1
|
Kell DB, Pretorius E, Zhao H. A Direct Relationship Between 'Blood Stasis' and Fibrinaloid Microclots in Chronic, Inflammatory, and Vascular Diseases, and Some Traditional Natural Products Approaches to Treatment. Pharmaceuticals (Basel) 2025; 18:712. [PMID: 40430532 PMCID: PMC12114700 DOI: 10.3390/ph18050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
'Blood stasis' (syndrome) (BSS) is a fundamental concept in Traditional Chinese Medicine (TCM), where it is known as Xue Yu (). Similar concepts exist in Traditional Korean Medicine ('Eohyul') and in Japanese Kampo medicine (Oketsu). Blood stasis is considered to underpin a large variety of inflammatory diseases, though an exact equivalent in Western systems medicine is yet to be described. Some time ago we discovered that blood can clot into an anomalous amyloid form, creating what we have referred to as fibrinaloid microclots. These microclots occur in a great many chronic, inflammatory diseases are comparatively resistant to fibrinolysis, and thus have the ability to block microcapillaries and hence lower oxygen transfer to tissues, with multiple pathological consequences. We here develop the idea that it is precisely the fibrinaloid microclots that relate to, and are largely mechanistically responsible for, the traditional concept of blood stasis (a term also used by Virchow). First, the diseases known to be associated with microclots are all associated with blood stasis. Secondly, by blocking red blood cell transport, fibrinaloid microclots provide a simple mechanistic explanation for the physical slowing down ('stasis') of blood flow. Thirdly, Chinese herbal medicine formulae proposed to treat these diseases, especially Xue Fu Zhu Yu and its derivatives, are known mechanistically to be anticoagulatory and anti-inflammatory, consistent with the idea that they are actually helping to lower the levels of fibrinaloid microclots, plausibly in part by blocking catalysis of the polymerization of fibrinogen into an amyloid form. We rehearse some of the known actions of the constituent herbs of Xue Fu Zhu Yu and specific bioactive molecules that they contain. Consequently, such herbal formulations (and some of their components), which are comparatively little known to Western science and medicine, would seem to offer the opportunity to provide novel, safe, and useful treatments for chronic inflammatory diseases that display fibrinaloid microclots, including Myalgic Encephalopathy/Chronic Fatigue Syndrome, long COVID, and even ischemic stroke.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 200, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 200, 2800 Kongens Lyngby, Denmark
| | - Huihui Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100026, China;
- Institute of Ethnic Medicine and Pharmacy, Beijing University of Chinese Medicine, Beijing 100026, China
| |
Collapse
|
2
|
Dhapola R, Kumari S, Sharma P, Vellingiri B, HariKrishnaReddy D. Advancements in autophagy perturbations in Alzheimer's disease: Molecular aspects and therapeutics. Brain Res 2025; 1851:149494. [PMID: 39922409 DOI: 10.1016/j.brainres.2025.149494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Emerging evidences suggest that autophagy, a key cellular process responsible for degrading and recycling damaged organelles and proteins, plays a crucial role in maintaining neuronal health. Dysfunctional autophagy has been linked to the pathogenesis of Alzheimer's disease (AD), contributing to the accumulation of misfolded proteins and cellular debris. Molecular mechanisms underlying autophagy dysfunction in AD involve amyloid-beta (Aβ) and tau accumulation, neuroinflammation, mitochondrial dysfunction, oxidative stress and endoplasmic reticulum stress. Disrupted signaling pathways such as TRIB3, Nmnat and BAG3 that regulate key processes like autophagosome initiation, lysosome function, and protein homeostasis also play a crucial role in the pathogenesis. Restoration of autophagy by modulating these molecular and signaling pathways may be an effective therapeutic strategy for AD. Studies have found few drugs targeting autophagy dysregulation in AD. These drugs include metformin that has been found to modulate the expression of TRIB3 for autophagy regulation. Another drug, resveratrol has been reported to augment the activity of Nmnat thus, increases autophagy flux. BACE1 and mTOR inhibitors like arctigenin, nilvadipine and dapagliflozin were also found to restore autophagy. This study elaborates recent advances in signaling and molecular pathways and discusses current and emerging therapeutic interventions targeting autophagy dysfunction in AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab 151401 Bathinda, Punjab, India.
