1
|
Sievenpiper JL, Purkayastha S, Grotz VL, Mora M, Zhou J, Hennings K, Goody CM, Germana K. Dietary Guidance, Sensory, Health and Safety Considerations When Choosing Low and No-Calorie Sweeteners. Nutrients 2025; 17:793. [PMID: 40077663 PMCID: PMC11902030 DOI: 10.3390/nu17050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 03/14/2025] Open
Abstract
The growing global focus on the adverse health conditions associated with excessive sugar consumption has prompted health and policy organizations as well as the public to take a more mindful approach to health and wellness. In response, food and beverage companies have proactively innovated and reformulated their product portfolios to incorporate low and no-calorie sweeteners (LNCSs) as viable alternatives to sugar. LNCSs offer an effective and safe approach to delivering sweetness to foods and beverages and reducing calories and sugar intake while contributing to the enjoyment of eating. The objective of this paper is to enhance the understanding of LNCSs segmentation and definitions, dietary consumption and reduction guidance, front-of-package labeling, taste and sensory perception and physiology, metabolic efficacy and impact, as well as the overall safety of LNCSs and sugar.
Collapse
Affiliation(s)
- John L. Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Sidd Purkayastha
- SP Advisors Inc., Chicago, IL 60605, USA;
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - V. Lee Grotz
- ToxInsight, LLC, Fort Washington, PA 19034, USA;
| | - Margaux Mora
- Ingredion Inc., Bridgewater, NJ 08807, USA; (M.M.); (K.G.)
| | - Jing Zhou
- Ingredion Inc., Bridgewater, NJ 08807, USA; (M.M.); (K.G.)
| | | | | | | |
Collapse
|
2
|
Ma B, Ma C, Zhou B, Chen X, Wang Y, Li Y, Yin J, Li X. Quantitative descriptive analysis, non-targeted metabolomics and molecular docking reveal the dynamic aging and taste formation mechanism in raw Pu-erh tea during the storage. Food Chem X 2025; 25:102234. [PMID: 39968040 PMCID: PMC11833447 DOI: 10.1016/j.fochx.2025.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Natural storage promotes raw Pu-erh tea (RaPT) aging along with chemical conversion and flavor evolution. In this study, quantitative descriptive analysis (QDA) and UHPLC-Orbitrap-MS/MS-based non-targeted metabolomics were performed to illustrate dynamic changes of taste compounds across 18 RaPT samples during the storage. Multivariate statistical analyses effectively classified stored RaPT into three groups based on storage stages, confirming that storage duration, rather than environmental conditions, primarily influences the taste profile and the changes in non-volatile compounds. A total of 509 characteristic metabolites (VIP > 1.0, P < 0.05, and FC > 1.50 or < 0.67) including multifarious flavor compounds related to tastes evolution were identified. Notable changes included the reduction, transformation, and condensation of flavonoids (such as catechins, flavonol glycosides, and anthocyanins) and amino acids, alongside an accumulation of organic acids, catechin/amino acid derivatives, flavoalkaloids, and gallic acid. These transformations generated significantly (P < 0.05) decreased umami, bitterness, and astringency, while significantly (P < 0.05) increasing sourness and kokumi. Molecular docking analyses further revealed that certain compounds, notably puerins and N-ethyl-2-pyrrolidone-substituted flavan-3-ols (EPSFs), exhibit high binding affinities with CaSR and OTOP1, contributing to the kokumi and sourness taste profiles.
Collapse
Affiliation(s)
- Bingsong Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Binxing Zhou
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yifan Li
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Junfeng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
3
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2025; 22:39-53. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Ziaikin E, Tello E, Peterson DG, Niv MY. BitterMasS: Predicting Bitterness from Mass Spectra. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10537-10547. [PMID: 38685906 PMCID: PMC11082931 DOI: 10.1021/acs.jafc.3c09767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Bitter compounds are common in nature and among drugs. Previously, machine learning tools were developed to predict bitterness from the chemical structure. However, known structures are estimated to represent only 5-10% of the metabolome, and the rest remain unassigned or "dark". We present BitterMasS, a Random Forest classifier that was trained on 5414 experimental mass spectra of bitter and nonbitter compounds, achieving precision = 0.83 and recall = 0.90 for an internal test set. Next, the model was tested against spectra newly extracted from the literature 106 bitter and nonbitter compounds and for additional spectra measured for 26 compounds. For these external test cases, BitterMasS exhibited 67% precision and 93% recall for the first and 58% accuracy and 99% recall for the second. The spectrum-bitterness prediction strategy was more effective than the spectrum-structure-bitterness prediction strategy and covered more compounds. These encouraging results suggest that BitterMasS can be used to predict bitter compounds in the metabolome without the need for structural assignment of individual molecules. This may enable identification of bitter compounds from metabolomics analyses, for comparing potential bitterness levels obtained by different treatments of samples and for monitoring bitterness changes overtime.
Collapse
Affiliation(s)
- Evgenii Ziaikin
- Food
Science and Nutrition, The Robert H. Smith Faculty of Agriculture,
Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Edisson Tello
- Department
of Food Science and Technology, College of Food, Agriculture, and
Environmental Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Devin G. Peterson
- Department
of Food Science and Technology, College of Food, Agriculture, and
Environmental Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Masha Y. Niv
- Food
Science and Nutrition, The Robert H. Smith Faculty of Agriculture,
Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| |
Collapse
|
5
|
He Y, Liu K, Liu Y, Han W. Prediction of bitterness based on modular designed graph neural network. BIOINFORMATICS ADVANCES 2024; 4:vbae041. [PMID: 38566918 PMCID: PMC10987211 DOI: 10.1093/bioadv/vbae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Motivation Bitterness plays a pivotal role in our ability to identify and evade harmful substances in food. As one of the five tastes, it constitutes a critical component of our sensory experiences. However, the reliance on human tasting for discerning flavors presents cost challenges, rendering in silico prediction of bitterness a more practical alternative. Results In this study, we introduce the use of Graph Neural Networks (GNNs) in bitterness prediction, superseding traditional machine learning techniques. We developed an advanced model, a Hybrid Graph Neural Network (HGNN), surpassing conventional GNNs according to tests on public datasets. Using HGNN and three other GNNs, we designed BitterGNNs, a bitterness predictor that achieved an AUC value of 0.87 in both external bitter/non-bitter and bitter/sweet evaluations, outperforming the acclaimed RDKFP-MLP predictor with AUC values of 0.86 and 0.85. We further created a bitterness prediction website and database, TastePD (https://www.tastepd.com/). The BitterGNNs predictor, built on GNNs, offers accurate bitterness predictions, enhancing the efficacy of bitterness prediction, aiding advanced food testing methodology development, and deepening our understanding of bitterness origins. Availability and implementation TastePD can be available at https://www.tastepd.com, all codes are at https://github.com/heyigacu/BitterGNN.
Collapse
Affiliation(s)
- Yi He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China
| | - Yuyang Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Yang L, Ni Y, Jiang C, Liu L, Zhang S, Liu J, Sun L, Xu W. A neuromorphic device mimicking synaptic plasticity under different body fluid K + homeostasis for artificial reflex path construction and pattern recognition. FUNDAMENTAL RESEARCH 2024; 4:353-361. [PMID: 38933504 PMCID: PMC11197765 DOI: 10.1016/j.fmre.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
The ionic environment of body fluids influences nervous functions for maintaining homeostasis in organisms and ensures normal perceptual abilities and reflex activities. Neural reflex activities, such as limb movements, are closely associated with potassium ions (K+). In this study, we developed artificial synaptic devices based on ion concentration-adjustable gels for emulating various synaptic plasticities under different K+ concentrations in body fluids. In addition to performing essential synaptic functions, potential applications in information processing and associative learning using short- and long-term plasticity realized using ion concentration-adjustable gels are presented. Artificial synaptic devices can be used for constructing an artificial neural pathway that controls artificial muscle reflex activities and can be used for image pattern recognition. All tests show a strong relationship with ion homeostasis. These devices could be applied to neuromorphic robots and human-machine interfaces.
