1
|
Guan L, Qiu M, Li N, Zhou Z, Ye R, Zhong L, Xu Y, Ren J, Liang Y, Shao X, Fang J, Fang J, Du J. Inhibitory gamma-aminobutyric acidergic neurons in the anterior cingulate cortex participate in the comorbidity of pain and emotion. Neural Regen Res 2025; 20:2838-2854. [PMID: 39314159 PMCID: PMC11826466 DOI: 10.4103/nrr.nrr-d-24-00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Pain is often comorbid with emotional disorders such as anxiety and depression. Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission. This review primarily aims to outline the main circuitry (including the input and output connectivity) of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons; it also describes the neurotransmitters/neuromodulators affecting these neurons, their intercommunication with other neurons, and their importance in mental comorbidities associated with chronic pain disorders. Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions. However, the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive. It is also unclear as to whether the mechanisms are presynaptic or postsynaptic. Further exploration of the complexities of this system may reveal new pathways for research and drug development.
Collapse
Affiliation(s)
- Lu Guan
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Mengting Qiu
- Fuchun Community Health Service Center of Fuyang District, Hangzhou, Zhejiang Province, China
| | - Na Li
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhengxiang Zhou
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Ru Ye
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Liyan Zhong
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yashuang Xu
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junhui Ren
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Wei N, Guo Z, Ye R, Guan L, Ren J, Liang Y, Shao X, Fang J, Fang J, Du J. A systematic review of the pain-related emotional and cognitive impairments in chronic inflammatory pain induced by CFA injection and its mechanism. IBRO Neurosci Rep 2025; 18:414-431. [PMID: 40124113 PMCID: PMC11929881 DOI: 10.1016/j.ibneur.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Emotional and cognitive impairments are comorbidities commonly associated with chronic inflammatory pain. To summarize the rules and mechanisms of comorbidities in a complete Freund's adjuvant (CFA)-induced pain model, we conducted a systematic review of 66 experimental studies identified in a search of three databases (PubMed, Web of Science, and ScienceDirect). Anxiety-like behaviors developed at 1- or 3-days post-CFA induction but also appeared between 2- and 4 weeks post-induction. Pain aversion, pain depression, and cognitive impairments were primarily observed within 2 weeks, 4 weeks, and 2-4 weeks post-CFA injection, respectively. The potential mechanisms underlying the comorbidities between pain and anxiety predominantly involved heightened neuronal excitability, enhanced excitatory synaptic transmission, and neuroinflammation of anterior cingulate cortex (ACC) and amygdala. The primary somatosensory cortex (S1)Glu→caudal dorsolateral striatum (cDLS)GABA, medial septum (MS)CHAT→rACC, rACCGlu→thalamus, parabrachial nucleus (PBN)→central nucleus amygdala (CeA), mediodorsal thalamus (MD)→basolateral amygdala (BLA), insular cortex (IC)→BLA and anteromedial thalamus nucleus (AM)CaMKⅡ→midcingulate cortex (MCC)CaMKⅡ pathways are enhanced in the pain-anxiety comorbidity. The ventral hippocampal CA1 (vCA1)→BLA and BLA→CeA pathways were decreased in the pain-anxiety comorbidity. The BLA→ACC pathway was enhanced in the pain-depression comorbidity. The infralimbic cortex (IL)→locus coeruleus (LC) pathway was enhanced whereas the vCA1→IL pathway was decreased, in the pain-cognition comorbidity. Inflammation/neuroinflammation, oxidative stress, apoptosis, ferroptosis, gut-brain axis dysfunction, and gut microbiota dysbiosis also contribute to these comorbidities.
Collapse
Affiliation(s)
- Naixuan Wei
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Zi Guo
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Ru Ye
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Lu Guan
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Junhui Ren
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| |
Collapse
|
3
|
Ning Y, Zhang Y, Jiang T, Feng J, Zhan J, Ou C, Wang L. LRP1-mediated p-tau propagation contributes to cognitive impairment after chronic neuropathic pain in rats. Neurosci Res 2025; 212:84-96. [PMID: 39674403 DOI: 10.1016/j.neures.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Trigeminal neuralgia (TN) is a prevalent chronic neuropathic pain syndrome characterized by severe pain, often accompanied by cognitive dysfunction and cerebral degeneration. However, its mechanisms remain poorly understood. Hyperphosphorylation of tau protein (p-tau) is often seen in neurodegenerative disorders such as Alzheimer's disease (AD). LRP1 expression on brain neurons and microglial cells is believed to facilitate the propagation of p-tau. We established a TN rat model via infraorbital nerve chronic constrictive injury (ION-CCI). Once the model was established, we investigated the association between p-tau and cognitive impairment in TN rats by evaluating behavioral and degenerative markers. During the initial phase, we noted an increase in p-tau level in the prefrontal cortex and hippocampal tissues of TN rats. The accompanied impaired learning and memory abilities suggested cognitive dysfunction. Blocking p-tau synthesis by orally administering a protein phosphatase and by injecting adenoviral vectors targeting LRP1 into the lateral ventricle of rats ameliorated cognitive impairment. This suggests that cognitive decline in TN rats is linked to elevated p-tau levels. Our findings show that LRP1-mediated p-tau propagation may drive cognitive impairment associated with neuropathic pain in TN rats.
