1
|
Mather M. Autonomic dysfunction in neurodegenerative disease. Nat Rev Neurosci 2025; 26:276-292. [PMID: 40140684 DOI: 10.1038/s41583-025-00911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
In addition to their more studied cognitive and motor effects, neurodegenerative diseases are also associated with impairments in autonomic function - the regulation of involuntary physiological processes. These autonomic impairments manifest in different ways and at different stages depending on the specific disease. The neural networks responsible for autonomic regulation in the brain and body have characteristics that render them particularly susceptible to the prion-like spread of protein aggregation involved in neurodegenerative diseases. Specifically, the axons of these neurons - in both peripheral and central networks - are long and poorly myelinated axons, which make them preferential targets for pathological protein aggregation. Moreover, cortical regions integrating information about the internal state of the body are highly connected with other brain regions, which increases the likelihood of intersection with pathological pathways and prion-like spread of abnormal proteins. This leads to an autonomic 'signature' of dysfunction, characteristic of each neurodegenerative disease, that is linked to the affected networks and regions undergoing pathological aggregation.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
- Department of Psychology, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Vacchi E, Ruiz-Barrio I, Melli G. Tau biomarkers for neurodegenerative diseases: Current state and perspectives. Parkinsonism Relat Disord 2025; 134:107772. [PMID: 40185651 DOI: 10.1016/j.parkreldis.2025.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
Neurodegenerative diseases, particularly tauopathies, pose significant global health challenges, especially in aging populations. Tauopathies are characterized by progressive neuronal damage and intracellular deposits of hyperphosphorylated tau. Early and accurate diagnosis is hindered by overlapping clinical features and reliance on post-mortem analyses, emphasizing the need for reliable in vivo biomarkers to improve early diagnosis and management. Advances in tau biomarkers and imaging have facilitated targeted Alzheimer's disease therapies, but progress for other tauopathies remains inadequate. Future diagnostic frameworks should integrate multiple biomarkers across different tissues within specific timelines. However, challenges such as co-pathologies and limited understanding of pathogenic mechanisms remain significant obstacles. Emerging ultrasensitive technologies, including seeding amplification assays and minimally invasive sources of biomarkers like skin biopsy, hold promise for biomarker discovery. Here, we present the current clinical classification of tau proteinopathies, the challenges that are posed by the actual diagnostic criteria, followed by the most recent advancements in tau biomarker technologies.
Collapse
Affiliation(s)
- Elena Vacchi
- Neurodegenerative Diseases Group, Laboratory for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Iñigo Ruiz-Barrio
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain; Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain; Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Giorgia Melli
- Neurodegenerative Diseases Group, Laboratory for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland; Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.
| |
Collapse
|
3
|
Zhou J, Sun X, Wang K, Shen M, Yu J, Yao Q, Hong H, Tang C, Wang Q. What Information do Systemic Pathological Changes Bring to the Diagnosis and Treatment of Alzheimer's Disease? Neurosci Bull 2025:10.1007/s12264-025-01399-z. [PMID: 40257662 DOI: 10.1007/s12264-025-01399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/21/2025] [Indexed: 04/22/2025] Open
Abstract
Alzheimer's disease (AD) is regarded as a neurodegenerative disease, and it has been proposed that AD may be a systemic disease. Studies have reported associations between non-neurological diseases and AD. The correlations between AD pathology and systemic (non-neurological) pathological changes are intricate, and the mechanisms underlying these correlations and their causality are unclear. In this article, we review the association between AD and disorders of other systems. In addition, we summarize the possible mechanisms associated with AD and disorders of other systems, mainly from the perspective of AD pathology. Regarding the relationship between AD and systemic pathological changes, we aim to provide a new outlook on the early warning signs and treatment of AD, such as establishing a diagnostic and screening system based on more accessible peripheral samples.
Collapse
Affiliation(s)
- Jinyue Zhou
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Xiaoli Sun
- Department of Chemistry, Lishui University, Lishui, 32300, China
| | - Keren Wang
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China
| | - Min Shen
- Reference Laboratory, Medical System Biotechnology Co., Ltd, Ningbo, 315104, China
| | - Jingbo Yu
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Qi Yao
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Hang Hong
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China.
| | - Chunlan Tang
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China.
| | - Qinwen Wang
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China.
| |
Collapse
|
4
|
Buchholz E, Machule ML, Buthut M, Stefanovski L, Rössling R, Prüss H. Overlapping presence of β-amyloid, tau, p-tau, and α-synuclein in skin nerve fibers in Alzheimer's disease. J Neurol 2025; 272:247. [PMID: 40042672 PMCID: PMC11882635 DOI: 10.1007/s00415-025-12994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/09/2025]
Abstract
OBJECTIVE Skin nerve fiber deposition of proteins can be strongly associated with neurodegenerative diseases, such as phosphorylated α-synuclein (p-SN) in synucleinopathies. Little is known about other neurodegenerative proteins, such as tau or β-amyloid, in skin nerve fibers of patients with Alzheimer's disease (AD) and their link to underlying neurodegeneration. We therefore aimed for describing the presence and distribution of these proteins in the skin of patients with AD and non-AD controls. METHODS Skin biopsies were taken from 45 patients with AD (n = 23) and non-AD controls (n = 22). Nerve fibers were identified using antibodies against protein gene product 9.5 (PGP9.5), and protein deposits were evaluated with double-immunostaining of β-amyloid 1-42 (Aβ1-42), p-SN, tau, and phospho-tau (p-tau). RESULTS Skin nerve fiber Aβ1-42 was present in 7/23 (30.4%) patients with AD and 7/22 (31.8%) controls. p-tau was detected in 12/23 (52.2%) patients with AD and 9/22 (40.9%) controls. Tau was present in 19/23 (82.6%) patients with AD and 16/22 (72.7%) controls. p-SN was detected in 12/23 (52.2%) patients with AD and 8/22 (36.4%) controls. Frequencies of deposits were not significantly different between groups and protein frequency did not correlate with severity of cognitive impairment. INTERPRETATION Deposits of β-amyloid 1-42, p-SN, tau, and p-tau were detected in skin nerve fibers in both patient groups; however, qualitative assessment did not discriminate between AD and non-AD patients at this sample size. Future analyses of protein distribution and spreading in peripheral nerves may give new insights into the pathophysiology of neurodegenerative diseases, but may require quantitative detection.
Collapse
Affiliation(s)
- Emilie Buchholz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie-Luise Machule
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Buthut
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leon Stefanovski
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rosa Rössling
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Forrest SL, Kovacs GG. Current concepts and molecular pathology of neurodegenerative diseases. Pathology 2025; 57:178-190. [PMID: 39672768 DOI: 10.1016/j.pathol.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 12/15/2024]
Abstract
Neurodegenerative diseases are a pathologically, clinically and genetically diverse group of diseases characterised by selective dysfunction, loss of synaptic connectivity and neurodegeneration, and are associated with the deposition of misfolded proteins in neurons and/or glia. Molecular studies have highlighted the role of conformationally altered proteins in the pathogenesis of neurodegenerative diseases and have paved the way for developing disease-specific biomarkers that capture and differentiate the main type/s of protein abnormality responsible for neurodegenerative diseases, some of which are currently used in clinical practice. These proteins follow sequential patterns of anatomical involvement and disease spread in the brain and may also be detected in peripheral organs. Recent studies suggest that glia are likely to have an important role in pathological spread throughout the brain and even follow distinct progression patterns from neurons. In addition to morphological and molecular approaches to the classification of these disorders, a further new stratification level incorporates the structure of protein filaments detected by cryogenic electron microscopy. Rather than occurring in isolation, combined deposition of tau, amyloid-β, α-synuclein and TDP-43 are frequently observed in neurodegenerative diseases and in the ageing brain. These can be overlooked, and their clinicopathological relevance is difficult to interpret. This review provides an overview of disease pathogenesis and diagnostic implications, recent molecular and ultrastructural classification of neurodegenerative diseases, how to approach ageing-related and mixed pathologies, and the importance of the protein-based classification system for practising neuropathologists and clinicians. This review also informs general pathologists about the relevance of ongoing full body autopsy studies to understand the spectrum and pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia; Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
D'Antonio F, Vivacqua G, Serrentino M, Nalepa M, Skweres A, Peconi M, De Bartolo MI, Panigutti M, Sepe Monti M, Talarico G, Fabbrini G, Bruno G. Salivary biomarkers for the molecular diagnosis of dementia with Lewy bodies. J Alzheimers Dis 2025; 104:452-462. [PMID: 40084669 DOI: 10.1177/13872877251317720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
BackgroundDespite dementia with Lewy bodies (DLB) being the second most common form of neurodegenerative dementia, more than 80% of DLB cases are initially misdiagnosed. Alpha-synuclein (a-syn) and tau species have been detected in peripheral tissues and biological fluids of DLB patients and among different biological fluids, saliva represent an easely accessible and non-invasive source for biomarker detection.ObjectiveThis study aimed to investigate salivary a-syn and tau species as molecular disease biomarkers, assessing their potential in the diagnosis of DLB and in the differential diagnosis on respect to Alzheimer's disease (AD) and Parkinson's disease (PD).MethodsWe measured total and oligomeric a-syn, total-tau, and S199-phosphorylated-tau (pS199-tau) in the saliva of 21 DLB, 20 AD, 20 PD patients, and 20 healthy subjects (HS) using quantitative enzyme-linked immunosorbent assay (ELISA) analyses.ResultsSalivary total a-syn was not significantly changed between the different groups, whereas all pathological groups had a higher oligomeric a-syn concentration than HS. Salivary total-tau concentration was higher in all the pathological groups than HS, whereas the concentrations did not differ among patients' groups. Conversely, salivary levels of pS199-tau was higher in DLB and AD patients than in HS and PD patients. Both correlation matrix and principal component analysis showed that core clinical DLB features were related to a-syn pathology, while cognitive decline was associated with salivary levels of pS199-tau in both DLB and AD patients. Receiver operating characteristic analysis reported high diagnostic accuracy for both a-syn oligomers and pS199-tau, between DLB and HS, and an adequate accuracy between DLB and PD. Conversely, the diagnostic accuracy was not optimal between DLB patients and AD patients.ConclusionsThese findings provide preliminary evidence that salivary a-syn and tau species might be promising in identifying DLB patients on respect to PD patients and HS, while the diagnostic potential is limited on respect to AD.
