1
|
Yan Z, Ha L, Chen H, Xiao Y, Chen M, Wu B, Xu H, Dong D. Sleep deprivation alters hepatic UGT1A9 and propofol metabolism in mice. Biochem Pharmacol 2025; 232:116713. [PMID: 39675587 DOI: 10.1016/j.bcp.2024.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Sleep deprivation (SD) causes circadian misalignment, and circadian clock disruption is associated with metabolic diseases such as obesity, insulin resistance, and diabetes. However, the underlying mechanism for SD-induced circadian clock disruption as well as metabolic enzyme changes is still lacking. Here, we developed SD sensitizes mice with disrupted circadian rhythms to demonstrate the regulation role and mechanism of SD in UDP-glucuronosyltransferases (UGTs) expression and the metabolism of corresponding substrates. We found that UGT Family 1 Member A9 (UGT1A9) expression was significantly decreased in the liver of SD mice, which led to an elevation exposure and prolonged anesthesia effect of propofol, which was attributed to the decreased metabolism. Meanwhile, SD down-regulated basic helix-loop-helix ARNT like 1 (BMAL1) and its target clock genes period circadian clock (Per), cryptochrome circadian regulator (Cry), and nuclear receptor subfamily 1 group D member 1 (Rev-erb) expression in mice. Furthermore, the positive regulation of UGTIA9 mRNA and protein levels by Bmal1 was confirmed in hepatocyte-specific Bmal1-knockout mice (Bmal1-hkO) and Bmal1-overexpressed AML-12 cells. At last, through a combination of promoter analysis, luciferase reporter assay, and chromatin immunoprecipitation (ChIP) assay, it was conducted that Bmal1 regulates Ugtla9 expression by directly binding the -864 bp E-box in Ugtla9 promotor or indirectly acting on the Rev-erbα- differentiated embryo chondrocyte 2 (Dec2) axis. In conclusion, our findings suggested that SD can lead to altered drug disposition and effects in vivo, and Bmal1 plays a crucial role in the crosstalk between SD-induced circadian clock disruption and drug metabolism. It initiates a new direction for the understanding of drug efficacy and toxicity changes in SD conditions and provides a scientific basis for improving the rationality of drug use.
Collapse
Affiliation(s)
- Zhiqian Yan
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Linna Ha
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Hui Chen
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - YiFei Xiao
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Min Chen
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Haiman Xu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Dong Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China.
| |
Collapse
|
2
|
Wang Z, Wu D, Hu X, Hu X, Zhu Q, Lai B, Zeng C, Long Q. WuYou decoction effectively reduces neuronal damage, synaptic dysfunction, and Aβ production in rats exposed to chronic sleep deprivation by modulating the Aβ-related enzymes and SIRT1/Nrf2/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118939. [PMID: 39413939 DOI: 10.1016/j.jep.2024.118939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic sleep deprivation (CSD) can result in neuronal damage, synaptic dysfunction, Aβ production, neuroinflammation, and ultimately cognitive deterioration. WuYou Decoction (WYD), a contemporary prescription, has shown promise in enhancing sleep quality and cognitive performance in individuals with insomnia. However, the specific molecular mechanisms responsible for the neuroprotective effects of WYD on CSD remain incompletely understood. AIM OF THE STUDY This study aimed to investigate the neuroprotective effects of WYD on the CSD model and its molecular mechanism. MATERIALS AND METHODS UHPLC-MS/MS analysis was utilized to analyze the active ingredients of WYD extract. The study employed the multi-platform water environment method to establish the CSD model in rats. Subsequent to treatment with varying doses of WYD in CSD rats, cognitive function and pathological alterations in hippocampus and cortex, including neuronal damage, synaptic dysfunction, Aβ production, and neuroinflammation, were evaluated through a combination of Morris Water Maze test, HE staining, Nissl staining, Golgi-Cox staining, Transmission electron microscope, ELISA, Immunohistochemistry staining, Immunofluorescence staining and Western blot. RESULTS UHPLC-MS/MS analysis revealed a total of 99 active ingredients were identified from the WYD extract. The administration of WYD exhibited a mitigation of cognitive decline in the model of CSD, as evidenced by increased neuron count in the hippocampus and cortex, and improved density and length of dendritic spines in these brain regions. Furthermore, WYD was found to suppress the Aβ production, and inhibit the expression of BACE1, PS1, GFAP, IBA1, IL-1β, IL-6, TNF-α, phosphorylated IκBα (Ser32) and phosphorylated NF-κB p65 (Ser536) in the hippocampus and cortex, while also increasing the levels of PSD95, SYN1, ADAM10, IDE, SIRT1 and Nrf2. CONCLUSIONS WYD exhibits neuroprotective properties in CSD, potentially through modulation of the Aβ-related enzymes and SIRT1/Nrf2/NF-κB pathway.
Collapse
Affiliation(s)
- Zhengyu Wang
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Dan Wu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Xinyi Hu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Xuan Hu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Qihang Zhu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Bixuan Lai
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China
| | - Chuhua Zeng
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China; School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| | - Qinghua Long
- Health Medical Center, Hubei Minzu University, Enshi, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, 445000, PR China.
| |
Collapse
|
3
|
Dong P, Cheng C, Yin W, Li Z, Shi Y, Gao M, Li X, Ma D, Guo H, Wei Y, Chen Z. Frailty as a mediator between sleep quality and cognitive impairment among the rural older adults: a cross-sectional study. BMC Geriatr 2025; 25:7. [PMID: 39754045 PMCID: PMC11697922 DOI: 10.1186/s12877-024-05657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Cognitive impairment is a common health problem among older adults. Previous studies have proven the association between sleep quality and cognitive impairment, but the specific underlying mechanisms need to be further explored. This study aimed to examine the relationship between sleep quality and cognitive impairment and the mediating effect of frailty in this relationship among the rural older adults. METHODS Data from a cross-sectional study conducted in rural areas of Shandong Province from September to December in 2023. A total of 695 rural older adults were included. The Pittsburgh Sleep Quality Index (PSQI) was used to measure sleep quality. Frailty was defined using the FRAIL scale. We assessed cognitive impairment using the Dementia Screening Interview (AD8). Logistic regression analyse was used to assess the relationship between sleep quality and cognitive impairment. And the Karlson-Holm-Breen (KHB) method was performed to test the mediating role of frailty in this relationship. RESULTS After adjusting for all covariates, sleep quality was significantly associated with cognitive impairment (OR = 1.047, 95% CI: 1.005-1.090). Frailty mediated the relationship between sleep quality and cognitive impairment, with a mediation effect value of 0.010 (95% CI: 0.001-0.020), accounting for 17.86% of the total effect. CONCLUSIONS We found there was an association between sleep quality and cognitive impairment, and frailty mediated the above relationship. Comprehensive intervention measures should be taken to reduce the incidence of frailty in the older adults and to improve their sleep quality, thereby preventing and delaying the occurrence and development of cognitive impairment.
Collapse
Affiliation(s)
- Ping Dong
- School of Management, Shandong Second Medical University, Weifang, Shandong, China
| | - Cheng Cheng
- WeiFang Mental Health Center, Weifang, Shandong, China
| | - Wenqiang Yin
- School of Management, Shandong Second Medical University, Weifang, Shandong, China
| | - Ziyuan Li
- School of Management, Shandong Second Medical University, Weifang, Shandong, China
| | - Yongli Shi
- School of Management, Shandong Second Medical University, Weifang, Shandong, China
| | - Min Gao
- School of Management, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaona Li
- School of Management, Shandong Second Medical University, Weifang, Shandong, China
| | - Dongping Ma
- School of Management, Shandong Second Medical University, Weifang, Shandong, China
| | - Hongwei Guo
- School of Management, Shandong Second Medical University, Weifang, Shandong, China.
| | - Yan Wei
- School of Public Health, Fudan University, Shanghai, China.
| | - Zhongming Chen
- School of Management, Shandong Second Medical University, Weifang, Shandong, China.
| |
Collapse
|
4
|
Trinh DQ, Mai NH, Pham TD. Insufficient Sleep and Alzheimer's Disease: Potential Approach for Therapeutic Treatment Methods. Brain Sci 2024; 15:21. [PMID: 39851389 PMCID: PMC11763454 DOI: 10.3390/brainsci15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
The interaction between Alzheimer's disease (AD) and sleep deprivation has recently gained attention in the scientific literature, and recent advances suggest that AD epidemiology management should coincide with the management of sleeping disorders. This review focuses on the aspects of the mechanisms underlying the link between AD and insufficient sleep with progressing age. We also provide information which could serve as evidence for future treatments of AD from the early stages in connection with sleep disorder medication.