Collapse
Affiliation(s)
- Youzhi Ning
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Zhang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Jiang
- Department of Anesthesiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Zhan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Lu Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Chang L, He Y, Li B. Role of the medial septum neurotensin receptor 1 in anxiety-like behaviors evoked by emotional stress. Psychoneuroendocrinology 2025; 172:107275. [PMID: 39787865 DOI: 10.1016/j.psyneuen.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Anxiety is one of the most common mental disorders. Neurotensin (NT) is a neuropeptide widely distributed in the central nervous system, involved in the pathophysiology of many neural and psychiatric disorders such as anxiety. However, the neural substrates mediating NT's effect on the regulation of anxiety have not been fully identified. The medial septum (MS) is a crucial brain region in regulating anxiety and expresses neurotensin receptor 1 (NTS1). In the current study, we examined the role of NT/NTS1 in the MS on the anxiety-like behaviors of rats in non-stress and acute stress conditions. We reported that intra-MS infusion of NT produced remarkable anxiogenic effect in behavioral tests. The anxiogenic effect could be blocked by NTS1 antagonist SR48692 pretreatment. Microinjection of NTS1 antagonist to block endogenously released NT in the MS had no effect on anxiety-like behaviors in non-stressed rats, but significantly reduced anxiety in acute restraint stressed rats. Moreover, molecular knockdown of NTS1 in the MS ameliorated anxiety induced by acute restraint stress, also confirming the pharmacological results. Our study implicates NT and its receptors as potential targets for therapeutic interventions of psychiatric diseases, such as anxiety.
Collapse
MESH Headings
- Animals
- Receptors, Neurotensin/metabolism
- Receptors, Neurotensin/antagonists & inhibitors
- Receptors, Neurotensin/physiology
- Receptors, Neurotensin/genetics
- Anxiety/metabolism
- Anxiety/physiopathology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Rats
- Male
- Neurotensin/metabolism
- Neurotensin/pharmacology
- Rats, Sprague-Dawley
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Septal Nuclei/metabolism
- Septal Nuclei/drug effects
- Pyrazoles/pharmacology
- Quinolines/pharmacology
- Restraint, Physical
- Disease Models, Animal
Collapse
Affiliation(s)
- Leilei Chang
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yecheng He
- Department of Preclinical Medicine, Suzhou Vocational Health College, Suzhou 215009, China
| | - Bin Li
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
5
|
Wu YJ, Ren KX, Cai KY, Zheng C, Xu AP, Luo H, Wang MY, Zhang HH. Post-traumatic stress disorder-induced behavioral modulation by the medial septum-medial habenula neural pathway. Brain Res Bull 2025; 220:111185. [PMID: 39740693 DOI: 10.1016/j.brainresbull.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by anxiety, excessive fear, distress, and weakness as symptoms of a psychiatric disorder. However, the mechanism associated with its symptoms such as anxiety-like behaviors is not well understood. It is aimed to investigate the underlying mechanisms of the medial septum (MS)-medial habenula (MHb) neural circuit modulating the anxiety-like behaviors of PTSD mice through in vivo fiber photometry recording, optogenetics, behavioral testing by open-field and elevated plus maze, fluorescent gold retrograde tracer technology, and viral tracer technology. In the mouse PTSD model induced by compound stress consisting of single-prolonged stress combined with electrical foot shock, the average peak value of the Ca2 + signals in both the MHb and MS glutamatergic neurons significantly increased. The anterograde and retrograde tracer markers were used to indicate the possible connection between MS and MHb via glutamatergic neural pathway. After the optogenetic manipulation of the MS-MHb pathway in mice with PTSD, if the MS-MHb glutamatergic pathway was inhibited, anxiety was relieved based on changes in the various indices of behavioral experiments in mice with PTSD. Moreover, the heart rate of mice decreased. In conclusion, both glutamatergic neurons located in MS and MHb can be engaged in the development of PTSD anxiety-like behavior, and the MS-MHb can be related to the regulation of PTSD anxiety-like behavior and cardiac function through the glutamatergic neural pathway.