Collapse
Affiliation(s)
- Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Yao Ni
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Chengpeng Jiang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Lu Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Song Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Jiaqi Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Lin Sun
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| |
Collapse
|
7
|
Wang H, Yang Y, Chen L, Xu A, Wang Y, Xu P, Liu Z. Identifying the structures and taste characteristics of two novel Maillard reaction products in tea. Food Chem 2024; 431:137125. [PMID: 37586230 DOI: 10.1016/j.foodchem.2023.137125] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Maillard reaction products (MRPs) produced during thermal processing of tea are intimately related to its flavor. Our recent work revealed that both levels of l-theanine and d-galacturonic acid in tea leaves decreased dramatically during drying, whereas the specific MRPs from l-theanine and d-galacturonic acid remain elusive. Here, the MRPs formed from l-theanine and d-galacturonic acid were investigated and their taste characteristics and the involved mechanisms were explored. Two novel MRPs from l-theanine and d-galacturonic acid were identified as 1-(1-carboxy-4-(ethylamino)-4-oxobutyl)-3-hydroxypyridin-1-ium (MRP 1) and 2-(2-formyl-1H-pyrrole-1-yl) theanine (MRP 2). MRP 1 and MRP 2 accumulated in dark tea and black tea and were associated with sour (threshold, 0.25 mg/mL) and astringent tastes and an umami taste (threshold, 0.18 mg/mL), respectively. Molecular docking revealed that the taste characteristics of MRPs may be due to strong binding to umami taste receptor proteins (CASR, T1R1/T1R3) and the sour taste protein OTOP1 via hydrogen bonds and hydrophobic interactions.
Collapse
Affiliation(s)
- Huajie Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yijun Yang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Lin Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Zhonghua Liu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
8
|
Dutta P, Jain D, Gupta R, Rai B. Classification of tastants: A deep learning based approach. Mol Inform 2023; 42:e202300146. [PMID: 37885360 DOI: 10.1002/minf.202300146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
Predicting the taste of molecules is of critical importance in the food and beverages, flavor, and pharmaceutical industries for the design and screening of new tastants. In this work, we have built deep learning models to classify sweet, bitter, and umami molecules- the three basic tastes whose sensation is mediated by G protein-coupled receptors. An extensive dataset containing 1466 bitter, 1764 sweet, and 238 umami tastants was curated from existing literature. We analyzed the chemical characteristics of the molecules, with special focus on the presence of different functional groups. A deep neural network model based on molecular descriptors and a graph neural network model were trained for taste prediction. The class imbalance due to fewer umami molecules was tackled using special sampling techniques. Both models show comparable performance during evaluation, but the graph-based model can learn task-specific representations from the molecular structure without requiring handcrafted features. We further explain the deep neural network predictions using Shapley additive explanations. Finally, we demonstrated the applicability of the models by screening bitter, sweet, and umami molecules from a large food database. This study develops an in-silico approach to classify molecules based on their taste by leveraging the recent progress in deep learning, which can serve as a powerful tool for tastant design.
Collapse
Affiliation(s)
- Prantar Dutta
- Physical Sciences Research Area, Tata Research Development and Design Centre, TCS Research, 54-B, Hadapsar Industrial Estate, Pune, 411013, India
| | - Deepak Jain
- Physical Sciences Research Area, Tata Research Development and Design Centre, TCS Research, 54-B, Hadapsar Industrial Estate, Pune, 411013, India
| | - Rakesh Gupta
- Physical Sciences Research Area, Tata Research Development and Design Centre, TCS Research, 54-B, Hadapsar Industrial Estate, Pune, 411013, India
| | - Beena Rai
- Physical Sciences Research Area, Tata Research Development and Design Centre, TCS Research, 54-B, Hadapsar Industrial Estate, Pune, 411013, India
| |
Collapse
|
9
|
Grădinaru TC, Gilca M, Vlad A, Dragoș D. Relevance of Phytochemical Taste for Anti-Cancer Activity: A Statistical Inquiry. Int J Mol Sci 2023; 24:16227. [PMID: 38003415 PMCID: PMC10671173 DOI: 10.3390/ijms242216227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Targeting inflammation and the pathways linking inflammation with cancer is an innovative therapeutic strategy. Tastants are potential candidates for this approach, since taste receptors display various biological functions, including anti-inflammatory activity (AIA). The present study aims to explore the power different tastes have to predict a phytochemical's anti-cancer properties. It also investigates whether anti-inflammatory phytocompounds also have anti-cancer effects, and whether there are tastes that can better predict a phytochemical's bivalent biological activity. Data from the PlantMolecularTasteDB, containing a total of 1527 phytochemicals, were used. Out of these, only 624 phytocompounds met the inclusion criterion of having 40 hits in a PubMed search, using the name of the phytochemical as the keyword. Among them, 461 phytochemicals were found to possess anti-cancer activity (ACA). The AIA and ACA of phytochemicals were strongly correlated, irrespective of taste/orosensation or chemical class. Bitter taste was positively correlated with ACA, while sweet taste was negatively correlated. Among chemical classes, only flavonoids (which are most frequently bitter) had a positive association with both AIA and ACA, a finding confirming that taste has predictive primacy over chemical class. Therefore, bitter taste receptor agonists and sweet taste receptor antagonists may have a beneficial effect in slowing down the progression of inflammation to cancer.
Collapse
Affiliation(s)
- Teodora-Cristiana Grădinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dorin Dragoș
- Department of Medical Semiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- 1st Internal Medicine Clinic, University Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050098 Bucharest, Romania
| |
Collapse
|
10
|
Navarro-Dorado J, Climent B, López-Oliva ME, Pilar Martínez M, Hernández-Martín M, Agis-Torres Á, Recio P, Victoria Barahona M, Benedito S, Fernandes VS, Hernández M. The bitter taste receptor (TAS2R) agonist denatonium promotes a strong relaxation of rat corpus cavernosum. Biochem Pharmacol 2023; 215:115754. [PMID: 37597814 DOI: 10.1016/j.bcp.2023.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Bitter taste receptors (TAS2R) are found in numerous extra-oral tissues, including smooth muscle (SM) cells in both vascular and visceral tissues. Upon activation, TAS2R stimulate the relaxation of the SM. Nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling pathway is involved in penile erection, and type 5 phosphodiesterase (PDE5) inhibitors, a cGMP-specific hydrolase are used as first-line treatments for erectile dysfunction (ED). Nevertheless, PDE5 inhibitors are ineffective in a considerable number of patients, prompting research into alternative pharmacological targets for ED. Since TAS2R agonists regulate SM contractility, this study investigates the role of TAS2Rs in rat corpus cavernosum (CC). We performed immunohistochemistry to detect TAS2R10, isometric force recordings for TAS2R agonists denatonium and chloroquine, the slow-release H2S donor GYY 4137, the NO donor SNAP, the β-adrenoceptor agonist isoproterenol and electrical field stimulation (EFS), as well as measurement of endogenous hydrogen sulfide (H2S) production. The immunofluorescence staining indicated that TAS2R10 was broadly expressed in the CC SM and to some extent in the nerve fibers. Denatonium, chloroquine, SNAP, and isoproterenol cause potent dose-dependent SM relaxations. H2S production was decreased by NO and H2S synthase inhibitors, while it was enhanced by denatonium. In addition, denatonium increased the relaxations induced by GYY 4137 and SNAP but failed to modify EFS- and isoproterenol-induced responses. These results suggest neuronal and SM TAS2R10 expression in the rat CC, where denatonium induces a strong SM relaxation per se and promotes the H2S- and NO-mediated inhibitory gaseous neurotransmission. Thus, TAS2R10 might represent a valuable therapeutic target in ED.
Collapse
Affiliation(s)
- Jorge Navarro-Dorado
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - María Elvira López-Oliva
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Marina Hernández-Martín
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Ángel Agis-Torres
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Paz Recio
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - María Victoria Barahona
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Vítor S Fernandes
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain.
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain.
| |
Collapse
|
11
|
Tang N. Insights into Chemical Structure-Based Modeling for New Sweetener Discovery. Foods 2023; 12:2563. [PMID: 37444301 DOI: 10.3390/foods12132563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The search for novel, natural, high-sweetness, low-calorie sweeteners remains open and challenging. In the present study, the structure-based machine learning modeling and sweetness recognition mechanism were investigated to assist this process. It was found that whether or not a compound was sweet was closely related to molecular connectivity and composition (the number of hydrogen bond acceptors and donors), tpsaEfficiency, structural complexity, and shape (nAtomP and Fsp3). While the relative sweetness of sweet compounds was more determined by the molecular properties (tpsaEfficiency and Log P), structural complexity and composition (nAtomP and ATSm 1). The built machine learning models exhibited very good performance for classifying the sweet/non-sweet compounds and predicting the relative sweetness of the compounds. Moreover, a specific binding pocket was found for sweet compounds, and the sweet compounds mainly interacted with the VFT domain of the T1R2-T1R3 through hydrogen bonds. In addition, the results indicated that among the sweet compounds, those that were sweeter bound to the VFT domain stronger than those that had low sweetness. This study provides very useful information for developing new sweeteners.
