1
|
Gao L, Hu S, Lv Y, Zheng G, Lin Z. Overexpression of LINC00672 promotes autophagy in Alzheimer's disease by upregulating GPNMB. PLoS One 2025; 20:e0322708. [PMID: 40367036 PMCID: PMC12077738 DOI: 10.1371/journal.pone.0322708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/21/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an irreversible neurodegenerative brain disorder, and autophagy crafts a new dawn on AD therapeutics. However, whether LINC00672 exerts its biological effects involvement in autophagy-mediated mechanisms in AD remain obscure. METHODS SH-SY5Y cells were treated with Amyloid Beta 1-42 (Aβ1-42, Aβ), while an AD mouse model was established using streptozotocin (STZ). The effects of LINC00672 overexpression on cell proliferation, apoptosis, and autophagy were evaluated in Aβ-stimulated SH-SY5Y cells. Besides, the impact of LINC00672 on cognitive function and pathological changes of the hippocampal tissues were validated in AD mice. Additionally, the interaction between LINC00672 overexpression and GPNMB silencing were determined in vitro. RESULTS Aβ stimulation diminished viability, augmented apoptosis, restricted the activation of autophagy in SH-SY5Y cells, while these alterations were partially abolished by LINC00672 overexpression. Furthermore, LINC00672 upregulation could improve cognitive impairment, and attenuate neuronal damage and even death in the STZ-treated AD mice. Additionally, GPNMB knockdown aggravated the improved neuronal injury and relatively restrained autophagy in Aβ-stimulated cells after LINC00672 overexpression. CONCLUSIONS LINC00672 exerted a protective effect in the AD progression by upregulating GPNMB to promote autophagy.
Collapse
Affiliation(s)
- Lingyi Gao
- Department of Emergency, Hainan General Hospital, Haikou, China
| | - Shijun Hu
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Yan Lv
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Guoxian Zheng
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Zhichuan Lin
- Department of Neurology, Hainan General Hospital, Haikou, China
| |
Collapse
|
2
|
Ge P, Guo S, Wang P, Zhou P, Tang Z, Yang N, Guo R, Xiao Q, Chai X, Zhang Q, Zhu H. Berbamine targets the FKBP12-rapamycin-binding (FRB) domain of the mTOR complex to promote microglial autophagy and ameliorate neuroinflammation in Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156771. [PMID: 40279970 DOI: 10.1016/j.phymed.2025.156771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Berbamine (BBM), a natural bisbenzylisoquinoline alkaloid, has demonstrated promising effects in ameliorating pathological process and inflammation response in central neuronal system (CNS). Alzheimer's disease (AD), primarily characterized by amyloid-beta (Aβ)-containing extra-cellular plaques and abnormal "autophagy-brake regulation" of neuroinflammation, currently lacks of effective therapeutic options. Therapeutics of BBM on AD is indeed intriguing, and the potential targets and mechanisms are vague yet. PURPOSE This study is designed to elucidate the therapeutic potential of BBM on AD, focusing particularly on its ability to enhance autophagy, induce microglial M2 polarization, and to uncover the underlying molecular mechanisms and implicated targets. METHODS The therapeutic efficacy of BBM was systematically investigated in APP/PS1 mice, with a focus on its potential to enhance autophagy, induce M2 polarization in microglia, and facilitate the clearance of Aβ plaques. Cognitive function was rigorously assessed through a series of behavioral tests, including the Morris Water Maze and Object Location Task. Immunofluorescence was employed to visualize the spatial distribution of inflammatory cytokines and autophagic markers within the brain parenchyma. Quantitative measurements of these cytokines were obtained using enzyme-linked immunosorbent assay (ELISA). Western blotting was utilized to analyze protein profiles associated with autophagy and microglial phenotypes. Additionally, chemo-proteomics and molecular docking techniques were applied to identify the key molecular targets of BBM. RESULTS BBM treatment significantly ameliorated cognitive dysfunction and reduced Aβ plaque deposition in APP/PS1 transgenic mice. Notably, BBM promoted microglial polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, accompanied by attenuation of neuroinflammation. Mechanistically, BBM exerted its effects through inhibition of mTOR signaling via direct interaction with the FKBP12-rapamycin-binding domain, thereby restoring autophagic flux and facilitating M2 microglial polarization. The mTOR activator MHY1485 abrogated the beneficial effects of BBM, highlighting the pivotal role of mTOR inhibition in its mechanism of action. CONCLUSIONS BBM promotes M2 microglial polarization and restores autophagic flux in AD by inhibiting mTOR signaling, representing a novel dual-modulatory mechanism for AD intervention. These findings highlight BBM's ability to target mTOR and intersecting pathways, offering a promising disease-modifying therapeutic approach for AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Pingyuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Siqi Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Pingping Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Peng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Zhishu Tang
- Graduate school, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Nianyun Yang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Rui Guo
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qingqing Xiao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Xin Chai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qichun Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huaxu Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, China.