Collapse
Affiliation(s)
- Dieu Quynh Trinh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nhu Huynh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
| | - Toan Duc Pham
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
5
|
Yang M, Yan C, Ospondpant D, Wang L, Lin S, Tang WL, Dong TT, Tong P, Xu Q, Tsim KWK. Unveiling the therapeutic potential of Lobaria extract and its depsides/depsidones in combatting A β42 peptides aggregation and neurotoxicity in Alzheimer's disease. Front Pharmacol 2024; 15:1426569. [PMID: 39193345 PMCID: PMC11347406 DOI: 10.3389/fphar.2024.1426569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Background: The development of effective inhibitors that can inhibit amyloid β (Aβ) peptides aggregation and promote neurite outgrowth is crucial for the possible treatment of Alzheimer's disease (AD). Lobaria (Schreb.) Hoffm., a traditional Chinese medicine used in Himalaya region for inflammatory diseases, contains depsides/depsidones (DEPs) such as gyrophoric acid, norstictic acid, and stictic acid known for their anti-cancer and anti-inflammation properties. Methods: Lobaria extracts were analyzed using HPLC to identify DEPs and establish standards. The inhibitory effects of Lobaria on Aβ42 fibrillization and depolymerization were assessed using various approaches with biophysical and cellular methods. The neuroprotective activity of Lobaria extracts and its DEPs aganist Aβ-mediated cytotoxicity was also evaluated. Results: Norstictic and stictic acid were found in the water extract, while norstictic, stictic, and gyrophoric acid were detected in the ethanol extract of Lobaria. Both extracts, and their DEPs effectively inhibited Aβ42 fibrillation and disaggregate mature Aβ42 fibrils. Notably, the ethanol extract showed superior inhibitory effect compared to the water extract, with gyrophoric acid being the most effective DEPs. Additionally, herbal extract-treated Aβ42 aggregation species significantly protected neuronal cells from Aβ42-induced cell damage and promoted neurite outgrowth. Conclusion: This study is the first to investigate the effect of Lobaria on Aβ42 and neuronal cell in AD. Given that Lobaria is commonly used in ethnic medicine and food with good safety records, our findings propose that Lobaria extracts and DEPs have potential as neuroprotective and therapeutic agents for AD patients.
Collapse
Affiliation(s)
- Meixia Yang
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Caishan Yan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Dusadee Ospondpant
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Lisong Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shengying Lin
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Wai Lun Tang
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Tina Tingxia Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Penger Tong
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qin Xu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
6
|
Yin C, Zhang M, Cheng L, Ding L, Lv Q, Huang Z, Zhou J, Chen J, Wang P, Zhang S, You Q. Melatonin modulates TLR4/MyD88/NF-κB signaling pathway to ameliorate cognitive impairment in sleep-deprived rats. Front Pharmacol 2024; 15:1430599. [PMID: 39101143 PMCID: PMC11294086 DOI: 10.3389/fphar.2024.1430599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Sleep deprivation (SD) is commonplace in today's fast-paced society. SD is a severe public health problem globally since it may cause cognitive decline and even neurodegenerative disorders like Alzheimer's disease. Melatonin (MT) is a natural chemical secreted by the pineal gland with neuroprotective effects. The purpose of this study was to investigate the protective effect and mechanism of MT on chronic sleep deprivation-induced cognitive impairment. A 3-week modified multi-platform method was used to create the SD rat model. The Morris water maze test (MWM), Tissue staining (including Hematoxylin and Eosin (H & E) staining, Nissl staining, and immunofluorescence), Western blot, Enzyme-linked immunosorbent assay (ELISA), and Quantitative real-time polymerase chain reaction (qPCR) were used to investigate the protective effect and mechanism of MT in ameliorating cognitive impairment in SD rats. The results showed that MT (50 and 100 mg/kg) significantly improved cognitive function in rats, as evidenced by a shortening of escape latency and increased time of crossing the platform and time spent in the quadrant. Additionally, MT therapy alleviated hippocampus neurodegeneration and neuronal loss while lowering levels of pathogenic factors (LPS) and inflammatory indicators (IL-1β, IL-6, TNF-α, iNOS, and COX2). Furthermore, MT treatment reversed the high expression of Aβ42 and Iba1 as well as the low expression of ZO-1 and occludin, and inhibited the SD-induced TLR4/MyD88/NF-κB signaling pathway. In summary, MT ameliorated spatial recognition and learning memory dysfunction in SD rats by reducing neuroinflammation and increasing neuroprotection while inhibiting the TLR4/MyD88/NF-κB signaling pathway. Our study supports the use of MT as an alternate treatment for SD with cognitive impairment.
Collapse
Affiliation(s)
- Chao Yin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Meiya Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Cheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Ding
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Qing Lv
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zixuan Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiaqi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jianmei Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Shunbo Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiuyun You
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
7
|
Han Z, Yang X, Huang S. Sleep deprivation: A risk factor for the pathogenesis and progression of Alzheimer's disease. Heliyon 2024; 10:e28819. [PMID: 38623196 PMCID: PMC11016624 DOI: 10.1016/j.heliyon.2024.e28819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Sleep deprivation refers to an intentional or unintentional reduction in sleep time, resulting in insufficient sleep. It is often caused by sleep disorders, work demands (e.g., night shifts), and study pressure. Sleep deprivation promotes Aβ deposition and tau hyperphosphorylation, which is a risk factor for the pathogenesis and progression of Alzheimer's disease (AD). Recent research has demonstrated the potential involvement of sleep deprivation in both the pathogenesis and progression of AD through glial cell activation, the glial lymphatic system, orexin system, circadian rhythm system, inflammation, and the gut microbiota. Thus, investigating the molecular mechanisms underlying the association between sleep deprivation and AD is crucial, which may contribute to the development of preventive and therapeutic strategies for AD. This review aims to analyze the impact of sleep deprivation on AD, exploring the underlying pathological mechanisms that link sleep deprivation to the initiation and progression of AD, which offers a theoretical foundation for the development of drugs aimed at preventing and treating AD.
Collapse
Affiliation(s)
- Zhengyun Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingmao Yang
- Ji'nan Zhangqiu District Hospital of Traditional Chinese Medicine, Ji'nan, 250200, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Hanert A, Schönfeld R, Weber FD, Nowak A, Döhring J, Philippen S, Granert O, Burgalossi A, Born J, Berg D, Göder R, Häussermann P, Bartsch T. Reduced overnight memory consolidation and associated alterations in sleep spindles and slow oscillations in early Alzheimer's disease. Neurobiol Dis 2024; 190:106378. [PMID: 38103701 DOI: 10.1016/j.nbd.2023.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Spatial navigation critically underlies hippocampal-entorhinal circuit function that is early affected in Alzheimer's disease (AD). There is growing evidence that AD pathophysiology dynamically interacts with the sleep/wake cycle impairing hippocampal memory. To elucidate sleep-dependent consolidation in a cohort of symptomatic AD patients (n = 12, 71.25 ± 2.16 years), we tested hippocampal place learning by means of a virtual reality task and verbal memory by a word-pair association task before and after a night of sleep. Our results show an impaired overnight memory retention in AD compared with controls in the verbal task, together with a significant reduction of sleep spindle activity (i.e., lower amplitude of fast sleep spindles, p = 0.016) and increased duration of the slow oscillation (SO; p = 0.019). Higher spindle density, faster down-to-upstate transitions within SOs, and the time delay between SOs and nested spindles predicted better memory performance in healthy controls but not in AD patients. Our results show that mnemonic processing and memory consolidation in AD is slightly impaired as reflected by dysfunctional oscillatory dynamics and spindle-SO coupling during NonREM sleep. In this translational study based on experimental paradigms in animals and extending previous work in healthy aging and preclinical disease stages, our results in symptomatic AD further deepen the understanding of the memory decline within a bidirectional relationship of sleep and AD pathology.
