1
|
Ragsdale SM, Radovich JM, Coiduras II, McCall WV, Grant SC, Lee C, Wilber A. Dual orexin receptor antagonists as promising therapeutics for Alzheimer's disease. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:11. [PMID: 40066297 PMCID: PMC11890173 DOI: 10.1038/s44323-025-00025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/23/2025] [Indexed: 03/15/2025]
Abstract
We examine the relationship between sleep, glymphatics and Alzheimer's disease (AD), and recent work questioning glymphatic clearance during sleep. We highlight a need for understanding glymphatic and/or other mechanism of clearance during sleep, and review glymphatic flow measurement methods. Further, we explore dual orexin receptor antagonists (DORAs) potential to mitigate AD sleep disturbances and enhance clearance. Further research could elucidate a linkage between DORAs, improved sleep and reducing AD pathophysiology.
Collapse
Affiliation(s)
- S. M. Ragsdale
- Department of Psychology; Program in Neuroscience; Florida State University, Tallahassee, FL USA
| | - J. M. Radovich
- Department of Chemical & Biochemical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL USA
- CIMAR, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL USA
| | - I. I. Coiduras
- Department of Psychology; Program in Neuroscience; Florida State University, Tallahassee, FL USA
| | - W. V. McCall
- Department of Psychiatry and Health Behavior; Medical College of Georgia; Augusta University, Augusta, GA USA
| | - S. C. Grant
- Department of Chemical & Biochemical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL USA
- CIMAR, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL USA
| | - C. Lee
- Department of Biomedical Sciences; Program in Neuroscience; College of Medicine, Florida State University, Tallahassee, FL USA
| | - A. Wilber
- Department of Psychology; Program in Neuroscience; Florida State University, Tallahassee, FL USA
| |
Collapse
|
2
|
Kourosh-Arami M, Ramezani M, Komaki A. The interaction between orexin, sleep deprivation and Alzheimer's disease: Unveiling an Emerging Connection. J Physiol Sci 2025; 75:100004. [PMID: 39823966 PMCID: PMC11979663 DOI: 10.1016/j.jphyss.2024.100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Sleep-wake disorders are an extremely predominant and often disabling aspect of AD. Ox is vital in maintaining the sleep-wake cycle and promoting wakefulness. Dysfunction of Ox signaling has been associated with sleep disorders such as narcolepsy. In AD patients, the increase in cerebrospinal fluid Ox levels is related to parallel sleep deterioration. The relationship between AD and sleep disturbances has gained increasing attention due to their potential bidirectional influence. Disruptions in sleep patterns are commonly observed in AD patients, leading researchers to investigate the possible involvement of Ox in sleep disturbances characteristic of the disease. This review article explores the role of the Ox system in AD, and the intricate relationship between AD and sleep, highlighting the potential mechanisms, impact on disease pathology, and therapeutic interventions to improve sleep quality in affected individuals.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mahdi Ramezani
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Yu H, Cline B. Orexin Receptor Antagonists for Insomnia in Patients with Serious Illness #496. J Palliat Med 2025; 28:408-410. [PMID: 39874552 DOI: 10.1089/jpm.2024.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
|
4
|
Bairami S, Scarmeas N, Yannakoulia M, Dardiotis E, Sakka P, Hadjigeorgiou G, Tsapanou A, Kosmidis MH. Can Sleep Predict Conversion to Mild Cognitive Impairment and Dementia? Results From the Hellenic Longitudinal Investigation of Aging and Diet Study. Alzheimer Dis Assoc Disord 2025; 39:8-14. [PMID: 39831565 DOI: 10.1097/wad.0000000000000661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Sleep disturbance is considered a risk factor for cognitive decline in elderly individuals. Our aim in the current study was to investigate whether baseline sleep parameters can predict the conversion from normal cognition to mild cognitive impairment or dementia at follow-up. The Hellenic Longitudinal Investigation of Aging and Diet is a longitudinal population-based study designed to estimate the prevalence and incidence of cognitive decline and dementia in the older Greek population. METHODS A total of 955 cognitively normal older adults (aged ≥65 y) were drawn from the Hellenic Longitudinal Investigation of Aging and Diet study. A comprehensive neurological and neuropsychological assessment was conducted at baseline and a mean of 3.1 (SD = 0.85) years later, resulting in 160 individuals diagnosed with mild cognitive impairment and 34 with dementia at follow-up, whereas 761 remained cognitively normal. RESULTS Using Cox regression analyses, no sleep parameters increased the risk of conversion status adjusting for demographics and clinical factors. Napping, however, decreased this risk by 19.3% ( P < 0.001). CONCLUSIONS As several previous studies have proposed, napping constitutes a protective factor against cognitive decline. Thus, clinicians should encourage their elderly patients to adopt this healthy habit.