| |
Collapse
|
3
|
Liu M, Zhu J, Zheng J, Han X, Jiang L, Tong X, Ke Y, Guo Z, Huang W, Cong J, Liu M, Lin SY, Zhu S, Mei L, Zhang X, Zhang W, Xin WJ, Zhang Z, Guo Y, Chen R. GPNMB and ATP6V1A interact to mediate microglia phagocytosis of multiple types of pathological particles. Cell Rep 2025; 44:115343. [PMID: 39992792 DOI: 10.1016/j.celrep.2025.115343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/14/2024] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Pronounced elevation of glycoprotein non-metastatic melanoma B (GPNMB) is a common phenomenon in a variety of brain diseases, but the expression patterns, functions, and molecular signaling of GPNMB have not been well studied. Here, we showed that pathological factors, including neuronal degeneration caused by seizures, caspase-3-induced neuronal apoptosis, neuronal debris, and β-amyloid, induced "on-demand" GPNMB expression in hippocampal microglia. Genetic ablation of GPNMB did not affect acute seizures but worsened chronic epileptogenesis. We found that GPNMB functioned in phagocytosis, deficiency of which resulted in defects in both phagocytic engulfment and degradation. GPNMB could be internalized into cells, where it wrapped engulfed pathogenic particles and presented them to lysosomes through interaction with lysosomal vacuolar-type proton ATPase catalytic subunit A (ATP6V1A). Activating ATP6V1A was able to rescue GPNMB-deficiency-caused phagocytosis impairment. Thus, microglial GPNMB-ATP6V1A might be a common treatment target of a batch of chronic neurological disorders, and clearing the degenerative neurons might be more valuable than reserving them to protect the brain.
Collapse
Affiliation(s)
- Mei Liu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianping Zhu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiawei Zheng
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuan Han
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lijuan Jiang
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiangzhen Tong
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Ke
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Guo
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiyuan Huang
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Cong
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meiqiu Liu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Su-Yan Lin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuang Zhu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Li Mei
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 519041, China
| | - Xingmei Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wangming Zhang
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhenhai Zhang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 519041, China.
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Rongqing Chen
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Kronk TA, Solorzano E, Robinson GT, Castor J, Ball HC, Safadi FF. The expression and function of Gpnmb in lymphatic endothelial cells. Gene 2025; 942:148993. [PMID: 39389329 DOI: 10.1016/j.gene.2024.148993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The lymphatic system functions in fluid homeostasis, lipid absorption and the modulation of the immune response. The role of Gpnmb (osteoactivin), an established osteoinductive molecule with newly identified anti-inflammatory properties, has not been studied in lymphangiogenesis. Here, we demonstrate that Gpnmb increases lymphatic endothelial cell (LEC) migration and lymphangiogenesis marker gene expression in vitro by enhancing pro-autophagic gene expression, while no changes were observed in cell proliferation or viability. In addition, cellular spreading and cytoskeletal reorganization was not altered following Gpnmb treatment. We show that systemic Gpnmb overexpression in vivo leads to increases in lymphatic tubule number per area. Overall, data presented in this study suggest Gpnmb is a positive modulator of lymphangiogenesis.
Collapse
Affiliation(s)
- Trinity A Kronk
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; Department of Orthopaedics, Akron Children's Hospital, Akron, OH, USA; University Hospitals, Cleveland, OH, USA
| | - Ernesto Solorzano
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Gabrielle T Robinson
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; University Hospitals, Cleveland, OH, USA
| | - Joshua Castor
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Foundations of Medicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Hope C Ball
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; University Hospitals, Cleveland, OH, USA; Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
5
|
Richardson TE, Orr ME, Orr TC, Rohde SK, Ehrenberg AJ, Thorn EL, Christie TD, Flores‐Almazan V, Afzal R, De Sanctis C, Maldonado‐Díaz C, Hiya S, Canbeldek L, Kulumani Mahadevan LS, Slocum C, Samanamud J, Clare K, Scibetta N, Yokoda RT, Koenigsberg D, Marx GA, Kauffman J, Goldstein A, Selmanovic E, Drummond E, Wisniewski T, White CL, Goate AM, Crary JF, Farrell K, Alosco ML, Mez J, McKee AC, Stein TD, Bieniek KF, Kautz TF, Daoud EV, Walker JM. Spatial proteomic differences in chronic traumatic encephalopathy, Alzheimer's disease, and primary age-related tauopathy hippocampi. Alzheimers Dement 2025; 21:e14487. [PMID: 39737785 PMCID: PMC11848160 DOI: 10.1002/alz.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition. METHODS We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5). RESULTS There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders. DISCUSSION These results suggest that there are subregion-specific proteomic differences among the neurons of these disorders, which appear to be influenced to a large degree by the presence of hippocampal Aβ. These proteomic differences may play a role in the differing hippocampal p-tau distribution and pathogenesis of these disorders. HIGHLIGHTS Alzheimer's disease neuropathologic change (ADNC), possible primary age-related tauopathy (PART), definite PART, and chronic traumatic encephalopathy (CTE) can be differentiated based on the proteomic composition of their neurofibrillary tangle (NFT)- and non-NFT-bearing neurons. The proteome of these NFT- and non-NFT-bearing neurons is largely correlated with the presence or absence of amyloid beta (Aβ). Neurons in CTE and definite PART (Aβ-independent pathologies) share numerous proteomic similarities that distinguish them from ADNC and possible PART (Aβ-positive pathologies).