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India.
| |
Collapse
|
3
|
Li S, Hou Z, Ye T, Song X, Hu X, Chen J. Saponin components in Polygala tenuifolia as potential candidate drugs for treating dementia. Front Pharmacol 2024; 15:1431894. [PMID: 39050746 PMCID: PMC11266144 DOI: 10.3389/fphar.2024.1431894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Objective This study aims to elucidate the intervention effects of saponin components from Polygala tenuifolia Willd (Polygalaceae) on dementia, providing experimental evidence and new insights for the research and application of saponins in the field of dementia. Materials and Methods This review is based on a search of the PubMed, NCBI, and Google Scholar databases from their inception to 13 May 2024, using terms such as "P. tenuifolia," "P. tenuifolia and saponins," "toxicity," "dementia," "Alzheimer's disease," "Parkinson's disease dementia," and "vascular dementia." The article summarizes the saponin components of P. tenuifolia, including tenuigenin, tenuifolin, polygalasaponins XXXII, and onjisaponin B, as well as the pathophysiological mechanisms of dementia. Importantly, it highlights the potential mechanisms by which the active components of P. tenuifolia prevent and treat diseases and relevant clinical studies. Results The saponin components of P. tenuifolia can reduce β-amyloid accumulation, exhibit antioxidant effects, regulate neurotransmitters, improve synaptic function, possess anti-inflammatory properties, inhibit neuronal apoptosis, and modulate autophagy. Therefore, P. tenuifolia may play a role in the prevention and treatment of dementia. Conclusion The saponin components of P. tenuifolia have shown certain therapeutic effects on dementia. They can prevent and treat dementia through various mechanisms.
Collapse
Affiliation(s)
- Songzhe Li
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhitao Hou
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ting Ye
- The Second Hospital Affiliated Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaochen Song
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinying Hu
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Chen
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
5
|
Kong H, Han YY, Yang GL, Li K, Yu L, Xie XK, Xia GY, Wei PJ, Zhang WR, Li CH. Tenuifolin improves learning and memory by regulating long-term potentiation and dendritic structure of hippocampal CA1 area in healthy female mice but not male mice. Behav Brain Res 2024; 466:114974. [PMID: 38554850 DOI: 10.1016/j.bbr.2024.114974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Polygala tenuifolia Wild is an ancient traditional Chinese medicine. Its main component, tenuifolin (TEN), has been proven to improve cognitive impairment caused by neurodegenerative diseases and ovariectomy. However, there was hardly any pharmacological research about TEN and its potential gender differences. Considering the reduction of TEN on learning and memory dysfunction in ovariectomized animals, therefore, we focused on the impact of TEN in different mice genders in the current study. Spontaneous alternation behavior (SAB), light-dark discrimination, and Morris water maze (MWM) tests were used to evaluate the mice's learning and memory abilities. The field excitatory postsynaptic potential (fEPSP) of the hippocampal CA1 region was recorded using an electrophysiological method, and the morphology of the dendritic structure was examined using Golgi staining. In the behavioral experiments, TEN improved the correct rate in female mice in the SAB test, the correct rate in the light-dark discrimination test, and the number of crossing platforms in the MWM test. Additionally, TEN reduced the latency of female mice rather than male mice in light-dark discrimination and MWM tests. Moreover, TEN could significantly increase the slope of fEPSP in hippocampal Schaffer-CA1 and enhance the total length and the number of intersections of dendrites in the hippocampal CA1 area in female mice but not in male mice. Collectively, the results of the current study showed that TEN improved learning and memory by regulating long-term potentiation (LTP) and dendritic structure of hippocampal CA1 area in female mice but not in males. These findings would help to explore the improvement mechanism of TEN on cognition and expand the knowledge of the potential therapeutic value of TEN in the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Heng Kong
- School of Life Science, South China Normal University, Guangzhou, China
| | - Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou, China
| | - Gai-Ling Yang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Kang Li
- School of Life Science, South China Normal University, Guangzhou, China
| | - Lu Yu
- School of Life Science, South China Normal University, Guangzhou, China