Collapse
Affiliation(s)
- Yu-Jie Wu
- Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Ke-Xing Ren
- Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Kun-Yi Cai
- Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Chao Zheng
- Neurobiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Ai-Ping Xu
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Hao Luo
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Meng-Ya Wang
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China.
| | - Huan-Huan Zhang
- Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China.
| |
Collapse
|
6
|
Luna-Munguia H, Gasca-Martinez D, Garay-Cortes A, Coutiño D, Regalado M, de Los Rios E, Villaseñor P, Hidalgo-Flores F, Flores-Guapo K, Benito BY, Concha L. Selective Medial Septum Lesions in Healthy Rats Induce Longitudinal Changes in Microstructure of Limbic Regions, Behavioral Alterations, and Increased Susceptibility to Status Epilepticus. Mol Neurobiol 2024; 61:1-21. [PMID: 38443731 DOI: 10.1007/s12035-024-04069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Septo-hippocampal pathway, crucial for physiological functions and involved in epilepsy. Clinical monitoring during epileptogenesis is complicated. We aim to evaluate tissue changes after lesioning the medial septum (MS) of normal rats and assess how the depletion of specific neuronal populations alters the animals' behavior and susceptibility to establishing a pilocarpine-induced status epilepticus. Male Sprague-Dawley rats were injected into the MS with vehicle or saporins (to deplete GABAergic or cholinergic neurons; n = 16 per group). Thirty-two animals were used for diffusion tensor imaging (DTI); scanned before surgery and 14 and 49 days post-injection. Fractional anisotropy and apparent diffusion coefficient were evaluated in the fimbria, dorsal hippocampus, ventral hippocampus, dorso-medial thalamus, and amygdala. Between scans 2 and 3, animals were submitted to diverse behavioral tasks. Stainings were used to analyze tissue alterations. Twenty-four different animals received pilocarpine to evaluate the latency and severity of the status epilepticus 2 weeks after surgery. Additionally, eight different animals were only used to evaluate the neuronal damage inflicted on the MS 1 week after the molecular surgery. Progressive changes in DTI parameters in both white and gray matter structures of the four evaluated groups were observed. Behaviorally, the GAT1-saporin injection impacted spatial memory formation, while 192-IgG-saporin triggered anxiety-like behaviors. Histologically, the GABAergic toxin also induced aberrant mossy fiber sprouting, tissue damage, and neuronal death. Regarding the pilocarpine-induced status epilepticus, this agent provoked an increased mortality rate. Selective septo-hippocampal modulation impacts the integrity of limbic regions crucial for certain behavioral skills and could represent a precursor for epilepsy development.
Collapse
Affiliation(s)
- Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico.
| | - Deisy Gasca-Martinez
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
- Unidad de Analisis Conductual, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Alejandra Garay-Cortes
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Daniela Coutiño
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Mirelta Regalado
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Ericka de Los Rios
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
- Unidad de Microscopia, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Paulina Villaseñor
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Fernando Hidalgo-Flores
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Karen Flores-Guapo
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Brandon Yair Benito
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| | - Luis Concha
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, 76230, Queretaro, Mexico
| |
Collapse
|
7
|
Zhu J, Yang Y, Du L, Yang W, Yang Y, Yi T, Maoying Q, Chu Y, Wang Y, Mi W. A regulatory role of the medial septum in the chloroquine-induced acute itch through local GABAergic system and GABAergic pathway to the anterior cingulate cortex. Biochem Biophys Res Commun 2024; 721:150145. [PMID: 38795633 DOI: 10.1016/j.bbrc.2024.150145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/04/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Itch, a common somatic sensation, serves as a crucial protective system. Recent studies have unraveled the neural mechanisms of itch at peripheral, spinal cord as well as cerebral levels. However, a comprehensive understanding of the central mechanism governing itch transmission and regulation remains elusive. Here, we report the role of the medial septum (MS), an integral component of the basal forebrain, in modulating the acute itch processing. The increases in c-Fos+ neurons and calcium signals within the MS during acute itch processing were observed. Pharmacogenetic activation manipulation of global MS neurons suppressed the scratching behaviors induced by chloroquine or compound 48/80. Microinjection of GABA into the MS or pharmacogenetic inhibition of non-GABAergic neurons markedly suppressed chloroquine-induced scratching behaviors. Pharmacogenetic activation of the MS-ACC GABAergic pathway attenuated chloroquine-induced acute itch. Hence, our findings reveal that MS has a regulatory role in the chloroquine-induced acute itch through local increased GABA to inhibit non-GABAergic neurons and the activation of MS-ACC GABAergic pathway.