Collapse
Affiliation(s)
- Annika Hanert
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Robby Schönfeld
- Institute of Psychology, Division of Clinical Psychology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Frederik D Weber
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany; Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Alexander Nowak
- Department of Psychiatry and Psychotherapy, Sleep Laboratory, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Juliane Döhring
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany; Institute for General Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Sarah Philippen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Oliver Granert
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Werner-Reichardt Center for Integrative Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Jan Born
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Robert Göder
- Department of Psychiatry and Psychotherapy, Sleep Laboratory, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Peter Häussermann
- Department of Geriatric Psychiatry, LVR Klinik Köln, Academic Teaching Hospital, University of Cologne, Köln, Germany
| | - Thorsten Bartsch
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany.
| |
Collapse
|
9
|
Johnson CE, Duncan MJ, Murphy MP. Sex and Sleep Disruption as Contributing Factors in Alzheimer's Disease. J Alzheimers Dis 2024; 97:31-74. [PMID: 38007653 PMCID: PMC10842753 DOI: 10.3233/jad-230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease (AD) affects more women than men, with women throughout the menopausal transition potentially being the most under researched and at-risk group. Sleep disruptions, which are an established risk factor for AD, increase in prevalence with normal aging and are exacerbated in women during menopause. Sex differences showing more disrupted sleep patterns and increased AD pathology in women and female animal models have been established in literature, with much emphasis placed on loss of circulating gonadal hormones with age. Interestingly, increases in gonadotropins such as follicle stimulating hormone are emerging to be a major contributor to AD pathogenesis and may also play a role in sleep disruption, perhaps in combination with other lesser studied hormones. Several sleep influencing regions of the brain appear to be affected early in AD progression and some may exhibit sexual dimorphisms that may contribute to increased sleep disruptions in women with age. Additionally, some of the most common sleep disorders, as well as multiple health conditions that impair sleep quality, are more prevalent and more severe in women. These conditions are often comorbid with AD and have bi-directional relationships that contribute synergistically to cognitive decline and neuropathology. The association during aging of increased sleep disruption and sleep disorders, dramatic hormonal changes during and after menopause, and increased AD pathology may be interacting and contributing factors that lead to the increased number of women living with AD.
Collapse
Affiliation(s)
- Carrie E. Johnson
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
| | - Marilyn J. Duncan
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY, USA
| | - M. Paul Murphy
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY, USA
| |
Collapse
|
10
|
Vincent SM, Madani M, Dikeman D, Golden K, Crocker N, Jackson C, Wimmer SP, Dover M, Tucker A, Ghiani CA, Colwell CS, LeBaron TW, Tarnava A, Paul KN. Hydrogen-rich water improves sleep consolidation and enhances forebrain neuronal activation in mice. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 5:zpad057. [PMID: 38264142 PMCID: PMC10803172 DOI: 10.1093/sleepadvances/zpad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Study Objectives Sleep loss contributes to various health issues and impairs neurological function. Molecular hydrogen has recently gained popularity as a nontoxic ergogenic and health promoter. The effect of molecular hydrogen on sleep and sleep-related neural systems remains unexplored. This study investigates the impact of hydrogen-rich water (HRW) on sleep behavior and neuronal activation in sleep-deprived mice. Methods Adult C57BL/6J mice were implanted with electroencephalography (EEG) and electromyography (EMG) recording electrodes and given HRW (0.7-1.4 mM) or regular water for 7 days ad libitum. Sleep-wake cycles were recorded under baseline conditions and after acute sleep loss. Neuronal activation in sleep- and wake-related regions was assessed using cFos immunostaining. Results HRW increased sleep consolidation in undisturbed mice and increased non-rapid-eye movement and rapid-eye-movement sleep amount in sleep-deprived mice. HRW also decreased the average amount of time for mice to fall asleep after light onset. Neuronal activation in the lateral septum, medial septum, ventrolateral preoptic area, and median preoptic area was significantly altered in all mice treated with HRW. Conclusions HRW improves sleep consolidation and increases neuronal activation in sleep-related brain regions. It may serve as a simple, effective treatment to improve recovery after sleep loss.
Collapse
Affiliation(s)
- Scott M Vincent
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Melika Madani
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Dante Dikeman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Kyle Golden
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Naomi Crocker
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Cameron Jackson
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sam P Wimmer
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Mary Dover
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexis Tucker
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Cristina A Ghiani
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tyler W LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, USA
- Molecular Hydrogen Institute, Enoch, UT, USA
| | - Alex Tarnava
- Natural Wellness Now Health Products Inc, Maple ridge, BC, Canada
| | - Ketema N Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Torraville SE, Flynn CM, Kendall TL, Yuan Q. Life Experience Matters: Enrichment and Stress Can Influence the Likelihood of Developing Alzheimer's Disease via Gut Microbiome. Biomedicines 2023; 11:1884. [PMID: 37509523 PMCID: PMC10377385 DOI: 10.3390/biomedicines11071884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, characterized by the presence of β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) formed from abnormally phosphorylated tau proteins (ptau). To date, there is no cure for AD. Earlier therapeutic efforts have focused on the clinical stages of AD. Despite paramount efforts and costs, pharmaceutical interventions including antibody therapies targeting Aβ have largely failed. This highlights the need to alternate treatment strategies and a shift of focus to early pre-clinical stages. Approximately 25-40% of AD cases can be attributed to environmental factors including chronic stress. Gut dysbiosis has been associated with stress and the pathogenesis of AD and can increase both Aβ and NFTs in animal models of the disease. Both stress and enrichment have been shown to alter AD progression and gut health. Targeting stress-induced gut dysbiosis through probiotic supplementation could provide a promising intervention to delay disease progression. In this review, we discuss the effects of stress, enrichment, and gut dysbiosis in AD models and the promising evidence from probiotic intervention studies.
Collapse
Affiliation(s)
- Sarah E Torraville
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Cassandra M Flynn
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Tori L Kendall
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
12
|
Khosroazad S, Gilbert CF, Aronis JB, Daigle KM, Esfahani M, Almaghasilah A, Ahmed FS, Elias MF, Meuser TM, Kaye LW, Singer CM, Abedi A, Hayes MJ. Sleep movements and respiratory coupling as a biobehavioral metric for early Alzheimer's disease in independently dwelling adults. BMC Geriatr 2023; 23:252. [PMID: 37106470 PMCID: PMC10141904 DOI: 10.1186/s12877-023-03983-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION Sleep disorder is often the first symptom of age-related cognitive decline associated with Alzheimer's disease (AD) observed in primary care. The relationship between sleep and early AD was examined using a patented sleep mattress designed to record respiration and high frequency movement arousals. A machine learning algorithm was developed to classify sleep features associated with early AD. METHOD Community-dwelling older adults (N = 95; 62-90 years) were recruited in a 3-h catchment area. Study participants were tested on the mattress device in the home bed for 2 days, wore a wrist actigraph for 7 days, and provided sleep diary and sleep disorder self-reports during the 1-week study period. Neurocognitive testing was completed in the home within 30-days of the sleep study. Participant performance on executive and memory tasks, health history and demographics were reviewed by a geriatric clinical team yielding Normal Cognition (n = 45) and amnestic MCI-Consensus (n = 33) groups. A diagnosed MCI group (n = 17) was recruited from a hospital memory clinic following diagnostic series of neuroimaging biomarker assessment and cognitive criteria for AD. RESULTS In cohort analyses, sleep fragmentation and wake after sleep onset duration predicted poorer executive function, particularly memory performance. Group analyses showed increased sleep fragmentation and total sleep time in the diagnosed MCI group compared to the Normal Cognition group. Machine learning algorithm showed that the time latency between movement arousals and coupled respiratory upregulation could be used as a classifier of diagnosed MCI vs. Normal Cognition cases. ROC diagnostics identified MCI with 87% sensitivity; 89% specificity; and 88% positive predictive value. DISCUSSION AD sleep phenotype was detected with a novel sleep biometric, time latency, associated with the tight gap between sleep movements and respiratory coupling, which is proposed as a corollary of sleep quality/loss that affects the autonomic regulation of respiration during sleep. Diagnosed MCI was associated with sleep fragmentation and arousal intrusion.