Collapse
Affiliation(s)
- Styliani Bairami
- Department of Cognition, Brain & Behavior Lab of Neuropsychology and Behavioral Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School
- Athens Alzheimer Association, Athens
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Kallithea
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, University of Thessaly, Volos, Greece
| | - Paraskevi Sakka
- Department of Neurology, Τhe Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer Disease and the Aging Brain, Columbia University
| | - Georgios Hadjigeorgiou
- Department of Neurology Cognitive Neuroscience Division, Columbia University Irving Medical Center, New York, NY
| | - Angeliki Tsapanou
- Department of Neurology Medical School, University of Cyprus, Nicosia
| | - Mary H Kosmidis
- Department of Cognition, Brain & Behavior Lab of Neuropsychology and Behavioral Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki
| |
Collapse
|
5
|
Yusuff AS. Exploring Potential Mechanisms of Sleep Disorders in Alzheimer's Dementia: A Scoping Review. Cureus 2025; 17:e76859. [PMID: 39902010 PMCID: PMC11788456 DOI: 10.7759/cureus.76859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/05/2025] Open
Abstract
Alzheimer's dementia (AD) is characterized by a progressive decline in behavioral and cognitive functions, with sleep disorders (SDs) increasingly recognized as one of the noncognitive symptoms. Sleep plays a critical role in the brain, supporting learning and memory, regulating synaptic plasticity, and facilitating waste clearance. However, the mechanisms underlying sleep disturbances in AD remain poorly understood. This review aims to explore these mechanisms and their potential relevance for clinicians managing AD. A systematic search was conducted across multiple sources and databases, using keywords such as "Alzheimer AND sleep disorder", along with terms related to neurodegeneration and sleep disturbances. Of the 1,511 records identified, 18 were included in the final analysis. The findings highlight several mechanisms linking AD and SDs, suggesting a bidirectional relationship. These mechanisms include (i) shared genetic factors; (ii) disruption of the glymphatic system; (iii) circadian system dysregulation; (iv) neuroinflammation; (v) abnormal functional connectivity between related brain regions; and (vi) atrophy in brain regions involved in memory and sleep. In conclusion, the relationship between AD and SDs is complex and bidirectional. Sleep disturbances not only precede the onset of AD but also worsen as the disease progresses. Sleep may, therefore, serve as a promising biomarker for AD, with targeting sleep disturbances offering a potential early therapeutic strategy in managing AD.
Collapse
|
6
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Carpi M, Mercuri NB, Liguori C. Orexin Receptor Antagonists for the Prevention and Treatment of Alzheimer's Disease and Associated Sleep Disorders. Drugs 2024; 84:1365-1378. [PMID: 39365407 PMCID: PMC11602839 DOI: 10.1007/s40265-024-02096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Orexins/hypocretins are neuropeptides produced by the hypothalamic neurons, binding two G-protein coupled receptors (orexin 1 and orexin 2 receptors) and playing a critical role in regulating arousal, wakefulness, and various physiological functions. Given the high prevalence of sleep disturbances in Alzheimer's disease (AD) and their reported involvement in AD pathophysiology, the orexin system is hypothesized to contribute to the disease pathogenesis. Specifically, recent evidence suggests that orexin's influence may extend beyond sleep regulation, potentially affecting amyloid-β and tau pathologies. Dual orexin receptor antagonists (DORAs), namely suvorexant, lemborexant, and daridorexant, demonstrated efficacy in treating chronic insomnia disorder across diverse clinical populations. Considering their stabilizing effects on sleep parameters and emerging evidence of a possible neuroprotective role, these agents represent a promising strategy for AD management. This leading article reviews the potential use of orexin receptor antagonists in AD, particularly focusing on their effect in modulating disease-associated sleep disturbances and clinical outcomes. Overall, clinical studies support the use of DORAs to enhance sleep quality in patients with AD with comorbid sleep and circadian sleep-wake rhythm disorders. Preliminary results also suggest that these compounds might influence AD pathology, potentially affecting disease progression. Conversely, research on selective orexin receptor antagonists in AD is currently limited. Further investigation is needed to explore orexin antagonism not only as a symptomatic treatment for sleep disturbances, but also for its broader implications in modifying AD neurodegeneration, emphasizing mechanisms of action and long-term outcomes.