Collapse
Affiliation(s)
- Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yayue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lixia Du
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ting Yi
- Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangdong, 510006, China
| | - Qiliang Maoying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
9
|
Gritton HJ, Booth V, Howe WM. Special issue on cholinergic signalling. Eur J Neurosci 2024; 59:2131-2137. [PMID: 38679811 DOI: 10.1111/ejn.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Affiliation(s)
- Howard J Gritton
- Department of Comparative Biosciences, Bioengineering, and Psychology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Victoria Booth
- Departments of Mathematics and Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - William M Howe
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
10
|
Kim R, Ananth MR, Desai NS, Role LW, Talmage DA. Distinct subpopulations of ventral pallidal cholinergic projection neurons encode valence of olfactory stimuli. Cell Rep 2024; 43:114009. [PMID: 38536818 PMCID: PMC11080946 DOI: 10.1016/j.celrep.2024.114009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
To better understand the function of cholinergic projection neurons in the ventral pallidum (VP), we examined behavioral responses to appetitive (APP) and aversive (AV) odors that elicited approach or avoidance, respectively. Exposure to each odor increased cFos expression and calcium signaling in VP cholinergic neurons. Activity and Cre-dependent viral vectors selectively labeled VP cholinergic neurons that were activated and reactivated in response to either APP or AV odors, but not both, identifying two non-overlapping populations of VP cholinergic neurons differentially activated by the valence of olfactory stimuli. These two subpopulations showed differences in electrophysiological properties, morphology, and projections to the basolateral amygdala. Although VP neurons are engaged in both approach and avoidance behavioral responses, cholinergic signaling is only required for approach behavior. Thus, two distinct subpopulations of VP cholinergic neurons differentially encode valence of olfactory stimuli and play distinct roles in approach and avoidance behaviors.
Collapse
Affiliation(s)
- Ronald Kim
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mala R Ananth
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niraj S Desai
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lorna W Role
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David A Talmage
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Lançon K, Séguéla P. Dysregulated neuromodulation in the anterior cingulate cortex in chronic pain. Front Pharmacol 2023; 14:1289218. [PMID: 37954846 PMCID: PMC10634228 DOI: 10.3389/fphar.2023.1289218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Chronic pain is a significant global socioeconomic burden with limited long-term treatment options. The intractable nature of chronic pain stems from two primary factors: the multifaceted nature of pain itself and an insufficient understanding of the diverse physiological mechanisms that underlie its initiation and maintenance, in both the peripheral and central nervous systems. The development of novel non-opioidergic analgesic approaches is contingent on our ability to normalize the dysregulated nociceptive pathways involved in pathological pain processing. The anterior cingulate cortex (ACC) stands out due to its involvement in top-down modulation of pain perception, its abnormal activity in chronic pain conditions, and its contribution to cognitive functions frequently impaired in chronic pain states. Here, we review the roles of the monoamines dopamine (DA), norepinephrine (NE), serotonin (5-HT), and other neuromodulators in controlling the activity of the ACC and how chronic pain alters their signaling in ACC circuits to promote pathological hyperexcitability. Additionally, we discuss the potential of targeting these monoaminergic pathways as a therapeutic strategy for treating the cognitive and affective symptoms associated with chronic pain.