Collapse
Affiliation(s)
- Ning Tang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
12
|
Margulis E, Lang T, Tromelin A, Ziaikin E, Behrens M, Niv MY. Bitter Odorants and Odorous Bitters: Toxicity and Human TAS2R Targets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37263600 DOI: 10.1021/acs.jafc.3c00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Flavor is perceived through the olfactory, taste, and trigeminal systems, mediated by designated GPCRs and channels. Signal integration occurs mainly in the brain, but some cross-reactivities occur at the receptor level. Here, we predict potential bitterness and taste receptors targets for thousands of odorants. BitterPredict and BitterIntense classifiers suggest that 3-9% of flavor and food odorants have bitter taste, but almost none are intensely bitter. About 14% of bitter molecules are expected to have an odor. Bitterness is more common for unpleasant smells such as fishy, amine, and ammoniacal, while non-bitter odorants often have pleasant smells. Experimental toxicity values suggest that fishy ammoniac smells are more toxic than pleasant smells, regardless of bitterness. TAS2R14 is predicted as the main bitter receptor for odorants, confirmed by in vitro profiling of 10 odorants. The activity of bitter odorants may have implications for physiology due to ectopic expression of taste and smell receptors.
Collapse
Affiliation(s)
- Eitan Margulis
- Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Tatjana Lang
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Anne Tromelin
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Evgenii Ziaikin
- Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Masha Y Niv
- Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Institute of Biochemistry, Food and Nutrition, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| |
Collapse
|
13
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Evangelista-Falcón W, Denhez C, Baena-Moncada A, Ponce-Vargas M. Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis. J Phys Chem B 2023; 127:1110-1119. [PMID: 36705604 DOI: 10.1021/acs.jpcb.2c07180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is nowadays widely accepted that sweet taste perception is elicited by the activation of the heterodimeric complex T1R2-T1R3, customarily known as sweet taste receptor (STR). However, the interplay between STR and sweeteners has not yet been fully clarified. Here through a methodology coupling molecular dynamics and the independent gradient model (igm) approach we determine the main interacting signatures of the closed (active) conformation of the T1R2 Venus flytrap domain (VFD) toward aspartame. The igm methodology provides a rapid and reliable quantification of noncovalent interactions through a score (Δginter) based on the attenuation of the electronic density gradient when two molecular fragments approach each other. Herein, this approach is coupled to a 100 ns molecular dynamics simulation (MD-igm) to explore the ligand-cavity contacts on a per-residue basis as well as a series of key inter-residue interactions that stabilize the closed form of VFD. We also apply an atomic decomposition scheme of noncovalent interactions to quantify the contribution of the ligand segments to the noncovalent interplay. Finally, a series of structural modification on aspartame are conducted in order to obtain guidelines for the rational design of novel sweeteners. Given that innovative methodologies to reliably quantify the extent of ligand-protein coupling are strongly demanded, this approach combining a noncovalent analysis and MD simulations represents a valuable contribution, that can be easily applied to other relevant biomolecular systems.
Collapse
Affiliation(s)
- Wilfredo Evangelista-Falcón
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima15023, Perú
| | - Clément Denhez
- Institut de Chimie Moléculaire de Reims UMR CNRS 7312, Université de Reims Champagne-Ardenne, Moulin de la Housse 51687, ReimsCedex 02 BP39, France
| | - Angélica Baena-Moncada
- Laboratorio de Investigación de Electroquímica Aplicada, Facultad de Ciencias de la Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima31-139, Perú
| | - Miguel Ponce-Vargas
- Institut de Chimie Moléculaire de Reims UMR CNRS 7312, Université de Reims Champagne-Ardenne, Moulin de la Housse 51687, ReimsCedex 02 BP39, France
| |
Collapse
|
15
|
Bian J, Xia Y, Han R, Wang C, He J, Zhong F. How To Determine Iso-Sweet Concentrations For Various Sweeteners: Insights From Consumers and Trained Panels. Food Qual Prefer 2023. [DOI: 10.1016/j.foodqual.2023.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Wang Y, Luo X, Chen L, Mustapha AT, Yu X, Zhou C, Okonkwo CE. Natural and low-caloric rebaudioside A as a substitute for dietary sugars: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:615-642. [PMID: 36524621 DOI: 10.1111/1541-4337.13084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
For health and safety concerns, traditional high-calorie sweeteners and artificial sweeteners are gradually replaced in food industries by natural and low-calorie sweeteners. As a natural and high-quality sugar substitute, steviol glycosides (SvGls) are continually scrutinized regarding their safety and application. Recently, the cultivation of organic stevia has been increasing in many parts of Europe and Asia, and it is obvious that there is a vast market for sugar substitutes in the future. Rebaudioside A, the main component of SvGls, is gradually accepted by consumers due to its safe, zero calories, clear, and sweet taste with no significant undesirable characteristics. Hence, it can be used in various foods or dietary supplements as a sweetener. In addition, rebaudioside A has been demonstrated to have many physiological functions, such as antihypertension, anti-diabetes, and anticaries. But so far, there are few comprehensive reviews of rebaudioside A. In this review article, we discuss the physicochemical properties, metabolic process, safety, regulatory, health benefits, and biosynthetic pathway of rebaudioside A and summarize the modification methods and state-of-the-art production and purification techniques of rebaudioside A. Furthermore, the current problems hindering the future production and application of rebaudioside A are analyzed, and suggestions are provided.
Collapse
Affiliation(s)
- Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | | | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates.,Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
17
|
Wu X, Toko K. Taste sensor with multiarray lipid/polymer membranes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Chen J, Nie Y, Xu J, Huang S, Sheng J, Wang X, Zhong J. Sensory and metabolite migration from tilapia skin to soup during the boiling process: fast and then slow. NPJ Sci Food 2022; 6:52. [DOI: 10.1038/s41538-022-00168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractThis study mainly studied sensory and metabolite migration from the skin to the soup in the boiling process of tilapia skin using content analysis, electronic nose technique, electronic tongue technique, and metabolomics technique based on ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry and gas chromatography-time-of-flight-mass spectrometry. The content changes, flavor changes, taste changes, metabolite numbers and differential metabolite numbers for both tilapia skin and soup mainly occurred in the initial 30 min. Moreover, the initial 10 min was the key period for the metabolite changes in the boiling process. Further, the differential metabolites in these three periods (0–10, 10–30, and 30–60 min) were identified to show the metabolites migration process. Six (adenine, gingerol, terephthalic acid, vanillin, pentanenitrile, and 2-pyrrolidinonede) and seven (butyramide, lysope(0:0/20:4(5z,8z,11z,14z)), lysope(22:6(4z,7z,10z,13z,16z,19z)/0:0), linoleic acid, N-acetylneuraminic acid, L-threose, and benzoin) chemicals were screened out in the differential metabolites of tilapia skin and soup, respectively, with Variable Importance in the Projection of >1 and p value of <0.05. This work would be beneficial to understand the sensory and metabolite migration in the preparation process of fish soup and provided a metabolomic analysis route to analyze metabolites migration in food.
Collapse
|
19
|
da Silva FL, Pinto VRA, de Souza LBA, Stepani R, Perrone ÍT, de Carvalho AF. Influence of phosphates in reduction of the aftertaste of steviol glycoside (derived from
Stevia rebaudiana
Bertoni) in black tea drinks. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda Lopes da Silva
- InovaLeite – Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos Universidade Federal de Viçosa (UFV) Viçosa MG Brazil
| | - Vinicius Rodrigues Arruda Pinto
- InovaLeite – Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos Universidade Federal de Viçosa (UFV) Viçosa MG Brazil
| | - Louise Bergamin Athayde de Souza
- InovaLeite – Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos Universidade Federal de Viçosa (UFV) Viçosa MG Brazil
| | - Rodrigo Stepani
- Faculdade de Química Universidade Federal de Juiz de Fora (UFJF) Juiz de Fora MG Brazil
| | - Ítalo Tuler Perrone
- Faculdade de Farmácia Universidade Federal de Juiz de Fora (UFJF) Juiz de Fora MG Brazil
| | - Antônio Fernandes de Carvalho
- InovaLeite – Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos Universidade Federal de Viçosa (UFV) Viçosa MG Brazil
| |
Collapse
|
20
|
Schwartz M, Brignot H, Feron G, Hummel T, Zhu Y, von Koskull D, Heydel JM, Lirussi F, Canon F, Neiers F. Role of human salivary enzymes in bitter taste perception. Food Chem 2022; 386:132798. [PMID: 35344726 DOI: 10.1016/j.foodchem.2022.132798] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
Abstract
The molecules that elicit taste sensation are perceived by interacting with the taste receptors located in the taste buds. Enzymes involved in the detoxification processes are found in saliva as well as in type II cells, where taste receptors, including bitter taste receptors, are located. These enzymes are known to interact with a large panel of molecules. To explore a possible link between these enzymes and bitter taste perception, we demonstrate that salivary glutathione transferases (GSTA1 and GSTP1) can metabolize bitter molecules. To support these abilities, we solve three X-ray structures of these enzymes in complexes with isothiocyanates. Salivary GSTA1 and GSTP1 are expressed in a large panel of subjects. Additionally, GSTA1 levels in the saliva of people suffering from taste disorders are significantly lower than those in the saliva of the control group.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Hélène Brignot
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Gilles Feron
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Yunmeng Zhu
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Dorothee von Koskull
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Jean-Marie Heydel
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Frédéric Lirussi
- PACE, Plateau d'Analyses Chromatographiques et Elémentaires, Department of Pharmacology-Toxicology & Metabolomics, University hospital of Besançon (CHU), 2 Boulevard Fleming, 25030, BESANCON, France; INSERM UMR1231, LipSTIC, University of Burgundy Franche-Comté, Dijon, France
| | - Francis Canon
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Fabrice Neiers
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France.