Collapse
Affiliation(s)
- Timothy E. Richardson
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Miranda E. Orr
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
- St. Louis VA Medical CenterSt. LouisMissouriUSA
| | - Timothy C. Orr
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Susan K. Rohde
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of PathologyVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of NeuroscienceVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of Human GeneticsGenomics of Neurodegenerative Diseases and AgingVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of NeurologyAlzheimer Center AmsterdamNeuroscienceVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Alexander J. Ehrenberg
- Memory and Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Emma L. Thorn
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Thomas D. Christie
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Victoria Flores‐Almazan
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Robina Afzal
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Claudia De Sanctis
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Carolina Maldonado‐Díaz
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Satomi Hiya
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Leyla Canbeldek
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Cheyanne Slocum
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jorge Samanamud
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kevin Clare
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Nicholas Scibetta
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Raquel T. Yokoda
- Department of PathologyAlbert Einstein College of MedicineMontefiore Medical CenterBronxNew YorkUSA
| | - Daniel Koenigsberg
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Gabriel A. Marx
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Justin Kauffman
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Adam Goldstein
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Enna Selmanovic
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eleanor Drummond
- Brain & Mind Center and School of Medical SciencesFaculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
| | - Thomas Wisniewski
- Department of PathologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Department of PsychiatryNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Center for Cognitive NeurologyDepartment of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Charles L. White
- Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Alison M. Goate
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John F. Crary
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kurt Farrell
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Michael L. Alosco
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Boston University Alzheimer's Disease Research Center and BU CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Jesse Mez
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Boston University Alzheimer's Disease Research Center and BU CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Ann C. McKee
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Boston University Alzheimer's Disease Research Center and BU CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- VA Boston Healthcare SystemBostonMassachusettsUSA
- VA Bedford Healthcare SystemBedfordMassachusettsUSA
| | - Thor D. Stein
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Boston University Alzheimer's Disease Research Center and BU CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- VA Boston Healthcare SystemBostonMassachusettsUSA
- VA Bedford Healthcare SystemBedfordMassachusettsUSA
| | - Kevin F. Bieniek
- Department of Pathology & Laboratory MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Tiffany F. Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Elena V. Daoud
- Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jamie M. Walker
- Department of PathologyMolecular, and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Neuropathology Brain Bank & Research CoREIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| |
Collapse
|
6
|
Yu X, Li M, Wang C, Guan X. Glycoprotein non-metastatic melanoma protein B (GPNMB): An attractive target in atherosclerosis. Biochem Biophys Res Commun 2024; 732:150386. [PMID: 39024681 DOI: 10.1016/j.bbrc.2024.150386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Atherosclerosis (AS), the leading cause of cardiovascular diseases, is heavily influenced by inflammation, lipid accumulation, autophagy, and aging. The expression of glycoprotein non-metastatic melanoma B (GPNMB) has been observed to correlate with lipid content, inflammation, and aging, progressively increasing as atherosclerosis advances through its various stages, from baseline to early and advanced phases. However, the interaction between GPNMB and AS is controversial. Knockout of GPNMB has been shown to increase atherosclerotic plaque burden in mice. Conversely, targeted elimination of GPNMB-positive cells reduced atherosclerotic burden. These seemingly contradictory findings underscore the complexity of the issue and highlight the need for further research to reconcile these discrepancies and to elucidate the precise role of GPNMB in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaochen Yu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Min Li
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Chao Wang
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China.
| |
Collapse
|
7
|
Zhu XC, Mizutani Y, Ohdake R, Tatebe H, Maeda T, Shima S, Ueda A, Ito M, Ito S, Tokuda T, Watanabe H. CSF GPNMB in Parkinson's disease: A potential association with age and microglial activation. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1533-1542. [PMID: 39957200 DOI: 10.1177/1877718x241288712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND Recent evidence suggests a link between glycoprotein non-metastatic melanoma protein B (GPNMB) and Parkinson's disease (PD) pathogenesis. Although elevated plasma GPNMB levels associated with disease severity have been reported in PD, cerebrospinal fluid (CSF) alterations remain elusive. OBJECTIVE To explore CSF GPNMB alterations and its clinical significance in PD. METHODS This study enrolled 118 sporadic PD patients and 40 controls. We examined the potential associations between CSF GPNMB levels and the clinical characteristics or biomarkers of neurodegenerative pathogenesis. RESULTS PD patients had higher CSF GPNMB levels than controls (p = 0.0159). In the PD group, CSF GPNMB levels correlated with age (age at examination: rs = 0.2511, p = 0.0061; age at onset: rs = 0.2800, p = 0.0021) and the severity of motor and cognitive dysfunction (MDS-UPDRS III score: rs = 0.1998, p = 0.0347; Mini-Mental State Examination score: rs = -0.1922, p = 0.0370). After correcting for multiple comparisons, the correlation with age at onset remained significant. CSF GPNMB levels were also positively correlated with CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2) levels in both the PD (rs = 0.3582, p < 0.0001) and control (rs = 0.4743, p = 0.0023) groups. Furthermore, multiple regression analysis revealed CSF sTREM2 level as the strongest determinant of CSF GPNMB levels in the PD group (t-value = 3.49, p = 0.0007). CONCLUSIONS Elevated CSF GPNMB levels, linked with age and microglial activation, may be a valuable marker for understanding the interplay between aging, neuroinflammation, and PD pathology.
Collapse
Affiliation(s)
- Xi-Chen Zhu
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Neurology, the Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Toshiki Maeda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Shinji Ito
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
8
|
Gillett DA, Neighbarger NK, Cole C, Wallings RL, Tansey MG. Investigating the role and regulation of GPNMB in progranulin-deficient macrophages. Front Immunol 2024; 15:1417836. [PMID: 39391322 PMCID: PMC11464288 DOI: 10.3389/fimmu.2024.1417836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Progranulin (PGRN) is a holoprotein that is internalized and taken to the lysosome where it is processed to individual granulins (GRNs). PGRN is critical for successful aging, and insufficient levels of PGRN are associated with increased risk for developing neurodegenerative diseases like AD, PD, and FTD. A unifying feature among these diseases is dysregulation of peripheral immune cell populations. However, considerable gaps exist in our understanding of the function(s) of PGRN/GRNs in immune cells and their role in regulating central-peripheral neuroimmune crosstalk. One of the most upregulated genes and proteins in humans with GRN haploinsufficiency and in aged Grn knock-out (KO) mice is glycoprotein non-metastatic B (GPNMB) but its normal role within the context of immune crosstalk has not been elucidated. Methods To address this gap, peritoneal macrophages (pMacs) from 5-to-6-month old WT and Grn KO mice were assessed for Gpnmb expression and stimulation-dependent cytokine release in the presence or absence of the Gpnmb extracellular domain (ECD). Cellular localization, as well as inhibition of, the microphthalmia-associated transcription factor (MITF) was assessed to determine its mechanistic role in Gpnmb overexpression in Grn KO pMacs. Results We observed an increase in GPNMB protein and mRNA as a result of insufficient progranulin in peripheral immune cells at a very early age relative to previous reports on the brain. Stimulation-dependent cytokine release was decreased in the media of Grn KO pMacs relative to WT controls; a phenotype that could be mimicked in WT pMacs with the addition og GPNMB ECD. We also found that MITF is dysregulated in Grn KO pMacs; however, its nuclear translocation and activity are not required to rescue the immune dysregulation of Grn KO macrophages, suggesting redundancy in the system. Discussion These findings highlight the fact that knowledge of early-stage disease mechanism(s) in peripheral populations may inform treatment strategies to delay disease progression at an early, prodromal timepoint prior to development of neuroinflammation and CNS pathology.