Collapse
Affiliation(s)
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Alan Edwards Centre for Research on Pain, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
12
|
Fan BQ, Xia JM, Chen DD, Feng LL, Ding JH, Li SS, Li WX, Han Y. Medial septum glutamatergic neurons modulate nociception in chronic neuropathic pain via projections to lateral hypothalamus. Front Pharmacol 2023; 14:1171665. [PMID: 37266154 PMCID: PMC10229799 DOI: 10.3389/fphar.2023.1171665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
The medial septum (MS) contributes in pain processing and regulation, especially concerning persistent nociception. However, the role of MS glutamatergic neurons in pain and the underlying neural circuit mechanisms in pain remain poorly understood. In this study, chronic constrictive injury of the sciatic nerve (CCI) surgery was performed to induce thermal and mechanical hyperalgesia in mice. The chemogenetic activation of MS glutamatergic neurons decreased pain thresholds in naïve mice. In contrast, inhibition or ablation of these neurons has improved nociception thresholds in naïve mice and relieved thermal and mechanical hyperalgesia in CCI mice. Anterograde viral tracing revealed that MS glutamatergic neurons had projections to the lateral hypothalamus (LH) and supramammillary nucleus (SuM). We further demonstrated that MS glutamatergic neurons regulate pain thresholds by projecting to LH but not SuM, because the inhibition of MS-LH glutamatergic projections suppressed pain thresholds in CCI and naïve mice, yet, optogenetic activation or inhibition of MS-SuM glutamatergic projections had no effect on pain thresholds in naïve mice. In conclusion, our results reveal that MS glutamatergic neurons play a significant role in regulating pain perception and decipher that MS glutamatergic neurons modulate nociception via projections to LH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuan Han
- *Correspondence: Yuan Han, ; Wen-Xian Li,
| |
Collapse
|
13
|
Mineur YS, Mose TN, Maibom KL, Pittenger ST, Soares AR, Wu H, Taylor SR, Huang Y, Picciotto MR. ACh signaling modulates activity of the GABAergic signaling network in the basolateral amygdala and behavior in stress-relevant paradigms. Mol Psychiatry 2022; 27:4918-4927. [PMID: 36050437 PMCID: PMC10718266 DOI: 10.1038/s41380-022-01749-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
The balance between excitatory and inhibitory (E/I) signaling is important for maintaining homeostatic function in the brain. Indeed, dysregulation of inhibitory GABA interneurons in the amygdala has been implicated in human mood disorders. We hypothesized that acetylcholine (ACh) signaling in the basolateral amygdala (BLA) might alter E/I balance resulting in changes in stress-sensitive behaviors. We therefore measured ACh release as well as activity of calmodulin-dependent protein kinase II (CAMKII)-, parvalbumin (PV)-, somatostatin (SOM)- and vasoactive intestinal protein (VIP)-expressing neurons in the BLA of awake, behaving male mice. ACh levels and activity of both excitatory and inhibitory BLA neurons increased when animals were actively coping, and decreased during passive coping, in the light-dark box, tail suspension and social defeat. Changes in neuronal activity preceded behavioral state transitions, suggesting that BLA activity may drive the shift in coping strategy. In contrast to exposure to escapable stressors, prolonging ACh signaling with a cholinesterase antagonist changed the balance of activity among BLA cell types, significantly increasing activity of VIP neurons and decreasing activity of SOM cells, with little effect on CaMKII or PV neurons. Knockdown of α7 or β2-containing nAChR subtypes in PV and SOM, but not CaMKII or VIP, BLA neurons altered behavioral responses to stressors, suggesting that ACh signaling through nAChRs on GABA neuron subtypes contributes to stress-induced changes in behavior. These studies show that ACh modulates the GABAergic signaling network in the BLA, shifting the balance between SOM, PV, VIP and CaMKII neurons, which are normally activated coordinately during active coping in response to stress. Thus, prolonging ACh signaling, as occurs in response to chronic stress, may contribute to maladaptive behaviors by shifting the balance of inhibitory signaling in the BLA.
Collapse
Affiliation(s)
- Yann S Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Tenna N Mose
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Kathrine Lefoli Maibom
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Steven T Pittenger
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Alexa R Soares
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Hao Wu
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Seth R Taylor
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yaqing Huang
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Experimental Pathology Graduate Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA.
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA.