Collapse
Affiliation(s)
- Matteo Carpi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
| | - Nicola Biagio Mercuri
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy.
- Department of Systems Medicine, University of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy.
| |
Collapse
|
8
|
Chen J, Peng G, Sun B. Alzheimer's disease and sleep disorders: A bidirectional relationship. Neuroscience 2024; 557:12-23. [PMID: 39137870 DOI: 10.1016/j.neuroscience.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia, pathologically featuring abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, while sleep, divided into rapid eye movement sleep (REM) and nonrapid eye movement sleep (NREM), plays a key role in consolidating social and spatial memory. Emerging evidence has revealed that sleep disorders such as circadian disturbances and disruption of neuronal rhythm activity are considered as both candidate risks and consequence of AD, suggesting a bidirectional relationship between sleep and AD. This review will firstly grasp basic knowledge of AD pathogenesis, then highlight macrostructural and microstructural alteration of sleep along with AD progression, explain the interaction between accumulation of Aβ and hyperphosphorylated tau, which are two critical neuropathological processes of AD, as well as neuroinflammation and sleep, and finally introduce several methods of sleep enhancement as strategies to reduce AD-associated neuropathology. Although theories about the bidirectional relationship and relevant therapeutic methods in mice have been well developed in recent years, the knowledge in human is still limited. More studies on how to effectively ameliorate AD pathology in patients by sleep enhancement and what specific roles of sleep play in AD are needed.
Collapse
Affiliation(s)
- Junhua Chen
- Chu Kochen Honors College of Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
9
|
Kegyes-Brassai AC, Pierson-Bartel R, Bolla G, Kamondi A, Horvath AA. Disruption of sleep macro- and microstructure in Alzheimer's disease: overlaps between neuropsychology, neurophysiology, and neuroimaging. GeroScience 2024:10.1007/s11357-024-01357-z. [PMID: 39333449 DOI: 10.1007/s11357-024-01357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, often associated with impaired sleep quality and disorganized sleep structure. This study aimed to characterize changes in sleep macrostructure and K-complex density in AD, in relation to neuropsychological performance and brain structural changes. We enrolled 30 AD and 30 healthy control participants, conducting neuropsychological exams, brain MRI, and one-night polysomnography. AD patients had significantly reduced total sleep time (TST), sleep efficiency, and relative durations of non-rapid eye movement (NREM) stages 2 (S2), 3 (S3), and rapid eye movement (REM) sleep (p < 0.01). K-complex (KC) density during the entire sleep period and S2 (p < 0.001) was significantly decreased in AD. We found strong correlations between global cognitive performance and relative S3 (p < 0.001; r = 0.86) and REM durations (p < 0.001; r = 0.87). TST and NREM stage 1 (S1) durations showed a moderate negative correlation with amygdaloid and hippocampal volumes (p < 0.02; r = 0.51-0.55), while S3 and REM sleep had a moderate positive correlation with cingulate cortex volume (p < 0.02; r = 0.45-0.61). KC density strongly correlated with global cognitive function (p < 0.001; r = 0.66) and the thickness of the anterior cingulate cortex (p < 0.05; r = 0.45-0.47). Our results indicate significant sleep organization changes in AD, paralleling cognitive decline. Decreased slow wave sleep and KCs are strongly associated with cingulate cortex atrophy. Since sleep changes are prominent in early AD, they may serve as prognostic markers or therapeutic targets.
