1
|
Hussein MN. Labeling of the serotonergic neuronal circuits emerging from the raphe nuclei via some retrograde tracers. Microsc Res Tech 2024; 87:2894-2914. [PMID: 39041701 DOI: 10.1002/jemt.24662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a very important neurotransmitter emerging from the raphe nuclei to several brain regions. Serotonergic neuronal connectivity has multiple functions in the brain. In this study, several techniques were used to trace serotonergic neurons in the dorsal raphe (DR) and median raphe (MnR) that project toward the arcuate nucleus of the hypothalamus (Arc), dorsomedial hypothalamic nucleus (DM), lateral hypothalamic area (LH), paraventricular hypothalamic nucleus (PVH), ventromedial hypothalamic nucleus (VMH), fasciola cinereum (FC), and medial habenular nucleus (MHb). Cholera toxin subunit B (CTB), retro-adeno-associated virus (rAAV-CMV-mCherry), glycoprotein-deleted rabies virus (RV-ΔG), and simultaneous microinjection of rAAV2-retro-Cre-tagBFP with AAV-dio-mCherry in C57BL/6 mice were used in this study. In addition, rAAV2-retro-Cre-tagBFP was microinjected into Ai9 mice. Serotonin immunohistochemistry was used for the detection of retrogradely traced serotonergic neurons in the raphe nuclei. The results indicated that rAAV2-retro-Cre-tagBFP microinjection in Ai9 mice was the best method for tracing serotonergic neuron circuits. All of the previously listed nuclei exhibited serotonergic neuronal projections from the DR and MnR, with the exception of the FC, which had very few projections from the DR. The serotonergic neuronal projections were directed toward the Arc by the subpeduncular tegmental (SPTg) nuclei. Moreover, the RV-ΔG tracer revealed monosynaptic non-serotonergic neuronal projections from the DR that were directed toward the Arc. Furthermore, rAAV tracers revealed monosynaptic serotonergic neuronal connections from the raphe nuclei toward Arc. These findings validate the variations in neurotropism among several retrograde tracers. The continued discovery of several novel serotonergic neural circuits is crucial for the future discovery of the functions of these circuits. RESEARCH HIGHLIGHTS: Various kinds of retrograde tracers were microinjected into C57BL/6 and Ai9 mice. The optimum method for characterizing serotonergic neuronal circuits is rAAV2-retro-Cre-tagBFP microinjection in Ai9 mice. The DR, MnR, and SPTg nuclei send monosynaptic serotonergic neuronal projections toward the arcuate nucleus of the hypothalamus. Whole-brain quantification analysis of retrograde-labeled neurons in different brain nuclei following rAAV2-retro-Cre-tagBFP microinjection in the Arc, DM, LH, and VMH is shown. Differential quantitative analysis of median and dorsal raphe serotonergic neurons emerging toward the PVH, DM, LH, Arc, VMH, MHb, and FC is shown.
Collapse
Affiliation(s)
- Mona N Hussein
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Histology and Cytology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
2
|
Prasad AA, Wallén-Mackenzie Å. Architecture of the subthalamic nucleus. Commun Biol 2024; 7:78. [PMID: 38200143 PMCID: PMC10782020 DOI: 10.1038/s42003-023-05691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The subthalamic nucleus (STN) is a major neuromodulation target for the alleviation of neurological and neuropsychiatric symptoms using deep brain stimulation (DBS). STN-DBS is today applied as treatment in Parkinson´s disease, dystonia, essential tremor, and obsessive-compulsive disorder (OCD). STN-DBS also shows promise as a treatment for refractory Tourette syndrome. However, the internal organization of the STN has remained elusive and challenges researchers and clinicians: How can this small brain structure engage in the multitude of functions that renders it a key hub for therapeutic intervention of a variety of brain disorders ranging from motor to affective to cognitive? Based on recent gene expression studies of the STN, a comprehensive view of the anatomical and cellular organization, including revelations of spatio-molecular heterogeneity, is now possible to outline. In this review, we focus attention to the neurobiological architecture of the STN with specific emphasis on molecular patterns discovered within this complex brain area. Studies from human, non-human primate, and rodent brains now reveal anatomically defined distribution of specific molecular markers. Together their spatial patterns indicate a heterogeneous molecular architecture within the STN. Considering the translational capacity of targeting the STN in severe brain disorders, the addition of molecular profiling of the STN will allow for advancement in precision of clinical STN-based interventions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | | |
Collapse
|
3
|