| |
Collapse
|
14
|
Mu R, Tang S, Han X, Wang H, Yuan D, Zhao J, Long Y, Hong H. A cholinergic medial septum input to medial habenula mediates generalization formation and extinction of visual aversion. Cell Rep 2022; 39:110882. [PMID: 35649349 DOI: 10.1016/j.celrep.2022.110882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/07/2021] [Accepted: 05/06/2022] [Indexed: 12/28/2022] Open
Abstract
Generalization of visual aversion is a critical function of the brain that supports survival, but the underlying neurobiological mechanisms are unclear. We establish a rapid generalization procedure for inducing visual aversion by dynamic stripe images. By using fiber photometry, apoptosis, chemogenetic and optogenetic techniques, and behavioral tests, we find that decreased cholinergic neurons' activity in the medial septum (MS) leads to generalization loss of visual aversion. Strikingly, we identify a projection from MS cholinergic neurons to the medial habenula (MHb) and find that inhibition of the MS→MHb cholinergic circuit disrupts aversion-generalization formation while its continuous activation disrupts subsequent extinction. Further studies show that MS→MHb cholinergic projections modulate the generalization of visual aversion possibly via M1 muscarinic acetylcholine receptors (mAChRs) of downstream neurons coreleasing glutamate and acetylcholine. These findings reveal that the MS→MHb cholinergic circuit is a critical node in aversion-generalization formation and extinction and potentially provides insight into the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaomeng Han
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Wang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
15
|
Current Understanding of the Neural Circuitry in the Comorbidity of Chronic Pain and Anxiety. Neural Plast 2022; 2022:4217593. [PMID: 35211169 PMCID: PMC8863453 DOI: 10.1155/2022/4217593] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic pain patients often develop mental disorders, and anxiety disorders are common. We hypothesize that the comorbid anxiety results from an imbalance between the reward and antireward system due to persistent pain, which leads to the dysfunction of the pain and anxiety regulatory system. In this review, we will focus on changes in neuroplasticity, especially in neural circuits, during chronic pain and anxiety as observed in animal studies. Several neural circuits within specific regions of the brain, including the nucleus accumbens, lateral habenular, parabrachial nucleus, medial septum, anterior cingulate cortex, amygdala, hippocampus, medial prefrontal cortex, and bed nucleus of the stria terminalis, will be discussed based on novel findings after chemogenetic or optogenetic manipulation. We believe that these animal studies provide novel insights into human conditions and can guide clinical practice.
Collapse
|
16
|
Ng SY, Ariffin MZ, Khanna S. Neurokinin receptor mechanisms in forebrain medial septum modulate nociception in the formalin model of inflammatory pain. Sci Rep 2021; 11:24358. [PMID: 34934106 PMCID: PMC8692436 DOI: 10.1038/s41598-021-03661-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022] Open
Abstract
The present study has explored the hypothesis that neurokinin1 receptors (NK1Rs) in medial septum (MS) modulate nociception evoked on hind paw injection of formalin. Indeed, the NK1Rs in MS are localized on cholinergic neurons which have been implicated in nociception. In anaesthetized rat, microinjection of L-733,060, an antagonist at NK1Rs, into MS antagonized the suppression of CA1 population spike (PS) evoked on peripheral injection of formalin or on intraseptal microinjection of substance P (SP), an agonist at NK1Rs. The CA1 PS reflects the synaptic excitability of pyramidal cells in the region. Furthermore, microinjection of L-733,060 into MS, but not LS, attenuated formalin-induced theta activation in both anaesthetized and awake rat, where theta reflects an oscillatory information processing by hippocampal neurons. The effects of L-733,060 on microinjection into MS were nociceptive selective as the antagonist did not block septo-hippocampal response to direct MS stimulation by the cholinergic receptor agonist, carbachol, in anaesthetized animal or on exploration in awake animal. Interestingly, microinjection of L-733,060 into both MS and LS attenuated formalin-induced nociceptive flinches. Collectively, the foregoing novel findings highlight that transmission at NK1R provide an affective valence to septo-hippocampal information processing and that peptidergic transmission in the septum modulates nociceptive behaviours.
Collapse
Affiliation(s)
- Si Yun Ng
- grid.4280.e0000 0001 2180 6431Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593 Singapore ,grid.4280.e0000 0001 2180 6431Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Mohammed Zacky Ariffin
- grid.4280.e0000 0001 2180 6431Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593 Singapore ,grid.4280.e0000 0001 2180 6431Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593, Singapore. .,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Mocellin P, Mikulovic S. The Role of the Medial Septum-Associated Networks in Controlling Locomotion and Motivation to Move. Front Neural Circuits 2021; 15:699798. [PMID: 34366795 PMCID: PMC8340000 DOI: 10.3389/fncir.2021.699798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022] Open
Abstract
The Medial Septum and diagonal Band of Broca (MSDB) was initially studied for its role in locomotion. However, the last several decades were focussed on its intriguing function in theta rhythm generation. Early studies relied on electrical stimulation, lesions and pharmacological manipulation, and reported an inconclusive picture regarding the role of the MSDB circuits. Recent studies using more specific methodologies have started to elucidate the differential role of the MSDB's specific cell populations in controlling both theta rhythm and behaviour. In particular, a novel theory is emerging showing that different MSDB's cell populations project to different brain regions and control distinct aspects of behaviour. While the majority of these behaviours involve movement, increasing evidence suggests that MSDB-related networks govern the motivational aspect of actions, rather than locomotion per se. Here, we review the literature that links MSDB, theta activity, and locomotion and propose open questions, future directions, and methods that could be employed to elucidate the diverse roles of the MSDB-associated networks.