Collapse
Affiliation(s)
- Somayeh Khosroazad
- Electrical and Computer Engineering, University of Maine, 5708 Barrows Hall, Orono, ME, 04469, USA
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
| | - Christopher F Gilbert
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Jessica B Aronis
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Katrina M Daigle
- Psychology Department, Suffolk University, 73 Tremont St., Boston, MA, 02108, USA
| | | | - Ahmed Almaghasilah
- Electrical and Computer Engineering, University of Maine, 5708 Barrows Hall, Orono, ME, 04469, USA
- Graduate School of Biomedical Science & Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA
| | - Fayeza S Ahmed
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Merrill F Elias
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Thomas M Meuser
- Center for Excellence On Aging, University of New England, 11 Hills Beach Rd., Biddeford, ME, 04005, USA
| | - Leonard W Kaye
- Center On Aging, University of Maine, 327 Camden Hall, Orono, ME, 04469, USA
| | - Clifford M Singer
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
- Mood and Memory Clinic, Northern Light Health, 269 Stillwater Ave., Bangor, ME, 04402, USA
| | - Ali Abedi
- Electrical and Computer Engineering, University of Maine, 5708 Barrows Hall, Orono, ME, 04469, USA
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
| | - Marie J Hayes
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA.
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA.
- Graduate School of Biomedical Science & Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA.
| |
Collapse
|
13
|
Zhang F, Niu L, Zhong R, Li S, Le W. Chronic Sleep Disturbances Alters Sleep Structure and Tau Phosphorylation in AβPP/PS1 AD Mice and Their Wild-Type Littermates. J Alzheimers Dis 2023; 92:1341-1355. [PMID: 37038814 DOI: 10.3233/jad-221048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Background: Emerging evidence indicates that sleep disorders are the common non-cognitive symptoms of Alzheimer’s disease (AD), and they may contribute to the pathogenesis of this disease. Objective: In this study, we aim to investigate the effect of chronic sleep deprivation (CSD) on AD-related pathologies with a focus on tau phosphorylation and the underlying DNA methylation regulation. Methods: AβPPswe/PS1ΔE9 AD mice and their wild-type (WT) littermates were subjected to a two-month CSD followed by electroencephalography and electromyography recording. The mice were examined for learning and memory evaluation, then pathological, biochemical, and epigenetic assessments including western blotting, immunofluorescence, dot blotting, and bisulfite sequencing. Results: The results show that CSD caused sleep disorders shown as sleep pattern change, poor sleep maintenance, and increased sleep fragmentation. CSD increased tau phosphorylation at different sites and increased the level of tau kinases in AD and WT mice. The increased expression of cyclin-dependent kinase 5 (CDK5) may result from decreased DNA methylation of CpG sites in the promoter region of CDK5 gene, which might be associated with the downregulation of DNA methyltransferase 3A and 3B. Conclusion: CSD altered AD-related tau phosphorylation through epigenetic modification of tau kinase gene. The findings in this study may give insights into the mechanisms underlying the effects of sleep disorders on AD pathology and provide new therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Feng Zhang
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Long Niu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Rujia Zhong
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Chen J, Chen X, Mao R, Fu Y, Chen Q, Zhang C, Zheng K. Hypertension, sleep quality, depression, and cognitive function in elderly: A cross-sectional study. Front Aging Neurosci 2023; 15:1051298. [PMID: 36824262 PMCID: PMC9942596 DOI: 10.3389/fnagi.2023.1051298] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Background Hypertension, sleep disorders, and depression are highly prevalent in the elderly population and are all associated with cognitive impairment, but the role that sleep quality and depression play in the association between hypertension and cognitive impairment is unclear. The aim of this study was to investigate whether sleep quality and depression have a mediating role in the association between hypertension and cognitive impairment. Methods A cross-sectional study was conducted to collect data from the Tongji Hospital Comprehensive Geriatric Assessment Database. Sleep quality, depression and cognitive function were measured by the Pittsburgh Sleep Quality Index (PSQI), the Geriatric Depression Scale (GDS-15) and the Mini-Mental State Examination (MMSE), respectively. Correlation analysis, regression analysis and Bootstrap analysis were used to examine correlations between key variables and mediating effects of sleep quality and depression. Adjustments for multiple comparisons were performed using Benjamini-Hochberg adjustment for multiple testing. Results A total of 827 participants were included, hypertension was present in 68.3% of the sample. After correcting for covariates, hypertensive patients aged 65 years or older had worse cognitive function, poorer-sleep quality and higher levels of depression. Sleep quality was significantly negatively associated with depression and cognitive function, while depression was negatively associated with cognitive function. Mediation analysis revealed that hypertension can affect cognitive function in older adults through a single mediating effect of sleep quality and depression and a chain mediating effect of sleep quality and depression. Conclusion This study found that sleep quality and depression can mediate the relationship between hypertension and cognitive function in elderly. Enhanced supervision of sleep quality and depression in elderly patients with hypertension may be beneficial in maintaining cognitive function.
Collapse
Affiliation(s)
- Jiajie Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruxue Mao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
15
|
Zhao N, Chen QG, Chen X, Liu XT, Geng F, Zhu MM, Yan FL, Zhang ZJ, Ren QG. Intestinal dysbiosis mediates cognitive impairment via the intestine and brain NLRP3 inflammasome activation in chronic sleep deprivation. Brain Behav Immun 2023; 108:98-117. [PMID: 36427810 DOI: 10.1016/j.bbi.2022.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/25/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Growing evidence suggests the involvement of the microbiota-gut-brain axis in cognitive impairment induced by sleep deprivation (SD), however how the microbiota-gut-brain axis work remains elusive. Here, we discovered that chronic SD induced intestinal dysbiosis, activated NLRP3 inflammasome in the colon and brain, destructed intestinal/blood-brain barrier, and impaired cognitive function in mice. Transplantation of "SD microbiota" could almost mimic the pathological and behavioral changes caused by chronic SD. Furthermore, all the behavioral and pathological abnormalities were practically reversed in chronic sleep-deprived NLRP3-/- mice. Regional knockdown NLRP3 expression in the gut and hippocampus, respectively. We observed that down-regulation of NLRP3 in the hippocampus inhibited neuroinflammation, and ameliorated synaptic dysfunction and cognitive impairment induced by chronic SD. More intriguingly, the down-regulation of NLRP3 in the gut protected the intestinal barrier, attenuated the levels of peripheral inflammatory factors, down-regulated the expression of NLRP3 in the brain, and improved cognitive function in chronic SD mice. Our results identified gut microbiota as a driver in chronic SD and highlighted the NLRP3 inflammasome as a key regulator within the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neurology, Affiliated to ZhongDa Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Qiu-Gu Chen
- Department of Neurology, Affiliated to ZhongDa Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiu Chen
- Department of Neurology, Affiliated to ZhongDa Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Xue-Ting Liu
- Department of Neurology, Affiliated to ZhongDa Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Fan Geng
- Department of Neurology, Affiliated to ZhongDa Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Meng-Meng Zhu
- Department of Neurology, Affiliated to ZhongDa Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Fu-Ling Yan
- Department of Neurology, Affiliated to ZhongDa Hospital of Southeast University, Nanjing 210009, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated to ZhongDa Hospital of Southeast University, Nanjing 210009, China
| | - Qing-Guo Ren
- Department of Neurology, Affiliated to ZhongDa Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
16
|
Giannos P, Prokopidis K, Forbes SC, Celoch K, Candow DG, Tartar JL. Gene Expression Changes of Murine Cortex Homeostasis in Response to Sleep Deprivation Hint Dysregulated Aging-like Transcriptional Responses. Brain Sci 2022; 12:825. [PMID: 35884632 PMCID: PMC9313387 DOI: 10.3390/brainsci12070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Sleep deprivation leads to the deterioration in the physiological functioning of the brain, cognitive decline, and many neurodegenerative diseases, all of which progress with advancing age. Sleep insufficiency and impairments in cognitive function are characterized by progressive neuronal losses in the cerebral cortex. In this study, we analyze gene expression profiles following sleep-deprived murine models and circadian matched controls to identify genes that might underlie cortical homeostasis in response to sleep deprivation. Screening of the literature resulted in three murine (Mus musculus) gene expression datasets (GSE6514, GSE78215, and GSE33491) that included cortical tissue biopsies from mice that are sleep deprived for 6 h (n = 15) and from circadian controls that are left undisturbed (n = 15). Cortical differentially expressed genes are used to construct a network of encoded proteins that are ranked based on their interactome according to 11 topological algorithms. The analysis revealed three genes-NFKBIA, EZR, and SGK1-which exhibited the highest multi-algorithmic topological significance. These genes are strong markers of increased brain inflammation, cytoskeletal aberrations, and glucocorticoid resistance, changes that imply aging-like transcriptional responses during sleep deprivation in the murine cortex. Their potential role as candidate markers of local homeostatic response to sleep loss in the murine cortex warrants further experimental validation.