Emmi A, Campagnolo M, Stocco E, Carecchio M, Macchi V, Antonini A, De Caro R, Porzionato A. Neurotransmitter and receptor systems in the subthalamic nucleus. Brain Struct Funct 2023; 228:1595-1617. [PMID: 37479801 PMCID: PMC10471682 DOI: 10.1007/s00429-023-02678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/02/2023] [Indexed: 07/23/2023]
Abstract
The Subthalamic Nucleus (STh) is a lens-shaped subcortical structure located ventrally to the thalamus, that despite being embryologically derived from the diencephalon, is functionally implicated in the basal ganglia circuits. Because of this strict structural and functional relationship with the circuits of the basal ganglia, the STh is a current target for deep brain stimulation, a neurosurgical procedure employed to alleviate symptoms in movement disorders, such as Parkinson's disease and dystonia. However, despite the great relevance of this structure for both basal ganglia physiology and pathology, the neurochemical and molecular anatomy of the STh remains largely unknown. Few studies have specifically addressed the detection of neurotransmitter systems and their receptors within the structure, and even fewer have investigated their topographical distribution. Here, we have reviewed the scientific literature on neurotransmitters relevant in the STh function of rodents, non-human primates and humans including glutamate, GABA, dopamine, serotonin, noradrenaline with particular focus on their subcellular, cellular and topographical distribution. Inter-species differences were highlighted to provide a framework for further research priorities, particularly in humans.
Collapse
Affiliation(s)
- Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Marta Campagnolo
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Elena Stocco
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Miryam Carecchio
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Veronica Macchi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy.
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy.
| | - Andrea Porzionato
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| |
Collapse
|
4
|
Preferential Modulatory Action of 5-HT 2A Receptors on the Dynamic Regulation of Basal Ganglia Circuits. J Neurosci 2023; 43:56-67. [PMID: 36400530 PMCID: PMC9838704 DOI: 10.1523/jneurosci.1181-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
In rodents, cortical information is transferred to the substantia nigra pars reticulata (SNr) through motor and medial prefrontal (mPF) basal ganglia (BG) circuits implicated in motor and cognitive/motivational behaviors, respectively. The serotonergic 5-HT2A receptors are located in both of these neuronal networks, displaying topographical differences with a high expression in the associative/limbic territories, and a very low expression in the subthalamic nucleus. This study investigated whether the stimulation of 5-HT2A receptors could have a specific signature on the dynamic regulation of BG circuits, preferentially modulating the mPF information processing through trans-striatal pathways. We performed in vivo single-unit extracellular recordings to assess the effect of the 5-HT2A agonist TCB-2 on the spontaneous and cortically evoked activity of lateral and medial SNr neurons in male rats (involved in motor and mPF circuits, respectively). TCB-2 (50-200 µg/kg, i.v.) increased the basal firing rate and enhanced the cortically evoked inhibitory response of medial SNr neurons (transmission through the direct striato-nigral pathway). A prior administration of the preferential 5-HT2A receptor antagonist MDL11939 (200 µg/kg, i.v.) did not modify any electrophysiological parameter, but occluded TCB-2-induced effects. In animals treated with the 5-HT synthesis inhibitor pCPA (4-chloro-dl-phenylalanine methyl ester hydrochloride), TCB-2 failed to induce the above-mentioned effects, thus suggesting the contribution of endogenous 5-HT. However, the mobilization of 5-HT induced by the acute administration of fluoxetine (10 mg/kg, i.p.) did not mimic the effects triggered by TCB-2. Overall, these data suggest that 5-HT2A receptors have a preferential modulatory action on the dynamic regulation of BG circuitry.SIGNIFICANCE STATEMENT Motor and medial prefrontal (mPF) basal ganglia (BG) circuits play an important role in integrative brain functions like movement control or cognitive/motivational behavior, respectively. Although these neuronal networks express 5-HT2A receptors, the expression is higher in associative/limbic structures than in the motor ones. We show a topographical-dependent dissociation in the effects triggered by the 5HT2A agonist TCB-2, which specifically increases the medial substantia nigra pars reticulata neuron activity and has a preferential action on mPF information processing through the striato-nigral direct pathway. These are very likely to be 5-HT2A receptor-mediated effects that require mobilization of the endogenous 5-HT system. These findings provide evidence about the specific signature of 5-HT2A receptors on the dynamic regulation of BG circuits.