Collapse
Affiliation(s)
- Drew A Gillett
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Noelle K Neighbarger
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Cassandra Cole
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Rebecca L Wallings
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| |
Collapse
|
9
|
Pan J, Fores-Martos J, Delpirou Nouh C, Jensen TD, Vallejo K, Cayrol R, Ahmadian S, Ashley EA, Greicius MD, Cobos I. Deciphering glial contributions to CSF1R-related disorder via single-nuclear transcriptomic profiling: a case study. Acta Neuropathol Commun 2024; 12:139. [PMID: 39217398 PMCID: PMC11365264 DOI: 10.1186/s40478-024-01853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
CSF1R-related disorder (CSF1R-RD) is a neurodegenerative condition that predominantly affects white matter due to genetic alterations in the CSF1R gene, which is expressed by microglia. We studied an elderly man with a hereditary, progressive dementing disorder of unclear etiology. Standard genetic testing for leukodystrophy and other neurodegenerative conditions was negative. Brain autopsy revealed classic features of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), including confluent white matter degeneration with axonal spheroids and pigmented glial cells in the affected white matter, consistent with CSF1R-RD. Subsequent long-read sequencing identified a novel deletion in CSF1R that was not detectable with short-read exome sequencing. To gain insight into potential mechanisms underlying white matter degeneration in CSF1R-RD, we studied multiple brain regions exhibiting varying degrees of white matter pathology. We found decreased CSF1R transcript and protein across brain regions, including intact white matter. Single nuclear RNA sequencing (snRNAseq) identified two disease-associated microglial cell states: lipid-laden microglia (expressing GPNMB, ATG7, LGALS1, LGALS3) and inflammatory microglia (expressing IL2RA, ATP2C1, FCGBP, VSIR, SESN3), along with a small population of CD44+ peripheral monocyte-derived macrophages exhibiting migratory and phagocytic signatures. GPNMB+ lipid-laden microglia with ameboid morphology represented the end-stage disease microglia state. Disease-associated oligodendrocytes exhibited cell stress signatures and dysregulated apoptosis-related genes. Disease-associated oligodendrocyte precursor cells (OPCs) displayed a failure in their differentiation into mature myelin-forming oligodendrocytes, as evidenced by upregulated LRP1, PDGFRA, SOX5, NFIA, and downregulated NKX2-2, NKX6.2, SOX4, SOX8, TCF7L2, YY1, ZNF488. Overall, our findings highlight microglia-oligodendroglia crosstalk in demyelination, with CSF1R dysfunction promoting phagocytic and inflammatory microglia states, an arrest in OPC differentiation, and oligodendrocyte depletion.
Collapse
Affiliation(s)
- Jie Pan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jaume Fores-Martos
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Claire Delpirou Nouh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tanner D Jensen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristen Vallejo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Romain Cayrol
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Saman Ahmadian
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Euan A Ashley
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Kawahara K, Hasegawa T, Hasegawa N, Izumi T, Sato K, Sakamaki T, Ando M, Maeda T. Truncated GPNMB, a microglial transmembrane protein, serves as a scavenger receptor for oligomeric β-amyloid peptide 1-42 in primary type 1 microglia. J Neurochem 2024; 168:1317-1339. [PMID: 38361142 DOI: 10.1111/jnc.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is up-regulated in one subtype of microglia (MG) surrounding senile plaque depositions of amyloid-beta (Aβ) peptides. However, whether the microglial GPNMB can recognize the fibrous Aβ peptides as ligands remains unknown. In this study, we report that the truncated form of GPNMB, the antigen for 9F5, serves as a scavenger receptor for oligomeric Aβ1-42 (o-Aβ1-42) in rat primary type 1 MG. 125I-labeled o-Aβ1-42 exhibited specific and saturable endosomal/lysosomal degradation in primary-cultured type 1 MG from GPNMB-expressing wild-type mice, whereas the degradation activity was markedly reduced in cells from Gpnmb-knockout mice. The Gpnmb-siRNA significantly inhibits the degradation of 125I-o-Aβ1-42 by murine microglial MG5 cells. Therefore, GPNMB contributes to mouse MG's o-Aβ1-42 clearance. In rat primary type 1 MG, the cell surface expression of truncated GPNMB was confirmed by a flow cytometric analysis using a previously established 9F5 antibody. 125I-labeled o-Aβ1-42 underwent endosomal/lysosomal degradation by rat primary type 1 MG in a dose-dependent fashion, while the 9F5 antibody inhibited the degradation. The binding of 125I-o-Aβ1-42 to the rat primary type 1 MG was inhibited by 42% by excess unlabeled o-Aβ1-42, and by 52% by the 9F5 antibody. Interestingly, the 125I-o-Aβ1-42 degradations by MG-like cells from human-induced pluripotent stem cells was inhibited by the 9F5 antibody, suggesting that truncated GPNMB also serve as a scavenger receptor for o-Aβ1-42 in human MG. Our study demonstrates that the truncated GPNMB (the antigen for 9F5) binds to oligomeric form of Aβ1-42 and functions as a scavenger receptor on MG, and 9F5 antibody can act as a blocking antibody for the truncated GPNMB.