Collapse
Affiliation(s)
- Panagiotis Giannos
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
- Society of Meta-Research and Biomedical Innovation, London W12 0BZ, UK;
| | - Konstantinos Prokopidis
- Society of Meta-Research and Biomedical Innovation, London W12 0BZ, UK;
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Scott C. Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB R7A 6A9, Canada;
| | - Kamil Celoch
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (K.C.); (J.L.T.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Jaime L. Tartar
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (K.C.); (J.L.T.)
| |
Collapse
|
17
|
Zhu Y, Gao M, Huang H, Gao SH, Liao LY, Tao Y, Cheng H, Gao CY. p75NTR Ectodomain Ameliorates Cognitive Deficits and Pathologies in a Rapid Eye Movement Sleep Deprivation Mice Model. Neuroscience 2022; 496:27-37. [PMID: 35697320 DOI: 10.1016/j.neuroscience.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The neurotrophin receptor p75 (p75NTR) is a circadian rhythm regulator and mediates cognitive deficits induced by sleep deprivation (SD). The soluble extracellular domain of p75NTR (p75ECD) has been shown to exert a neuroprotective function in Alzheimer's disease (AD) and depression animal models. Nevertheless, the role of p75ECD in SD-induced cognitive dysfunction is unclear. In the present study we administrated p75ECD-Fc (10, 3 mg/kg), a recombinant fusion protein of human p75ECD and fragment C of immunoglobulin IgG1, to treat mice via intraperitoneal injection. The results revealed that peripheral supplementation of high-dose p75ECD-Fc (10 mg/kg) recovered the balance between Aβ and p75ECD in the hippocampus and rescued the cognitive deficits in SD mice. We also found that p75ECD-Fc ameliorated other pathologies induced by SD, including neuronal apoptosis, synaptic plasticity impairment and neuroinflammation. The current study suggests that p75ECD-Fc is a potential candidate for SD and peripheral supplementation of p75ECD-Fc may be a prospective preventive measure for cognitive decline in SD.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Neurology, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Min Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Hao Huang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Shi-Hao Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Ling-Yi Liao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Yong Tao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Huan Cheng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China
| | - Chang-Yue Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, 10 Changjiang Branch Road, Yu-Zhong District, 400042 Chongqing, China.
| |
Collapse
|
18
|
Hanke JM, Schindler KA, Seiler A. On the relationships between epilepsy, sleep, and Alzheimer's disease: A narrative review. Epilepsy Behav 2022; 129:108609. [PMID: 35176650 DOI: 10.1016/j.yebeh.2022.108609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
Epilepsy, sleep, and Alzheimer's disease (AD) are tightly and potentially causally interconnected. The aim of our review was to investigate current research directions on these relationships. Our hope is that they may indicate preventive measures and new treatment options for early neurodegeneration. We included articles that assessed all three topics and were published during the last ten years. We found that this literature corroborates connections on various pathophysiological levels, including sleep-stage-related epileptiform activity in AD, the negative consequences of different sleep disorders on epilepsy and cognition, common biochemical pathways as well as network dysfunctions. Here we provide a detailed overview of these topics and we discuss promising diagnostic and therapeutic consequences.
Collapse
Affiliation(s)
- Julie M Hanke
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland
| | - Kaspar A Schindler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland
| | - Andrea Seiler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland.
| |
Collapse
|
19
|
Zhang Q, Wu Y, Liu E. Longitudinal associations between sleep duration and cognitive function in the elderly population in China: A 10-year follow-up study from 2005 to 2014. Int J Geriatr Psychiatry 2021; 36:1878-1890. [PMID: 34378823 DOI: 10.1002/gps.5615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Sleep duration is increasingly recognized as an important determinant of cognitive function among elderly. However, longitudinal studies on the relationship between sleep duration and cognitive function in Chinese elderly are rare. We sought to investigate the longitudinal association between sleep duration and cognitive function in Chinese elderly during a 10-year follow-up. METHOD This longitudinal study analyzed 2148 elderly (the baseline including 43.16% aged 70%-79%, 23.79% aged 80 and over) who had participated in four waves of the Chinese Longitudinal Healthy Longevity Survey during 2005-2014. Cognitive function (including global functioning and cognitive domains) was assessed using the Chinese version of the Mini-Mental State Examination. Sleep duration was assessed via self-reports. Mixed model analysis was used to evaluate the association between sleep duration and cognitive function, adjusting for sociodemographic variables and risk factors for cognitive function. RESULTS There is an inverted U-shaped relationship between sleep duration and global cognition and cognitive domains, with the highest cognitive scores observed for sleep durations between 6 and 9 h and the curve shifting from smooth to steeper from 2005 to 2014. The regression model showed that long sleep duration (>9 h) is significantly associated with global cognition and four cognitive domains: orientation, attention and calculation, immediate recall and visual construction. Both long and short sleep durations are significantly associated with delayed recall and not significantly associated with category fluency, language or the ability to follow a three-stage command. The five cognitive domains related to sleep duration are the domains that exhibited a rapid rate of decline. CONCLUSIONS Sleep duration can be identified as a modifiable risk factor for cognitive decline, as long or short sleep duration is associated with the five cognitive domains that exhibit cognitive decline. These findings suggest the need for intervention measures to maintain healthy sleep durations among Chinese elderly people.
Collapse
Affiliation(s)
- Qilin Zhang
- Center for Social Security Studies, Wuhan University, Wuhan, China
| | - Yanli Wu
- Center for Social Security Studies, Wuhan University, Wuhan, China
| | - Erpeng Liu
- Institute of Income Distribution and Public Finance, Zhongnan University of Economics and Law, Wuhan, China
| |
Collapse
|
20
|
Kuang H, Zhu YG, Zhou ZF, Yang MW, Hong FF, Yang SL. Sleep disorders in Alzheimer's disease: the predictive roles and potential mechanisms. Neural Regen Res 2021; 16:1965-1972. [PMID: 33642368 PMCID: PMC8343328 DOI: 10.4103/1673-5374.308071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sleep disorders are common in patients with Alzheimer's disease, and can even occur in patients with amnestic mild cognitive impairment, which appears before Alzheimer's disease. Sleep disorders further impair cognitive function and accelerate the accumulation of amyloid-β and tau in patients with Alzheimer's disease. At present, sleep disorders are considered as a risk factor for, and may be a predictor of, Alzheimer's disease development. Given that sleep disorders are encountered in other types of dementia and psychiatric conditions, sleep-related biomarkers to predict Alzheimer's disease need to have high specificity and sensitivity. Here, we summarize the major Alzheimer's disease-specific sleep changes, including abnormal non-rapid eye movement sleep, sleep fragmentation, and sleep-disordered breathing, and describe their ability to predict the onset of Alzheimer's disease at its earliest stages. Understanding the mechanisms underlying these sleep changes is also crucial if we are to clarify the role of sleep in Alzheimer's disease. This paper therefore explores some potential mechanisms that may contribute to sleep disorders, including dysregulation of the orexinergic, glutamatergic, and γ-aminobutyric acid systems and the circadian rhythm, together with amyloid-β accumulation. This review could provide a theoretical basis for the development of drugs to treat Alzheimer's disease based on sleep disorders in future work.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Ge Zhu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi-Feng Zhou
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang, Jiangxi Province, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
21
|
García-Aviles JE, Méndez-Hernández R, Guzmán-Ruiz MA, Cruz M, Guerrero-Vargas NN, Velázquez-Moctezuma J, Hurtado-Alvarado G. Metabolic Disturbances Induced by Sleep Restriction as Potential Triggers for Alzheimer's Disease. Front Integr Neurosci 2021; 15:722523. [PMID: 34539357 PMCID: PMC8447653 DOI: 10.3389/fnint.2021.722523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
Sleep has a major role in learning, memory consolidation, and metabolic function. Although it is known that sleep restriction increases the accumulation of amyloid β peptide (Aβ) and the risk to develop Alzheimer's disease (AD), the mechanism behind these effects remains unknown. In this review, we discuss how chronic sleep restriction induces metabolic and cognitive impairments that could result in the development of AD in late life. Here, we integrate evidence regarding mechanisms whereby metabolic signaling becomes disturbed after short or chronic sleep restriction in the context of cognitive impairment, particularly in the accumulation of Aβ in the brain. We also discuss the role of the blood-brain barrier in sleep restriction with an emphasis on the transport of metabolic signals into the brain and Aβ clearance. This review presents the unexplored possibility that the alteration of peripheral metabolic signals induced by sleep restriction, especially insulin resistance, is responsible for cognitive deficit and, subsequently, implicated in AD development.