Collapse
Affiliation(s)
- Fabrizia D'Antonio
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giorgio Vivacqua
- Department of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Roma, Italy
| | - Marco Serrentino
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Martyna Nalepa
- Department of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Roma, Italy
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Aleksandra Skweres
- Department of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Roma, Italy
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Martina Peconi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | - Micaela Sepe Monti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Giovanni Fabbrini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Wang Z, Wu L, Gerasimenko M, Gilliland T, Shah ZSA, Lomax E, Yang Y, Gunzler SA, Donadio V, Liguori R, Xu B, Zou WQ. Seeding activity of skin misfolded tau as a biomarker for tauopathies. Mol Neurodegener 2024; 19:92. [PMID: 39609917 PMCID: PMC11606191 DOI: 10.1186/s13024-024-00781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Tauopathies are a group of age-related neurodegenerative diseases characterized by the accumulation of pathologically hyperphosphorylated tau protein in the brain, leading to prion-like aggregation and propagation. They include Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Currently, reliable diagnostic biomarkers that directly reflect the capability of propagation and spreading of misfolded tau aggregates in peripheral tissues and body fluids are lacking. METHODS We utilized the seed-amplification assay (SAA) employing ultrasensitive real-time quaking-induced conversion (RT-QuIC) to assess the prion-like seeding activity of pathological tau in the skin of cadavers with neuropathologically confirmed tauopathies, including AD, PSP, CBD, and PiD, compared to normal controls. RESULTS We found that the skin tau-SAA demonstrated a significantly higher sensitivity (75-80%) and specificity (95-100%) for detecting tauopathy, depending on the tau substrates used. Moreover, the increased tau-seeding activity was also observed in biopsy skin samples from living AD and PSP patients examined. Analysis of the end products of skin-tau SAA confirmed that the increased seeding activity was accompanied by the formation of tau aggregates with different physicochemical properties related to two different tau substrates used. CONCLUSIONS Overall, our study provides proof-of-concept that the skin tau-SAA can differentiate tauopathies from normal controls, suggesting that the seeding activity of misfolded tau in the skin could serve as a diagnostic biomarker for tauopathies.
Collapse
Affiliation(s)
- Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Ling Wu
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Maria Gerasimenko
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tricia Gilliland
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zahid Syed Ali Shah
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Evalynn Lomax
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yirong Yang
- Institute of Neurology, Department of Neurology, Jiangxi Academy of Clinical Medical Sciences, Rare Disease Center, Key Laboratory of Rare Neurological Diseases of Jiangxi Province Health Commission, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Steven A Gunzler
- Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences of Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences of Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Bin Xu
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA.
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Institute of Neurology, Department of Neurology, Jiangxi Academy of Clinical Medical Sciences, Rare Disease Center, Key Laboratory of Rare Neurological Diseases of Jiangxi Province Health Commission, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
8
|
Xiang J, Tang J, Kang F, Ye J, Cui Y, Zhang Z, Wang J, Wu S, Ye K. Gut-induced alpha-Synuclein and Tau propagation initiate Parkinson's and Alzheimer's disease co-pathology and behavior impairments. Neuron 2024; 112:3585-3601.e5. [PMID: 39241780 DOI: 10.1016/j.neuron.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/30/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
Tau interacts with α-Synuclein (α-Syn) and co-localizes with it in the Lewy bodies, influencing α-Syn pathology in Parkinson's disease (PD). However, whether these biochemical events regulate α-Syn pathology spreading from the gut into the brain remains incompletely understood. Here, we show that α-Syn and Tau co-pathology is spread into the brain in gut-inducible SYN103+/- and/or TAU368+/- transgenic mouse models, eliciting behavioral defects. Gut pathology was initially observed, and α-Syn or Tau pathology was subsequently propagated into the DMV or NTS and then to other brain regions. Remarkably, more extensive spreading and widespread neuronal loss were found in double transgenic mice (Both) than in single transgenic mice. Truncal vagotomy and α-Syn deficiency significantly inhibited synucleinopathy or tauopathy spreading. The α-Syn PET tracer [18F]-F0502B detected α-Syn aggregates in the gut and brain. Thus, α-Syn and Tau co-pathology can propagate from the gut to the brain, triggering behavioral disorders.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Jingrong Tang
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jiajun Ye
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yueying Cui
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shengxi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
9
|
Doroszkiewicz J, Mroczko J, Winkel I, Mroczko B. Metabolic and Immune System Dysregulation: Unraveling the Connections between Alzheimer's Disease, Diabetes, Inflammatory Bowel Diseases, and Rheumatoid Arthritis. J Clin Med 2024; 13:5057. [PMID: 39274269 PMCID: PMC11396443 DOI: 10.3390/jcm13175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Alzheimer's disease (AD), diabetes mellitus (DM), inflammatory bowel diseases (IBD), and rheumatoid arthritis (RA) are chronic conditions affecting millions globally. Despite differing clinical symptoms, these diseases share pathophysiological mechanisms involving metabolic and immune system dysregulation. This paper examines the intricate connections between these disorders, focusing on shared pathways such as insulin resistance, lipid metabolism dysregulation, oxidative stress, and chronic inflammation. An important aspect is the role of amyloid-beta plaques and tau protein tangles, which are hallmark features of AD. These protein aggregates are influenced by metabolic dysfunction and inflammatory processes similar to those seen in DM, RA, and IBD. This manuscript explores how amyloid and tau pathologies may be exacerbated by shared metabolic and immune dysfunction. Additionally, this work discusses the gut-brain axis and the influence of gut microbiota in mediating disease interactions. Understanding these commonalities opens new avenues for multi-targeted therapeutic approaches that address the root causes rather than merely the symptoms of these conditions. This integrative perspective could lead to more effective interventions and improved patient outcomes, emphasizing the importance of a unified approach in managing these interconnected diseases.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
10
|
Chung DEC, Deng X, Yalamanchili HK, Revelli JP, Han AL, Tadros B, Richman R, Dias M, Naini FA, Boeynaems S, Hyman BT, Zoghbi HY. The big tau splice isoform resists Alzheimer's-related pathological changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605685. [PMID: 39211086 PMCID: PMC11360890 DOI: 10.1101/2024.07.30.605685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In Alzheimer's disease (AD), the microtubule-binding protein tau becomes abnormally hyperphosphorylated and aggregated in selective brain regions such as the cortex and hippocampus 1-3 . However, other brain regions like the cerebellum and brain stem remain largely intact despite the universal expression of tau throughout the brain. Here, we found that an understudied splice isoform of tau termed "big tau" is significantly more abundant in the brain regions less vulnerable to tau pathology compared to tau pathology-vulnerable regions. We used various cellular and animal models to demonstrate that big tau possesses multiple properties that can resist AD-related pathological changes. Importantly, human AD patients show a higher expression level of pathology-resisting big tau in the cerebellum, the brain region spared from tau pathology. Our study examines the unique properties of big tau, expanding our current understanding of tau pathophysiology. Altogether, our data suggest that alternative splicing to favor big tau is a viable strategy to modulate tau pathology.
Collapse
|
11
|
Buchholz S, Zempel H. The six brain-specific TAU isoforms and their role in Alzheimer's disease and related neurodegenerative dementia syndromes. Alzheimers Dement 2024; 20:3606-3628. [PMID: 38556838 PMCID: PMC11095451 DOI: 10.1002/alz.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.
