level of Aβ, suppressing the phosphorylation of tau, the ablation and/or repopulation of microglia, and especially the supply of insulin. We also propose that attention should be given to the influences of insulin on microglia in AD.
Collapse
|
9
|
Epremyan KK, Goleva TN, Zvyagilskaya RA. Effect of Tau Protein on Mitochondrial Functions. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:689-701. [PMID: 36171651 DOI: 10.1134/s0006297922080028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease is the most common age-related progressive neurodegenerative disorder of brain cortex and hippocampus leading to cognitive impairment. Accumulation of extracellular amyloid plaques and intraneuronal neurofibrillary tangles are believed to be the main hallmarks of the disease. Origin of Alzheimer's disease is not totally clear, multiple initiator factors are likely to exist. Intracellular impacts of Alzheimer's disease include mitochondrial dysfunction, oxidative stress, ER-stress, disruption of autophagy, severe metabolic challenges leading to massive neuronal apoptosis. Mitochondria are the key players in all these processes. This formed the basis for the so-called mitochondrial cascade hypothesis. This review provides current data on the molecular mechanisms of the development of Alzheimer's disease associated with mitochondria. Special attention was paid to the interaction between Tau protein and mitochondria, as well as to the promising therapeutic approaches aimed at preventing development of neurodegeneration.
Collapse
Affiliation(s)
- Khoren K Epremyan
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Tatyana N Goleva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Renata A Zvyagilskaya
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
10
|
Zeng K, Yu X, Mahaman YAR, Wang JZ, Liu R, Li Y, Wang X. Defective mitophagy and the etiopathogenesis of Alzheimer's disease. Transl Neurodegener 2022; 11:32. [PMID: 35655270 PMCID: PMC9164340 DOI: 10.1186/s40035-022-00305-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulation of impaired mitochondria and energy metabolism disorders are non-negligible features of both aging and age-related neurodegeneration, including Alzheimer’s disease (AD). A growing number of studies suggest that mitophagy disorders play an important role in AD occurrence and development. The interaction between mitophagy deficits and Aβ or Tau pathology may form a vicious cycle and cause neuronal damage and death. Elucidating the molecular mechanism of mitophagy and its role in AD may provide insights into the etiology and mechanisms of AD. Defective mitophagy is a potential target for AD prevention and treatment.
Collapse
Affiliation(s)
- Kuan Zeng
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, 430012, China.,Co-Innovation Center of Neurodegeneration, Nantong University, Nantong, 226001, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Wuhan Hospital for Psychotherapy, Wuhan, 430012, China
| | - Xuan Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Co-Innovation Center of Neurodegeneration, Nantong University, Nantong, 226001, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Li
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, 430012, China. .,Wuhan Hospital for Psychotherapy, Wuhan, 430012, China.
| | - Xiaochuan Wang
- Co-Innovation Center of Neurodegeneration, Nantong University, Nantong, 226001, China. .,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
11
|
Alali S, Riazi G, Ashrafi-Kooshk MR, Meknatkhah S, Ahmadian S, Hooshyari Ardakani M, Hosseinkhani B. Cannabidiol Inhibits Tau Aggregation In Vitro. Cells 2021; 10:cells10123521. [PMID: 34944028 PMCID: PMC8700709 DOI: 10.3390/cells10123521] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
A hallmark of Alzheimer’s disease (AD) is the accumulation of tau protein in the brain. Compelling evidence indicates that the presence of tau aggregates causes irreversible neuronal destruction, eventually leading to synaptic loss. So far, the inhibition of tau aggregation has been recognized as one of the most effective therapeutic strategies. Cannabidiol (CBD), a major component found in Cannabis sativa L., has antioxidant activities as well as numerous neuroprotective features. Therefore, we hypothesize that CBD may serve as a potent substance to hamper tau aggregation in AD. In this study, we aim to investigate the CBD effect on the aggregation of recombinant human tau protein 1N/4R isoform using biochemical methods in vitro and in silico. Using Thioflavin T (ThT) assay, circular dichroism (CD), and atomic force microscopy (AFM), we demonstrated that CBD can suppress tau fibrils formation. Moreover, by quenching assay, docking, and job’s plot, we further demonstrated that one molecule of CBD interacts with one molecule of tau protein through a spontaneous binding. Experiments performed by quenching assay, docking, and Thioflavin T assay further established that the main forces are hydrogen Van der Waals and some non-negligible hydrophobic forces, affecting the lag phase of tau protein kinetics. Taken together, this study provides new insights about a natural substance, CBD, for tau therapy which may offer new hope for the treatment of AD.