Collapse
Affiliation(s)
- Kohichi Kawahara
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
- Department of Bio-analytical Chemistry, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Takuya Hasegawa
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Noa Hasegawa
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Taisei Izumi
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Koji Sato
- Laboratory of Health Chemistry, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Toshiyuki Sakamaki
- Laboratory of Health Chemistry, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Masayuki Ando
- Education Center for Pharmacy, Faculty of Pharmacy, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| | - Takehiko Maeda
- Department of Pharmacology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, Japan
| |
Collapse
|
11
|
Wang N, Cai L, Pei X, Lin Z, Huang L, Liang C, Wei M, Shao L, Guo T, Huang F, Luo H, Zheng H, Chen XF, Leng L, Zhang YW, Wang X, Zhang J, Guo K, Wang Z, Zhang H, Zhao Y, Xu H. Microglial apolipoprotein E particles contribute to neuronal senescence and synaptotoxicity. iScience 2024; 27:110006. [PMID: 38868202 PMCID: PMC11167441 DOI: 10.1016/j.isci.2024.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/13/2023] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Apolipoprotein E (apoE) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Microglia exhibit a substantial upregulation of apoE in AD-associated circumstances, despite astrocytes being the primary source of apoE expression and secretion in the brain. Although the role of astrocytic apoE in the brain has been extensively investigated, it remains unclear that whether and how apoE particles generated from astrocytes and microglia differ in biological characteristic and function. Here, we demonstrate the differences in size between apoE particles generated from microglia and astrocytes. Microglial apoE particles impair neurite growth and synapses, and promote neuronal senescence, whereas depletion of GPNMB (glycoprotein non-metastatic melanoma protein B) in microglial apoE particles mitigated these deleterious effects. In addition, human APOE4-expressing microglia are more neurotoxic than APOE3-bearing microglia. For the first time, these results offer concrete evidence that apoE particles produced by microglia are involved in neuronal senescence and toxicity.
Collapse
Affiliation(s)
- Na Wang
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Lujian Cai
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Xinyu Pei
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhihao Lin
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Lihong Huang
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Chensi Liang
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Min Wei
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Lin Shao
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Tiantian Guo
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Fang Huang
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing 400016, China
| | - Hong Luo
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Honghua Zheng
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiao-fen Chen
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Lige Leng
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yun-wu Zhang
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Xin Wang
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Jie Zhang
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Kai Guo
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing 400016, China
| | - Zhanxiang Wang
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Hongsheng Zhang
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing 400016, China
| | - Yingjun Zhao
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Huaxi Xu
- Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Adeoye T, Shah SI, Ullah G. Systematic Analysis of Biological Processes Reveals Gene Co-expression Modules Driving Pathway Dysregulation in Alzheimer's Disease. Aging Dis 2024; 16:1598-1625. [PMID: 38913039 DOI: 10.14336/ad.2024.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, suggesting that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, suggesting that DEGs exert more impact on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we observe an overall downregulation of astrocyte and microglia modules across all brain regions in AD, indicating a prevailing trend of functional repression in glial cells across these regions. Notable genes from the CALM and HSP90 families emerged as hub genes across neuronal modules in all brain regions, suggesting conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis to comprehensively understand the cell-type-specific roles of genes in AD-related biological processes.
Collapse
|
13
|
Adeoye T, Shah SI, Ullah G. Systematic Analysis of Biological Processes Reveals Gene Co-expression Modules Driving Pathway Dysregulation in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585267. [PMID: 38559218 PMCID: PMC10980062 DOI: 10.1101/2024.03.15.585267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, indicating that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, highlighting the differential impact of DEGs on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we note an overall downregulation of both astrocyte and microglia modules in AD across all brain regions, suggesting a prevailing trend of functional repression in glial cells across these regions. Notable genes, including those of the CALM and HSP90 family genes emerged as hub genes across neuronal modules in all brain regions, indicating conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis for a comprehensive understanding of the cell-type-specific roles of genes in AD-related biological processes.
Collapse
Affiliation(s)
- Temitope Adeoye
- Department of Physics, University of South Florida, Tampa, FL 33620
| | - Syed I Shah
- Department of Physics, University of South Florida, Tampa, FL 33620
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620
| |
Collapse
|
14
|
Gillett DA, Neighbarger NK, Cole C, Wallings RL, Tansey MG. Investigating the Role and Regulation of GPNMB in Progranulin-deficient Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584649. [PMID: 38558966 PMCID: PMC10980078 DOI: 10.1101/2024.03.12.584649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progranulin is a holoprotein that is critical for successful aging, and insufficient levels of progranulin are associated with increased risk for developing age-related neurodegenerative diseases like AD, PD, and FTD. Symptoms can vary widely, but a uniting feature among these different neurodegenerative diseases is prodromal peripheral immune cell phenotypes. However, there remains considerable gaps in the understanding of the function(s) of progranulin in immune cells, and recent work has identified a novel target candidate called GPNMB. We addressed this gap by investigating the peritoneal macrophages of 5-6-month-old Grn KO mice, and we discovered that GPNMB is actively increased as a result of insufficient progranulin and that MITF, a transcription factor, is also dysregulated in progranulin-deficient macrophages. These findings highlight the importance of early-stage disease mechanism(s) in peripheral cell populations that may lead to viable treatment strategies to delay disease progression at an early, prodromal timepoint and extend therapeutic windows.