Collapse
Affiliation(s)
- Sarah Buchholz
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Present address:
Department Schaefer, Neurobiology of AgeingMax Planck Institute for Biology of AgeingCologneGermany
| | - Hans Zempel
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| |
Collapse
|
12
|
Tanaka H, Martinez-Valbuena I, Forrest SL, Couto B, Reyes NG, Morales-Rivero A, Lee S, Li J, Karakani AM, Tang-Wai DF, Tator C, Khadadadi M, Sadia N, Tartaglia MC, Lang AE, Kovacs GG. Distinct involvement of the cranial and spinal nerves in progressive supranuclear palsy. Brain 2024; 147:1399-1411. [PMID: 37972275 PMCID: PMC10994524 DOI: 10.1093/brain/awad381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
The most frequent neurodegenerative proteinopathies include diseases with deposition of misfolded tau or α-synuclein in the brain. Pathological protein aggregates in the PNS are well-recognized in α-synucleinopathies and have recently attracted attention as a diagnostic biomarker. However, there is a paucity of observations in tauopathies. To characterize the involvement of the PNS in tauopathies, we investigated tau pathology in cranial and spinal nerves (PNS-tau) in 54 tauopathy cases [progressive supranuclear palsy (PSP), n = 15; Alzheimer's disease (AD), n = 18; chronic traumatic encephalopathy (CTE), n = 5; and corticobasal degeneration (CBD), n = 6; Pick's disease, n = 9; limbic-predominant neuronal inclusion body 4-repeat tauopathy (LNT), n = 1] using immunohistochemistry, Gallyas silver staining, biochemistry, and seeding assays. Most PSP cases revealed phosphorylated and 4-repeat tau immunoreactive tau deposits in the PNS as follows: (number of tau-positive cases/available cases) cranial nerves III: 7/8 (88%); IX/X: 10/11 (91%); and XII: 6/6 (100%); anterior spinal roots: 10/10 (100%). The tau-positive inclusions in PSP often showed structures with fibrillary (neurofibrillary tangle-like) morphology in the axon that were also recognized with Gallyas silver staining. CBD cases rarely showed fine granular non-argyrophilic tau deposits. In contrast, tau pathology in the PNS was not evident in AD, CTE and Pick's disease cases. The single LNT case also showed tau pathology in the PNS. In PSP, the severity of PNS-tau involvement correlated with that of the corresponding nuclei, although, occasionally, p-tau deposits were present in the cranial nerves but not in the related brainstem nuclei. Not surprisingly, most of the PSP cases presented with eye movement disorder and bulbar symptoms, and some cases also showed lower-motor neuron signs. Using tau biosensor cells, for the first time we demonstrated seeding capacity of tau in the PNS. In conclusion, prominent PNS-tau distinguishes PSP from other tauopathies. The morphological differences of PNS-tau between PSP and CBD suggest that the tau pathology in PNS could reflect that in the central nervous system. The high frequency and early presence of tau lesions in PSP suggest that PNS-tau may have clinical and biomarker relevance.
Collapse
Affiliation(s)
- Hidetomo Tanaka
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Ivan Martinez-Valbuena
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Shelley L Forrest
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Nikolai Gil Reyes
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Alonso Morales-Rivero
- University Health Network Memory Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Seojin Lee
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Jun Li
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Ali M Karakani
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - David F Tang-Wai
- University Health Network Memory Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
- Department of Medicine/Division of Neurology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Charles Tator
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
- Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Mozhgan Khadadadi
- Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Nusrat Sadia
- Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Maria Carmela Tartaglia
- University Health Network Memory Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
- Department of Medicine/Division of Neurology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
- Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
- Department of Medicine/Division of Neurology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario M5T 0S8, Canada
- Department of Medicine/Division of Neurology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Ontario M5T 0S8, Canada
| |
Collapse
|
13
|
Wang Z, Wu L, Gerasimenko M, Gilliland T, Gunzler SA, Donadio V, Liguori R, Xu B, Zou WQ. Seeding Activity of Skin Misfolded Tau as a Biomarker for Tauopathies. RESEARCH SQUARE 2024:rs.3.rs-3968879. [PMID: 38496453 PMCID: PMC10942562 DOI: 10.21203/rs.3.rs-3968879/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Tauopathies are a group of age-related neurodegenerative diseases characterized by the accumulation of pathologically phosphorylated tau protein in the brain, leading to prion-like propagation and aggregation. They include Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Currently, reliable diagnostic biomarkers that directly reflect the capability of propagation and spreading of misfolded tau aggregates in peripheral tissues and body fluids are lacking. Methods We utilized the seed-amplification assay (SAA) employing ultrasensitive real-time quaking-induced conversion (RT-QuIC) to assess the prion-like seeding activity of pathological tau in the skin of cadavers with neuropathologically confirmed tauopathies, including AD, PSP, CBD, and PiD, compared to normal controls. Results We found that the skin prion-SAA demonstrated a significantly higher sensitivity (75-80%) and specificity (95-100%) for detecting tauopathy, depending on the tau substrates used. Moreover, increased tau-seeding activity was also observed in biopsy skin samples from living AD and PSP patients examined. Analysis of the end products of skin-tau SAA confirmed that the increased seeding activity was accompanied by the formation of tau aggregates with different physicochemical properties related to two different tau substrates used. Conclusions Overall, our study provides proof-of-concept that the skin tau-SAA can differentiate tauopathies from normal controls, suggesting that the seeding activity of misfolded tau in the skin could serve as a diagnostic biomarker for tauopathies.
Collapse
Affiliation(s)
- Zerui Wang
- Case Western Reserve University School of Medicine
| | - Ling Wu
- North Carolina Central University
| | | | | | - Steven A Gunzler
- University Hospitals Cleveland Medical Center: UH Cleveland Medical Center
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences of Bolgna: IRCCS Istituto Delle Scienze Neurologiche di Bologna
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences of Bologna: IRCCS Istituto Delle Scienze Neurologiche di Bologna
| | - Bin Xu
- North Carolina Central University
| | - Wen-Quan Zou
- First Affiliated Hospital of Nanchang University
| |
Collapse
|
14
|
Sun J, Ludvigsson JF, Roelstraete B, Pedersen NL, Pawitan Y, Wirdefeldt K, Fang F. Gastrointestinal biopsy of normal mucosa or nonspecific inflammation and risk of neurodegenerative disease: Nationwide matched cohort study. Eur J Neurol 2023; 30:3430-3439. [PMID: 36447380 DOI: 10.1111/ene.15654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/02/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND PURPOSE Evidence has accumulated to support the early involvement of altered gastrointestinal (GI) function in neurodegenerative disease. However, risk of Alzheimer disease (AD) and Parkinson disease (PD) among individuals with a GI biopsy of normal mucosa or nonspecific inflammation is unknown. METHODS This matched cohort study included all individuals in Sweden with a GI biopsy of normal mucosa (n = 480,346) or nonspecific inflammation (n = 655,937) during 1965-2016 (exposed group) as well as their individually matched population references and unexposed full siblings. A flexible parametric model and stratified Cox model were used to estimate hazard ratio (HR) and its 95% confidence interval (CI). RESULTS Individuals with normal mucosa or nonspecific inflammation had a higher risk of AD and PD during the 20 years after biopsy. Compared with the population references, individuals with normal mucosa had an increased risk of AD (incidence rate [IR] difference = 13.53 per 100,000 person-years, HR [95% CI] = 1.15 [1.11-1.20]) and PD (IR difference = 6.72, HR [95% CI] = 1.16 [1.10-1.23]). Elevated risk was also observed for nonspecific inflammation regarding AD (IR difference = 13.28, HR [95% CI] = 1.11 [1.08-1.14]) and PD (IR difference = 6.83, HR [95% CI] = 1.10 [1.06-1.14]). Similar results were observed in subgroup and sensitivity analyses and when comparing with their unexposed siblings. CONCLUSIONS Individuals with a GI biopsy of normal mucosa or nonspecific inflammation had an increased risk of AD and PD. This adds new evidence of the early involvement of GI dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Jiangwei Sun
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Bjorn Roelstraete
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Karin Wirdefeldt
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Sun HL, Yao XQ, Lei L, Jin WS, Bai YD, Zeng GH, Shi AY, Liang J, Zhu L, Liu YH, Wang YJ, Bu XL. Associations of Blood and Cerebrospinal Fluid Aβ and tau Levels with Renal Function. Mol Neurobiol 2023; 60:5343-5351. [PMID: 37310581 DOI: 10.1007/s12035-023-03420-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
Amyloid β (Aβ) and tau play pivotal roles in the pathogenesis of Alzheimer's disease (AD). Previous studies have shown that brain-derived Aβ and tau can be cleared through transport into the periphery, and the kidneys may be vital organs involved in the clearance of Aβ and tau. However, the effects of deficiency in the clearance of Aβ and tau by the kidneys on brain AD-type pathologies in humans remain largely unknown. In this study, we first recruited 41 patients with chronic kidney disease (CKD) and 40 age- and sex-matched controls with normal renal function to analyze the associations of the estimated glomerular filtration rate (eGFR) with plasma Aβ and tau levels. To analyze the associations of eGFR with cerebrospinal fluid (CSF) AD biomarkers, we recruited 42 cognitively normal CKD patients and 150 cognitively normal controls with CSF samples. Compared with controls with normal renal function, CKD patients had higher plasma levels of Aβ40, Aβ42 and total tau (T-tau), lower CSF levels of Aβ40 and Aβ42 and higher levels of CSF T-tau/Aβ42 and phosphorylated tau (P-tau)/Aβ42. Plasma Aβ40, Aβ42, and T-tau levels were negatively correlated with eGFR. In addition, eGFR was negatively correlated with CSF levels of T-tau, T-tau/Aβ42, and P-tau/Aβ42 but positively correlated with Mini-Mental State Examination (MMSE) scores. Thus, this study showed that the decline in renal function was correlated with abnormal AD biomarkers and cognitive decline, which provides human evidence that renal function may be involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Hao-Lun Sun
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Lei
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Wang-Sheng Jin
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yu-Di Bai
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Gui-Hua Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - An-Yu Shi
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jun Liang
- Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, China
| | - Li Zhu
- Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, China
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China.