Collapse
Affiliation(s)
- Soha Alali
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614335, Iran; (M.R.A.-K.); (S.M.)
- Correspondence: (S.A.); (G.R.)
| | - Gholamhossein Riazi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614335, Iran; (M.R.A.-K.); (S.M.)
- Correspondence: (S.A.); (G.R.)
| | - Mohammad Reza Ashrafi-Kooshk
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614335, Iran; (M.R.A.-K.); (S.M.)
| | - Sogol Meknatkhah
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614335, Iran; (M.R.A.-K.); (S.M.)
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mohammad Hooshyari Ardakani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 1983969411, Iran;
| | - Baharak Hosseinkhani
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium;
| |
Collapse
|
12
|
Torres AK, Jara C, Park-Kang HS, Polanco CM, Tapia D, Alarcón F, de la Peña A, Llanquinao J, Vargas-Mardones G, Indo JA, Inestrosa NC, Tapia-Rojas C. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1391-1414. [PMID: 34719499 DOI: 10.3233/jad-215139] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment and the presence of neurofibrillary tangles and senile plaques in the brain. Neurofibrillary tangles are composed of hyperphosphorylated tau, while senile plaques are formed by amyloid-β (Aβ) peptide. The amyloid hypothesis proposes that Aβ accumulation is primarily responsible for the neurotoxicity in AD. Multiple Aβ-mediated toxicity mechanisms have been proposed including mitochondrial dysfunction. However, it is unclear if it precedes Aβ accumulation or if is a consequence of it. Aβ promotes mitochondrial failure. However, amyloid β precursor protein (AβPP) could be cleaved in the mitochondria producing Aβ peptide. Mitochondrial-produced Aβ could interact with newly formed ones or with Aβ that enter the mitochondria, which may induce its oligomerization and contribute to further mitochondrial alterations, resulting in a vicious cycle. Another explanation for AD is the tau hypothesis, in which modified tau trigger toxic effects in neurons. Tau induces mitochondrial dysfunction by indirect and apparently by direct mechanisms. In neurons mitochondria are classified as non-synaptic or synaptic according to their localization, where synaptic mitochondrial function is fundamental supporting neurotransmission and hippocampal memory formation. Here, we focus on synaptic mitochondria as a primary target for Aβ toxicity and/or formation, generating toxicity at the synapse and contributing to synaptic and memory impairment in AD. We also hypothesize that phospho-tau accumulates in mitochondria and triggers dysfunction. Finally, we discuss that synaptic mitochondrial dysfunction occur in aging and correlates with age-related memory loss. Therefore, synaptic mitochondrial dysfunction could be a predisposing factor for AD or an early marker of its onset.
Collapse
Affiliation(s)
- Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Han S Park-Kang
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Catalina M Polanco
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Diego Tapia
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Fabián Alarcón
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Adely de la Peña
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Jesus Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Gabriela Vargas-Mardones
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Javiera A Indo
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| |
Collapse
|
13
|
An FM, Liu Z, Xuan XR, Liu QS, Wei CX. Sanweidoukou decoction, a Chinese herbal formula, ameliorates β-amyloid protein-induced neuronal insult via modulating MAPK/NF-κB signaling pathways: Studies in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:114002. [PMID: 33705924 DOI: 10.1016/j.jep.2021.114002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine Sanweidoukou decoction (DK-3) was a classical formula for the treatment of nervous system diseases, recorded in the Chinese medical classic Sibu Yidian. AIM OF THE STUDY The present study is aim to investigate the neuroprotective effects of DK-3 on β-amyloid (Aβ) protein -induced AD-like pathologies and underlying molecular mechanisms both in vitro and in vivo studies. MATERIALS AND METHODS Hydrolysates of DK-3 were analyzed by LC-ESI-MS/MS. In vitro, MTT was utilized to examine effects of DK-3 on Aβ25-35-induced cytotoxicity in PC12 cells. In vivo, male Sprague-Dawley rats were administered with Aβ25-35 to induce AD-like pathologies and behavioral evaluations were conducted via Morris water maze (MWM) test. Histopathological changes were observed by Hematoxylin-eosin (HE) straining. Immunohistochemistry (IHC) was used to detect the tau hyperphosphorylation at Thr181 site. The expression levels of tau hyperphosphorylation, inflammation-related cytokines such as COX-2, iNOS, TNF-α, IL-1β, IL-6, the phosphorylated state of various mitogen-activated protein kinase (MAPK) signaling molecules (p38 MAPK, ERK, and JNK) and activation of nuclear factor κB (NF-κB) in vitro and in vivo were assessed via Western blot. RESULTS In vitro, DK-3 dose-dependently increased cell viability of PC12 cells induced by Aβ25-35. In vivo, DK-3 improved learning and memory abilities of Aβ25-35-induced AD-like rats. Moreover, DK-3 reversed hyperphosphorylation of tau and reduced the production of inflammation-related cytokines through significantly inhibited MAPK and NF-κB signaling pathways both in vitro and in vivo studies. CONCLUSION The present study suggested that the traditional Chinese medicine DK-3 may play a role in preventing and treating AD by reducing the hyperphosphorylation of tau protein and the expressions of inflammation-related cytokines via modulating the MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Feng-Mao An
- Medical College, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, PR China.