| |
Collapse
|
21
|
Ke X, Ma H, Yang J, Qiu M, Wang J, Han L, Zhang D. New strategies for identifying and masking the bitter taste in traditional herbal medicines: The example of Huanglian Jiedu Decoction. Front Pharmacol 2022; 13:843821. [PMID: 36060004 PMCID: PMC9431955 DOI: 10.3389/fphar.2022.843821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Suppressing the bitter taste of traditional Chinese medicine (TCM) largely has been a major clinical challenge due to complex and diverse metabolites and high dispersion of bitter metabolites in liquid preparations. In this work, we developed a novel strategy for recognizing bitter substances, hiding their bitter taste, and elucidated the mechanism of flavor masking in TCM. Huanglian Jie-Du Decoction (HLJDD) with an intense bitter taste was studied as a typical case. UHPLC-MS/MS was used to analyze the chemical components in HLJDD, whereas the bitter substances were identified by pharmacophores. Additionally, the screening results of the pharmacophores were further validated by using experimental assays. The mask formula of HLJDD was effectively screened under the condition of clear bitter substances. Subsequently, computational chemistry, molecular docking, and infrared characterization (IR) techniques were then used to explicate the mechanism of flavor masking. Consequently, neotame, γ-CD, and mPEG2000-PLLA2000 significantly reduced the bitterness of HLJDD. Specifically, mPEG2000-PLLA2000 increased the colloid proportion in the decoction system and minimized the distribution of bitter components in the real solution. Sweetener neotame suppressed the perception of bitter taste and inhibited bitter taste receptor activation to eventually reduce the bitter taste. The γ-CD included in the decoction bound the hydrophobic groups of the bitter metabolites in real solution and “packed” all or part of the bitter metabolites into the “cavity”. We established a novel approach for screening bitter substances in TCM by integrating virtual screening and experimental assays. Based on this strategy, the bitter taste masking of TCM was performed from three different aspects, namely, changing the drug phase state, component distribution, and interfering with bitter taste signal transduction. Collectively, the methods achieved a significant effect on bitter taste suppression and taste masking. Our findings will provide a novel strategy for masking the taste of TCM liquid preparation/decoction, which will in return help in improving the clinical efficacy of TCM.
Collapse
Affiliation(s)
- Xiumei Ke
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- *Correspondence: Xiumei Ke, ; Jianwei Wang, ; Li Han, ; Dingkun Zhang,
| | - Hongyan Ma
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junxuan Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Min Qiu
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianwei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- *Correspondence: Xiumei Ke, ; Jianwei Wang, ; Li Han, ; Dingkun Zhang,
| | - Li Han
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiumei Ke, ; Jianwei Wang, ; Li Han, ; Dingkun Zhang,
| | - Dingkun Zhang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiumei Ke, ; Jianwei Wang, ; Li Han, ; Dingkun Zhang,
| |
Collapse
|
22
|
Rojas C, Ballabio D, Pacheco Sarmiento K, Pacheco Jaramillo E, Mendoza M, García F. ChemTastesDB: A curated database of molecular tastants. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100090. [PMID: 35415670 PMCID: PMC8991844 DOI: 10.1016/j.fochms.2022.100090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
A chemical database called ChemTastesDB was created, which consists of 2944 organic and inorganic tastants. Tastants have been curated and classified into 5 basic and 4 non-basic taste categories. The chemical space of the ChemTastesDB has been analyzed with unsupervised machine learning. ChemTastesDB is freely available on line and provides support for decision-making for designing new tastants.
The purpose of this work is the creation of a chemical database named ChemTastesDB that includes both organic and inorganic tastants. The creation, curation pipeline and the main features of the database are described in detail. The database includes 2944 verified and curated compounds divided into nine classes, which comprise the five basic tastes (sweet, bitter, umami sour and salty) along with four additional categories: tasteless, non-sweet, multitaste and miscellaneous. ChemTastesDB provides the following information for each tastant: name, PubChem CID, CAS registry number, canonical SMILES, class taste and references to the scientific sources from which data were retrieved. The molecular structure in the HyperChem (.hin) format of each chemical is also made available. In addition, molecular fingerprints were used for characterizing and analyzing the chemical space of tastants by means of unsupervised machine learning. ChemTastesDB constitutes a useful tool to the scientific community to expand the information of taste molecules and to assist in silico studies for the taste prediction of unevaluated and as yet unsynthetized compounds, as well as the analysis of the relationships between molecular structure and taste. The database is freely accessible at https://doi.org/10.5281/zenodo.5747393.
Collapse
Affiliation(s)
- Cristian Rojas
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Av. 24 de Mayo 7-77 y Hernán Malo, Cuenca, Ecuador
- Corresponding author.
| | - Davide Ballabio
- Milano Chemometrics and QSAR Research Group. Department of Earth and Environmental Sciences, University of Milano-Bicocca, P.za della Scienza 1-20126, Milano, Italy
| | - Karen Pacheco Sarmiento
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Av. 24 de Mayo 7-77 y Hernán Malo, Cuenca, Ecuador
| | - Elisa Pacheco Jaramillo
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Av. 24 de Mayo 7-77 y Hernán Malo, Cuenca, Ecuador
| | - Mateo Mendoza
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Av. 24 de Mayo 7-77 y Hernán Malo, Cuenca, Ecuador
| | - Fernando García
- Facultad de Ciencias Económicas, Universidad Nacional de Córdoba. Centro de Investigaciones en Ciencias Económicas, Grupo vinculado CIECS – UNC – CONICET, Córdoba, Argentina
| |
Collapse
|
23
|
Dubovski N, Ben Shoshan-Galeczki Y, Malach E, Niv MY. Taste and chirality: l-glucose sweetness is mediated by TAS1R2/TAS2R3 receptor. Food Chem 2022; 373:131393. [PMID: 34715629 DOI: 10.1016/j.foodchem.2021.131393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023]
Abstract
Naturally occurring sugars usually have d-chirality. While a change in chirality typically affects ligand-receptor interaction, non-caloric l-glucose was reported as sweet for humans. Here we show that l- and d-glucose have similar sensory detection thresholds (0.041 ± 0.006 M for d-glucose, and 0.032 ± 0.007 M for l-glucose) and similar sweetness intensities at suprathreshold concentrations. We demonstrate that l-glucose acts via the sweet taste receptor TAS1R2/TAS1R3, eliciting a dose-dependent activation in cell-based functional assays. Computational docking of glucose to the VFT domain of TAS1R2 suggests two sub-pockets, each compatible with each of the enantiomers. While some polar residues (Y103, D142, N143, S144, Y215) are unique for sub-pocket A and others (D307, T326, E382, R383) for sub-pocket B, no interaction is unique for only one enantiomer. The many options for creating hydrogen bonds with the hydroxyl moieties of glucose explain how both enantiomers can fit each one of the sub-pockets.