Collapse
|
5
|
Rapp C, Hamilton J, Richer K, Sajjad M, Yao R, Thanos PK. Alcohol binge drinking decreases brain glucose metabolism and functional connectivity in adolescent rats. Metab Brain Dis 2022; 37:1901-1908. [PMID: 35567647 DOI: 10.1007/s11011-022-00977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
Alcohol misuse represents a serious health concern, especially during adolescence, with approximately 18% of high school students engaging in binge drinking. Despite widespread misuse of alcohol, its effects on how the brain functions is not fully understood. This study utilized a binge drinking model in adolescent rats to examine effects on brain function as measured by brain glucose metabolism (BGluM). Following an injection of [18 FDG] fluro-2-deoxy-D-glucose, rats had voluntary access to either water or various concentrations of ethanol to obtain the following targeted doses: water (no ethanol), low dose ethanol (0.29 ± 0.03 g/kg), moderate dose ethanol (0.98 ± 0.05), and high dose ethanol (2.19 ± 0.23 g/kg). Rats were subsequently scanned using positron emission tomography. All three doses of ethanol were found to decrease BGluM in the restrosplenial cortex, visual cortex, jaw region of the somatosensory cortex, and cerebellum. For both the LD and MD ethanol dose, decreased BGluM was seen in the superior colliculi. The MD ethanol dose also decreased BGluM in the subiculum, frontal association area, as well as the primary motor cortex. Lastly, the HD ethanol dose decreased BGluM in the hippocampus, thalamus, raphe nucleus, inferior colliculus, and the primary motor cortex. Similar decreases in the hippocampus were also seen in the LD group. Taken together, these results highlight the negative consequences of acute binge drinking on BGluM in many regions of the brain involved in sensory, motor, and cognitive processes. Future studies are needed to assess the long-term effects of alcohol binge drinking on brain function as well as its cessation.
Collapse
Affiliation(s)
- Cecilia Rapp
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Biomedical Engineering, State University at New York at Buffalo, Buffalo, NY, United States
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, United States
| | - Kaleigh Richer
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, United States
| | - Munawwar Sajjad
- Department of Nuclear Medicine, University at Buffalo, Buffalo, United States
| | - Rutao Yao
- Department of Nuclear Medicine, University at Buffalo, Buffalo, United States
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States.
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, United States.
| |
Collapse
|
6
|
Pereira LDS, Gobbo DR, Ferreira JGP, Horta-Junior JDADCE, Sá SI, Bittencourt JC. Effects of ovariectomy on inputs from the medial preoptic area to the ventromedial nucleus of the hypothalamus of young adult rats. J Anat 2021; 238:467-479. [PMID: 32914872 PMCID: PMC7812137 DOI: 10.1111/joa.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/03/2023] Open
Abstract
Puberty is an important phase of development when the neural circuit organization is transformed by sexual hormones, inducing sexual dimorphism in adult behavioural responses. The principal brain area responsible for the control of the receptive component of female sexual behaviour is the ventrolateral division of the ventromedial nucleus of the hypothalamus (VMHvl), which is known for its dependency on ovarian hormones. Inputs to the VMHvl originating from the medial preoptic nucleus (MPN) are responsible for conveying essential information that will trigger such behaviour. Here, we investigated the pattern of the projection of the MPN to the VMHvl in rats ovariectomized at the onset of puberty. Sprague Dawley rats were ovariectomized (OVX) at puberty and then subjected to iontophoretic injections of the neuronal anterograde tracer Phaseolus vulgaris leucoagglutinin into the MPN once they reached 90 days of age. This study analysed the connectivity pattern established between the MPN and the VMH that is involved in the neuronal circuit responsible for female sexual behaviour in control and OVX rats. The data show the changes in the organization of the connections observed in the OVX adult rats that displayed a reduced axonal length for the MPN fibres reaching the VMHvl, suggesting that peripubertal ovarian hormones are relevant to the organization of MPN connections with structures involved in the promotion of female sexual behaviour.