Collapse
Affiliation(s)
- Jesús Enrique García-Aviles
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Cruz
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Unidad de Investigación Médica en Bioquímica, Mexico City, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Javier Velázquez-Moctezuma
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Gabriela Hurtado-Alvarado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
22
|
Kylkilahti TM, Berends E, Ramos M, Shanbhag NC, Töger J, Markenroth Bloch K, Lundgaard I. Achieving brain clearance and preventing neurodegenerative diseases-A glymphatic perspective. J Cereb Blood Flow Metab 2021; 41:2137-2149. [PMID: 33461408 PMCID: PMC8392766 DOI: 10.1177/0271678x20982388] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Age-related neurodegenerative diseases are a growing burden to society, and many are sporadic, meaning that the environment, diet and lifestyle play significant roles. Cerebrospinal fluid (CSF)-mediated clearing of brain waste products via perivascular pathways, named the glymphatic system, is receiving increasing interest, as it offers unexplored perspectives on understanding neurodegenerative diseases. The glymphatic system is involved in clearance of metabolic by-products such as amyloid-β from the brain, and its function is believed to lower the risk of developing some of the most common neurodegenerative diseases. Here, we present magnetic resonance imaging (MRI) data on the heart cycle's control of CSF flow in humans which corroborates findings from animal studies. We also review the importance of sleep, diet, vascular health for glymphatic clearance and find that these factors are also known players in brain longevity.
Collapse
Affiliation(s)
- Tekla Maria Kylkilahti
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Eline Berends
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Marta Ramos
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Johannes Töger
- Diagnostic Radiology, Department of Clinical Sciences, Lund University and Skane University Hospital Lund, Lund, Sweden
| | | | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Wang C, Gao WR, Yin J, Wang ZJ, Qi JS, Cai HY, Wu MN. Chronic sleep deprivation exacerbates cognitive and synaptic plasticity impairments in APP/PS1 transgenic mice. Behav Brain Res 2021; 412:113400. [PMID: 34087256 DOI: 10.1016/j.bbr.2021.113400] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive deficits. Sleep deprivation (SD) could lead to memory deficits, and it was a candidate risk factor for AD. However, the effects of chronic SD on the cognitive functions of AD model mice and its possible mechanism are still unclear. In the present study, 8-month-old male APP/PS1 transgenic mice and wild type (WT) littermates were subjected to chronic SD by using the modified multiple platform method (MMPM), with 20 h of SD each day for 21 days. Then, the effects of chronic SD on cognitive functions in APP/PS1 mice were tested by using behavioral tests, the potential mechanisms were investigated by in vivo electrophysiological recording, western blot and immunochemistry. The results showed that chronic SD obviously aggravated the cognitive impairments, exacerbated in vivo hippocampal long-term potentiation (LTP) suppression, reduced the expression level of PSD95, increased amyloid-β (Aβ) protein deposition and overactivated microglia in the hippocampus of APP/PS1 mice. These results indicate that chronic SD exacerbates the cognitive deficits in APP/PS1 mice by accelerating the development of AD pathologies, reducing the expression of PSD95 and aggravating the LTP suppression in hippocampus. At the same time, chronic SD also impaired cognitive functions and synaptic plasticity in WT mice through down-regulating the level of PSD95 and activating microglia. These findings further clarify the electrophysiological and molecular mechanisms of exacerbated cognitive deficits in AD caused by chronic SD.
Collapse
Affiliation(s)
- Chun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Wen-Rui Gao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Yin
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
24
|
Harris SS, Schwerd-Kleine T, Lee BI, Busche MA. The Reciprocal Interaction Between Sleep and Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:169-188. [PMID: 34773232 DOI: 10.1007/978-3-030-81147-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
It is becoming increasingly recognized that patients with a variety of neurodegenerative diseases exhibit disordered sleep/wake patterns. While sleep impairments have typically been thought of as sequelae of underlying neurodegenerative processes in sleep-wake cycle regulating brain regions, including the brainstem, hypothalamus, and basal forebrain, emerging evidence now indicates that sleep deficits may also act as pathophysiological drivers of brain-wide disease progression. Specifically, recent work has indicated that impaired sleep can impact on neuronal activity, brain clearance mechanisms, pathological build-up of proteins, and inflammation. Altered sleep patterns may therefore be novel (potentially reversible) dynamic functional markers of proteinopathies and modifiable targets for early therapeutic intervention using non-invasive stimulation and behavioral techniques. Here we highlight research describing a potentially reciprocal interaction between impaired sleep and circadian patterns and the accumulation of pathological signs and features in Alzheimer's disease, the most prevalent neurodegenerative disease in the elderly.
Collapse
Affiliation(s)
| | | | - Byung Il Lee
- UK Dementia Research Institute at UCL, London, UK
| | | |
Collapse
|
25
|
Isolation of Neuroprotective Anthocyanins from Black Chokeberry ( Aronia melanocarpa) against Amyloid-β-Induced Cognitive Impairment. Foods 2020; 10:foods10010063. [PMID: 33383966 PMCID: PMC7823521 DOI: 10.3390/foods10010063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 01/28/2023] Open
Abstract
Black chokeberry (Aronia melanocarpa) fruits are rich in anthocyanins, which are vital secondary metabolites that possess antioxidative properties. The aim of this study was to isolate and purify the anthocyanins from black chokeberry by simulated moving bed (SMB) chromatography, and to investigate the neuroprotective effect of SMB purified anthocyanin against Aβ-induced memory damage in rats. The parameters of the SMB process were studied and optimized. Anthocyanin extracts were identified by HPLC and UPLC-QTOF-MS, and antioxidant abilities were evaluated. The Aβ-induced animal model was established by intracerebral ventricle injection in rat brain. Through the SMB purification, anthocyanins were purified to 85%; cyanidin 3-O-galactoside and cyanidin 3-O-arabinoside were identified as the main anthocyanins by UPLC-QTOF-MS. The SMB purified anthocyanins exhibited higher DPPH and ABTS free radical scavenging abilities than the crude anthocyanins extract. Furthermore, rats receiving SMB purified anthocyanins treatment (50 mg/kg) showed improved spatial memory in a Morris water maze test, as well as protection of the cells in the hippocampus against Aβ toxicity. These results demonstrate that anthocyanins could serve as antioxidant and neuroprotective agents, with potential in the treatment of Alzheimer's disease.
Collapse
|
26
|
Sleep Deprivation and Neurological Disorders. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5764017. [PMID: 33381558 PMCID: PMC7755475 DOI: 10.1155/2020/5764017] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Sleep plays an important role in maintaining neuronal circuitry, signalling and helps maintain overall health and wellbeing. Sleep deprivation (SD) disturbs the circadian physiology and exerts a negative impact on brain and behavioural functions. SD impairs the cellular clearance of misfolded neurotoxin proteins like α-synuclein, amyloid-β, and tau which are involved in major neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. In addition, SD is also shown to affect the glymphatic system, a glial-dependent metabolic waste clearance pathway, causing accumulation of misfolded faulty proteins in synaptic compartments resulting in cognitive decline. Also, SD affects the immunological and redox system resulting in neuroinflammation and oxidative stress. Hence, it is important to understand the molecular and biochemical alterations that are the causative factors leading to these pathophysiological effects on the neuronal system. This review is an attempt in this direction. It provides up-to-date information on the alterations in the key processes, pathways, and proteins that are negatively affected by SD and become reasons for neurological disorders over a prolonged period of time, if left unattended.