| | - Zheng Liu
- Medical College, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, PR China.
| | - Xin-Ran Xuan
- Affiliated Hospitals, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, PR China.
| | - Qing-Shan Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, PR China.
| | - Cheng-Xi Wei
- Medical College, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, PR China.
| |
Collapse
|
14
|
Cheng D, Yang XJ, Zhang L, Qin ZS, Li WQ, Xu HC, Zhang ZJ. Tortoise Plastron and Deer Antler Gelatin Prevents Against Neuronal Mitochondrial Dysfunction In Vitro: Implication for a Potential Therapy of Alzheimer's Disease. Front Pharmacol 2021; 12:690256. [PMID: 34054561 PMCID: PMC8155591 DOI: 10.3389/fphar.2021.690256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial dysfunction with oxidative damage plays the fundamental roles in the pathogenesis of Alzheimer's disease. In traditional Chinese medicine (TCM) practice, animal tissue-derived gelatins are often used as nootropic agents to treat cognitive deterioration and senile dementia. Tortoise plastron gelatin (TPG) and deer antler gelatin (DAG) are the two most commonly used gelatins for this purpose. This study sought to examine the effects of the two gelatins in preventing neuronal mitochondria from oxidative damage. PC12 cells, a cell line derived from rat pheochromocytoma, exposed to the neurotoxin Aβ25-35 served as an in vitro model of Alzheimer's disease. The cells were separately pre-treated with TPG and DAG at various concentrations ranging from 6.26 µg/ml-200 µg/ml, followed by co-incubation with 20 μM Aβ25-35 for different duration. Cell viability, mitochondrial membrane potential (MMP) and ultrastructure, intracellular ATP, reactive oxygen species (ROS) and calcium (Ca2+) level, the expression of mitochondrial dynamic proteins and biomarkers of apoptosis were measured. Pretreatment with TPG and DAG reversed the Aβ-induced reduction of cell viability in a dose-dependent manner. Both TPG and DAG significantly increased MMP and ATP, alleviated the accumulation of damaged mitochondrial fragments, and normalized the aberrant expression of multiple mitochondrial dynamic proteins of the Aβ-exposed cells. Both gelatins also suppressed intracellular ROS overproduction and Ca2+ overload, overexpression of cytochrome c and pro-apoptosis biomarkers induced by the Aβ exposure. These results suggest that TPG and DAG may have the anti-dementia potential by preventing neuronal mitochondria from oxidative damage.