Collapse
Affiliation(s)
- Nitzan Dubovski
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel; Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, Israel.
| | - Yaron Ben Shoshan-Galeczki
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel; Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, Israel.
| | - Einav Malach
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel; Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel; Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
24
|
Bo W, Qin D, Zheng X, Wang Y, Ding B, Li Y, Liang G. Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network. Food Res Int 2022; 153:110974. [DOI: 10.1016/j.foodres.2022.110974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
|
25
|
On the human taste perception: Molecular-level understanding empowered by computational methods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Johnson SL, Moding KJ, Grimm KJ, Flesher AE, Bakke AJ, Hayes JE. Infant and Toddler Responses to Bitter-Tasting Novel Vegetables: Findings from the Good Tastes Study. J Nutr 2021; 151:3240-3252. [PMID: 34191021 PMCID: PMC8485907 DOI: 10.1093/jn/nxab198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Infants are born with the biological predisposition to reject bitterness. Dark green vegetables contain essential nutrients but also bitter compounds, making them more difficult to like. OBJECTIVE The Good Tastes Study was designed to determine whether reducing bitterness by adding small amounts of sugar or salt would alter infant acceptance of kale purées. METHODS Caregivers (n = 106, 94% mothers, 82% Non-Hispanic White) and children (53% male, aged 6-24 mo) participated in a videorecorded laboratory visit during which infants were offered 4 versions of puréed kale: plain, 1.2% or 1.8% added sugar, or 0.2% added salt. Caregivers rated their children's liking for each kale version. Videos were coded for the number of tastes accepted and for children's behaviors and acceptance of each kale version. A multilevel ordered logistic model was fit for the number of accepted tastes and caregiver ratings of child liking of kale versions with age, breastfeeding history, order effects, and kale version as predictors. RESULTS Infants 6 to <12 mo accepted more tastes (b = 2.911, P < 0.001) and were rated by caregivers as liking the kale more than older toddlers (≥18 mo; b = 1.874, P = 0.014). The plain kale was more likely to be accepted (P < 0.001); also, the first version offered was more likely to be rejected (b = -0.586, P < 0.007). Older infants (≥18 mo) exhibited more avoidant behaviors (b = 1.279, P < 0.001), more playing (b = 2.918, P < 0.001), and more self-feeding (b = 1.786, P = 0.005) than younger infants (6 to <12 mo). Children who were reported to have been breastfed more in the last 7 d were more likely to self-feed (b = 0.246, P < 0.001) and play with food (b = 0.207, P < 0.005). CONCLUSIONS Our findings support that there may be a sensitive period, during the early phase of complementary feeding, to improve success of introducing a novel, bitter, more difficult-to-like food. When low levels of sugar or salt were added, no advantage of bitterness reduction was observed. This study has been registered with ClinicalTrials.gov as NCT04549233.
Collapse
Affiliation(s)
- Susan L Johnson
- Department of Pediatrics University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kameron J Moding
- Department of Human Development & Family Studies, Purdue University, West Lafayette, IN, USA
| | - Kevin J Grimm
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Abigail E Flesher
- Department of Pediatrics University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alyssa J Bakke
- Sensory Evaluation Center, The Pennsylvania State University, University Park, PA, USA
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| | - John E Hayes
- Sensory Evaluation Center, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
27
|
Shen T, Li J. Drinking Non-nutritive Sweetness Solution of Sodium Saccharin or Rebaudioside a for Guinea Pigs: Influence on Histologic Change and Expression of Sweet Taste Receptors in Testis and Epididymis. Front Nutr 2021; 8:720889. [PMID: 34422887 PMCID: PMC8375269 DOI: 10.3389/fnut.2021.720889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
Saccharin sodium and rebaudioside A are extensively used as non-nutritive sweeteners (NNSs) in daily life. NNSs elicit a multitude of endocrine influences on animals, differing across species and chemically distinct sweeteners, whose exposure induce activation of sweet taste receptors in oral and extra-oral tissues with consequences of metabolic changes. To evaluate the influence of NNSs on histologic change and expression of sweet taste receptors in testis and epididymis of young male guinea pigs, thirty 4-week-old male guinea pigs with body weight 245.73 ± 6.02 g were randomly divided into five groups (n = 6) and received normal water (control group) and equivalent sweetness low dose or high dose of sodium saccharin (L-SS, 1.5 mM or H-SS, 7.5 mM) or rebaudioside A (L-RA, 0.5 mM or H-RA, 2.5 mM) solution for 28 consecutive days. The results showed that the relative testis weight in male guinea pig with age of 56 days represented no significant difference among all groups; in spite of heavier body weight in L-SS and H-RA, NNS contributes no significant influence on serum testosterone and estradiol level. Low-dose 0.5 mM rebaudioside A enhanced testicular and epididymal functions by elevating the expressions of taste receptor 1 subunit 2 (T1R2) and gustducin α-subunit (GNAT3), and high-dose 7.5 mM sodium saccharin exerted adverse morphologic influences on testis and epididymis with no effect on the expression of T1R2, taste receptor 1 subunit 2 (T1R3), and GNAT3. In conclusion, these findings suggest that a high dose of sodium saccharin has potential adverse biologic effects on the testes and epididymis, while rebaudioside A is a potential steroidogenic sweetener for enhancing reproductive functions.
Collapse
Affiliation(s)
- Ting Shen
- College of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Junrong Li
- College of Agriculture, Jinhua Polytechnic, Jinhua, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Hunter M, Kellett J, Toohey K, Naumovski N. Sensory and Compositional Properties Affecting the Likeability of Commercially Available Australian Honeys. Foods 2021; 10:foods10081842. [PMID: 34441619 PMCID: PMC8393184 DOI: 10.3390/foods10081842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Honey’s composition and appearance is largely influenced by floral and geographic origins. Australian honeys are frequently sourced from supermarkets; however, properties associated with consumer preference and likeability remain relatively unknown. The aim of this study was to complete sensory and compositional analyses on a selection of commercially available Australian honeys. Samples (n = 32) were analysed for visual, olfactory and taste characteristics, with overall likeability assessed by the trained sensory panel (n = 24; M = 12). Compositional analysis included colour intensity (mAU); phenolic content; antioxidant characteristics (DPPH, CUPRAC); and physicochemical properties (pH, viscosity, total soluble solids). There were 23 honey samples that were significantly less liked when compared to the most liked honey (p < 0.05). The likeability of honey was positively associated with perceived sweetness (p < 0.01), and it was negatively associated with crystallisation; odour intensity; waxy, chemical, and fermented smell; mouthfeel; aftertaste; sourness; bitterness and pH (All p’s < 0.05). The price (AUD/100 g) was not associated with likeability (p = 0.143), suggesting price value potentially does not influence consumer preferences. Conclusively, differences in likeability between the honey samples demonstrate that consumer perception of sampled honeys is diverse. Honey preference is primarily driven by the organoleptic properties, particularly perceived negative tastes, rather than their antioxidant capacity or phenolic content.
Collapse
Affiliation(s)
- Maddison Hunter
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (J.K.); (K.T.); (N.N.)
- Prehabilitation, Activity, Cancer, Exercise and Survivorship (PACES) Research Group, University of Canberra, Canberra, ACT 2617, Australia
- Correspondence:
| | - Jane Kellett
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (J.K.); (K.T.); (N.N.)
- Prehabilitation, Activity, Cancer, Exercise and Survivorship (PACES) Research Group, University of Canberra, Canberra, ACT 2617, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT 2617, Australia
| | - Kellie Toohey
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (J.K.); (K.T.); (N.N.)
- Prehabilitation, Activity, Cancer, Exercise and Survivorship (PACES) Research Group, University of Canberra, Canberra, ACT 2617, Australia
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (J.K.); (K.T.); (N.N.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT 2617, Australia
- Department of Nutrition-Dietetics, School of Health Science and Education, Harokopio University, 176 71 Athens, Greece
| |
Collapse
|
29
|
Jang YJ, Chung SJ, Kim SB, Park S. Searching for optimal low calorie sweetener blends in ternary & quaternary system. Food Qual Prefer 2021. [DOI: 10.1016/j.foodqual.2021.104184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Guevara EE, Webster TH, Lawler RR, Bradley BJ, Greene LK, Ranaivonasy J, Ratsirarson J, Harris RA, Liu Y, Murali S, Raveendran M, Hughes DST, Muzny DM, Yoder AD, Worley KC, Rogers J. Comparative genomic analysis of sifakas ( Propithecus) reveals selection for folivory and high heterozygosity despite endangered status. SCIENCE ADVANCES 2021; 7:7/17/eabd2274. [PMID: 33893095 PMCID: PMC8064638 DOI: 10.1126/sciadv.abd2274] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 03/08/2021] [Indexed: 05/12/2023]
Abstract
Sifakas (genus Propithecus) are critically endangered, large-bodied diurnal lemurs that eat leaf-based diets and show corresponding anatomical and microbial adaptations to folivory. We report on the genome assembly of Coquerel's sifaka (P. coquereli) and the resequenced genomes of Verreaux's (P. verreauxi), the golden-crowned (P. tattersalli), and the diademed (P. diadema) sifakas. We find high heterozygosity in all sifakas compared with other primates and endangered mammals. Demographic reconstructions nevertheless suggest declines in effective population size beginning before human arrival on Madagascar. Comparative genomic analyses indicate pervasive accelerated evolution in the ancestral sifaka lineage affecting genes in several complementary pathways relevant to folivory, including nutrient absorption and xenobiotic and fatty acid metabolism. Sifakas show convergent evolution at the level of the pathway, gene family, gene, and amino acid substitution with other folivores. Although sifakas have relatively generalized diets, the physiological challenges of habitual folivory likely led to strong selection.