Collapse
|
15
|
Wu XX, Zhao YX, Xu SL, Wang LX, Mao JH, Wang B, Yang H. A comprehensive evaluation of circ_0065214/ miR-188-3p/GPNMB axis in breast cancer. Cell Signal 2024; 115:111019. [PMID: 38141793 DOI: 10.1016/j.cellsig.2023.111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
CircRNAs are involved in multiple aspects during carcinogenesis, including tumorigenesis, vascularization, apoptosis and others. Exploring the role of circRNAs in breast cancer (BC) enables us to understand the development mechanism of BC more comprehensively. Here, we screened out and verified an up-regulated circRNA in BC from GEO data. Quantitative Real-time PCR (qRT-PCR) showed that circ_0065214 had a high expression level in BC patients. Besides, circ_0065214 had good diagnostic value in BC serum, and the area under the diagnostic curve, sensitivity and specificity were 0.78, 0.63 and 0.85, respectively. The combined application of circ_0065214 with CEA and CA-153 can further improve the diagnostic efficiency. The knockdown of circ_0065214 in vivo and in vitro inhibited the proliferation, migration and invasion of BC, but promoted autophagy. At last, dual-luciferase reporter assay and rescue assays revealed that circ_0065214 acted as a decoy to adsorb miR-188-3p, and then relieved the repressive effect of miR-188-3p on its target GPNMB. Our results demonstrated that circ_0065214 regulated the expression of GPNMB by competitively binding to miR-188-3p, thus promoting the proliferation, migration and invasion of breast cancer cells and inhibiting autophagy. These findings provided an original therapeutic strategy for BC.
Collapse
Affiliation(s)
- Xi-Xi Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China; The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Yue-Xin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shi-Liang Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling-Xia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia-Hui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Li K, Wang P, Li W, Yan JH, Ge YL, Zhang JR, Wang F, Mao CJ, Liu CF. The association between plasma GPNMB and Parkinson's disease and multiple system atrophy. Parkinsonism Relat Disord 2024; 120:106001. [PMID: 38217954 DOI: 10.1016/j.parkreldis.2024.106001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
AIMS Parkinson's disease (PD), as the second most common neurodegenerative disorder, often presents diagnostic challenges in differentiation from other forms of Parkinsonism. Recent studies have reported an association between plasma glycoprotein nonmetastatic melanoma protein B (pGPNMB) and PD. METHODS A retrospective study was conducted, comprising 401 PD patients, 111 multiple system atrophy (MSA) patients, 13 progressive supranuclear palsy (PSP) patients and 461 healthy controls from the Chinese Han population, with an assessment of pGPNMB levels. RESULTS The study revealed that pGPNMB concentrations were significantly lower in PD and MSA patients compared to controls (area under the receiver operating characteristics curve (AUC) 0.62 and 0.74, respectively, P < 0.0001 for both), but no difference was found in PSP patients compared to controls (P > 0.05). Interestingly, the level of pGPNMB was significantly higher in PD patients than in MSA patients (AUC = 0.63, P < 0.0001). Furthermore, the study explored the association between pGPNMB levels and disease severity in PD and MSA patients, revealing a positive correlation in PD patients but not in MSA patients with both disease severity and cognitive impairment. CONCLUSION This study successfully replicated prior findings, demonstrating an association between pGPNMB levels and disease severity, and also identified a correlation with cognitive impairment in PD patients of the Chinese Han population. Additionally, this study is the first to identify a significant difference in pGPNMB levels between MSA, PD, and normal controls. The data provide new evidence supporting the potential role of pGPNMB in the diagnosis and differential diagnosis of Parkinsonism.
Collapse
Affiliation(s)
- Kai Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Puzhi Wang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia-Hui Yan
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Lun Ge
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Ru Zhang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Cheng-Jie Mao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Walker JM, Orr ME, Orr TC, Thorn EL, Christie TD, Yokoda RT, Vij M, Ehrenberg AJ, Marx GA, McKenzie AT, Kauffman J, Selmanovic E, Wisniewski T, Drummond E, White CL, Crary JF, Farrell K, Kautz TF, Daoud EV, Richardson TE. Spatial proteomics of hippocampal subfield-specific pathology in Alzheimer's disease and primary age-related tauopathy. Alzheimers Dement 2024; 20:783-797. [PMID: 37777848 PMCID: PMC10916977 DOI: 10.1002/alz.13484] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) and primary age-related tauopathy (PART) both harbor 3R/4R hyperphosphorylated-tau (p-tau)-positive neurofibrillary tangles (NFTs) but differ in the spatial p-tau development in the hippocampus. METHODS Using Nanostring GeoMx Digital Spatial Profiling, we compared protein expression within hippocampal subregions in NFT-bearing and non-NFT-bearing neurons in AD (n = 7) and PART (n = 7) subjects. RESULTS Proteomic measures of synaptic health were inversely correlated with the subregional p-tau burden in AD and PART, and there were numerous differences in proteins involved in proteostasis, amyloid beta (Aβ) processing, inflammation, microglia, oxidative stress, and neuronal/synaptic health between AD and PART and between definite PART and possible PART. DISCUSSION These results suggest subfield-specific proteome differences that may explain some of the differences in Aβ and p-tau distribution and apparent pathogenicity. In addition, hippocampal neurons in possible PART may have more in common with AD than with definite PART, highlighting the importance of Aβ in the pathologic process. HIGHLIGHTS Synaptic health is inversely correlated with local p-tau burden. The proteome of NFT- and non-NFT-bearing neurons is influenced by the presence of Aβ in the hippocampus. Neurons in possible PART cases share more proteomic similarities with neurons in ADNC than they do with neurons in definite PART cases.