Collapse
Affiliation(s)
- Dan Cheng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Jing Yang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Lu Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zong-Shi Qin
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wen-Qi Li
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hai-Chun Xu
- Shenyang Jing'an Mental Health Hospital, Shenyang, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| |
Collapse
|
15
|
Calvo-Rodriguez M, Bacskai BJ. Mitochondria and Calcium in Alzheimer's Disease: From Cell Signaling to Neuronal Cell Death. Trends Neurosci 2020; 44:136-151. [PMID: 33160650 DOI: 10.1016/j.tins.2020.10.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/03/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of almost all neurological diseases, including Alzheimer's disease (AD). Historically, a primary focus in this context has been the link between mitochondrial dynamics and amyloid β toxicity. Recent evidence suggests that dysregulation of mitochondrial calcium homeostasis is also related to tau and other risk factors in AD, although an ongoing challenge in the field is that data collected from different models or experimental settings have not always been consistent. We examine recent literature on mitochondrial dysregulation in AD, with special emphasis on mitochondrial calcium. We include data from in vitro systems, genetic animal models, and AD-derived human tissue, and discuss whether mitochondrial calcium transporters should be proposed as therapeutic candidates for the development of neuroprotective drugs against AD.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
16
|
Brandt R, Trushina NI, Bakota L. Much More Than a Cytoskeletal Protein: Physiological and Pathological Functions of the Non-microtubule Binding Region of Tau. Front Neurol 2020; 11:590059. [PMID: 33193056 PMCID: PMC7604284 DOI: 10.3389/fneur.2020.590059] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Tau protein (MAPT) is classified as a microtubule-associated protein (MAP) and is believed to regulate the axonal microtubule arrangement. It belongs to the tau/MAP2/MAP4 family of MAPs that have a similar microtubule binding region at their carboxy-terminal half. In tauopathies, such as Alzheimer's disease, tau is distributed more in the somatodendritic compartment, where it aggregates into filamentous structures, the formation of which correlates with cognitive impairments in patients. While microtubules are the dominant interaction partners of tau under physiological conditions, tau has many additional interaction partners that can contribute to its physiological and pathological role. In particular, the amino-terminal non-microtubule binding domain (N-terminal projection region, NTR) of tau interacts with many partners that are involved in membrane organization. The NTR contains intrinsically disordered regions (IDRs) that show a strong evolutionary increase in the disorder and may have been the basis for the development of new, tau-specific interactions. In this review we discuss the functional organization of the tau protein and the special features of the tau non-microtubule binding region also in the connection with the results of Tau KO models. We consider possible physiological and pathological functions of tau's non-microtubule interactions, which could indicate that interactions mediated by tau's NTR and regulated by far-reaching functional interactions of the PRR and the extreme C-terminus of tau contribute to the pathological processes.
Collapse
Affiliation(s)
- Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | | | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
17
|
Ghasemzadeh S, Riazi GH. Inhibition of Tau amyloid fibril formation by folic acid: In-vitro and theoretical studies. Int J Biol Macromol 2020; 154:1505-1516. [DOI: 10.1016/j.ijbiomac.2019.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
|
18
|
Esmaeili S, Ghobadi N, Akbari V, Moradi S, Shahlaie M, Ghobadi S, Jalalvand AR, Amani M, Khodarahmi R. Pyridine-2,3-dicarboxylate, quinolinic acid, induces 1N4R Tau amyloid aggregation in vitro: Another evidence for the detrimental effect of the inescapable endogenous neurotoxin. Chem Biol Interact 2020; 315:108884. [PMID: 31678113 DOI: 10.1016/j.cbi.2019.108884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 01/19/2023]
Abstract
Quinolinic acid (QA) known as a neuro-active metabolite associated with the kynurenine pathway. At high concentrations, QA is often involved in the initiation and development of several human neurologic diseases, like Alzheimer's disease. Because of the QA action as the NMDA receptor, it is considered as a potent excitotoxin in vivo. Since it is probable that different mechanisms are employed by QA, activation of NMDA receptors cannot fully explain the revealed toxicity and it is even believed that there are multiple unknown mechanisms/targets leading to QA cytotoxicity. Herein we report accelerated amyloid oligomerization of 1N4R Tau under the effect of QA, in vitro, then the molecular structure, morphology and toxicity of the protein aggregate were documented by using various theoretical/experimental approaches. The possible mechanism of action of QA-induced Tau oligomerization has also been explored.