Collapse
|
27
|
Brice KN, Hagen CW, Peterman JL, Figg JW, Braden PN, Chumley MJ, Boehm GW. Chronic sleep restriction increases soluble hippocampal Aβ-42 and impairs cognitive performance. Physiol Behav 2020; 226:113128. [PMID: 32791178 DOI: 10.1016/j.physbeh.2020.113128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022]
Abstract
Currently, over 44 million people worldwide suffer from Alzheimer's disease (AD). A common feature of AD is disrupted sleep. Sleep is essential for many psychological and physiological functions, though 35.3% of adults report getting less than 7 hours per night. The present research examined whether chronic sleep restriction would elevate hippocampal amyloid-beta1-42 expression or alter cognitive ability in adult C57BL/6 mice. Chronic sleep restriction was associated with cognitive impairment and increased hippocampal amyloid-beta. Thus, chronic sleep loss may have a detrimental effect upon cognitive function, in part, via increasing amyloid-beta levels in the hippocampus, even in non-genetically modified mice.
Collapse
Affiliation(s)
- Kelly N Brice
- Texas Christian University, Department of Psychology, 2955 South University Drive, Fort Worth, TX 76109, USA
| | - Christopher W Hagen
- Texas Christian University, Department of Biology, 2955 South University Drive, Fort Worth, TX 76109, USA
| | - Julia L Peterman
- Texas Christian University, Department of Psychology, 2955 South University Drive, Fort Worth, TX 76109, USA
| | - John W Figg
- Texas Christian University, Department of Biology, 2955 South University Drive, Fort Worth, TX 76109, USA
| | - Paige N Braden
- Texas Christian University, Department of Psychology, 2955 South University Drive, Fort Worth, TX 76109, USA
| | - Michael J Chumley
- Texas Christian University, Department of Biology, 2955 South University Drive, Fort Worth, TX 76109, USA
| | - Gary W Boehm
- Texas Christian University, Department of Psychology, 2955 South University Drive, Fort Worth, TX 76109, USA.
| |
Collapse
|
28
|
Sadeghmousavi S, Eskian M, Rahmani F, Rezaei N. The effect of insomnia on development of Alzheimer's disease. J Neuroinflammation 2020; 17:289. [PMID: 33023629 PMCID: PMC7542374 DOI: 10.1186/s12974-020-01960-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disorder characterized by memory deficits especially forgetting recent information, recall ability impairment, and loss of time tracking, problem-solving, language, and recognition difficulties. AD is also a globally important health issue but despite all scientific efforts, the treatment of AD is still a challenge. Sleep has important roles in learning and memory consolidation. Studies have shown that sleep deprivation (SD) and insomnia are associated with the pathogenesis of Alzheimer's disease and may have an impact on the symptoms and development. Thus, sleep disorders have decisive effects on AD; this association deserves more attention in research, diagnostics, and treatment, and knowing this relation also can help to prevent AD through screening and proper management of sleep disorders. This study aimed to show the potential role of SD and insomnia in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nima Rezaei
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Liew SC, Aung T. Sleep deprivation and its association with diseases- a review. Sleep Med 2020; 77:192-204. [PMID: 32951993 DOI: 10.1016/j.sleep.2020.07.048] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023]
Abstract
Sleep deprivation, a consequence of multiple health problems or a cause of many major health risks, is a significant public health concern in this era. In the recent years, numerous reports have been added to the literature to provide explanation and to answer previously unanswered questions on this important topic but comprehensive updates and reviews in this aspect remain scarce. The present study identified 135 papers that investigated the association between sleep deprivation and health risks, including cardiovascular, respiratory, neurological, gastrointestinal, immunology, dermatology, endocrine, and reproductive health. In this review, we aimed to provide insight into the association between sleep deprivation and the development of diseases. We reviewed the latest updates available in the literature and particular attention was paid to reports that detailed all possible causal relationships involving both extrinsic and intrinsic factors that may be relevant to this topic. Various mechanisms by which sleep deprivation may affect health were presented and discussed, and this review hopes to serve as a platform for ideas generation for future research.
Collapse
Affiliation(s)
- Siaw Cheok Liew
- Department of Clinical Competence, Perdana University-Royal College of Surgeons in Ireland, Kuala Lumpur, Malaysia.
| | - Thidar Aung
- Department of Biochemistry, Perdana University-Royal College of Surgeons in Ireland, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Van Egroo M, Narbutas J, Chylinski D, Villar González P, Maquet P, Salmon E, Bastin C, Collette F, Vandewalle G. Sleep-wake regulation and the hallmarks of the pathogenesis of Alzheimer's disease. Sleep 2020; 42:5289316. [PMID: 30649520 DOI: 10.1093/sleep/zsz017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Indexed: 01/23/2023] Open
Abstract
While efficient treatments for Alzheimer's disease (AD) remain elusive, a growing body of research has highlighted sleep-wake regulation as a potential modifiable factor to delay disease progression. Evidence accumulated in recent years is pointing toward a tight link between sleep-wake disruption and the three main hallmarks of the pathogenesis of AD, i.e. abnormal amyloid-beta (Aβ) and tau proteins accumulation, and neurodegeneration. However, all three hallmarks are rarely considered together in the same study. In this review, we gather and discuss findings in favor of an association between sleep-wake disruption and each AD hallmark in animal models and in humans, with a focus on the preclinical stages of the disease. We emphasize that these relationships are likely bidirectional for each of these hallmarks. Altogether, current findings provide strong support for considering sleep-wake disruption as a true risk factor in the early unfolding of AD, but more research integrating recent technical advances is needed, particularly with respect to tau protein and neurodegeneration. Interventional longitudinal studies among cognitively healthy older individuals should assess the practical use of improving sleep-wake regulation to slow down the progression of AD pathogenesis.
Collapse
Affiliation(s)
- Maxime Van Egroo
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Justinas Narbutas
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Daphne Chylinski
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
31
|
Grimmer T, Laub T, Hapfelmeier A, Eisele T, Fatke B, Hölzle P, Lüscher S, Parchmann AM, Rentrop M, Schwerthöffer D, Müller-Sarnowski F, Ortner M, Goldhardt O, Kurz A, Förstl H, Alexopoulos P. The overnight reduction of amyloid β 1-42 plasma levels is diminished by the extent of sleep fragmentation, sAPP-β, and APOE ε4 in psychiatrists on call. Alzheimers Dement 2020; 16:759-769. [PMID: 32270596 DOI: 10.1002/alz.12072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In mice there might be an association between sleep deprivation and amyloid β plasma levels. Hence, we examined whether amyloid plasma levels are associated with sleep duration or fragmentation in 17 psychiatrists on-call. METHODS Amyloid β (Aβ)42, Aβ40, and soluble amyloid precursor protein β (sAPP-β) plasma concentrations were measured at the beginning and end of 90 on-call nights, and analyzed using generalized linear models. RESULTS In on-call nights, a 10.7% reduction of Aβ42 was revealed overnight. Every single short sleep interruption diminished this reduction by 5.4%, as well as every pg/mL of sAPP-β by 1.2%, each copy of APOE ε4 by 10.6%, and each year of professional experience by 3.0%. DISCUSSION The extent of sleep fragmentation diminishes the physiological overnight reduction of Aβ42 but not Aβ40 plasma levels in the same direction as the enzyme for Aβ42 production, the genetic risk factor for Alzheimer's disease (AD), and on-call experience. Might on-call duty and sleep fragmentation in general alter the risk for AD?