Collapse
|
18
|
Marzoog BA. Autophagy as an Anti-senescent in Aging Neurocytes. Curr Mol Med 2024; 24:182-190. [PMID: 36683318 DOI: 10.2174/1566524023666230120102718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 01/24/2023]
Abstract
Neuron homeostasis is crucial for the organism, and its maintenance is multifactorial, including autophagy. The turnover of aberrant intracellular components is a fundamental pathogenetic mechanism for cell aging. Autophagy is involved in the acceleration of the neurocyte aging process and the modification of cell longevity. Neurocyte aging is a process of loss of cell identity through cellular and subcellular changes that include molecular loss of epigenetics, transcriptomic, proteomic, and autophagy dysfunction. Autophagy dysfunction is the hallmark of neurocyte aging. Cell aging is the credential feature of neurodegenerative diseases. Pathophysiologically, aged neurocytes are characterized by dysregulated autophagy and subsequently neurocyte metabolic stress, resulting in accelerated neurocyte aging. In particular, chaperone- mediated autophagy perturbation results in upregulated expression of aging and apoptosis genes. Aged neurocytes are also characterized by the down-regulation of autophagy-related genes, such as ATG5-ATG12, LC3-II / LC3-I ratio, Beclin-1, and p62. Slowing aging through autophagy targeting is sufficient to improve prognosis in neurodegenerative diseases. Three primary anti-senescent molecules are involved in the aging process: mTOR, AMPK, and Sirtuins. Autophagy therapeutic effects can be applied to reverse and slow aging. This article discusses current advances in the role of autophagy in neurocyte homeostasis, aging, and potential therapeutic strategies to reduce aging and increase cell longevity.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- National Research Mordovia State University, Bolshevitskaya Street, 68, Saransk, 430005, Rep. Mordovia, Russia
| |
Collapse
|
19
|
Li X, Xu J, Su W, Su L, Chen X, Yang J, Lin X, Yang L. GPNMB Modulates Autophagy to Enhance Functional Recovery After Spinal Cord Injury in Rats. Cell Transplant 2024; 33:9636897241233040. [PMID: 38400732 PMCID: PMC10894544 DOI: 10.1177/09636897241233040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
Spinal cord injury (SCI) severely affects the quality of life and autonomy of patients, and effective treatments are currently lacking. Autophagy, an essential cellular metabolic process, plays a crucial role in neuroprotection and repair after SCI. Glycoprotein non-metastatic melanoma protein B (GPNMB) has been shown to promote neural regeneration and synapse reconstruction, potentially through the facilitation of autophagy. However, the specific role of GPNMB in autophagy after SCI is still unclear. In this study, we utilized the spinal cord transection method to establish SCI rats model and overexpressed GPNMB using adenoviral vectors. We assessed tissue damage using hematoxylin and eosin (H&E) and Nissl staining, and observed cell apoptosis using TUNEL staining. We evaluated the inflammatory response by measuring inflammatory factors using enzyme-linked immunosorbent assay (ELISA). In addition, we measured reactive oxygen species (ROS) levels using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and assessed oxidative stress levels by measuring malondialdehyde (MDA) and glutathione (GSH) using ELISA. To evaluate autophagy levels, we performed immunofluorescence staining for the autophagy marker Beclin-1 and conducted Western blot analysis for autophagy-related proteins. We also assessed limb recovery through functional evaluation. Meanwhile, we induced cell injury using lipopolysaccharide (LPS) and added an autophagy inhibitor to verify the impact of GPNMB on SCI through autophagy modulation. The results demonstrated that GPNMB alleviated the inflammatory response, reduced oxidative stress levels, inhibited cell apoptosis, and promoted autophagy following SCI. Inhibiting autophagy reversed the effects of GPNMB. These findings suggest that GPNMB promotes neural injury repair after SCI, potentially through attenuating the inflammatory response, reducing oxidative stress, and inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Xixi Li
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiakun Xu
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijie Su
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Luoxi Su
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangkun Chen
- Intensive Care Unit, The First People’s Hospital of Suqian City, Suqian, China
| | - Jia Yang
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xunxun Lin
- Department of Plastic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lixuan Yang
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Gillett DA, Wallings RL, Uriarte Huarte O, Tansey MG. Progranulin and GPNMB: interactions in endo-lysosome function and inflammation in neurodegenerative disease. J Neuroinflammation 2023; 20:286. [PMID: 38037070 PMCID: PMC10688479 DOI: 10.1186/s12974-023-02965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Alterations in progranulin (PGRN) expression are associated with multiple neurodegenerative diseases (NDs), including frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD), and lysosomal storage disorders (LSDs). Recently, the loss of PGRN was shown to result in endo-lysosomal system dysfunction and an age-dependent increase in the expression of another protein associated with NDs, glycoprotein non-metastatic B (GPNMB). MAIN BODY It is unclear what role GPNMB plays in the context of PGRN insufficiency and how they interact and contribute to the development or progression of NDs. This review focuses on the interplay between these two critical proteins within the context of endo-lysosomal health, immune function, and inflammation in their contribution to NDs. SHORT CONCLUSION PGRN and GPNMB are interrelated proteins that regulate disease-relevant processes and may have value as therapeutic targets to delay disease progression or extend therapeutic windows.