Collapse
Affiliation(s)
- Sajjad Esmaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazanin Ghobadi
- Department of Chemistry, School of Science, Alzahra University, Vanak, Tehran, Iran; Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, United States
| | - Vali Akbari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaie
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sirous Ghobadi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Ali Reza Jalalvand
- Research Center of Oils and Fats (RCOF), Food and Drug Administration (FDA), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Amani
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
19
|
Quntanilla RA, Tapia-Monsalves C. The Role of Mitochondrial Impairment in Alzheimer´s Disease Neurodegeneration: The Tau Connection. Curr Neuropharmacol 2020; 18:1076-1091. [PMID: 32448104 PMCID: PMC7709157 DOI: 10.2174/1570159x18666200525020259] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/23/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulative evidence has shown that mitochondrial dysfunction plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial impairment actively contributes to the synaptic and cognitive failure that characterizes AD. The presence of soluble pathological forms of tau like hyperphosphorylated at Ser396 and Ser404 and cleaved at Asp421 by caspase 3, negatively impacts mitochondrial bioenergetics, transport, and morphology in neurons. These adverse effects against mitochondria health will contribute to the synaptic impairment and cognitive decline in AD. Current studies suggest that mitochondrial failure induced by pathological tau forms is likely the result of the opening of the mitochondrial permeability transition pore (mPTP). mPTP is a mitochondrial mega-channel that is activated by increases in calcium and is associated with mitochondrial stress and apoptosis. This structure is composed of different proteins, where Ciclophilin D (CypD) is considered to be the primary mediator of mPTP activation. Also, new studies suggest that mPTP contributes to Aβ pathology and oxidative stress in AD. Further, inhibition of mPTP through the reduction of CypD expression prevents cognitive and synaptic impairment in AD mouse models. More importantly, tau protein contributes to the physiological regulation of mitochondria through the opening/interaction with mPTP in hippocampal neurons. Therefore, in this paper, we will discuss evidence that suggests an important role of pathological forms of tau against mitochondrial health. Also, we will discuss the possible role of mPTP in the mitochondrial impairment produced by the presence of tau pathology and its impact on synaptic function present in AD.
Collapse
Affiliation(s)
- Rodrigo A. Quntanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Carola Tapia-Monsalves
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
20
|
Jara C, Aránguiz A, Cerpa W, Tapia-Rojas C, Quintanilla RA. Genetic ablation of tau improves mitochondrial function and cognitive abilities in the hippocampus. Redox Biol 2018; 18:279-294. [PMID: 30077079 PMCID: PMC6072970 DOI: 10.1016/j.redox.2018.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022] Open
Abstract
Tau is a key protein for microtubule stability; however, post-translationally modified tau contributes to neurodegenerative diseases by forming tau aggregates in the neurons. Previous reports from our group and others have shown that pathological forms of tau are toxic and impair mitochondrial function, whereas tau deletion is neuroprotective. However, the effects of tau ablation on brain structure and function in young mice have not been fully elucidated. Therefore, the aim of this study was to investigate the implications of tau ablation on the mitochondrial function and cognitive abilities of a litter of young mice (3 months old). Our results showed that tau deletion had positive effects on hippocampal cells by decreasing oxidative damage, favoring a mitochondrial pro-fusion state, and inhibiting mitochondrial permeability transition pore (mPTP) formation by reducing cyclophilin D (Cyp-D) protein. More importantly, tau deletion increased ATP production and improved the recognition memory and attentive capacity of juvenile mice. Therefore, the absence of tau enhanced brain function by improving mitochondrial health, which supplied more energy to the synapses. Thus, our work opens the possibility that preventing negative tau modifications could enhance brain function through the improvement of mitochondrial health.
Collapse
Affiliation(s)
- Claudia Jara
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - Alejandra Aránguiz
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Chile.
| | | |
Collapse
|
21
|
Pérez MJ, Jara C, Quintanilla RA. Contribution of Tau Pathology to Mitochondrial Impairment in Neurodegeneration. Front Neurosci 2018; 12:441. [PMID: 30026680 PMCID: PMC6041396 DOI: 10.3389/fnins.2018.00441] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Tau is an essential protein that physiologically promotes the assembly and stabilization of microtubules, and participates in neuronal development, axonal transport, and neuronal polarity. However, in a number of neurodegenerative diseases, including Alzheimer’s disease (AD), tau undergoes pathological modifications in which soluble tau assembles into insoluble filaments, leading to synaptic failure and neurodegeneration. Mitochondria are responsible for energy supply, detoxification, and communication in brain cells, and important evidence suggests that mitochondrial failure could have a pivotal role in the pathogenesis of AD. In this context, our group and others investigated the negative effects of tau pathology on specific neuronal functions. In particular, we observed that the presence of these tau forms could affect mitochondrial function at three different levels: (i) mitochondrial transport, (ii) morphology, and (iii) bioenergetics. Therefore, mitochondrial dysfunction mediated by anomalous tau modifications represents a novel mechanism by which these forms contribute to the pathogenesis of AD. In this review, we will discuss the main results reported on pathological tau modifications and their effects on mitochondrial function and their importance for the synaptic communication and neurodegeneration.