| | - Xun-Kai Xie
- School of Life Science, South China Normal University, Guangzhou, China
| | - Guang-Yuan Xia
- School of Life Science, South China Normal University, Guangzhou, China
| | - Peng-Ju Wei
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | | | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
6
|
Shan X, Lv S, Huang P, Zhang W, Jin C, Liu Y, Li Y, Jia Y, Chu X, Peng C, Zhang C. Classic Famous Prescription Kai-Xin-San Ameliorates Alzheimer's Disease via the Wnt/β-Catenin Signaling Pathway. Mol Neurobiol 2024; 61:2297-2312. [PMID: 37874481 DOI: 10.1007/s12035-023-03707-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Kai-Xin-San (KXS) is a classic famous prescription composed of Polygalae Radix, Ginseng Radix et Rhizoma, Acori Tatarinowii Rhizoma, and Poria. Clinically, KXS is effective in treating amnesia and regulating cognitive dysfunction of Alzheimer's disease (AD), whereas its mechanism of action is still unclear. In this study, the AD model rats were established by combining intraperitoneal injection of D-galactose (150 mg/kg/day) and intracerebral injection of Aβ25-35 (10 μL) to investigate the meliorative effect of KXS on AD and explore its mechanism. After 1-month KXS treatment, Morris water maze test showed that different doses of KXS all improved the cognitive impairment of AD rats. The results of hematoxylin and eosin staining, Nissl staining, and Tunnel staining showed that the neuron injury in the hippocampal CA1 region of the AD rats was markedly improved after KXS treatment. Concurrently, KXS reversed the levels of biochemical indexes of AD rats. Furthermore, the protein expressions of Wnt1 and β-catenin in KXS groups were remarkably increased, while the expressions of Bax and caspase-3 were significantly decreased. Besides, KXS-medicated serum reduced the levels of tumor necrosis factor-α, interleukin-1β, and reactive oxygen species and regulated the protein expressions of β-catenin, glycogen synthase kinase-3β (GSK-3β), p-GSK-3β, Bax, and caspase-3 in Aβ25-35-induced pheochromocytoma cells. Most importantly, this effect was attenuated by the Wnt inhibitor IWR-1. Our results suggest that KXS improves cognitive and memory function of AD rats, and its neuroprotective mechanism may be mediated through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Shujie Lv
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Peng Huang
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Wei Zhang
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Chuanshan Jin
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuanxu Liu
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yangyang Li
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yong Jia
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Xiaoqin Chu
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China.
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Can Peng
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China.
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Caiyun Zhang
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China.
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
7
|
Liu J, Li T, Zhong G, Pan Y, Gao M, Su S, Liang Y, Ma C, Liu Y, Wang Q, Shi Q. Exploring the therapeutic potential of natural compounds for Alzheimer's disease: Mechanisms of action and pharmacological properties. Biomed Pharmacother 2023; 166:115406. [PMID: 37659206 DOI: 10.1016/j.biopha.2023.115406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Alzheimer's Disease (AD) is a global public health priority characterized by high mortality rates in adults and an increasing prevalence in aging populations worldwide. Despite significant advancements in comprehending the pathogenesis of AD since its initial report in 1907, there remains a lack of effective curative or preventive measures for the disease. In recent years, natural compounds sourced from diverse origins have garnered considerable attention as potential therapeutic agents for AD, owing to their anti-inflammatory, antioxidant, and neuroprotective properties. This review aims to consolidate the therapeutic effects of natural compounds on AD, specifically targeting the reduction of β-amyloid (Aβ) overproduction, anti-apoptosis, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Notably, the identified compounds exhibiting these effects predominantly originate from plants. This review provides valuable insights into the potential of natural compounds as a reservoir of novel therapeutic agents for AD, thereby stimulating further research and contributing to the development of efficacious treatments for this devastating disease.
Collapse
Affiliation(s)
- Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qing Shi
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China.