Collapse
Affiliation(s)
- Petra Mocellin
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
- International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Sanja Mikulovic
- Research Group Cognition and Emotion, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
18
|
Takeuchi Y, Nagy AJ, Barcsai L, Li Q, Ohsawa M, Mizuseki K, Berényi A. The Medial Septum as a Potential Target for Treating Brain Disorders Associated With Oscillopathies. Front Neural Circuits 2021; 15:701080. [PMID: 34305537 PMCID: PMC8297467 DOI: 10.3389/fncir.2021.701080] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The medial septum (MS), as part of the basal forebrain, supports many physiological functions, from sensorimotor integration to cognition. With often reciprocal connections with a broad set of peers at all major divisions of the brain, the MS orchestrates oscillatory neuronal activities throughout the brain. These oscillations are critical in generating sensory and emotional salience, locomotion, maintaining mood, supporting innate anxiety, and governing learning and memory. Accumulating evidence points out that the physiological oscillations under septal influence are frequently disrupted or altered in pathological conditions. Therefore, the MS may be a potential target for treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies) to restore healthy patterns or erase undesired ones. Recent studies have revealed that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss here that stimulus timing is a critical determinant of treatment efficacy on multiple time scales. On-demand stimulation may dramatically reduce side effects by not interfering with normal physiological functions. A precise pattern-matched stimulation through adaptive timing governed by the ongoing oscillations is essential to effectively terminate pathological oscillations. The time-targeted strategy for the MS stimulation may provide an effective way of treating multiple disorders including Alzheimer's disease, anxiety/fear, schizophrenia, and depression, as well as pain.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Anett J. Nagy
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Lívia Barcsai
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Qun Li
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Antal Berényi
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary
- HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary
- Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
19
|
Wang L, Long M, Wang M, Peng S, Chen G, Zhou J, Ou C. Trigeminal neuralgia causes neurodegeneration in rats associated with upregulation of the CD95/CD95L pathway. Mol Pain 2021; 16:1744806920908092. [PMID: 32013712 PMCID: PMC7054737 DOI: 10.1177/1744806920908092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objectives To explore the effects of trigeminal neuralgia on neurodegeneration
in rats and the underlining mechanism. Methods Sixty adult male Sprague Dawley rats were divided randomly into
Chronic Constriction Injury of the Rat’s Infraorbital Nerve
(ION-CCI) group and sham group (n = 30). Right
suborbital nerve was ligated in ION-CCI group to establish a
trigeminal neuralgia model. In sham group, suborbital nerve was
exposed without ligation. Pain thresholds were measured before
surgery and 1, 7, 15, and 30 days after surgery
(n = 10). Morris water maze tests
(n = 10) were conducted at 1, 15, and
30 days after surgery to evaluate the changes in learning and
memory ability of rats. At 5, 19, and 34 days after surgery,
serum S100β protein concentration and hippocampal Aβ1-42 protein
expression were detected by enzyme-linked immunosorbent assay;
total tau protein expression was detected by Western blotting;
changes of neurons in hippocampus were observed by Nissl
staining; and the expression of ser404p-tau, cluster
of differentiation (CD)95, CD95L, and cleaved caspase-3 proteins
was detected by immunofluorescence and Western blotting. Results Hyperalgesia occurred in ION-CCI group, and mechanical pain
threshold decreased significantly
(P < 0.05). On the 15th and 30th days after
surgery, ION-CCI group showed lower learning and memory ability
than sham group (P < 0.05). Serum S100β
protein concentration, hippocampal A β1-42, and
ser404p-tau protein expression increased in the
ION-CCI group 19 and 34 days after surgery
(P < 0.05), hippocampal CD95 expression
increased in the ION-CCI group after surgery
(P < 0.05), hippocampal CD95L expression
increased at 19 and 34 days after surgery
(P < 0.05), and cleaved caspase-3 expression
increased at 5 and 19 days after surgery
(P < 0.05). Nissl bodies in ION-CCI group
decreased significantly at 15 days after surgery. The expression
of cleaved caspase-3 protein in ION-CCI group was positively
correlated with the expression of CD95 and CD95L
(P < 0.05). Conclusions Trigeminal neuralgia may lead to neuronal inflammation and neuronal
apoptosis associated with upregulation of CD95/CD95L expression,
thus causing neurodegeneration.