Collapse
Affiliation(s)
| | | | - Gergo Bolla
- School of PhD Studies, Semmelweis University, Budapest, Hungary
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
- Department of Neurosurgery and Neurointervention, Semmelweis University, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Andras Attila Horvath
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
- Department of Anatomy Histology and Embryology, Semmelweis University, Budapest, Hungary
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
10
|
Braga A, Chiacchiaretta M, Pellerin L, Kong D, Haydon PG. Astrocytic metabolic control of orexinergic activity in the lateral hypothalamus regulates sleep and wake architecture. Nat Commun 2024; 15:5979. [PMID: 39013907 PMCID: PMC11252394 DOI: 10.1038/s41467-024-50166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Neuronal activity undergoes significant changes during vigilance states, accompanied by an accommodation of energy demands. While the astrocyte-neuron lactate shuttle has shown that lactate is the primary energy substrate for sustaining neuronal activity in multiple brain regions, its role in regulating sleep/wake architecture is not fully understood. Here we investigated the involvement of astrocytic lactate supply in maintaining consolidated wakefulness by downregulating, in a cell-specific manner, the expression of monocarboxylate transporters (MCTs) in the lateral hypothalamus of transgenic mice. Our results demonstrate that reduced expression of MCT4 in astrocytes disrupts lactate supply to wake-promoting orexin neurons, impairing wakefulness stability. Additionally, we show that MCT2-mediated lactate uptake is necessary for maintaining tonic firing of orexin neurons and stabilizing wakefulness. Our findings provide both in vivo and in vitro evidence supporting the role of astrocyte-to-orexinergic neuron lactate shuttle in regulating proper sleep/wake stability.
Collapse
Affiliation(s)
- Alice Braga
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Martina Chiacchiaretta
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.
| | - Luc Pellerin
- Inserm U1313, University and CHU of Poitiers, 86021, Poitiers, France
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
11
|
Rebassa JB, Capó T, Lillo J, Raïch I, Reyes-Resina I, Navarro G. Cannabinoid and Orexigenic Systems Interplay as a New Focus of Research in Alzheimer's Disease. Int J Mol Sci 2024; 25:5378. [PMID: 38791416 PMCID: PMC11121409 DOI: 10.3390/ijms25105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease (AD) remains a significant health challenge, with an increasing prevalence globally. Recent research has aimed to deepen the understanding of the disease pathophysiology and to find potential therapeutic interventions. In this regard, G protein-coupled receptors (GPCRs) have emerged as novel potential therapeutic targets to palliate the progression of neurodegenerative diseases such as AD. Orexin and cannabinoid receptors are GPCRs capable of forming heteromeric complexes with a relevant role in the development of this disease. On the one hand, the hyperactivation of the orexins system has been associated with sleep-wake cycle disruption and Aβ peptide accumulation. On the other hand, cannabinoid receptor overexpression takes place in a neuroinflammatory environment, favoring neuroprotective effects. Considering the high number of interactions between cannabinoid and orexin systems that have been described, regulation of this interplay emerges as a new focus of research. In fact, in microglial primary cultures of APPSw/Ind mice model of AD there is an important increase in CB2R-OX1R complex expression, while OX1R antagonism potentiates the neuroprotective effects of CB2R. Specifically, pretreatment with the OX1R antagonist has been shown to strongly potentiate CB2R signaling in the cAMP pathway. Furthermore, the blockade of OX1R can also abolish the detrimental effects of OX1R overactivation in AD. In this sense, CB2R-OX1R becomes a new potential therapeutic target to combat AD.
Collapse
Affiliation(s)
- Joan Biel Rebassa
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos, 28029 Madrid, Spain; (J.B.R.); (T.C.); (J.L.); (I.R.)
- Institut de Neurociències UB, Campus Mundet, 08035 Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| | - Toni Capó
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos, 28029 Madrid, Spain; (J.B.R.); (T.C.); (J.L.); (I.R.)
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos, 28029 Madrid, Spain; (J.B.R.); (T.C.); (J.L.); (I.R.)
- Institut de Neurociències UB, Campus Mundet, 08035 Barcelona, Spain
- Departament de Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Iu Raïch
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos, 28029 Madrid, Spain; (J.B.R.); (T.C.); (J.L.); (I.R.)
- Institut de Neurociències UB, Campus Mundet, 08035 Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos, 28029 Madrid, Spain; (J.B.R.); (T.C.); (J.L.); (I.R.)
- Institut de Neurociències UB, Campus Mundet, 08035 Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos, 28029 Madrid, Spain; (J.B.R.); (T.C.); (J.L.); (I.R.)