| |
Collapse
|
16
|
Islam A, Mishra A, Ahsan R, Fareha S. Phytopharmaceuticals and Herbal Approaches to Target Neurodegenerative Disorders. Drug Res (Stuttg) 2023; 73:388-407. [PMID: 37308092 DOI: 10.1055/a-2076-7939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neurodegeneration is characterized as the continuous functional and structural loss of neurons, resulting in various clinical and pathological manifestations and loss of functional anatomy. Medicinal plants have been oppressed from ancient years and are highly considered throughout the world as a rich source of therapeutic means for the prevention, treatment of various ailments. Plant-derived medicinal products are becoming popular in India and other nations. Further herbal therapies shows good impact on chronic long term illnesses including degenerative conditions of neurons and brain. The use of herbal medicines continues to expand rapidly across the world. The active phytochemical constituents of individual plants are sometimes insufficient to achieve the desirable therapeutic effects. Combining the multiple herbs in a particular ratio (polyherbalism) will give a better therapeutic effect and reduce toxicity. Herbal-based nanosystems are also being studied as a way to enhance the delivery and bioavailability of phytochemical compounds for the treatment of neurodegenerative diseases. This review mainly focuses on the importance of the herbal medicines, polyherbalism and herbal-based nanosystems and its clinical significance for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anas Islam
- Department of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| | - Rabia Ahsan
- Department of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, India
| | - Syed Fareha
- Department of Bioengineering, Integral University,, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Solorzano A, Brady M, Bhatt N, Johnson A, Burgess B, Leyva H, Puangmalai N, Jerez C, Wood R, Kayed R, Deane R. Central and peripheral tau retention modulated by an anti-tau antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553682. [PMID: 37645819 PMCID: PMC10462070 DOI: 10.1101/2023.08.17.553682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tau protein blood levels dependent on its distribution to peripheral organs and possible elimination from the body. Thus, the peripheral distribution of CSF-derived tau protein was explored, especially since there is a transition to blood-based biomarkers and the emerging idea that tau pathology may spread beyond brain. Near infrared fluorescence (NIRF) was mainly used to analyze tau (tau-NIRF) distribution after its intracisternal or intravenous injection. There was a striking uptake of blood- or CSF-derived tau-NIRF protein by the skeletal structures, liver, small intestine (duodenum), gall bladder, kidneys, urinary bladder, lymph nodes, heart, and spleen. In aging and in older APP/PS1 mice, tau uptake in regions, such as the brain, liver, and skeleton, was increased. In bone (femur) injected tau protein was associated with integrin-binding sialoprotein (IBSP), a major non-collagenous glycoprotein that is associated with mineralization. Tau-NIRF was cleared slowly from CSF via mainly across the cribriform plate, and cervical lymph nodes. In brain, some of the CSF injected tau protein was associated with NeuN-positive and PDGFRý-positive cells, which may explain its retention. The presence of tau in the bladders suggested excretion routes of tau. CSF anti-tau antibody increased CSF tau clearance, while blood anti-tau antibody decreased tau accumulation in the femur but not in liver, kidney, and spleen. Thus, the data show a body-wide distribution and retention of CSF-derived tau protein, which increased with aging and in older APP/PS1 mice. Further work is needed to elucidate the relevance of tau accumulation in each organ to tauopathy.
Collapse
|
18
|
Hamsafar Y, Chen Q, Borowsky AD, Beach TG, Serrano GE, Sue LI, Adler CH, Walker DG, Dugger BN. Biochemical analyses of tau and other neuronal markers in the submandibular gland and frontal cortex across stages of Alzheimer disease. Neurosci Lett 2023; 810:137330. [PMID: 37330193 PMCID: PMC11006283 DOI: 10.1016/j.neulet.2023.137330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/14/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
Hyperphosphorylation of the microtubule-associated protein tau is hypothesized to lead to the development of neurofibrillary tangles in select brain regions during normal aging and in Alzheimer disease (AD). The distribution of neurofibrillary tangles is staged by its involvement starting in the transentorhinal regions of the brain and in final stages progress to neocortices. However, it has also been determined neurofibrillary tangles can extend into the spinal cord and select tau species are found in peripheral tissues and this may be depended on AD disease stage. To further understand the relationships of peripheral tissues to AD, we utilized biochemical methods to evaluate protein levels of total tau and phosphorylated tau (p-tau) as well as other neuronal proteins (i.e., tyrosine hydroxylase (TH), neurofilament heavy chain (NF-H), and microtubule-associated protein 2 (MAP2)) in the submandibular gland and frontal cortex of human cases across different clinicopathological stages of AD (n = 3 criteria not met or low, n = 6 intermediate, and n = 9 high likelihood that dementia is due to AD based on National Institute on Aging-Reagan criteria). We report differential protein levels based on the stage of AD, anatomic specific tau species, as well as differences in TH and NF-H. In addition, exploratory findings were made of the high molecular weight tau species big tau that is unique to peripheral tissues. Although sample sizes were small, these findings are, to our knowledge, the first comparison of these specific protein changes in these tissues.
Collapse
Affiliation(s)
- Yamah Hamsafar
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 4400 V Street, Sacramento, CA 95817, USA
| | - Qian Chen
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 4400 V Street, Sacramento, CA 95817, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 4400 V Street, Sacramento, CA 95817, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, 10515 W Santa Fe Dr., Sun City, AZ 95351, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute, 10515 W Santa Fe Dr., Sun City, AZ 95351, USA
| | - Lucia I Sue
- Banner Sun Health Research Institute, 10515 W Santa Fe Dr., Sun City, AZ 95351, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E. Shea Blvd., Scottsdale, AZ 85259, USA
| | - Douglas G Walker
- School of Life Sciences and Biodesign Institute, Arizona State University, 1151 S. Forest Ave., Tempe, AZ 85281, USA
| | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 4400 V Street, Sacramento, CA 95817, USA.
| |
Collapse
|
19
|
Zhu G, Zhao J, Zhang H, Wang G, Chen W. Gut Microbiota and its Metabolites: Bridge of Dietary Nutrients and Alzheimer's Disease. Adv Nutr 2023; 14:819-839. [PMID: 37075947 PMCID: PMC10334159 DOI: 10.1016/j.advnut.2023.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment and neuroinflammation. Recent research has revealed the crucial role of gut microbiota and microbial metabolites in modulating AD. However, the mechanisms by which the microbiome and microbial metabolites affect brain function remain poorly understood. Here, we review the literature on changes in the diversity and composition of the gut microbiome in patients with AD and in animal models of AD. We also discuss the latest progress in understanding the pathways by which the gut microbiota and microbial metabolites from the host or diet regulate AD. By understanding the effects of dietary components on brain function, microbiota composition, and microbial metabolites, we examine the potential for manipulation of the gut microbiota through dietary intervention to delay the progression of AD. Although it is challenging to translate our understanding of microbiome-based approaches to dietary guidelines or clinical therapies, these findings provide an attractive target for promoting brain function.