Collapse
Affiliation(s)
- Drew A Gillett
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rebecca L Wallings
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Chen YC, Liaw YC, Nfor ON, Hsiao CH, Zhong JH, Wu SL, Liaw YP. Epigenetic regulation of Parkinson's disease risk variant GPNMB cg17274742 methylation by sex and exercise from Taiwan Biobank. Front Aging Neurosci 2023; 15:1235840. [PMID: 37744396 PMCID: PMC10513104 DOI: 10.3389/fnagi.2023.1235840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background Parkinson's disease (PD) is a complex neurodegenerative disease with an elusive etiology that involves the interaction between genetic, behavioral, and environmental factors. Recently, epigenetic modifications, particularly DNA methylation, have been recognized to play an important role in the onset of PD. Glycoprotein non-metastatic melanoma protein B (GPNMB), a type I transmembrane protein crucial for immune cell activation and maturation, has emerged as a potential biomarker for the risk of PD. This research aims to investigate the influence of exercise and gender on the regulation of methylation levels of GPNMB cg17274742 in individuals. Methods We analyze data from 2,474 participants in the Taiwan Biobank, collected from 2008 and 2016. Methylation levels at the GPNMB cg17274742 CpG site were measured using Illumina Infinium MethylationEPIC beads. After excluding individuals with incomplete data or missing information on possible risk factors, our final analysis included 1,442 participants. We used multiple linear regression models to assess the association between sex and exercise with adjusted levels of GPNMB cg17274742 for age, BMI, smoking, drinking, coffee consumption, serum uric acid levels, and hypertension. Results Our results demonstrated that exercise significantly influenced the methylation levels of GPNMB cg17274742 in males (β = -0.00242; p = 0.0026), but not in females (β = -0.00002362; p = 0.9785). Furthermore, male participants who exercised showed significantly lower levels of methylation compared to the reference groups of the female and non-exercising reference groups (β = -0.00357; p = 0.0079). The effect of the interaction between gender and exercise on the methylation of GPNMB cg17274742 was statistically significant (p = 0.0078). Conclusion This study suggests that gender and exercise can modulate GPNMB cg17274742, with hypomethylation observed in exercise men. More research is needed to understand the underlying mechanisms and implications of these epigenetic changes in the context of risk and prevention strategies.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Chia Liaw
- Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Hsuan Hsiao
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ji-Han Zhong
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, Changhua National University of Education, Changhua, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Harraz MM. Selective dopaminergic vulnerability in Parkinson's disease: new insights into the role of DAT. Front Neurosci 2023; 17:1219441. [PMID: 37694119 PMCID: PMC10483232 DOI: 10.3389/fnins.2023.1219441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and associated dopamine depletion. Several mechanisms, previously considered in isolation, have been proposed to contribute to the pathophysiology of dopaminergic degeneration: dopamine oxidation-mediated neurotoxicity, high dopamine transporter (DAT) expression density per neuron, and autophagy-lysosome pathway (ALP) dysfunction. However, the interrelationships among these mechanisms remained unclear. Our recent research bridges this gap, recognizing autophagy as a novel dopamine homeostasis regulator, unifying these concepts. I propose that autophagy modulates dopamine reuptake by selectively degrading DAT. In PD, ALP dysfunction could increase DAT density per neuron, and enhance dopamine reuptake, oxidation, and neurotoxicity, potentially contributing to the progressive loss of dopaminergic neurons. This integrated understanding may provide a more comprehensive view of aspects of PD pathophysiology and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Askenazi M, Kavanagh T, Pires G, Ueberheide B, Wisniewski T, Drummond E. Compilation of reported protein changes in the brain in Alzheimer's disease. Nat Commun 2023; 14:4466. [PMID: 37491476 PMCID: PMC10368642 DOI: 10.1038/s41467-023-40208-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Proteomic studies of human Alzheimer's disease brain tissue have potential to identify protein changes that drive disease, and to identify new drug targets. Here, we analyse 38 published Alzheimer's disease proteomic studies, generating a map of protein changes in human brain tissue across thirteen brain regions, three disease stages (preclinical Alzheimer's disease, mild cognitive impairment, advanced Alzheimer's disease), and proteins enriched in amyloid plaques, neurofibrillary tangles, and cerebral amyloid angiopathy. Our dataset is compiled into a searchable database (NeuroPro). We found 848 proteins were consistently altered in 5 or more studies. Comparison of protein changes in early-stage and advanced Alzheimer's disease revealed proteins associated with synapse, vesicle, and lysosomal pathways show change early in disease, but widespread changes in mitochondrial associated protein expression change are only seen in advanced Alzheimer's disease. Protein changes were similar for brain regions considered vulnerable and regions considered resistant. This resource provides insight into Alzheimer's disease brain protein changes and highlights proteins of interest for further study.
Collapse
Affiliation(s)
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Geoffrey Pires
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Biochemistry and Molecular Pharmacology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA.
| |
Collapse
|
24
|
Yang L, Nao J. Focus on Alzheimer's Disease: The Role of Fibroblast Growth Factor 21 and Autophagy. Neuroscience 2023; 511:13-28. [PMID: 36372296 DOI: 10.1016/j.neuroscience.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is a disorder of the central nervous system that is typically marked by progressive cognitive impairment and memory loss. Amyloid β plaque deposition and neurofibrillary tangles with hyperphosphorylated tau are the two hallmark pathologies of AD. In mammalian cells, autophagy clears aberrant protein aggregates, thus maintaining proteostasis as well as neuronal health. Autophagy affects production and metabolism of amyloid β and accumulation of phosphorylated tau proteins, whose malfunction can lead to the progression of AD. On the other hand, defective autophagy has been found to induce the production of the neuroprotective factor fibroblast growth factor 21 (FGF21), although the underlying mechanism is unclear. In this review, we highlight the significance of aberrant autophagy in the pathogenesis of AD, discuss the possible mechanisms by which defective autophagy induces FGF21 production, and analyze the potential of FGF21 in the treatment of AD. The findings provide some insights into the potential role of FGF21 and autophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|