Collapse
Affiliation(s)
- Elaine E Guevara
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Timothy H Webster
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard R Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, VA 22807, USA
| | - Brenda J Bradley
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Lydia K Greene
- Duke Lemur Center, Duke University, Durham, NC 27705, USA
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Jeannin Ranaivonasy
- Département Agroécologie, Biodiversité et Changement Climatique, ESSA, University of Antananarivo, Antananarivo, Madagascar
| | - Joelisoa Ratsirarson
- Département Agroécologie, Biodiversité et Changement Climatique, ESSA, University of Antananarivo, Antananarivo, Madagascar
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yue Liu
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shwetha Murali
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Donna M Muzny
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Kim C Worley
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| |
Collapse
|
31
|
Rivero R, Archaina D, Sosa N, Schebor C. Development and characterization of two gelatin candies with alternative sweeteners and fruit bioactive compounds. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Szczepaniak O, Jokiel M, Stuper-Szablewska K, Szymanowska D, Dziedziński M, Kobus-Cisowska J. Can cornelian cherry mask bitter taste of probiotic chocolate? Human TAS2R receptors and a sensory study with comprehensive characterisation of new functional product. PLoS One 2021; 16:e0243871. [PMID: 33556063 PMCID: PMC7869990 DOI: 10.1371/journal.pone.0243871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022] Open
Abstract
Cornelian cherry (Cornus mas L.) fruits are a valuable source of bioactive compounds that are responsible for the perception of bitter taste of chocolate products. The aim of the study was to validate the inhibitory effect of Cornus mas on the TAS2R3 and TAS2R13 bitter taste receptors and to assess the effect of masking the bitter taste of dark chocolate with the help of the sensory panel. Dark chocolate was prepared with an addition of 5% of freeze-dried cornelian cherry fruits and 108 CFU/g of Bacillus coagulans probiotic strains. Effect on the TAS2R receptors was evaluated in specially transfected HEK293T cells, and the inhibition ratio was measured using the calcium release test. Moreover, the total polyphenol content, antioxidant activity and simulated intestinal in vitro digestion were determined for the samples. The tested chocolate products were rich in chlorogenic, caffeic and sinapic acids. The addition of cornelian cherry positively affected the antioxidant activity. The phytochemicals of Cornus mas decreased the TAS2R13 activity by 132% after a 2-minute interaction and, % at the same time, inhibited the TAS2R3 activity by 11.5. Meanwhile, chocolate with the addition of fruit was less bitter according to the sensory panel.
Collapse
Affiliation(s)
- Oskar Szczepaniak
- Department of Gastronomy Sciences and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
- * E-mail:
| | - Maria Jokiel
- PORT Polish Center for Technology Development, Wrocław, Poland
| | | | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Marcin Dziedziński
- Department of Gastronomy Sciences and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Sciences and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
33
|
Chao AM, Zhou Y, Franks AT, Brooks BE, Joseph PV. Associations of Taste Perception with Tobacco Smoking, Marijuana Use, and Weight Status in the National Health and Nutrition Examination Survey. Chem Senses 2021; 46:bjab017. [PMID: 33835132 PMCID: PMC8306721 DOI: 10.1093/chemse/bjab017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Habitual smoking of tobacco and marijuana can lead to weight changes and poor diet quality. These effects may be caused by taste changes related to smoking and marijuana use. This study examined the associations among taste perceptions of a bitterant (quinine) and salt, tobacco and marijuana use, and weight status. We conducted a cross-sectional analysis of adults who responded to the National Health and Nutrition Examination Survey in 2013-2014. Participants (n = 2808; female = 51.7%) were adults ≥40 years with an average body mass index (BMI) of 29.6 kg/m2. Participants completed whole mouth and tongue tip assessments of bitter (quinine) and salty (NaCl) tastes, and questionnaires on demographics, cigarette, tobacco, and drug use. Measured height and weight were used to calculate BMI. Compared with never smokers, current smokers reported increased bitter ratings. Smoking status was not associated with salty taste intensity ratings after adjustment for demographic variables. Current marijuana users reported lower tongue tip quine ratings than never users. Among current smokers, current marijuana users had lower whole mouth quinine ratings than never users. Taste perception for salt and quinine for current and former smokers as well as marijuana smokers varied in whole mouth and tongue tip assessment. Changes in taste perception among cigarette smokers and marijuana consumers may be clinically relevant to address to improve diet and weight status.
Collapse
Affiliation(s)
- Ariana M Chao
- Department of Biobehavioral Health Sciences, University of Pennsylvania School of Nursing, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Center for Weight and Eating Disorders, Philadelphia, PA, USA
| | - Yingjie Zhou
- Department of Biobehavioral Health Sciences, University of Pennsylvania School of Nursing, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Center for Weight and Eating Disorders, Philadelphia, PA, USA
| | - Alexis T Franks
- National Institutes on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, Section of Sensory Science and Metabolism, Bethesda, MD, USA
| | - Brianna E Brooks
- National Institutes on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, Section of Sensory Science and Metabolism, Bethesda, MD, USA
| | - Paule V Joseph
- National Institutes on Alcohol Abuse and Alcoholism & National Institute of Nursing Research, Section of Sensory Science and Metabolism, Bethesda, MD, USA
| |
Collapse
|
34
|
Margulis E, Dagan-Wiener A, Ives RS, Jaffari S, Siems K, Niv MY. Intense bitterness of molecules: Machine learning for expediting drug discovery. Comput Struct Biotechnol J 2020; 19:568-576. [PMID: 33510862 PMCID: PMC7807207 DOI: 10.1016/j.csbj.2020.12.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Drug development is a long, expensive and multistage process geared to achieving safe drugs with high efficacy. A crucial prerequisite for completing the medication regimen for oral drugs, particularly for pediatric and geriatric populations, is achieving taste that does not hinder compliance. Currently, the aversive taste of drugs is tested in late stages of clinical trials. This can result in the need to reformulate, potentially resulting in the use of more animals for additional toxicity trials, increased financial costs and a delay in release to the market. Here we present BitterIntense, a machine learning tool that classifies molecules into "very bitter" or "not very bitter", based on their chemical structure. The model, trained on chemically diverse compounds, has above 80% accuracy on several test sets. Our results suggest that about 25% of drugs are predicted to be very bitter, with even higher prevalence (~40%) in COVID19 drug candidates and in microbial natural products. Only ~10% of toxic molecules are predicted to be intensely bitter, and it is also suggested that intense bitterness does not correlate with hepatotoxicity of drugs. However, very bitter compounds may be more cardiotoxic than not very bitter compounds, possessing significantly lower QPlogHERG values. BitterIntense allows quick and easy prediction of strong bitterness of compounds of interest for food, pharma and biotechnology industries. We estimate that implementation of BitterIntense or similar tools early in drug discovery process may lead to reduction in delays, in animal use and in overall financial burden.
Collapse
Affiliation(s)
- Eitan Margulis
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ayana Dagan-Wiener
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Robert S. Ives
- Comparative & Translational Sciences, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Sara Jaffari
- Product Development & Supply, GlaxoSmithKline, Park Road, Ware, SG12 0DP, United Kingdom
| | | | - Masha Y. Niv
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
35
|
Impact of 'free-from' and 'healthy choice' labeled versions of chocolate and coffee on temporal profile (multiple-intake TDS) and liking. Food Res Int 2020; 137:109342. [PMID: 33233051 DOI: 10.1016/j.foodres.2020.109342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 11/24/2022]
Abstract
Product reformulation for obtaining "free-from" or "healthy choice" versions may confer significant changes in sensory characteristics which could not meet consumer expectations in terms of sensory perception. Therefore, this paper aims to evaluate the influence of formulations of different product categories on their dynamic sensory profile and consumer acceptability. A sensory panel of 23 semi-trained assessors evaluated two product categories, chocolate and milk coffee, using Temporal Dominance of Sensations (TDS) over three consecutive intakes/sips (multiple-intake TDS) on two replications. TDS allowed us to describe the dynamic profile of classic products over the three intakes and to identify differences in the sensory temporal profile compared to their 'healthier choice' reformulated versions. For the chocolate category, increasing the cocoa and the reduction of lactose content mainly influenced the dominance of sweetness, dairy, cocoa, crunchy and bitterness attributes. No sugar addition and absence of caffeine (decaffeinated version) in ready to drink milk coffee beverage modified temporal perception of sweetness, bitterness, coffee flavor and smoothness texture. Higher overall liking averages were associated with the dominant attributes of chocolate with a higher level of cacao and milk coffee decaffeinated. The obtained results of the present work suggest that the multiple-intake TDS technique can be applied for the evaluation of different food categories, helping to develop healthier products and predicting the liking.