Collapse
Affiliation(s)
- Guangsu Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China; National Engineering Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
20
|
Chapelet G, Béguin N, Castellano B, Grit I, de Coppet P, Oullier T, Neunlist M, Blottière H, Rolli-Derkinderen M, Le Dréan G, Derkinderen P. Tau expression and phosphorylation in enteroendocrine cells. Front Neurosci 2023; 17:1166848. [PMID: 37332860 PMCID: PMC10272410 DOI: 10.3389/fnins.2023.1166848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Background and objective There is mounting evidence to suggest that the gut-brain axis is involved in the development of Parkinson's disease (PD). In this regard, the enteroendocrine cells (EEC), which faces the gut lumen and are connected with both enteric neurons and glial cells have received growing attention. The recent observation showing that these cells express alpha-synuclein, a presynaptic neuronal protein genetically and neuropathologically linked to PD came to reinforce the assumption that EEC might be a key component of the neural circuit between the gut lumen and the brain for the bottom-up propagation of PD pathology. Besides alpha-synuclein, tau is another key protein involved in neurodegeneration and converging evidences indicate that there is an interplay between these two proteins at both molecular and pathological levels. There are no existing studies on tau in EEC and therefore we set out to examine the isoform profile and phosphorylation state of tau in these cells. Methods Surgical specimens of human colon from control subjects were analyzed by immunohistochemistry using a panel of anti-tau antibodies together with chromogranin A and Glucagon-like peptide-1 (two EEC markers) antibodies. To investigate tau expression further, two EEC lines, namely GLUTag and NCI-H716 were analyzed by Western blot with pan-tau and tau isoform specific antibodies and by RT-PCR. Lambda phosphatase treatment was used to study tau phosphorylation in both cell lines. Eventually, GLUTag were treated with propionate and butyrate, two short chain fatty acids known to sense EEC, and analyzed at different time points by Western blot with an antibody specific for tau phosphorylated at Thr205. Results We found that tau is expressed and phosphorylated in EEC in adult human colon and that both EEC lines mainly express two tau isoforms that are phosphorylated under basal condition. Both propionate and butyrate regulated tau phosphorylation state by decreasing its phosphorylation at Thr205. Conclusion and inference Our study is the first to characterize tau in human EEC and in EEC lines. As a whole, our findings provide a basis to unravel the functions of tau in EEC and to further investigate the possibility of pathological changes in tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Guillaume Chapelet
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Nora Béguin
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | | | - Isabelle Grit
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Pierre de Coppet
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Thibauld Oullier
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Michel Neunlist
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Hervé Blottière
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Gwenola Le Dréan
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Pascal Derkinderen
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| |
Collapse
|
21
|
Efficacy of faecal microbiota transplantation in patients with progressive supranuclear palsy-Richardson's syndrome: a phase 2, single centre, randomised clinical trial. EClinicalMedicine 2023; 58:101888. [PMID: 36969340 PMCID: PMC10034412 DOI: 10.1016/j.eclinm.2023.101888] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
Background Faecal microbiota transplantation (FMT) has demonstrated efficacy in treating gastrointestinal (GI) diseases, such as Clostridium difficile infection (CDI) and inflammatory bowel disease (IBD). GI dysfunction is a frequent and occasionally dominating symptom of progressive supranuclear palsy-Richardson's syndrome (PSP-RS). However, it is not known whether FMT has clinical efficacy for PSP-RS. Methods This 36-week, randomised, placebo-controlled, parallel-group, phase 2 clinical trial was performed at a university tertiary referral hospital in China. From August 15 2021 to December 31 2021, a total of 68 newly diagnosed patients with PSP-RS (male 40 [59%], female 28 [41%]) who had never received any antiparkinsonian medications were enrolled and randomly assigned to receive either healthy donor FMT (n = 34, FMT group) or a mixture of 0.9% saline and food colouring (E150c) as sham transplantation (n = 34, placebo group) through transendoscopic enteral tubing (TET). Two days after oral antibiotics, participants received 1 week of transplantation. After an interval of 4 weeks, retransplantation was performed. Then, the last transplantation was given after another interval of 4 weeks, and the participants were followed up for 24 weeks (week 36). Clinicaltrials.gov identifier: ChiCTR-2100045397. Findings Among 68 patients who were randomised (mean age, 67.2 (SD 5.1); 40 [59%] were male, 28 [41%] were female), 63 participants completed the trial. Efficacy analyses were performed on the intention-to-treat (ITT) analysis set. At week 16, the mean PSP Rating Scale (PSPRS) scores (the primary outcome) improved from 40.1 (SD 7.6) to 36.9 (SD 5.9) in the FMT group, whereas the scores changed from 40.1 (SD 6.9) to 41.7 (SD 6.2) in the placebo group, for a treatment benefit of 4.3 (95% CI, 3.2-5.4) (P < 0.0001). After 3-cycle intervention, symptoms of constipation, depression, and anxiety (the secondary outcome) improved significantly at week 16 in the FMT group compared with the placebo group, the majority of which were maintained at the 24-week follow-up (week 36). Interpretation Our findings suggest that, compared with placebo, FMT treatment significantly improved motor and nonmotor symptoms in patients with PSP-RS, as well as reduced intestinal inflammation and enhanced the intestinal barrier by regulating the intestinal microbiota composition. Funding The National Natural Science Foundation of China (No. 82122022, 82171248, 81873791, and 82230084), Natural Science Foundation of Henan Province for Excellent Young Scholars (no. 202300410357), and Henan Province Young and Middle-Aged Health Science and Technology Innovation Talent Project (YXKC2020033).
Collapse
|
22
|
de Guilhem de Lataillade A, Caillaud M, Oullier T, Naveilhan P, Pellegrini C, Tolosa E, Neunlist M, Rolli-Derkinderen M, Gelpi E, Derkinderen P. LRRK2 expression in normal and pathologic human gut and in rodent enteric neural cell lines. J Neurochem 2023; 164:193-209. [PMID: 36219522 DOI: 10.1111/jnc.15704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 02/04/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) gene, which is the gene most commonly associated with Parkinson's disease (PD), is also a susceptibility gene for Crohn's disease, thereby suggesting that LRRK2 may sit at the crossroads of gastrointestinal inflammation, Parkinson's, and Crohn's disease. LRRK2 protein has been studied intensely in both CNS neurons and in immune cells, but there are only few studies on LRRK2 in the enteric nervous system (ENS). LRRK2 is present in ENS ganglia and the existing studies on LRRK2 expression in colonic biopsies from PD subjects have yielded conflicting results. Herein, we propose to extend these findings by studying in more details LRRK2 expression in the ENS. LRRK2 expression was evaluated in full thickness segments of colon of 16 Lewy body, 12 non-Lewy body disorders cases, and 3 non-neurodegenerative controls and in various enteric neural cell lines. We showed that, in addition to enteric neurons, LRRK2 is constitutively expressed in enteric glial cells in both fetal and adult tissues. LRRK2 immunofluorescence intensity in the myenteric ganglia was not different between Lewy body and non-Lewy body disorders. Additionally, we identified the cAMP pathway as a key signaling pathway involved in the regulation of LRRK2 expression and phosphorylation in the enteric glial cells. Our study is the first detailed characterization of LRRK2 in the ENS and the first to show that enteric glial cells express LRRK2. Our findings provide a basis to unravel the functions of LRRK2 in the ENS and to further investigate the pathological changes in enteric synucleinopathies.
Collapse
Affiliation(s)
| | - Martial Caillaud
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Thibauld Oullier
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Philippe Naveilhan
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eduardo Tolosa
- Parkinson disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Michel Neunlist
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobank-Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Pascal Derkinderen
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| |
Collapse
|
23
|
Dugger BN, Harvey D, Beach TG, Adler CH. Peripheral tau as a biomarker for neurodegenerative diseases: is life on Earth, life on Mars? Brain 2022; 145:2629-2631. [PMID: 35947169 PMCID: PMC9420015 DOI: 10.1093/brain/awac281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
This scientific commentary refers to ‘Tau protein quantification in skin biopsies differentiates tauopathies from alpha-synucleinopathies’ by Vacchi et al. (https://doi.org/10.1093/brain/awac161).