| |
Collapse
|
8
|
Li C, Gao F, Qu Y, Zhao P, Wang X, Zhu G. Tenuifolin in the prevention of Alzheimer's disease-like phenotypes: Investigation of the mechanisms from the perspectives of calpain system, ferroptosis, and apoptosis. Phytother Res 2023; 37:4621-4638. [PMID: 37364988 DOI: 10.1002/ptr.7930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/23/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Polygala tenuifolia was documented to calm the mind and promote wisdom. However, its underlying mechanisms are still unclear. This study aimed to investigate the mechanisms underlying the effects of tenuifolin (Ten) on Alzheimer's disease (AD)-like phenotypes. We first applied bioinformatics methods to screen the mechanisms of P. tenuifolia in the treatment of AD. Thereafter, the d-galactose combined with Aβ1-42 (GCA) was applied to model AD-like behaviors and investigate the action mechanisms of Ten, one active component of P. tenuifolia. The data showed that P. tenuifolia actioned through multi-targets and multi-pathways, including regulation of synaptic plasticity, apoptosis, and calcium signaling, and so forth. Furthermore, in vitro experiments demonstrated that Ten prevented intracellular calcium overload, abnormal calpain system, and down-regulation of BDNF/TrkB signaling induced by GCA. Moreover, Ten suppressed oxidative stress and ferroptosis in HT-22 cells induced by GCA. Calpeptin and ferroptosis inhibitor prevented the decrease of cell viability induced by GCA. Interestingly, calpeptin did not interrupt GCA-induced ferroptosis in HT-22 cells but blocked the apoptosis. Animal experiments further demonstrated that Ten prevented GCA-induced memory impairment in mice and increased synaptic protein expression while reducing m-calpain expression. Ten prevents AD-like phenotypes through multiple signaling by inhibiting oxidative stress and ferroptosis, maintaining the stability of calpain system, and suppressing neuronal apoptosis.
Collapse
Affiliation(s)
- Congting Li
- Key Laboratory of Xin'an Medicine, The Ministry of Education, Key Laboratory of Molecular Biology (Brain Diseases) and Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, The Ministry of Education, Key Laboratory of Molecular Biology (Brain Diseases) and Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Qu
- Key Laboratory of Xin'an Medicine, The Ministry of Education, Key Laboratory of Molecular Biology (Brain Diseases) and Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Panpan Zhao
- Key Laboratory of Xin'an Medicine, The Ministry of Education, Key Laboratory of Molecular Biology (Brain Diseases) and Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, The Ministry of Education, Key Laboratory of Molecular Biology (Brain Diseases) and Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education, Key Laboratory of Molecular Biology (Brain Diseases) and Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
Wang Z, Sun X, Zhao Y, Ga L, Li Q, Li Q, Wang X, Yang C. Qualitative and quantitative analysis of the bioactive components of "ginseng-polygala" drug pair against PC12 cell injury based on UHPLC-QTOF-MS and HPLC. Front Pharmacol 2022; 13:949757. [PMID: 36569314 PMCID: PMC9780267 DOI: 10.3389/fphar.2022.949757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Aβ25-35-induced PC12 cells were used as the in vitro injury model to evaluate the effects on PC12 cells after intervention with the "ginseng-polygala" drug pair. The results showed that the drug pair could significantly increase cell activity and reduce the level of reactive oxygen species and the concentration of inflammatory factors to improve the Alzheimer's disease treatment process. Furthermore, to rapidly identify and classify complicated bioactive components of the drug pair, a liquid chromatography with quadrupole time-of-flight mass spectrometry method combined with a molecular network strategy was established. With this strategy, 40 constituents were preliminarily identified and a database of the compounds was successfully established. Among them, 12 compounds of different categories were accurately identified by comparison with reference substances. The content of the aforementioned active components was simultaneously determined by HPLC to control the quality of compatible medicinal materials, and the verification results of the analytical method met the content determination requirements. The results revealed that after compatibility, the content change of the components is not the simple addition of quantity but the comprehensive effect of the two medicines. In conclusion, this study could provide a generally applicable strategy for pharmacological activity, structural identification, and content determination in traditional Chinese medicine and its compatibility.
Collapse
|
10
|
Deng Z, Dong Y, Zhou X, Lu JH, Yue Z. Pharmacological modulation of autophagy for Alzheimer’s disease therapy: Opportunities and obstacles. Acta Pharm Sin B 2021; 12:1688-1706. [PMID: 35847516 PMCID: PMC9279633 DOI: 10.1016/j.apsb.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent and deleterious neurodegenerative disorder characterized by an irreversible and progressive impairment of cognitive abilities as well as the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. By far, the precise mechanisms of AD are not fully understood and no interventions are available to effectively slow down progression of the disease. Autophagy is a conserved degradation pathway that is crucial to maintain cellular homeostasis by targeting damaged organelles, pathogens, and disease-prone protein aggregates to lysosome for degradation. Emerging evidence suggests dysfunctional autophagy clearance pathway as a potential cellular mechanism underlying the pathogenesis of AD in affected neurons. Here we summarize the current evidence for autophagy dysfunction in the pathophysiology of AD and discuss the role of autophagy in the regulation of AD-related protein degradation and neuroinflammation in neurons and glial cells. Finally, we review the autophagy modulators reported in the treatment of AD models and discuss the obstacles and opportunities for potential clinical application of the novel autophagy activators for AD therapy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Xiaoting Zhou
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
- Corresponding authors.