Collapse
Affiliation(s)
- Lu Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China.,Laboratory of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Menghong Long
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China.,Laboratory of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Maohua Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Shuangchun Peng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China.,Laboratory of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Guangxiang Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Cehua Ou
- Pain Department, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| |
Collapse
|
20
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
21
|
Lustberg D, Tillage RP, Bai Y, Pruitt M, Liles LC, Weinshenker D. Noradrenergic circuits in the forebrain control affective responses to novelty. Psychopharmacology (Berl) 2020; 237:3337-3355. [PMID: 32821984 PMCID: PMC7572912 DOI: 10.1007/s00213-020-05615-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/17/2020] [Indexed: 01/02/2023]
Abstract
RATIONALE In rodents, exposure to novel environments elicits initial anxiety-like behavior (neophobia) followed by intense exploration (neophilia) that gradually subsides as the environment becomes familiar. Thus, innate novelty-induced behaviors are useful indices of anxiety and motivation in animal models of psychiatric disease. Noradrenergic neurons are activated by novelty and implicated in exploratory and anxiety-like responses, but the role of norepinephrine (NE) in neophobia has not been clearly delineated. OBJECTIVE We sought to define the role of central NE transmission in neophilic and neophobic behaviors. METHODS We assessed dopamine β-hydroxylase knockout (Dbh -/-) mice lacking NE and their NE-competent (Dbh +/-) littermate controls in neophilic (novelty-induced locomotion; NIL) and neophobic (novelty-suppressed feeding; NSF) behavioral tests with subsequent quantification of brain-wide c-fos induction. We complimented the gene knockout approach with pharmacological interventions. RESULTS Dbh -/- mice exhibited blunted locomotor responses in the NIL task and completely lacked neophobia in the NSF test. Neophobia was rescued in Dbh -/- mice by acute pharmacological restoration of central NE with the synthetic precursor L-3,4-dihydroxyphenylserine (DOPS), and attenuated in control mice by the inhibitory α2-adrenergic autoreceptor agonist guanfacine. Following either NSF or NIL, Dbh -/- mice demonstrated reduced c-fos in the anterior cingulate cortex, medial septum, ventral hippocampus, bed nucleus of the stria terminalis, and basolateral amygdala. CONCLUSION These findings indicate that central NE signaling is required for the expression of both neophilic and neophobic behaviors. Further, we describe a putative noradrenergic novelty network as a potential therapeutic target for treating anxiety and substance abuse disorders.
Collapse
Affiliation(s)
- Daniel Lustberg
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Rachel P Tillage
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Yu Bai
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Molly Pruitt
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - L Cameron Liles
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
22
|
Wang C, Zhang Y, Shao S, Cui S, Wan Y, Yi M. Ventral Hippocampus Modulates Anxiety-Like Behavior in Male But Not Female C57BL/6 J Mice. Neuroscience 2019; 418:50-58. [DOI: 10.1016/j.neuroscience.2019.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 11/25/2022]
|
23
|
Forebrain medial septum sustains experimental neuropathic pain. Sci Rep 2018; 8:11892. [PMID: 30089875 PMCID: PMC6082830 DOI: 10.1038/s41598-018-30177-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
The present study explored the role of the medial septal region (MS) in experimental neuropathic pain. For the first time, we found that the MS sustains nociceptive behaviors in rodent models of neuropathic pain, especially in the chronic constriction injury (CCI) model and the paclitaxel model of chemotherapy-induced neuropathic pain. For example, inactivation of the MS with intraseptal muscimol (2 μg/μl, 0.5 μl), a GABA mimetic, reversed peripheral hypersensitivity (PH) in the CCI model and induced place preference in a conditioned place preference task, a surrogate measure of spontaneous nociception. The effect of intraseptal muscimol on PH was comparable to that seen with microinjection of the local anesthetic, lidocaine, into rostral ventromedial medulla which is implicated in facilitating experimental chronic nociception. Cellular analysis in the CCI model showed that the MS region sustains nociceptive gain with CCI by facilitating basal nociceptive processing and the amplification of stimulus-evoked neural processing. Indeed, consistent with the idea that excitatory transmission through MS facilitates chronic experimental pain, intraseptal microinjection of antagonists acting at AMPA and NMDA glutamate receptors attenuated CCI-induced PH. We propose that the MS is a central monitor of bodily nociception which sustains molecular plasticity triggered by persistent noxious insult.
Collapse
|