Collapse
Affiliation(s)
- Brittany N Dugger
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| |
Collapse
|
24
|
Kulcsarova K, Baloghova J, Necpal J, Skorvanek M. Skin Conditions and Movement Disorders: Hiding in Plain Sight. Mov Disord Clin Pract 2022; 9:566-583. [PMID: 35844274 PMCID: PMC9274368 DOI: 10.1002/mdc3.13436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Skin manifestations are well-recognized non-motor symptoms of Parkinson's disease (PD) and other hypokinetic and hyperkinetic movement disorders. Skin conditions are usually well visible during routine clinical examination and their recognition may play a major role in diagnostic work-up. In this educational review we: (1) briefly outline skin conditions related to Parkinson's disease, including therapy-related skin complications and their management; (2) discuss the role of skin biopsies in early diagnosis of PD and differential diagnosis of parkinsonian syndromes; and focus more on areas which have not been reviewed in the literature before, including (3) skin conditions related to atypical parkinsonism, and (4) skin conditions related to hyperkinetic movement disorders. In case of rare hyperkinetic movement disorders, specific dermatological manifestations, like presence of angiokeratomas, telangiectasias, Mongolian spots, lipomas, ichthyosis, progeroid skin changes and others may point to a very specific group of disorders and help guide further investigations.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, Medical FacultyUniversity of Pavol Jozef SafarikPavolSlovak Republic
- Department of NeurologyUniversity Hospital L. PasteurKosiceSlovak Republic
| | - Janette Baloghova
- Department of DermatovenerologyMedical Faculty, University of Pavol Jozef SafarikKosiceSlovak Republic
- Department of DermatovenerologyUniversity Hospital L. PasteurKosiceSlovak Republic
| | - Jan Necpal
- Department of NeurologyZvolen HospitalZvolenSlovak Republic
| | - Matej Skorvanek
- Department of Neurology, Medical FacultyUniversity of Pavol Jozef SafarikPavolSlovak Republic
- Department of NeurologyUniversity Hospital L. PasteurKosiceSlovak Republic
| |
Collapse
|
25
|
Szandruk-Bender M, Wiatrak B, Szeląg A. The Risk of Developing Alzheimer's Disease and Parkinson's Disease in Patients with Inflammatory Bowel Disease: A Meta-Analysis. J Clin Med 2022; 11:jcm11133704. [PMID: 35806985 PMCID: PMC9267426 DOI: 10.3390/jcm11133704] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, a growing body of research has linked gut microbiota dysbiosis to central nervous system diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), and has suggested that AD and PD pathology may take its origin from chronic inflammation in the gastrointestinal tract. Thus, this study aimed to elucidate whether inflammatory bowel disease (IBD) is associated with a higher risk of developing AD and PD as compared to the non-IBD population by conducting a meta-analysis. A thorough search of Pubmed and Embase databases was performed to identify all relevant articles. The quality of included studies was assessed using the Newcastle-Ottawa Scale. The odds ratios (ORs) with 95% confidence intervals (CIs) were analyzed using a fixed-effect model. To assess publication bias and heterogeneity among the studies, Egger’s test and L’Abbé plots were used, respectively. A total of eight eligible studies were included in this meta-analysis. No significant heterogeneity or significant publication bias was detected. The risk of developing AD in IBD patients was higher than in non-IBD patients (OR = 0.37; 95% CI = 0.14−1.00; p = 0.05), and there was a relationship between the occurrence of AD and Crohn’s disease or ulcerative colitis (OR = 0.11; 95% CI = 0.04−0.30; p < 0.0001, OR = 0.14; 95% CI = 0.04−0.49; p = 0.0024, respectively). The risk of developing both of the most common neurodegenerative diseases, AD and PD, was also significantly higher in patients diagnosed with Crohn’s disease or ulcerative colitis (OR = 0.21; 95% CI = 0.09−0.49; p = 0.0003, OR = 0.25; 95% CI = 0.13−0.51; p = 0.0001, respectively). This meta-analysis revealed a higher risk of AD and PD among CD and UC patients compared to the general population. It may suggest a key role for the gut microbiota in the pathogenesis of not only Crohn’s disease and ulcerative colitis but also AD and PD. The identification of this potential risk may provide earlier preventive measures to be implemented to reduce comorbidity and mortality rate.
Collapse
|
26
|
Alpha-synuclein and tau are abundantly expressed in the ENS of the human appendix and monkey cecum. PLoS One 2022; 17:e0269190. [PMID: 35687573 PMCID: PMC9187115 DOI: 10.1371/journal.pone.0269190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
α-Synuclein (α-syn) proteinopathy in the neurons of the Enteric Nervous System (ENS) is proposed to have a critical role in Parkinson's disease (PD) onset and progression. Interestingly, the ENS of the human appendix harbors abundant α-syn and appendectomy has been linked to a decreased risk and delayed onset of PD, suggesting that the appendix may influence PD pathology. Common marmosets and rhesus macaques lack a distinct appendix (a narrow closed-end appendage with a distinct change in diameter at the junction with the cecum), yet the cecal microanatomy of these monkeys is similar to the human appendix. Sections of human appendix (n = 3) and ceca from common marmosets (n = 4) and rhesus macaques (n = 3) were evaluated to shed light on the microanatomy and the expression of PD-related proteins. Analysis confirmed that the human appendix and marmoset and rhesus ceca present thick walls comprised of serosa, muscularis externa, submucosa, and mucosa plus abundant lymphoid tissue. Across all three species, the myenteric plexus of the ENS was located within the muscularis externa with nerve fibers innervating all layers of the appendix/ceca. Expression of α-syn and tau in the appendix/cecum was present within myenteric ganglia and along nerve fibers of the muscularis externa and mucosa in all species. In the myenteric ganglia α-syn, p-α-syn, tau and p-tau immunoreactivities (ir) were not significantly different across species. The percent area above threshold of α-syn-ir and tau-ir in the nerve fibers of the muscularis externa and mucosa were greater in the human appendix than in the NHP ceca (α-syn-ir p<0.05; tau-ir p<0.05). Overall, this study provides critical translational evidence that the common marmoset and rhesus macaque ceca are remarkably similar to the human appendix and, thus, that these NHP species are suitable for studying the development of PD linked to α-syn and tau pathological changes in the ENS.
Collapse
|
27
|
Xia Y, Prokop S, Bell BM, Gorion KMM, Croft CL, Nasif L, Xu G, Riffe CJ, Manaois AN, Strang KH, Quintin SS, Paterno G, Tansey MG, Borchelt DR, Golde TE, Giasson BI. Pathogenic tau recruits wild-type tau into brain inclusions and induces gut degeneration in transgenic SPAM mice. Commun Biol 2022; 5:446. [PMID: 35550593 PMCID: PMC9098443 DOI: 10.1038/s42003-022-03373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
Pathological tau inclusions are neuropathologic hallmarks of many neurodegenerative diseases. We generated and characterized a transgenic mouse model expressing pathogenic human tau with S320F and P301S aggregating mutations (SPAM) at transgene levels below endogenous mouse tau protein levels. This mouse model develops a predictable temporal progression of tau pathology in the brain with biochemical and ultrastructural properties akin to authentic tau inclusions. Surprisingly, pathogenic human tau extensively recruited endogenous mouse tau into insoluble aggregates. Despite the early onset and rapid progressive nature of tau pathology, major neuroinflammatory and transcriptional changes were only detectable at later time points. Moreover, tau SPAM mice are the first model to develop loss of enteric neurons due to tau accumulation resulting in a lethal phenotype. With moderate transgene expression, rapidly progressing tau pathology, and a highly predictable lethal phenotype, the tau SPAM model reveals new associations of tau neurotoxicity in the brain and intestinal tract.
Collapse
Affiliation(s)
- Yuxing Xia
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Stefan Prokop
- grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Brach M. Bell
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Kimberly-Marie M. Gorion
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Cara L. Croft
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Lith Nasif
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Guilian Xu
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Cara J. Riffe
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Alyssa N. Manaois
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Kevin H. Strang
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Stephan S. Quintin
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Giavanna Paterno
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Malú Gámez Tansey
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - David R. Borchelt
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Todd E. Golde
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Benoit I. Giasson
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
28
|
Vacchi E, Lazzarini E, Pinton S, Chiaro G, Disanto G, Marchi F, Robert T, Staedler C, Galati S, Gobbi C, Barile L, Kaelin-Lang A, Melli G. Tau protein quantification in skin biopsies differentiates tauopathies from alpha-synucleinopathies. Brain 2022; 145:2755-2768. [PMID: 35485527 DOI: 10.1093/brain/awac161] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/03/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022] Open
Abstract
Abnormal accumulation of microtubule-associated protein tau (τ) is a characteristic feature of atypical parkinsonisms with tauopathies such as Progressive Supranuclear Palsy (PSP) and Corticobasal Degeneration (CBD). However, pathological τ has also been observed in α-synucleinopathies like Parkinson's Disease (PD) and Multiple System Atrophy (MSA). Based on the involvement of peripheral nervous system in several neurodegenerative diseases, we characterized and compared τ expression in skin biopsies of patients clinically diagnosed with PD, MSA, PSP, CBD, and in healthy control subjects. In all groups, τ protein was detected along both somatosensory and autonomic nerve fibers in the epidermis and dermis by immunofluorescence. We found by western blot the presence of mainly two different bands at 55 and 70 KDa, co-migrating with 0N4R/1N3R and 2N4R isoforms, respectively. At the RNA level, the main transcript variants were 2N and 4R, and both resulted more expressed in PSP/CBD by real-time PCR. ELISA assay demonstrated significantly higher levels of total τ protein in skin lysates of PSP/CBD compared to the other groups. Multivariate regression analysis and ROC curves analysis of τ amount at both sites showed a clinical association with tauopathies diagnosis and high diagnostic value for PSP/CBD vs. PD (sensitivity 90%, specificity 69%) and PSP/CBD vs. MSA (sensitivity 90%, specificity 86%). τ protein increase correlated with cognitive impairment in PSP/CBD. This study is a comprehensive characterization of τ in the human cutaneous peripheral nervous system in physiologic and pathologic conditions. The differential expression of τ, both at transcript and protein levels, suggests that skin biopsy, an easily accessible and minimally invasive exam, can help in discriminating among different neurodegenerative diseases.