| | - Zhenyu Yue
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding authors.
| |
Collapse
|
11
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
12
|
Sobhani M, Frey A, Rettmann A, Thom R, Villinger A, Ehlers P, Langer P. Synthesis of Dibenzotropones by Alkyne-Carbonyl Metathesis. J Org Chem 2021; 86:14420-14432. [PMID: 34708654 DOI: 10.1021/acs.joc.1c01132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dibenzocycloheptanones (dibenzotropones) were prepared by Brønsted acid mediated intramolecular alkyne-carbonyl metathesis (ACM) reactions. The cyclization precursors are readily available by Sonogashira reaction of 2-bromobenzoyl chloride with terminal alkynes, followed by Suzuki reactions with benzaldehydes. The ACM reactions are highly modular and atom economic and allow for the construction of two regioisomeric series of dibenzotropones.
Collapse
Affiliation(s)
- Maryam Sobhani
- Universität Rostock, Institut für Chemie, A.-Einstein-Str.3a, 18059 Rostock, Germany
| | - Anna Frey
- Universität Rostock, Institut für Chemie, A.-Einstein-Str.3a, 18059 Rostock, Germany
| | - Andre Rettmann
- Universität Rostock, Institut für Chemie, A.-Einstein-Str.3a, 18059 Rostock, Germany
| | - Richard Thom
- Universität Rostock, Institut für Chemie, A.-Einstein-Str.3a, 18059 Rostock, Germany
| | - Alexander Villinger
- Universität Rostock, Institut für Chemie, A.-Einstein-Str.3a, 18059 Rostock, Germany
| | - Peter Ehlers
- Universität Rostock, Institut für Chemie, A.-Einstein-Str.3a, 18059 Rostock, Germany.,Leibniz Institut für Katalyse an der Universität Rostock, A.-Einstein-Str.29a, 18059 Rostock, Germany
| | - Peter Langer
- Universität Rostock, Institut für Chemie, A.-Einstein-Str.3a, 18059 Rostock, Germany.,Leibniz Institut für Katalyse an der Universität Rostock, A.-Einstein-Str.29a, 18059 Rostock, Germany
| |
Collapse
|
13
|
Wang XF, Xiao HH, Wu YT, Kong L, Chen JC, Yang JX, Hu XL. Active constituent of Polygala tenuifolia attenuates cognitive deficits by rescuing hippocampal neurogenesis in APP/PS1 transgenic mice. BMC Complement Med Ther 2021; 21:267. [PMID: 34696749 PMCID: PMC8543956 DOI: 10.1186/s12906-021-03437-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common dementia worldwide, and there is still no satisfactory drug or therapeutic strategy. Polygala tenuifolia is a traditional Chinese medicine with multiple neuroprotective effects. In present study, we investigated the effects of three active constituents [3,6'-disinapoyl sucrose (DISS), onjisaponin B (OB) and tenuifolin (TEN)] of Polygala tenuifolia (PT) on the proliferation and differentiation of neural stem cells (NSCs) to identify the potential active constituent of PT promoting hippocampal neurogenesis. METHODS NSCs were isolated from hippocampi of newborn C57BL/6 mice, and transfected with mutant amyloid precursor protein (APP) gene to establish an AD cell model (APP-NSCs). 3-(4,5- Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays were performed, and the proliferation and differentiation of NSCs were assessed by neurosphere formation assay, 5-bromo-2'-deoxyuridine (BrdU) incorporation assay and immunofluorescence (IF) staining analysis. APP/PS1 transgenic mice were administrated with the potential active constituent DISS for 4 weeks. Morris water maze (MWM), Nissl staining assay and IF staining assays were carried out to evaluate the cognitive function, neural damages and hippocampal neurogenesis, respectively. RESULTS DISS exerted the optimal ability to strengthen APP-NSCs proliferation and neuronal differentiation, followed by OB and TEN. Furthermore, DISS treatment for 4 weeks strikingly rescued the cognitive deficits, neuronal injures, and neurogenesis disorder in adult APP/PS1 transgenic mice. CONCLUSIONS Our findings demonstrated that DISS is the constituent of PT that triggers the most potent increase of hippocampal neurogenesis in our mouse model of AD.