Collapse
Affiliation(s)
- Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Theresa Laub
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alexander Hapfelmeier
- Institute of Medical Statistics and Epidemiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Tamara Eisele
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Bastian Fatke
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Patricia Hölzle
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sandra Lüscher
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Anna-Mareike Parchmann
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Michael Rentrop
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Dirk Schwerthöffer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Felix Müller-Sarnowski
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Marion Ortner
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alexander Kurz
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Hans Förstl
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Panagiotis Alexopoulos
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| |
Collapse
|
32
|
Wei Y. Comparative transcriptome analysis of the hippocampus from sleep-deprived and Alzheimer's disease mice. Genet Mol Biol 2020; 43:e20190052. [PMID: 32338274 PMCID: PMC7249779 DOI: 10.1590/1678-4685-gmb-2019-0052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
We did a comparative analysis of the gene expression profiles of the hippocampus from sleep deprivation and Alzheimer’s disease (AD) mice. Differentially expressed genes (DEGs) were identified by comparing the transcriptome profiles of the hippocampus of sleep deprivation or AD mouse models to matched controls. The common DEGs between sleep deprivation and AD were identified by the overlapping analysis, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The results showed that a total of 16 common DEGs showed similar change patterns in both sleep deprivation mice and AD mice. Sgk1, Ly6a, Atp6v0e, Hspb8, Htra1, Pdk4, Pfkfb3, Golm1, and Plin3 were up-regulated in the two disorders, whereas, Marcksl1, Fgd1, Scarb1, Mvd, Klhl13, Elovl2, and Vps29 were down-regulated. Acetyl-CoA metabolic process and lipid biosynthetic process were significantly enriched by those DEGs. The highly expressed DEGs and the two GO terms were associated with neuropathological changes according to the previous studies. As expected, sleep deprivation may contribute the AD development through these common DEGs.
Collapse
Affiliation(s)
- Yi Wei
- Nanjing Forest Police College, Nanjing 210023, China
| |
Collapse
|
33
|
Havekes R, Heckman PRA, Wams EJ, Stasiukonyte N, Meerlo P, Eisel ULM. Alzheimer's disease pathogenesis: The role of disturbed sleep in attenuated brain plasticity and neurodegenerative processes. Cell Signal 2019; 64:109420. [PMID: 31536750 DOI: 10.1016/j.cellsig.2019.109420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/15/2019] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairments. The classical symptoms of the disease include gradual deterioration of memory and language. Epidemiological studies indicate that around 25-40% of AD patients have sleep-wake cycle disturbances. Importantly, a series of studies suggested that the relationship between AD and sleep disturbance may be complex and bidirectional. Indeed, accumulation of the extracellular neuronal protein amyloid-beta (Aβ) leads to altered sleep-wake behavior in both mice and humans. At the same time, disturbances of the normal sleep-wake cycle may facilitate AD pathogenesis. This paper will review the mechanisms underlying this potential interrelated connection including locus coeruleus damage, reductions in orexin neurotransmission, alterations in melatonin levels, and elevated cytokine levels. In addition, we will also highlight how both the development of AD and sleep disturbances lead to changes in intracellular signaling pathways involved in regulating neuronal plasticity and connectivity, particularly extremes in cofilin phosphorylation. Finally, current pharmacological and nonpharmacological therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Robbert Havekes
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.
| | - Pim R A Heckman
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Emma J Wams
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Neringa Stasiukonyte
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter Meerlo
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
34
|
Dufort-Gervais J, Mongrain V, Brouillette J. Bidirectional relationships between sleep and amyloid-beta in the hippocampus. Neurobiol Learn Mem 2019; 160:108-117. [DOI: 10.1016/j.nlm.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022]
|
35
|
Sleep Disturbance as a Potential Modifiable Risk Factor for Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20040803. [PMID: 30781802 PMCID: PMC6412395 DOI: 10.3390/ijms20040803] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbance is a common symptom in patients with various neurodegenerative diseases, including Alzheimer’s disease (AD), and it can manifest in the early stages of the disease. Impaired sleep in patients with AD has been attributed to AD pathology that affects brain regions regulating the sleep–wake or circadian rhythm. However, recent epidemiological and experimental studies have demonstrated an association between impaired sleep and an increased risk of AD. These studies have led to the idea of a bidirectional relationship between AD and impaired sleep; in addition to the conventional concept that impaired sleep is a consequence of AD pathology, various evidence strongly suggests that impaired sleep is a risk factor for the initiation and progression of AD. Despite this recent progress, much remains to be elucidated in order to establish the benefit of therapeutic interventions against impaired sleep to prevent or alleviate the disease course of AD. In this review, we provide an overview of previous studies that have linked AD and sleep. We then highlight the studies that have tested the causal relationship between impaired sleep and AD and will discuss the molecular and cellular mechanisms underlying this link. We also propose future works that will aid the development of a novel disease-modifying therapy and prevention of AD via targeting impaired sleep through non-pharmacological and pharmacological interventions.
Collapse
|
36
|
Steiger A, Pawlowski M. Depression and Sleep. Int J Mol Sci 2019; 20:ijms20030607. [PMID: 30708948 PMCID: PMC6386825 DOI: 10.3390/ijms20030607] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
Impaired sleep is both a risk factor and a symptom of depression. Objective sleep is assessed using the sleep electroencephalogram (EEG). Characteristic sleep-EEG changes in patients with depression include disinhibition of rapid eye movement (REM) sleep, changes of sleep continuity, and impaired non-REM sleep. Most antidepressants suppress REM sleep both in healthy volunteers and depressed patients. Various sleep-EEG variables may be suitable as biomarkers for diagnosis, prognosis, and prediction of therapy response in depression. In family studies of depression, enhanced REM density, a measure for frequency of rapid eye movements, is characteristic for an endophenotype. Cordance is an EEG measure distinctly correlated with regional brain perfusion. Prefrontal theta cordance, derived from REM sleep, appears to be a biomarker of antidepressant treatment response. Some predictive sleep-EEG markers of depression appear to be related to hypothalamo-pituitary-adrenocortical system activity.
Collapse
Affiliation(s)
- Axel Steiger
- Max Planck Institute of Psychiatry, Research Group Sleep Endocrinology, 80804 Munich, Germany.
| | - Marcel Pawlowski
- Max Planck Institute of Psychiatry, Research Group Sleep Endocrinology, 80804 Munich, Germany.
- Centre of Mental Health, 85049 Ingolstadt, Germany.
| |
Collapse
|
37
|
Sharma A, Muresanu DF, Ozkizilcik A, Tian ZR, Lafuente JV, Manzhulo I, Mössler H, Sharma HS. Sleep deprivation exacerbates concussive head injury induced brain pathology: Neuroprotective effects of nanowired delivery of cerebrolysin with α-melanocyte-stimulating hormone. PROGRESS IN BRAIN RESEARCH 2019; 245:1-55. [PMID: 30961865 DOI: 10.1016/bs.pbr.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Age of Insomnia Onset Correlates with a Reversal of Default Mode Network and Supplementary Motor Cortex Connectivity. Neural Plast 2018; 2018:3678534. [PMID: 29808082 PMCID: PMC5901935 DOI: 10.1155/2018/3678534] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/14/2018] [Accepted: 03/06/2018] [Indexed: 02/03/2023] Open
Abstract
Insomnia might occur as result of increased cognitive and physiological arousal caused by acute or long acting stressors and associated cognitive rumination. This might lead to alterations in brain connectivity patterns as those captured by functional connectivity fMRI analysis, leading to potential insight about primary insomnia (PI) pathophysiology as well as the impact of long-term exposure to sleep deprivation. We investigated changes of voxel-wise connectivity patterns in a sample of 17 drug-naïve PI patients and 17 age-gender matched healthy controls, as well as the relationship between brain connectivity and age of onset, illness duration, and severity. Results showed a significant increase in resting-state functional connectivity of the bilateral visual cortex in PI patients, associated with decreased connectivity between the visual cortex and bilateral temporal pole. Regression with clinical scores originally unveiled a pattern of increased local connectivity as measured by intrinsic connectivity contrast (ICC), specifically resembling the default mode network (DMN). Additionally, age of onset was found to be correlated with the connectivity of supplementary motor area (SMA), and the strength of DMN←→SMA connectivity was significantly correlated with both age of onset (R2 = 41%) and disease duration (R2 = 21%). Chronic sleep deprivation, but most importantly early insomnia onset, seems to have a significant disruptive effect over the physiological negative correlation between DMN and SMA, a well-known fMRI marker of attention performance in humans. This suggests the need for more in-depth investigations on the prevention and treatment of connectivity changes and associated cognitive and psychological deficits in PI patients.
Collapse
|
39
|
Chen DW, Wang J, Zhang LL, Wang YJ, Gao CY. Cerebrospinal Fluid Amyloid-β Levels are Increased in Patients with Insomnia. J Alzheimers Dis 2017; 61:645-651. [PMID: 29278891 DOI: 10.3233/jad-170032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dong-Wan Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Li-Li Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Chang-Yue Gao
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Institute of Field Surgery, Third Military Medical University, Chongqing, China
| |
Collapse
|