Collapse
Affiliation(s)
- Elena Vacchi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Edoardo Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sandra Pinton
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giacomo Chiaro
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giulio Disanto
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Francesco Marchi
- Neurosurgery Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Thomas Robert
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurosurgery Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Claudio Staedler
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Salvatore Galati
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Claudio Gobbi
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Lucio Barile
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alain Kaelin-Lang
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Giorgia Melli
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
29
|
Khodabakhsh P, Bazrgar M, Dargahi L, Mohagheghi F, Asgari Taei A, Parvardeh S, Ahmadiani A. Does Alzheimer's disease stem in the gastrointestinal system? Life Sci 2021; 287:120088. [PMID: 34715145 DOI: 10.1016/j.lfs.2021.120088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Over the last decades, our knowledge of the key pathogenic mechanisms of Alzheimer's disease (AD) has dramatically improved. Regarding the limitation of current therapeutic strategies for the treatment of multifactorial diseases, such as AD, to be translated into the clinic, there is a growing trend in research to identify risk factors associated with the onset and progression of AD. Here, we review the current literature with a focus on the relationship between gastrointestinal (GI)/liver diseases during the lifespan and the incidence of AD, and discuss the possible mechanisms underlying the link between the diseases. We also aim to review studies evaluating the possible link between the chronic use of the most common GI medications and the future risk of AD development.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohagheghi
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
31
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|
32
|
Derkinderen P, Rolli-Derkinderen M, Chapelet G, Neunlist M, Noble W. Tau in the gut, does it really matter? J Neurochem 2021; 158:94-104. [PMID: 33569813 DOI: 10.1111/jnc.15320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The enteric nervous system plays a critical role in the regulation of gastrointestinal tract functions and is often referred to as the 'second brain' because it shares many features with the central nervous system. These similarities include among others a large panel of neurotransmitters, a large population of glial cells and a susceptibility to neurodegeneration. This close homology between the central and enteric nervous systems suggests that a disease process affecting the central nervous system could also involve its enteric counterpart. This was already documented in Parkinson's disease, the most common synucleinopathy, in which alpha-synuclein deposits are reported in the enteric nervous system in the vast majority of patients. Tau is another key protein involved in neurodegenerative disorders of the brain. Whether changes in tau also occur in the enteric nervous system during gut or brain disorders has just begun to be explored. The scope of the present article is therefore to review existing studies on the expression and phosphorylation pattern of tau in the enteric nervous system under physiological and pathological conditions and to discuss the possible occurrence of 'enteric tauopathies'.
Collapse
Affiliation(s)
- Pascal Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Guillaume Chapelet
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Clinical Gerontology Department, CHU Nantes, Nantes, France
| | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| |
Collapse
|
33
|
Dubbioso R, Provitera V, Vitale F, Stancanelli A, Borreca I, Caporaso G, De Michele G, De Rosa A, Picillo M, Barone P, Iodice R, Manganelli F, De Michele G, Santoro L, Nolano M. Cutaneous sensory and autonomic denervation in progressive supranuclear palsy. Neuropathol Appl Neurobiol 2021; 47:653-663. [PMID: 33421177 DOI: 10.1111/nan.12692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
AIM Progressive Supranuclear Palsy (PSP) is a progressive neurodegenerative tauopathy characterised by motor, behavioural and cognitive dysfunction. While in the last decade, sensory and autonomic disturbances as well as peripheral nerve involvement are well-recognised in Parkinson's Disease (PD), little is known in this regard for PSP. Herein, we aim to assess peripheral sensory and autonomic nerve involvement in PSP and to characterise possible differences in morpho-functional pattern compared to PD patients. METHODS We studied 27 PSP and 33 PD patients without electrophysiological signs of neuropathy, and 33 healthy controls (HC). In addition to motor impairment, evaluated by means of UPDRS-III and the PSP rating scale, all patients underwent clinical, functional and morphological assessment of sensory-autonomic nerves through dedicated questionnaires, sympathetic skin response, dynamic sweat test and skin biopsies. The analysis of cutaneous sensory and autonomic innervation was performed using indirect immunofluorescence and confocal microscopy. RESULTS PSP patients displayed a length-dependent loss of sensory and autonomic nerve fibres associated with functional impairment compared to HC and, overall, a more severe picture than in PD patients. The disease severity correlated with the loss of intraepidermal nerve fibre density in the leg of PSP patients (p < 0.05). CONCLUSION We demonstrated a length-dependent small fibre pathology in PSP, more severe compared to PD, and paralleling disease severity. Our findings suggest the morphological and functional study of cutaneous nerves as possible biomarkers to monitor disease progression and response to new treatments.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Vincenzo Provitera
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology of Telese, Terme Institute, Italy
| | - Floriana Vitale
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Annamaria Stancanelli
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology of Telese, Terme Institute, Italy
| | - Ilaria Borreca
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology of Telese, Terme Institute, Italy
| | - Giuseppe Caporaso
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology of Telese, Terme Institute, Italy
| | - Giovanna De Michele
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Anna De Rosa
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Marina Picillo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, SA, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, SA, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy.,Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology of Telese, Terme Institute, Italy
| |
Collapse
|
34
|
Sun BL, Li WW, Wang J, Xu YL, Sun HL, Tian DY, Wang YJ, Yao XQ. Gut Microbiota Alteration and Its Time Course in a Tauopathy Mouse Model. J Alzheimers Dis 2020; 70:399-412. [PMID: 31177213 DOI: 10.3233/jad-181220] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that gut microbiota dysbiosis plays a role in neurodegenerative disorders. However, whether the composition and diversity of the gut microbiota are altered in tauopathies remains largely unknown. This study was aimed to examine the diversity and composition of the gut microbiota in tauopathies, as well as the correlation with pathological changes in the brain. We collected fecal samples from 32 P301L tau transgenic mice and 32 age- and gender-matched littermate mice at different ages. The 16S ribosomal RNA sequencing technique was used to analyze the microbiota composition in feces. Brain tau pathology levels were measured by immunohistochemistry. The diversity and composition of the gut microbiota significantly changed with aging. At the phylum level, the relative abundance of Bacteroidetes was increased, while Firmicutes were decreased in P301L mice compared with that in Wt mice after 3 months of age. In addition, Actinobacteria was decreased in P301L mice at 3 and 6 months of age, meanwhile Tenericutes was decreased in P301L mice at 10 months of age. Moreover, several specific macrobiota were highly associated with the levels of AT8-tau or pT231-tau protein in the brain. Our findings suggest that gut microbiota changed with aging, as well as in the tauopathy mice model. Modulation of the gut microbiota may be a potential strategy for treatment of tauopathy.
Collapse
Affiliation(s)
- Bin-Lu Sun
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei-Wei Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ya-Li Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hao-Lun Sun
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ding-Yuan Tian
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.,Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Beijing, China
| | - Xiu-Qing Yao
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
35
|
Tau and Alpha Synuclein Synergistic Effect in Neurodegenerative Diseases: When the Periphery Is the Core. Int J Mol Sci 2020; 21:ijms21145030. [PMID: 32708732 PMCID: PMC7404325 DOI: 10.3390/ijms21145030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
In neuronal cells, tau is a microtubule-associated protein placed in axons and alpha synuclein is enriched at presynaptic terminals. They display a propensity to form pathologic aggregates, which are considered the underlying cause of Alzheimer's and Parkinson's diseases. Their functional impairment induces loss of axonal transport, synaptic and mitochondrial disarray, leading to a "dying back" pattern of degeneration, which starts at the periphery of cells. In addition, pathologic spreading of alpha-synuclein from the peripheral nervous system to the brain through anatomical connectivity has been demonstrated for Parkinson's disease. Thus, examination of the extent and types of tau and alpha-synuclein in peripheral tissues and their relation to brain neurodegenerative diseases is of relevance since it may provide insights into patterns of protein aggregation and neurodegeneration. Moreover, peripheral nervous tissues are easily accessible in-vivo and can play a relevant role in the early diagnosis of these conditions. Up-to-date investigations of tau species in peripheral tissues are scant and have mainly been restricted to rodents, whereas, more evidence is available on alpha synuclein in peripheral tissues. Here we aim to review the literature on the functional role of tau and alpha synuclein in physiological conditions and disease at the axonal level, their distribution in peripheral tissues, and discuss possible commonalities/diversities as well as their interaction in proteinopathies.
Collapse
|
36
|
Prigent A, Chapelet G, De Guilhem de Lataillade A, Oullier T, Durieu E, Bourreille A, Duchalais E, Hardonnière K, Neunlist M, Noble W, Kerdine-Römer S, Derkinderen P, Rolli-Derkinderen M. Tau accumulates in Crohn's disease gut. FASEB J 2020; 34:9285-9296. [PMID: 32436623 DOI: 10.1096/fj.202000414r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 11/11/2022]
Abstract
A sizeable body of evidence has recently emerged to suggest that gastrointestinal (GI) inflammation might be involved in the development of Parkinson's disease (PD). There is now strong epidemiological and genetical evidence linking PD to inflammatory bowel diseases and we recently demonstrated that the neuronal protein alpha-synuclein, which is critically involved in PD pathophysiology, is upregulated in inflamed segments of Crohn's colon. The microtubule associated protein tau is another neuronal protein critically involved in neurodegenerative disorders but, in contrast to alpha-synuclein, no data are available about its expression and phosphorylation patterns in inflammatory bowel diseases. Here, we examined the expression levels of tau isoforms, their phosphorylation profile and truncation in colon biopsy specimens from 16 Crohn's disease (CD) and 6 ulcerative colitis (UC) patients and compared them to samples from 16 controls. Additional experiments were performed in full thickness segments of colon of five CD and five control subjects, in primary cultures of rat enteric neurons and in nuclear factor erythroid 2-related factor (Nrf2) knockout mice. Our results show the upregulation of two main human tau isoforms in the enteric nervous system (ENS) in CD but not in UC. This upregulation was not transcriptionally regulated but instead likely resulted from a decrease in protein clearance via an Nrf2 pathway. Our findings, which provide the first detailed characterization of tau in CD, suggest that the key proteins involved in neurodegenerative disorders such as alpha-synuclein and tau, might also play a role in CD.