Collapse
|
36
|
An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Arch 2020; 472:1667-1691. [PMID: 33030576 DOI: 10.1007/s00424-020-02467-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Sweet substances are detected by taste-bud cells upon binding to the sweet-taste receptor, a T1R2/T1R3 heterodimeric G protein-coupled receptor. In addition, experiments with mouse models lacking the sweet-taste receptor or its downstream signaling components led to the proposal of a parallel "alternative pathway" that may serve as metabolic sensor and energy regulator. Indeed, these mice showed residual nerve responses and behavioral attraction to sugars and oligosaccharides but not to artificial sweeteners. In analogy to pancreatic β cells, such alternative mechanism, to sense glucose in sweet-sensitive taste cells, might involve glucose transporters and KATP channels. Their activation may induce depolarization-dependent Ca2+ signals and release of GLP-1, which binds to its receptors on intragemmal nerve fibers. Via unknown neuronal and/or endocrine mechanisms, this pathway may contribute to both, behavioral attraction and/or induction of cephalic-phase insulin release upon oral sweet stimulation. Here, we critically review the evidence for a parallel sweet-sensitive pathway, involved signaling mechanisms, neural processing, interactions with endocrine hormonal mechanisms, and its sensitivity to different stimuli. Finally, we propose its physiological role in detecting the energy content of food and preparing for digestion.
Collapse
|
37
|
Mahato DK, Keast R, Liem DG, Russell CG, Cicerale S, Gamlath S. Sugar Reduction in Dairy Food: An Overview with Flavoured Milk as an Example. Foods 2020; 9:E1400. [PMID: 33023125 PMCID: PMC7600122 DOI: 10.3390/foods9101400] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Owing to the public health concern associated with the consumption of added sugar, the World Health Organization recommends cutting down sugar in processed foods. Furthermore, due to the growing concern of increased calorie intake from added sugar in sweetened dairy foods, the present review provides an overview of different types and functions of sugar, various sugar reduction strategies, and current trends in the use of sweeteners for sugar reduction in dairy food, taking flavoured milk as a central theme where possible to explore the aforementioned aspects. The strength and uniqueness of this review are that it brings together all the information on the available types of sugar and sugar reduction strategies and explores the current trends that could be applied for reducing sugar in dairy foods without much impact on consumer acceptance. Among different strategies for sugar reduction, the use of natural non-nutritive sweeteners (NNSs), has received much attention due to consumer demand for natural ingredients. Sweetness imparted by sugar can be replaced by natural NNSs, however, sugar provides more than just sweetness to flavoured milk. Sugar reduction involves multiple technical challenges to maintain the sensory properties of the product, as well as to maintain consumer acceptance. Because no single sugar has a sensory profile that matches sucrose, the use of two or more natural NNSs could be an option for food industries to reduce sugar using a holistic approach rather than a single sugar reduction strategy. Therefore, achieving even a small sugar reduction can significantly improve the diet and health of an individual.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia; (R.K.); (D.G.L.); (C.G.R.); (S.C.); (S.G.)
| | | | | | | | | | | |
Collapse
|
38
|
Dunkel A, Hofmann T, Di Pizio A. In Silico Investigation of Bitter Hop-Derived Compounds and Their Cognate Bitter Taste Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10414-10423. [PMID: 32027492 DOI: 10.1021/acs.jafc.9b07863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The typical bitter taste of beer is caused by adding hops (Humulus lupulus L.) during the wort boiling process. The bitter taste of hop-derived compounds was found to be mediated by three bitter taste receptors: TAS2R1, TAS2R14, and TAS2R40. In this work, structural bioinformatics analyses were used to characterize the binding modes of trans-isocohumulone, trans-isohumulone, trans-isoadhumulone, cis-isocohumulone, cis-isohumulone, cis-isoadhumulone, cohumulone, humulone, adhumulone, and 8-prenylnaringenin into the orthosteric binding site of their cognate receptors. A conserved asparagine in transmembrane 3 was found to be essential for the recognition of hop-derived compounds, whereas the surrounding residues in the binding site of the three receptors encode the ligand specificity. Hop-derived compounds are renowned bioactive molecules and are considered as potential hit molecules for drug discovery to treat metabolic diseases. A chemoinformatics analysis revealed that hop-derived compounds cluster in a different region of the chemical space compared to known bitter food-derived compounds, pinpointing hop-derived compounds as a very peculiar class of bitter compounds.
Collapse
Affiliation(s)
- Andreas Dunkel
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner Straße 34, D-85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner Straße 34, D-85354 Freising, Germany
| |
Collapse
|
39
|
Zhang N, Wei X, Fan Y, Zhou X, Liu Y. Recent advances in development of biosensors for taste-related analyses. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115925] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Papacocea T, Papacocea R, Rădoi M, Pițuru S, Balan DG. Stomach 'tastes' the food and adjusts its emptying: A neurophysiological hypothesis (Review). Exp Ther Med 2020; 20:2392-2395. [PMID: 32765721 DOI: 10.3892/etm.2020.8874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The presence of taste receptors and their secondary messengers in stomach raised the possibility that the stomach might play a role in food 'tasting' and consequently, it might initiate specific adaptations of its secretory and motor function. Furthermore, activated taste receptors release a variety of chemical mediators able to modulate the activity of the enteric nervous system (ENS), and also to influence both secretory and motor functions of the stomach. Based on the physiological fundamental structure of a reflex arch, the stimulation of the gastric taste receptors activates sensory neurons of the gastric wall, continues with motor neurons which initiate the contraction of the local smooth muscle fibers. Beyond this, compounds which act on different taste receptors initiate different responses, stimulatory or inhibitory. These interactions may be translated in the gastric ability to selectively evacuate different nutritive compounds into the duodenum. Consequently, sugars could be favored to the detriment of other compounds.
Collapse
Affiliation(s)
- Toma Papacocea
- Department of Neurosurgery, 'St. Pantelimon' Emergency Hospital, 021659 Bucharest, Romania
| | - Raluca Papacocea
- Department of Physiology I, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mugurel Rădoi
- Department of Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 041914 Bucharest, Romania
| | - Silviu Pițuru
- Department of Dental Medicine II, 'Carol Davila' University of Medicine and Pharmacy, 010221 Bucharest, Romania
| | - Daniela Gabriela Balan
- Department of Physiology III, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
41
|
Li J, Shen T, Shi F, Fu Y. Influences of non‐nutritive sweeteners on ovarian and uterine expression of T1R2 and T1R3 in peripubertal female guinea pigs. Anim Sci J 2020; 91:e13348. [PMID: 32219957 DOI: 10.1111/asj.13348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
The underlying mechanism of taste receptor type 1 subunit 2 (T1R2) and taste receptor type 1 subunit 3 (T1R3) in the hormonal and reproductive system is still elusive. A low or a high dose of sweetness equivalent to that sodium saccharin (SS, 1.5 or 7.5 mM) and rebaudioside A (RA, 0.5 or 2.5 mM) was administered to young female guinea pigs for 28 consecutive days from the age of 28 days. Our results indicated that the sweet taste receptor subunit T1R2 was markedly expressed in the ovary and uterus of guinea pigs, whereas the T1R3 protein was expressed at a lower level. We elucidated that low-dose (1.5 mM) SS increased body and ovary weight associated with elevated ovarian expression of T1R2 in guinea pigs, unlike the high-dose (7.5 mM) SS, which suppressed the ovarian expression of T1R2 and resulted in certain adverse effects on ovarian and uterine morphology. Furthermore, high-dose (2.5 mM) RA increased the number of corpus luteum and elevated uterine expression of T1R2, whereas low-dose (0.5 mM) RA induced increased secretion of serum progesterone. Therefore, our findings suggest that we should pay more attention to the potential adverse effects, including increases in ovary weight, morphology changes, and increased progesterone that result from the dose-dependent regulation of T1R2 by non-nutritive sweeteners (NNS) in the ovaries and uteri of peripubertal females.
Collapse
Affiliation(s)
- Junrong Li
- College of Agriculture and Bio‐engineering Jinhua Polytechnic Jinhua China
- College of Animal Science Zhejiang University Hangzhou China
| | - Ting Shen
- College of Agriculture and Bio‐engineering Jinhua Polytechnic Jinhua China
| | - Fangxiong Shi
- College of Animal Science and Technology Nanjing Agricultural University Nanjing China
| | - Yan Fu
- College of Animal Science Zhejiang University Hangzhou China
| |
Collapse
|
42
|
Spaggiari G, Di Pizio A, Cozzini P. Sweet, umami and bitter taste receptors: State of the art of in silico molecular modeling approaches. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Di Pizio A, Waterloo LAW, Brox R, Löber S, Weikert D, Behrens M, Gmeiner P, Niv MY. Rational design of agonists for bitter taste receptor TAS2R14: from modeling to bench and back. Cell Mol Life Sci 2020; 77:531-542. [PMID: 31236627 PMCID: PMC11104859 DOI: 10.1007/s00018-019-03194-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
Human bitter taste receptors (TAS2Rs) are a subfamily of 25 G protein-coupled receptors that mediate bitter taste perception. TAS2R14 is the most broadly tuned bitter taste receptor, recognizing a range of chemically diverse agonists with micromolar-range potency. The receptor is expressed in several extra-oral tissues and is suggested to have physiological roles related to innate immune responses, male fertility, and cancer. Higher potency ligands are needed to investigate TAS2R14 function and to modulate it for future clinical applications. Here, a structure-based modeling approach is described for the design of TAS2R14 agonists beginning from flufenamic acid, an approved non-steroidal anti-inflammatory analgesic that activates TAS2R14 at sub-micromolar concentrations. Structure-based molecular modeling was integrated with experimental data to design new TAS2R14 agonists. Subsequent chemical synthesis and in vitro profiling resulted in new TAS2R14 agonists with improved potency compared to the lead. The integrated approach provides a validated and refined structural model of ligand-TAS2R14 interactions and a general framework for structure-based discovery in the absence of closely related experimental structures.