Collapse
Affiliation(s)
- María J Pérez
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| |
Collapse
|
22
|
Jangholi A, Ashrafi-Kooshk MR, Arab SS, Karima S, Poorebrahim M, Ghadami SA, Moosavi-Movahedi AA, Khodarahmi R. Can any “non-specific charge modification within microtubule binding domains of Tau” be a prerequisite of the protein amyloid aggregation? An in vitro study on the 1N4R isoform. Int J Biol Macromol 2018; 109:188-204. [DOI: 10.1016/j.ijbiomac.2017.12.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/26/2023]
|
23
|
Tavares RS, Martins S, Almeida-Santos T, Sousa AP, Ramalho-Santos J, da Cruz E Silva OA. Alzheimer's disease-related amyloid-β 1-42 peptide induces the loss of human sperm function. Cell Tissue Res 2017; 369:647-651. [PMID: 28776187 DOI: 10.1007/s00441-017-2665-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/23/2017] [Indexed: 11/25/2022]
Abstract
Characteristically identified as the main component of senile plaques present in patients suffering from Alzheimer's disease, Aβ has been detected in human testis and reproductive fluids, but its effect on spermatozoa has not been addressed. The present study evaluated whether the most toxic and aggregant amyloid precursor protein (APP)-proteolytic product, amyloid-β1-42 (Aβ1-42), was capable of affecting sperm functionality. Normozoospermic samples were either exposed to different Aβ1-42 doses or to the untreated and scrambled controls for a maximum of 48 h at 37 °C and 5%CO2, and motility, viability and mitochondrial status were evaluated. Additionally, tyrosine phosphorylation was analyzed by immunocytochemistry and acrosomal integrity through PSA-FITC. A shorter treatment period was used to monitor prompt Ca2+ responses. Aβ1-42 peptide decreased motility before inducing mitochondrial impairment (p < 0.05; n = 6). Both outcomes became more pronounced with time, reaching their maximal decrease at 48 h, where even 1 μM produced undesirable effects (p < 0.05; n = 6). Aβ1-42 peptide also decreased cell survival (p < 0.05; n = 6). Furthermore, although no effects on tyrosine phosphorylation were observed (p > 0.05; n = 6), reduced acrosomal integrity was detected (p < 0.05; n = 7), which was not correlated with viability loss (p > 0.05). In parallel, all Aβ1-42 concentrations elicited a [Ca2+]i rise but a significant difference was only observed at 20 μM (p < 0.05; n = 7) and a tendency was obtained with 10 μM (p = 0.053; n = 7). In conclusion, Aβ1-42 peptide oligomers impair sperm function in vitro, although further studies are required to determine the clinical relevance of these findings.
Collapse
Affiliation(s)
- R S Tavares
- Neuroscience and Cell Signalling Group, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.,Biology of Reproduction and Stem Cell Group, CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - S Martins
- Neuroscience and Cell Signalling Group, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - T Almeida-Santos
- Biology of Reproduction and Stem Cell Group, CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Reproductive Medicine Service, University Hospitals of Coimbra, 3000-075, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - A P Sousa
- Biology of Reproduction and Stem Cell Group, CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Reproductive Medicine Service, University Hospitals of Coimbra, 3000-075, Coimbra, Portugal
| | - J Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal. .,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal.