Collapse
Affiliation(s)
- Alice Prigent
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Guillaume Chapelet
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Clinical Gerontology Department, CHU Nantes, Nantes, France
| | - Adrien De Guilhem de Lataillade
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Thibauld Oullier
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Emilie Durieu
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Arnaud Bourreille
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Emilie Duchalais
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Kévin Hardonnière
- Inserm, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Saadia Kerdine-Römer
- Inserm, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| | - Pascal Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| |
Collapse
|
37
|
Jiao H, Downie LE, Huang X, Wu M, Oberrauch S, Keenan RJ, Jacobson LH, Chinnery HR. Novel alterations in corneal neuroimmune phenotypes in mice with central nervous system tauopathy. J Neuroinflammation 2020; 17:136. [PMID: 32345316 PMCID: PMC7189727 DOI: 10.1186/s12974-020-01803-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tauopathy in the central nervous system (CNS) is a histopathological hallmark of frontotemporal dementia (FTD) and Alzheimer's disease (AD). Although AD is accompanied by various ocular changes, the effects of tauopathy on the integrity of the cornea, which is densely innervated by the peripheral nervous system and is populated by resident dendritic cells, is still unknown. The aim of this study was to investigate if neuroimmune interactions in the cornea are affected by CNS tauopathy. METHODS Corneas from wild type (WT) and transgenic rTg4510 mice that express the P301L tau mutation were examined at 2, 6, 8, and 11 months. Clinical assessment of the anterior segment of the eye was performed using spectral domain optical coherence tomography. The density of the corneal epithelial sensory nerves and the number and field area of resident epithelial dendritic cells were assessed using immunofluorescence. The immunological activation state of corneal and splenic dendritic cells was examined using flow cytometry and compared between the two genotypes at 9 months of age. RESULTS Compared to age-matched WT mice, rTg4510 mice had a significantly lower density of corneal nerve axons at both 8 and 11 months of age. Corneal nerves in rTg4510 mice also displayed a higher percentage of beaded nerve axons and a lower density of epithelial dendritic cells compared to WT mice. From 6 months of age, the size of the corneal dendritic cells was significantly smaller in rTg4510 compared to WT mice. Phenotypic characterization by flow cytometry demonstrated an activated state of dendritic cells (CD86+ and CD45+ CD11b+CD11c+) in the corneas of rTg4510 compared to WT mice, with no distinct changes in the spleen monocytes/dendritic cells. At 2 months of age, there were no significant differences in the neural or immune structures between the two genotypes. CONCLUSIONS Corneal sensory nerves and epithelial dendritic cells were altered in the rTg4510 mouse model of tauopathy, with temporal changes observed with aging. The activation of corneal dendritic cells prior to the gradual loss of neighboring sensory nerves suggests an early involvement of corneal immune cells in tau-associated pathology originating in the CNS.
Collapse
Affiliation(s)
- Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Xin Huang
- Innate Phagocytosis Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Sara Oberrauch
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia.,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Ryan J Keenan
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia.,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Laura H Jacobson
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia. .,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia.
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
38
|
de Guilhem de Lataillade A, Lebouvier T, Noble W, Leclair-Visonneau L, Derkinderen P. Enteric synucleinopathy: from trendy concept to real entity. FREE NEUROPATHOLOGY 2020; 1:26. [PMID: 37283671 PMCID: PMC10209962 DOI: 10.17879/freeneuropathology-2020-2920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 06/08/2023]
Abstract
An accumulating body of literature has emerged in the past 25 years to show that Parkinson's disease (PD) is not only a disorder of the brain but also of the gastrointestinal tract and more generally of the gut-brain axis. Gastrointestinal symptoms occur in almost every PD patient at some point and in nearly every case examined pathologically autopsy studies find alpha-synuclein deposits, the pathological hallmarks of PD, in the enteric nervous system. This concept of 'enteric synucleinopathy' led to the hypothesis that the enteric nervous system might play a pivotal role in the initiation and spreading of PD. Although this hypothesis opens up interesting perspectives on the pathogenesis of neurodegenerative disorders, some important questions are still pending. The present opinion paper describes and compares the physiological and pathophysiological properties of alpha-synuclein in the brain and the enteric nervous system. We conclude that the existing data supports the existence of pathological alpha-synuclein species in the gut in PD. We also discuss if gut-brain interactions are important in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Adrien de Guilhem de Lataillade
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
- CHU Nantes, Department of Neurology, Nantes, F-44093, France
| | - Thibaud Lebouvier
- Univ. Lille, Inserm URM_S1172, CHU Lille, DistAlz, Licend, F-59000 Lille, France
| | - Wendy Noble
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, Camberwell, London. SE5 9RX, UK
| | - Laurène Leclair-Visonneau
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Pascal Derkinderen
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
- CHU Nantes, Department of Neurology, Nantes, F-44093, France
| |
Collapse
|
39
|
Scarpelli EM, Trinh VY, Tashnim Z, Krans JL, Keller LC, Colodner KJ. Developmental expression of human tau in Drosophila melanogaster glial cells induces motor deficits and disrupts maintenance of PNS axonal integrity, without affecting synapse formation. PLoS One 2019; 14:e0226380. [PMID: 31821364 PMCID: PMC6903755 DOI: 10.1371/journal.pone.0226380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/25/2019] [Indexed: 11/26/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases characterized by the abnormal phosphorylation and accumulation of the microtubule-associated protein, tau, in both neuronal and glial cells. Though tau pathology in glial cells is a prominent feature of many of these disorders, the pathological contribution of these lesions to tauopathy pathogenesis remains largely unknown. Moreover, while tau pathology is predominantly found in the central nervous system, a role for tau in the cells of the peripheral nervous system has been described, though not well characterized. To investigate the effects of glial tau expression on the development and maintenance of the peripheral nervous system, we utilized a Drosophila melanogaster model of tauopathy that expresses human wild-type tau in glial cells during development. We found that glial tau expression during development results in larval locomotor deficits and organismal lethality at the pupal stage, without affecting larval neuromuscular junction synapse development or post-synaptic amplitude. There was, however, a significant decrease in the decay time of synaptic potentials upon repeated stimulation of the motoneuron. Behavioral abnormalities were accompanied by glial cell death, disrupted maintenance of glial-axonal integrity, and the abnormal accumulation of the presynaptic protein, Bruchpilot, in peripheral nerve axons. Together, these data demonstrate that human tau expression in Drosophila glial cells does not affect neuromuscular junction synapse formation during development, but is deleterious to the maintenance of glial-axonal interactions in the peripheral nervous system.
Collapse
Affiliation(s)
- Enrico M. Scarpelli
- Frank H. Netter, M.D. School of Medicine, Quinnipiac University, North Haven, CT, United States of America
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, United States of America
| | - Van Y. Trinh
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, United States of America
| | - Zarrin Tashnim
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, United States of America
| | - Jacob L. Krans
- Department of Neuroscience, Western New England University, Springfield, MA, United States of America
| | - Lani C. Keller
- Frank H. Netter, M.D. School of Medicine, Quinnipiac University, North Haven, CT, United States of America
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, United States of America
| | - Kenneth J. Colodner
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, United States of America
| |
Collapse
|
40
|
Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol 2019; 72:725-735. [PMID: 31395625 DOI: 10.1136/jclinpath-2019-205952] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterised by selective dysfunction and progressive loss of synapses and neurons associated with pathologically altered proteins that deposit primarily in the human brain and spinal cord. Recent discoveries have identified a spectrum of distinct immunohistochemically and biochemically detectable proteins, which serve as a basis for protein-based disease classification. Diagnostic criteria have been updated and disease staging procedures have been proposed. These are based on novel concepts which recognise that (1) most of these proteins follow a sequential distribution pattern in the brain suggesting a seeding mechanism and cell-to-cell propagation; (2) some of the neurodegeneration-associated proteins can be detected in peripheral organs; and (3) concomitant presence of neurodegeneration-associated proteins is more the rule than the exception. These concepts, together with the fact that the clinical symptoms do not unequivocally reflect the molecular pathological background, place the neuropathological examination at the centre of requirements for an accurate diagnosis. The need for quality control in biomarker development, clinical and neuroimaging studies, and evaluation of therapy trials, as well as an increasing demand for the general public to better understand human brain disorders, underlines the importance for a renaissance of postmortem neuropathological studies at this time. This review summarises recent advances in neuropathological diagnosis and reports novel aspects of relevance for general pathological practice.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|