Collapse
Affiliation(s)
- Laís da Silva Pereira
- Laboratorio de Neuroanatomia Quimica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Denise Ribeiro Gobbo
- Laboratorio de Neuroanatomia Quimica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | | | | | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Faculty of Medicine, CINTESIS, Centre for Health Technology and Services Research, University of Porto, Porto, Portugal
| | - Jackson Cioni Bittencourt
- Laboratorio de Neuroanatomia Quimica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
- Nucleo de Neurociencias e Comportamento, Instituto de Psicologia, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Serotonergic control of the glutamatergic neurons of the subthalamic nucleus. PROGRESS IN BRAIN RESEARCH 2021; 261:423-462. [PMID: 33785138 DOI: 10.1016/bs.pbr.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subthalamic nucleus (STN) houses a dense cluster of glutamatergic neurons that play a central role in the functional dynamics of the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. Numerous anatomical, electrophysiological, neurochemical and behavioral studies have reported that serotonergic neurons from the midbrain raphe nuclei modulate the activity of STN neurons. Here, we describe this serotonergic innervation and the nature of the regulation exerted by serotonin (5-hydroxytryptamine, 5-HT) on STN neuron activity. This regulation can occur either directly within the STN or at distal sites, including other structures of the basal ganglia or cortex. The effect of 5-HT on STN neuronal activity involves several 5-HT receptor subtypes, including 5-HT1A, 5-HT1B, 5-HT2C and 5-HT4 receptors, which have garnered the highest attention on this topic. The multiple regulatory effects exerted by 5-HT are thought to be modified under pathological conditions, altering the activity of the STN, or due to the benefits and side effects of treatments used for Parkinson's disease, notably the dopamine precursor l-DOPA and high-frequency STN stimulation. Originally understood as a motor center, the STN is also associated with decision making and participates in mood regulation and cognitive performance, two domains of personality that are also regulated by 5-HT. The literature concerning the link between 5-HT and STN is already important, and the functional overlap is evident, but this link is still not entirely understood. The understanding of this link between 5-HT and STN should be increased due to the possible importance of this regulation in the control of fronto-STN loops and inherent motor and non-motor behaviors.
Collapse
|
8
|
Li X, Sun X, Sun J, Zu Y, Zhao S, Sun X, Li L, Zhang X, Wang W, Liang Y, Wang W, Liang X, Sun C, Guan X, Tang M. Depressive-like state sensitizes 5-HT 1A and 5-HT 1B auto-receptors in the dorsal raphe nucleus sub-system. Behav Brain Res 2020; 389:112618. [PMID: 32360167 DOI: 10.1016/j.bbr.2020.112618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Dorsal raphe (DR) and median raphe (MR) 5-HT neurons are two distinct sub-systems known to be regulated by 5-HT1A and 5-HT1B auto-receptors. Whether the auto-receptors in each sub-system are functionally altered in depressive-like state remains unknown. The present study is aimed to study a specific circuit (DR-ventral hippocampus and MR-dorsal hippocampus) within each sub-system to investigate changes in receptor sensitivity in the pathogenesis of depression. A mouse model of depression was developed through the social defeat paradigm, and was then treated with fluoxetine (FLX). 5-HT1A auto-receptor in the neuronal cell body (DR or MR) and 5-HT1B auto-receptor in the axonal terminal (ventral or dorsal hippocampus) were directly targeted by local perfusion of antagonists (5-HT1A: WAY100635; 5-HT1B: GR127935) through reverse microdialysis. Time courses of dialysate 5-HT measured at the axonal terminal were subsequently determined for each circuit. At baseline, 5-HT1A and 5-HT1B antagonists dose-dependently increased dialysate 5-HT, with sub-circuit specificity. In the depressive-like state, greater increases in dialysate 5-HT were observed only in the DR-ventral hippocampus circuit following local delivery of both antagonists, which were then fully restored following the FLX treatment. In contrast, no changes were observed in the MR-dorsal hippocampus circuit. Our results demonstrate differential changes in sensitivities of 5-HT1A and 5-HT1B auto-receptors in the DR-ventral hippocampus and MR-dorsal hippocampus circuits. 5-HT1A and 5-HT1B auto-receptors in the DR-ventral hippocampus circuit are sensitized in the depressive-like state. Taken together, these results suggest that the DR sub-system maybe the neural substrate mediating depressive phenotypes.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xianan Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jing Sun
- Department of Outpatient, Rocket Force University of Engineering Clinic Affiliated to 986 Hospital of Air Force, Xi'an, 710043, China
| | - Yi Zu
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Xiao Sun
- Department of Internal Medicine, Shenyang Women's and Children's Hospital, Shenyang, 110011, China
| | - Lu Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xinjing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wei Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuezhu Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chi Sun
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Xue Guan
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
9
|