Collapse
Affiliation(s)
- Xiao-Feng Wang
- Center for Neuromedicine of Dalian Municipal Central Hospital, 42 Xuegong Street, Shahekou District, Dalian, Liaoning Province, 116033, People's Republic of China
| | - Hong-He Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, Liaoning Province, 116600, People's Republic of China
| | - Yu-Tong Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, Liaoning Province, 116600, People's Republic of China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, Liaoning Province, 116600, People's Republic of China
| | - Ji-Cong Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, Liaoning Province, 116600, People's Republic of China
| | - Jing-Xian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD Port, Dalian, Liaoning Province, 116600, People's Republic of China.
| | - Xiao-le Hu
- Center for Neuromedicine of Dalian Municipal Central Hospital, 42 Xuegong Street, Shahekou District, Dalian, Liaoning Province, 116033, People's Republic of China.
| |
Collapse
|
14
|
Yang Q, Kang ZH, Zhang J, Qu F, Song B. Neuroprotective Effects of Isoquercetin: An In Vitro and In Vivo Study. CELL JOURNAL 2021; 23:355-365. [PMID: 34308580 PMCID: PMC8286454 DOI: 10.22074/cellj.2021.7116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/26/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is considered a neurodegenerative disease that affects the cognitive function of elderly individuals. In this study, we aimed to analyze the neuroprotective potential of isoquercetin against the in vitro and in vivo models of AD and investigated the possible underlying mechanisms. MATERIALS AND METHODS The experimental study was performed on PC12 cells treated with lipopolysaccharide (LPS). Reactive oxygen species (ROS), antioxidant parameters, and pro-inflammatory cytokines were measured. In an in vivo approach, Wistar rats were used and divided into different groups. We carried out the Morris water test to determine the cognitive function. Biochemical parameters, antioxidant parameters, and pro-inflammatory parameters were examined. RESULTS The non-toxic effect on PC12 cells was shown by isoquercetin. Isoquercetin significantly reduced the production of nitrate and ROS, along with the altered levels of antioxidants. Isoquercetin significantly (P<0.001) down-regulated proinflammatory cytokines in PC12 cells treated with LPS. In the in vivo approach, isoquercetintreated groups considerably showed the up-regulation in the latency and transfer latency time, as compared with AD groups. Isoquercetin significantly reduced Aβ-peptide, protein carbonyl, while enhanced the production of brainderived neurotrophic factor (BDNF) and acetylcholinesterase (AChE). Isoquercetin significantly (P<0.001) reduced pro-inflammatory cytokines and inflammatory mediators, as compared with AD groups. CONCLUSION Based on the results, we may infer that, through antioxidant and anti-inflammatory systems, isoquercetin prevented neurochemical and neurobehavioral modifications against the model of colchicine-induced AD rats.
Collapse
Affiliation(s)
- Qingxiao Yang
- Neurosurgery Department, Second Hospital of Jilin University, Changchun City, Jilin Province, 130000, China
| | - Z Hichen Kang
- Rehabilitation Department, Second Hospital of Jilin University, Changchun City, Jilin Province, 130000, China
| | - Jingze Zhang
- Neurosurgery Department, Second Hospital of Jilin University, Changchun City, Jilin Province, 130000, China
| | - Fuling Qu
- Rehabilitation Department, Second Hospital of Jilin University, Changchun City, Jilin Province, 130000, China
| | - Bin Song
- Neurosurgery Department, Second Hospital of Jilin University, Changchun City, Jilin Province, 130000, China.