| | - O A da Cruz E Silva
- Neuroscience and Cell Signalling Group, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.,Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
24
|
Pérez MJ, Vergara-Pulgar K, Jara C, Cabezas-Opazo F, Quintanilla RA. Caspase-Cleaved Tau Impairs Mitochondrial Dynamics in Alzheimer’s Disease. Mol Neurobiol 2017; 55:1004-1018. [DOI: 10.1007/s12035-017-0385-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022]
|
25
|
Xu M, Dong Y, Wan S, Yan T, Cao J, Wu L, Bi K, Jia Y. Schisantherin B ameliorates Aβ 1–42 -induced cognitive decline via restoration of GLT-1 in a mouse model of Alzheimer's disease. Physiol Behav 2016; 167:265-273. [DOI: 10.1016/j.physbeh.2016.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/28/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022]
|
26
|
Jangholi A, Ashrafi-Kooshk MR, Arab SS, Riazi G, Mokhtari F, Poorebrahim M, Mahdiuni H, Kurganov BI, Moosavi-Movahedi AA, Khodarahmi R. Appraisal of role of the polyanionic inducer length on amyloid formation by 412-residue 1N4R Tau protein: A comparative study. Arch Biochem Biophys 2016; 609:1-19. [DOI: 10.1016/j.abb.2016.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
|
27
|
Hu H, Tan CC, Tan L, Yu JT. A Mitocentric View of Alzheimer's Disease. Mol Neurobiol 2016; 54:6046-6060. [PMID: 27696116 DOI: 10.1007/s12035-016-0117-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with an increasing morbidity, mortality, and economic cost. Plaques formed by amyloid beta peptide (Aβ) and neurofibrillary tangles formed by microtubule-associated protein tau are two main characters of AD. Though previous studies have focused on Aβ and tau and got some progressions on their toxicity mechanisms, no significantly effective treatments targeting the Aβ and tau have been found. However, it is worth noting that mounting evidences showed that mitochondrial dysfunction is an early event during the process of AD pathologic changes. What is more, these studies also showed an obvious association between mitochondrial dysfunction and Aβ/tau toxicity. Furthermore, both genetic and environmental factors may increase the oxidative stress and the mitochondria are also the sensitive target of ROS, which may form a vicious feedback between mitochondrial dysfunction and oxidative stress, eventually resulting in deficient energy, synaptic failure, and cell death. This article reviews the previous related studies from different aspects and concludes the critical roles of mitochondrial dysfunction in AD, suggesting a different route to AD therapy, which may guide the research and treatment direction.
Collapse
Affiliation(s)
- Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
28
|
Pallo SP, DiMaio J, Cook A, Nilsson B, Johnson GVW. Mechanisms of tau and Aβ-induced excitotoxicity. Brain Res 2015; 1634:119-131. [PMID: 26731336 DOI: 10.1016/j.brainres.2015.12.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/09/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022]
Abstract
Excitotoxicity was originally postulated to be a late stage side effect of Alzheimer׳s disease (AD)-related neurodegeneration, however more recent studies indicate that it may occur early in AD and contribute to the neurodegenerative process. Tau and amyloid beta (Aβ), the main components of neurofibrillary tangles (NFTs) and amyloid plaques, have been implicated in cooperatively and independently facilitating excitotoxicity. Our study investigated the roles of tau and Aβ in AD-related excitotoxicity. In vivo studies showed that tau knockout (tau(-/-)) mice were significantly protected from seizures and hippocampal superoxide production induced with the glutamate analog, kainic acid (KA). We hypothesized that tau accomplished this by facilitating KA-induced Ca(2+) influx into neurons, however lentiviral tau knockdown failed to ameliorate KA-induced Ca(2+) influx into primary rat cortical neurons. We further investigated if tau cooperated with Aβ to facilitate KA-induced Ca(2+) influx. While Aβ biphasically modulated the KA-induced Cacyt(2+) responses, tau knockdown continued to have no effect. Therefore, tau facilitates KA-induced seizures and superoxide production in a manner that does not involve facilitation of Ca(2+) influx through KA receptors (KAR). On the other hand, acute pretreatment with Aβ (10 min) enhanced KA-induced Ca(2+) influx, while chronic Aβ (24 h) significantly reduced it, regardless of tau knockdown. Given previously published connections between Aβ, group 1 metabotropic glutamate receptors (mGluRs), and KAR regulation, we hypothesized that Aβ modulates KAR via a G-protein coupled receptor pathway mediated by group 1 mGluRs. We found that Aβ did not activate group 1 mGluRs and inhibition of these receptors did not reverse Aβ modulation of KA-induced Ca(2+) influx. Therefore, Aβ biphasically regulates KAR via a mechanism that does not involve group 1mGluR activation.
Collapse
Affiliation(s)
- Susanne P Pallo
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA.
| | - John DiMaio
- Department of Chemistry, University of Rochester, Rochester, NY, USA.
| | - Alexis Cook
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Bradley Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY, USA.
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|