- Institut de Neurociències UB, Campus Mundet, 08035 Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Bedward A, Kaur J, Seedat S, Donohue H, Kow CS, Rasheed MK, Javed A, Hasan SS. Pharmacological interventions to improve sleep in people with Alzheimer's disease: a meta-analysis of randomized controlled trials. Expert Rev Neurother 2024; 24:527-539. [PMID: 38597219 DOI: 10.1080/14737175.2024.2341004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION This systematic review and meta-analysis evaluates the evidence from randomized controlled trials (RCTs) involving pharmacological interventions for improving sleep in people with Alzheimer's disease (AD). METHODS A systematic literature search in eight databases from January 2000 to July 2023 focusing on RCTs that compared a pharmacological intervention with a placebo for enhancing sleep in people with AD. The authors registered the study protocol at Prospero, followed the PRISMA guidelines, and produced the pooled estimates using random-effect or IVhet models. RESULTS Eight different interventions and 29 different sleep outcomes were examined in 14 RCTs included in this review. Eszopiclone positively affected sleep efficiency, as did orexin antagonists. However, there was no difference when melatonin was used. The interventions demonstrated low discontinuation rates and a few adverse drug reactions. CONCLUSION Although melatonin was the most investigated intervention, the evidence for its efficacy is inconclusive. On the other hand, trazodone and orexin receptor antagonists showed promising results; however, more RCTs are needed for definite answers.
Collapse
Affiliation(s)
- Amy Bedward
- School of Applied Sciences, University of Huddersfield, Huddersfield, West Yorkshire, UK
| | - Jasmine Kaur
- School of Applied Sciences, University of Huddersfield, Huddersfield, West Yorkshire, UK
| | - Sadiyah Seedat
- School of Applied Sciences, University of Huddersfield, Huddersfield, West Yorkshire, UK
| | - Holly Donohue
- School of Applied Sciences, University of Huddersfield, Huddersfield, West Yorkshire, UK
| | - Chia Siang Kow
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Muhammad Kamran Rasheed
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Amaan Javed
- University College of Medical Sciences, University of Delhi, New Delhi, India
| | - Syed Shahzad Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, West Yorkshire, UK
| |
Collapse
|
13
|
Cornelissen G, Gubin D, Otsuka K. Disease Conditions. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:455-475. [DOI: 10.1039/bk9781839167553-00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Since clock genes are involved in all physiological systems, their role in most disease conditions is not surprising. To complement the information reviewed in Part II for each physiological system considered separately, this chapter illustrates the interdigitating network of interactions taking place within multiple physiological systems in any given disease condition. Circadian disruption, a common factor in disease, is almost inseparable from disturbed sleep, which is present in conditions ranging from psychological to cardio-metabolic and neurodegenerative conditions. Sleep disruption also modifies the immune system. Herein, we highlight the pervasive role played by the circadian system in pathology based on a few examples of selected disease conditions, including some sleep disorders, mental disorders, neurodegenerative conditions, and cancer.
Collapse
Affiliation(s)
- Germaine Cornelissen
- aHalberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Denis Gubin
- bTyumen State Medical University, Tyumen, Russia
- cTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| | - Kuniaki Otsuka
- aHalberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA
- dExecutive Medical Center, Totsuka Royal Clinic, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
14
|
Yin J, Tuo CM, Yu KY, Hu XH, Fan YY, Wu MN. Diurnal Characteristics of the Orexin System Genes and Its Effects on Pathology at Early Stage in 3xTg-AD Mice. Neuromolecular Med 2023; 25:632-643. [PMID: 37843792 DOI: 10.1007/s12017-023-08767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Orexin and its receptors are closely related to the pathogenesis of Alzheimer's disease (AD). Although the expression of orexin system genes under physiological condition has circadian rhythm, the diurnal characteristics of orexin system genes, and its potential role in the pathogenesis in AD are unknown. In the present study, we hope to elucidate the diurnal characteristics of orexin system genes at the early stage of AD, and to investigate its potential role in the development of AD neuropathology. We firstly detected the mRNA levels of orexin system genes, AD risk genes and core clock genes (CCGs) in hypothalamus and hippocampus in 6-month-old male 3xTg-AD mice and C57BL/6J (wild type, WT) control mice, then analyzed diurnal expression profiles of all genes using JTK_CYCLE algorithm, and did the correlation analysis between expression of orexin system genes and AD risk genes or CCGs. In addition, the expression of β-amyloid protein (Aβ) and phosphorylated tau (p-tau) protein were measured. The results showed that the diurnal mRNA expression profiles of PPO, OX1R, OX2R, Bace2, Bmal1, Per1, Per2 and Cry1 in the hypothalamus, and gene expression of OX1R, OX2R, Bace1, Bmal1, Per1 and Cry2 in the hippocampus in 3xTg-AD mice were different from that in WT mice. Furthermore, there is positive correlation between orexin system genes and AD risk genes or CCGs in the brain in 3xTg-AD mice. In addition, the expression of Aβ and p-tau in hippocampus in 3xTg-AD mice were significantly increased, and the expression of p-tau is higher in night than in day. These results indicate that the abnormal expression profiles of orexin system genes and its interaction with AD risk genes or CCGs might exert important role in the pathogenesis of AD, which will increase the expression of Aβ and p-tau, and accelerate the development of AD.