| |
Collapse
|
15
|
Koganezawa N, Sekino Y, Kawakami H, Fuchino H, Kawahara N, Shirao T. NMDA receptor-dependent and -independent effects of natural compounds and crude drugs on synaptic states as revealed by drebrin imaging analysis. Eur J Neurosci 2021; 53:3548-3560. [PMID: 33851450 PMCID: PMC8365428 DOI: 10.1111/ejn.15231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Effective drugs that can cure cognitive impairments remain elusive. Because synaptic dysfunction has been correlated with cognitive impairments, drug development to target synaptic dysfunction is important. Recently, natural compounds and crude drugs have emerged as potential therapeutic agents for cognitive disorders. However, their effects on synaptic function remain unclear, because of lack of evaluation system with high reproducibility. We have recently developed highly reproducible in vitro high-content imaging analysis system for evaluation of synaptic function using drebrin as a marker for synaptic states. Therefore, we aimed to examine the direct effects of well-known natural compounds and crude drugs on synaptic states using this system. Rat hippocampal neurons were treated using natural compounds (nobiletin, diosgenin and tenuifolin) and crude drugs (Uncaria Hook [UH], Bezoar Bovis [BB], Coptis Rhizome [CR], Phellodendron Bark [PB] and Polygala Root [PR]). Immunocytochemical analysis was performed, and dendrite lengths and drebrin cluster densities were automatically quantified. We found that diosgenin, tenuifolin, CR, PB and PR decreased drebrin cluster densities, and the effects of PB and PR were partially dependent on N-methyl-D-aspartic acid-type glutamate receptors (NMDARs). Nobiletin and UH did not show any effects, whereas low-dose BB treatment increased drebrin cluster densities. Our results showed that diosgenin, tenuifolin, BB, CR, PB and PR appeared to directly change synaptic states. Particularly, the NMDAR dependency of PB and PR appears to affect synaptic plasticity.
Collapse
Affiliation(s)
- Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Hitomi Kawakami
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan.,AlzMed, Inc, Bunkyo-ku, Japan
| |
Collapse
|
16
|
Rodriguez S, Hug C, Todorov P, Moret N, Boswell SA, Evans K, Zhou G, Johnson NT, Hyman BT, Sorger PK, Albers MW, Sokolov A. Machine learning identifies candidates for drug repurposing in Alzheimer's disease. Nat Commun 2021; 12:1033. [PMID: 33589615 PMCID: PMC7884393 DOI: 10.1038/s41467-021-21330-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/21/2021] [Indexed: 01/31/2023] Open
Abstract
Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a large amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA) for another indication is a more rapid and less expensive option. We present DRIAD (Drug Repurposing In AD), a machine learning framework that quantifies potential associations between the pathology of AD severity (the Braak stage) and molecular mechanisms as encoded in lists of gene names. DRIAD is applied to lists of genes arising from perturbations in differentiated human neural cell cultures by 80 FDA-approved and clinically tested drugs, producing a ranked list of possible repurposing candidates. Top-scoring drugs are inspected for common trends among their targets. We propose that the DRIAD method can be used to nominate drugs that, after additional validation and identification of relevant pharmacodynamic biomarker(s), could be readily evaluated in a clinical trial.
Collapse
Affiliation(s)
- Steve Rodriguez
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Petar Todorov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Nienke Moret
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Sarah A Boswell
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Kyle Evans
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - George Zhou
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Nathan T Johnson
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Mark W Albers
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Gao L, Li X, Meng S, Ma T, Wan L, Xu S. Chlorogenic Acid Alleviates Aβ 25-35-Induced Autophagy and Cognitive Impairment via the mTOR/TFEB Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1705-1716. [PMID: 32440096 PMCID: PMC7221680 DOI: 10.2147/dddt.s235969] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Purpose Chlorogenic acid (CGA), a phenolic acid isolated from fruits and vegetables, has been established to have neuroprotective properties in relation to Alzheimer's disease (AD). However, the precise mechanism by which CGA prevents cognitive deficits in AD has not been well studied. This study aimed to explore the potential molecular mechanism of CGA action using an Aβ25-35-induced SH-SY5Y neuron injury and cogxnitive deficits model in APP/PS1 mice. Methods Three-month-old male APP/PS1 double transgenic mice and a human neuroblastoma cell line (SH-SY5Y) were used to assess the effects of CGA on AD in vivo and in vitro, respectively. Cognitive function in mice was measured using a Morris water maze (MWM) test. Hematoxylin and eosin, monodansylcadaverine fluorescence, LysoTracker Red (LTR), and immunofluorescence staining were used to evaluate the morphological changes in vivo and in vitro. The protein expressions of autophagy markers (LC3B-II/LC3B-I, p62/SQSTM, beclin1 and Atg5) and lysosomal-function-related markers (cathepsin D, mTOR, p-mTOR P70S6K, p-p70s6k and TFEB) were analyzed with Western blot analyses. Results CGA treatment significantly improved spatial memory, relieved neuron damage, and inhibited autophagy in APP/PS1 mice (P<0.05). Moreover, CGA notably suppressed autophagosome production and enhanced autophagy flux in SH-SY5Y cells induced by Aβ25-35 (P<0.05). Further analysis showed that CGA markedly promoted lysosomal activity, and this was accompanied by upregulated cathepsin D protein expression, which was induced by the mTOR/TFEB signaling pathway in APP/PS1 mice and Aβ25-35-exposed SH-SY5Y cells (P<0.05). Conclusion CGA treatment restored autophagic flux in the brain and alleviated cognitive impairments in APP/PS1 mice via enhanced activation of the mTOR/TFEB signaling pathway.