Collapse
Affiliation(s)
- Antonella Di Pizio
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University, Rehovot, Israel
- Section In Silico Biology & Machine Learning, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany
| | - Lukas A W Waterloo
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Regine Brox
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Transfusion Medicine and Haemostaseology, University Hospital, Erlangen, Germany
| | - Stefan Löber
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Maik Behrens
- Section Chemoreception and Biosignals, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany.
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| | - Masha Y Niv
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
44
|
Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev 2019; 28:28/154/190095. [PMID: 31871127 DOI: 10.1183/16000617.0095-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Available bronchodilators can satisfy many of the needs of patients suffering from airway disorders, but they often do not relieve symptoms and their long-term use raises safety concerns. Therefore, there is interest in developing new classes that could help to overcome the limits that characterise the existing classes.At least nine potential new classes of bronchodilators have been identified: 1) selective phosphodiesterase inhibitors; 2) bitter-taste receptor agonists; 3) E-prostanoid receptor 4 agonists; 4) Rho kinase inhibitors; 5) calcilytics; 6) agonists of peroxisome proliferator-activated receptor-γ; 7) agonists of relaxin receptor 1; 8) soluble guanylyl cyclase activators; and 9) pepducins. They are under consideration, but they are mostly in a preclinical phase and, consequently, we still do not know which classes will actually be developed for clinical use and whether it will be proven that a possible clinical benefit outweighs the impact of any adverse effect.It is likely that if developed, these new classes may be a useful addition to, rather than a substitution of, the bronchodilator therapy currently used, in order to achieve further optimisation of bronchodilation.
Collapse
Affiliation(s)
- Mario Cazzola
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
45
|
Wasilewski T, Kamysz W, Gębicki J. Bioelectronic tongue: Current status and perspectives. Biosens Bioelectron 2019; 150:111923. [PMID: 31787451 DOI: 10.1016/j.bios.2019.111923] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
In the course of evolution, nature has endowed humans with systems for the recognition of a wide range of tastes with a sensitivity and selectivity which are indispensable for the evaluation of edibility and flavour attributes. Inspiration by a biological sense of taste has become a basis for the design of instruments, operation principles and parameters enabling to mimic the unique properties of their biological precursors. In response to the demand for fast, sensitive and selective techniques of flavouring analysis, devices belonging to the group of bioelectronic tongues (B-ETs) have been designed. They combine achievements of chemometric analysis employed for many years in electronic tongues (ETs), with unique properties of bio-inspired materials, such as natural taste receptors (TRs) regarding receptor/ligand affinity. Investigations of the efficiency of the prototype devices create new application possibilities and suggest successful implementation in real applications. With advances in the field of biotechnology, microfluidics and nanotechnologies, many exciting developments have been made in the design of B-ETs in the last five years or so. The presented characteristics of the recent design solutions, application possibilities, critical evaluation of potentialities and limitations as well as the outline of further development prospects related to B-ETs should contribute to the systematisation and expansion of our knowledge.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Medical University of Gdansk, Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland, Hallera 107, 80-416, Gdansk, Poland.
| | - Wojciech Kamysz
- Medical University of Gdansk, Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland, Hallera 107, 80-416, Gdansk, Poland
| | - Jacek Gębicki
- Gdańsk University of Technology, Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
46
|
Canivenc-Lavier MC, Neiers F, Briand L. Plant polyphenols, chemoreception, taste receptors and taste management. Curr Opin Clin Nutr Metab Care 2019; 22:472-478. [PMID: 31490201 DOI: 10.1097/mco.0000000000000595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Polyphenols display beneficial health effects through chemopreventive actions on numerous chronic diseases including cancers, metabolic disorders, reproductive disorders and eating behaviour disorders. According to the principle of chemoreception, polyphenols bind cellular targets capable of accepting their stereochemistry, namely metabolizing enzymes and protein receptors, including taste receptors. The extraoral expression of taste receptors and their pharmacological interest in terms of novel drug therapies open up new perspectives on the potential use of these compounds and their interactions with other chemicals in cells. These new perspectives suggest the need to examine these phytochemicals further. However, most polyphenols have a bitterness property that may disrupt the acceptability of healthy foods or dietary supplements. RECENT FINDINGS Polyphenols bind to oral and extraoral bitter type 2 taste receptors, which modulate the signalling pathways involved in anti-inflammatory processes and metabolic and dietary regulations. Depending on their chemical nature, polyphenols may act as activators or inhibitors of taste receptors, and combinations of polyphenols (or herbal mixtures) may be used to modulate the acceptability of bitterness. SUMMARY The current review summarizes recent findings on polyphenol chemoreception and highlights the evidence of healthy effects through type 2 taste receptor mediation in signalling pathways, such as new targets, with promising perspectives.
Collapse
Affiliation(s)
- Marie-Chantal Canivenc-Lavier
- Centre des Sciences du GoÛt et de l'Alimentation (CSGA), INRA, Université de Bourgogne Franche-Comté, AgroSup, CNRS, Dijon, France
| | | | | |
Collapse
|
47
|
Real Hernandez LM, Gonzalez de Mejia E. Enzymatic Production, Bioactivity, and Bitterness of Chickpea (
Cicer arietinum
) Peptides. Compr Rev Food Sci Food Saf 2019; 18:1913-1946. [DOI: 10.1111/1541-4337.12504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Luis M. Real Hernandez
- Dept. of Food Science and Human Nutrition Univ. of Illinois at Urbana–Champaign Urbana IL 61801 U.S.A
| | - Elvira Gonzalez de Mejia
- Dept. of Food Science and Human Nutrition Univ. of Illinois at Urbana–Champaign Urbana IL 61801 U.S.A
| |
Collapse
|
48
|
Fierro F, Giorgetti A, Carloni P, Meyerhof W, Alfonso-Prieto M. Dual binding mode of "bitter sugars" to their human bitter taste receptor target. Sci Rep 2019; 9:8437. [PMID: 31186454 PMCID: PMC6560132 DOI: 10.1038/s41598-019-44805-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
The 25 human bitter taste receptors (hTAS2Rs) are responsible for detecting bitter molecules present in food, and they also play several physiological and pathological roles in extraoral compartments. Therefore, understanding their ligand specificity is important both for food research and for pharmacological applications. Here we provide a molecular insight into the exquisite molecular recognition of bitter β-glycopyranosides by one of the members of this receptor subclass, hTAS2R16. Most of its agonists have in common the presence of a β-glycopyranose unit along with an extremely structurally diverse aglycon moiety. This poses the question of how hTAS2R16 can recognize such a large number of "bitter sugars". By means of hybrid molecular mechanics/coarse grained molecular dynamics simulations, here we show that the three hTAS2R16 agonists salicin, arbutin and phenyl-β-D-glucopyranoside interact with the receptor through a previously unrecognized dual binding mode. Such mechanism may offer a seamless way to fit different aglycons inside the binding cavity, while maintaining the sugar bound, similar to the strategy used by several carbohydrate-binding lectins. Our prediction is validated a posteriori by comparison with mutagenesis data and also rationalizes a wealth of structure-activity relationship data. Therefore, our findings not only provide a deeper molecular characterization of the binding determinants for the three ligands studied here, but also give insights applicable to other hTAS2R16 agonists. Together with our results for other hTAS2Rs, this study paves the way to improve our overall understanding of the structural determinants of ligand specificity in bitter taste receptors.
Collapse
Affiliation(s)
- Fabrizio Fierro
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- Department of Biotechnology, University of Verona, Verona, Italy
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Department of Physics, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
- VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany.
- JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
49
|
Di Pizio A, Behrens M, Krautwurst D. Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors. Int J Mol Sci 2019; 20:E1402. [PMID: 30897734 PMCID: PMC6471708 DOI: 10.3390/ijms20061402] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules.
Collapse
Affiliation(s)
- Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| |
Collapse
|