Collapse
Affiliation(s)
- Jing Yin
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chun-Mei Tuo
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kai-Yue Yu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao-Hong Hu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan-Ying Fan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Mei-Na Wu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China.
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
15
|
Whittaker DS, Akhmetova L, Carlin D, Romero H, Welsh DK, Colwell CS, Desplats P. Circadian modulation by time-restricted feeding rescues brain pathology and improves memory in mouse models of Alzheimer's disease. Cell Metab 2023; 35:1704-1721.e6. [PMID: 37607543 PMCID: PMC10591997 DOI: 10.1016/j.cmet.2023.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Circadian disruptions impact nearly all people with Alzheimer's disease (AD), emphasizing both their potential role in pathology and the critical need to investigate the therapeutic potential of circadian-modulating interventions. Here, we show that time-restricted feeding (TRF) without caloric restriction improved key disease components including behavioral timing, disease pathology, hippocampal transcription, and memory in two transgenic (TG) mouse models of AD. We found that TRF had the remarkable capability of simultaneously reducing amyloid deposition, increasing Aβ42 clearance, improving sleep and memory, and normalizing daily transcription patterns of multiple genes, including those associated with AD and neuroinflammation. Thus, our study unveils for the first time the pleiotropic nature of timed feeding on AD, which has far-reaching effects beyond metabolism, ameliorating neurodegeneration and the misalignment of circadian rhythmicity. Since TRF can substantially modify disease trajectory, this intervention has immediate translational potential, addressing the urgent demand for accessible approaches to reduce or halt AD progression.
Collapse
Affiliation(s)
- Daniel S Whittaker
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Laila Akhmetova
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Carlin
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Haylie Romero
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - David K Welsh
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paula Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Mogavero MP, Silvani A, Lanza G, DelRosso LM, Ferini-Strambi L, Ferri R. Targeting Orexin Receptors for the Treatment of Insomnia: From Physiological Mechanisms to Current Clinical Evidence and Recommendations. Nat Sci Sleep 2023; 15:17-38. [PMID: 36713640 PMCID: PMC9879039 DOI: 10.2147/nss.s201994] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/08/2023] [Indexed: 01/23/2023] Open
Abstract
After a detailed description of orexins and their roles in sleep and other medical disorders, we discuss here the current clinical evidence on the effects of dual (DORAs) or selective (SORAs) orexin receptor antagonists on insomnia with the aim to provide recommendations for their further assessment in a context of personalized and precision medicine. In the last decade, many trials have been conducted with orexin receptor antagonists, which represent an innovative and valid therapeutic option based on the multiple mechanisms of action of orexins on different biological circuits, both centrally and peripherally, and their role in a wide range of medical conditions which are often associated with insomnia. A very interesting aspect of this new category of drugs is that they have limited abuse liability and their discontinuation does not seem associated with significant rebound effects. Further studies on the efficacy of DORAs are required, especially on children and adolescents and in particular conditions, such as menopause. Which DORA is most suitable for each patient, based on comorbidities and/or concomitant treatments, should be the focus of further careful research. On the contrary, studies on SORAs, some of which seem to be appropriate also in insomnia in patients with psychiatric diseases, are still at an early stage and, therefore, do not allow to draw definite conclusions.
Collapse
Affiliation(s)
- Maria P Mogavero
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Lanza
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Lourdes M DelRosso
- Pulmonary and Sleep Medicine, University of California San Francisco-Fresno, Fresno, CA, USA
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|