Collapse
Affiliation(s)
- Lijuan Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, People's Republic of China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, People's Republic of China
| | - Xiaoqiong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, People's Republic of China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, People's Republic of China
| | - Shi Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, People's Republic of China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, People's Republic of China
| | - Tengyun Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, People's Republic of China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, People's Republic of China
| | - Lihong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Shijun Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, People's Republic of China.,Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, People's Republic of China
| |
Collapse
|
18
|
Chen S, Jia J. Tenuifolin Attenuates Amyloid-β42-Induced Neuroinflammation in Microglia Through the NF-κB Signaling Pathway. J Alzheimers Dis 2020; 76:195-205. [PMID: 32444542 DOI: 10.3233/jad-200077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Inflammation and oxidative stress are believed to play an important role in the pathogenesis of Alzheimer's disease (AD). Tenuifolin (TEN) is a natural neuroprotective compound extracted from Polygala tenuifolia Willd, which may improve cognitive symptoms. OBJECTIVE This study was designed to evaluate the protective effect of TEN on inflammatory and oxidative stress induced by amyloid-β (Aβ)42 oligomers in BV2 cells, and to explore the underlying mechanisms. METHODS We conducted cell viability assays to estimate drug toxicity and drug effects on cells. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assays were performed to detect the release of inflammatory factors. Nitric oxide (NO) assays were used to measure the degree of oxidative stress. Western blot and immunofluorescence analysis were used to explore the influence of TEN on the nuclear factor-κB (NF-κB) pathway. RESULTS Pretreatment of BV2 microglial cells with TEN inhibited the release of tumor necrosis factor-α, interleukin-6, and interleukin-1β, alleviated NO-induced oxidative stress by inhibiting the expression of inducible nitric oxide synthase and cyclo-oxygenase-2, and protected SH-SY5Y cells from the toxicity induced by the medium conditioned by BV2 cells previously exposed to Aβ42 oligomers. Moreover, TEN suppressed upstream activators of NF-κB, as well as NF-κB translocation to the nucleus in BV2 microglial cells. CONCLUSION This study demonstrates that TEN can protect SH-SY5Y cells from Aβ42 oligomer-induced microglia-mediated inflammation, and oxidative stress by downregulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shuoqi Chen
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China
| |
Collapse
|
19
|
Wang L, Jin GF, Yu HH, Lu XH, Zou ZH, Liang JQ, Yang H. Protective effects of tenuifolin isolated from Polygala tenuifolia Willd roots on neuronal apoptosis and learning and memory deficits in mice with Alzheimer's disease. Food Funct 2019; 10:7453-7460. [PMID: 31664284 DOI: 10.1039/c9fo00994a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The roots of Polygala tenuifolia Willd have a long history of being used as a traditional Chinese medicine for the treatment of insomnia, forgetfulness, sorrow and depression. Tenuifolin (TEN) has been isolated from Polygala tenuifolia Willd roots, and this study was carried out to investigate the potential beneficial effects of TEN on neuronal apoptosis and memory deficits in a mouse model of Alzheimer's disease (AD). TEN treatment reversed spatial learning and memory deficits, as well as neuronal apoptosis in hippocampal areas, in APP/PS1 transgenic AD mice. TEN treatment protected against Aβ25-35-induced apoptosis, loss of mitochondria-membrane potential, and activation of caspases-3 and -9 in SH-SY5Y cells. TEN has potential benefit in treating learning and memory deficits in APP/PS1 transgenic AD mice, and its effects may be associated with reversing AD pathology-induced neuronal apoptosis. These insights pave the way for further analysis of the potential of TEN as an AD therapeutic agent.
Collapse
Affiliation(s)
- Lin Wang
- College of Biological Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Gui Fang Jin
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - He Han Yu
- College of Biological Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiao Hua Lu
- College of Biological Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhen Hua Zou
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jia Qi Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hong Yang
- College of Biological Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|