Ohmura Y, Tsutsui-Kimura I, Sasamori H, Nebuka M, Nishitani N, Tanaka KF, Yamanaka A, Yoshioka M. Different roles of distinct serotonergic pathways in anxiety-like behavior, antidepressant-like, and anti-impulsive effects. Neuropharmacology 2019; 167:107703. [PMID: 31299228 DOI: 10.1016/j.neuropharm.2019.107703] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022]
Abstract
Serotonergic agents have been widely used for treatment of psychiatric disorders, but the therapeutic effects are insufficient and these drugs often induce severe side effects. We need to specify the distinct serotonergic pathways underlying each mental function to overcome these problems. Preclinical studies have demonstrated that the central serotonergic system is involved in several emotional/cognitive functions including anxiety, depression, and impulse control, but it remains unclear whether each function is regulated by a different serotonergic system. We used optogenetic strategy to increase central serotonergic activity in mice and evaluated the behavioral consequences. Pharmacological and genetic tools were used to determine the subtype of 5-HT receptors responsible for the observed effects. We demonstrated that the serotonergic activation in the median raphe nucleus enhanced anxiety-like behavior, the serotonergic activation in the dorsal raphe nucleus exerted antidepressant-like effects, and the serotonergic activation in the median or dorsal raphe nucleus suppressed impulsive action. We also found that different serotonergic terminals, ventral hippocampus, ventral tegmental area/substantia nigra, and subthalamic/parasubthalamic nucleus, are involved in regulating anxiety-like behavior, antidepressant-like, and anti-impulsive effects, respectively. Furthermore, we found, using triple-transgenic mice, that the stimulation of the 5-HT2C receptor is required to evoke anxiety-like behavior, but not to exert anti-impulsive effects. These results suggest the need for pathway-specific treatments and provide important insights that will help the development of more effective and safer therapeutics. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Yu Ohmura
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, 060-8638, Japan.
| | - Iku Tsutsui-Kimura
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, 060-8638, Japan; Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, USA; JSPS Overseas Research Fellow, Tokyo, 102-0083, Japan
| | - Hitomi Sasamori
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, 060-8638, Japan; JSPS research Fellow, Tokyo, 102-0083, Japan
| | - Mao Nebuka
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Naoya Nishitani
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine (RIEM), Nagoya University, Nagoya, 464-8601, Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
10
|
Russo AM, Lawther AJ, Prior BM, Isbel L, Somers WG, Lesku JA, Richdale AL, Dissanayake C, Kent S, Lowry CA, Hale MW. Social approach, anxiety, and altered tryptophan hydroxylase 2 activity in juvenile BALB/c and C57BL/6J mice. Behav Brain Res 2018; 359:918-926. [PMID: 29935278 DOI: 10.1016/j.bbr.2018.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous and highly heritable condition with multiple aetiologies. Although the biological mechanisms underlying ASD are not fully understood, evidence suggests that dysregulation of serotonergic systems play an important role in ASD psychopathology. Preclinical models using mice with altered serotonergic neurotransmission may provide insight into the role of serotonin in behaviours relevant to clinical features of ASD. For example, BALB/c mice carry a loss-of-function single nucleotide polymorphism (SNP; C1473 G) in tryptophan hydroxylase 2 (Tph2), which encodes the brain-specific isoform of the rate-limiting enzyme for serotonin synthesis, and these mice frequently have been used to model symptoms of ASD. In this study, juvenile male BALB/c (G/G; loss-of-function variant) and C57BL/6 J (C/C; wild type variant) mice, were exposed to the three-chamber sociability test, and one week later to the elevated plus-maze (EPM). Tryptophan hydroxylase 2 (TPH2) activity was measured following injection of the aromatic amino acid decarboxylase (AADC)-inhibitor, NSD-1015, and subsequent HPLC detection of 5-hydroxytryptophan (5-HTP) within subregions of the dorsal raphe nucleus (DR) and median raphe nucleus (MnR). The BALB/c mice showed reduced social behaviour and increased anxious behaviour, as well as decreased 5-HTP accumulation in the rostral and mid-rostrocaudal DR. In the full cohort of mice, TPH2 activity in the mid-rostrocaudal DR was correlated with anxious behaviour in the EPM, however these correlations were not statistically significant within each strain, suggesting that TPH2 activity was not directly associated with either anxiety or sociability. Further research is therefore required to more fully understand how serotonergic systems are involved in mouse behaviours that resemble some of the clinical features of ASD.
Collapse
Affiliation(s)
- Adrian M Russo
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Adam J Lawther
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Benjamin M Prior
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Luke Isbel
- School of Molecular Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - W Gregory Somers
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, 3086, Australia
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Amanda L Richdale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia; Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Cheryl Dissanayake
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia; Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Stephen Kent
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|