1
|
Li Y, Xue J, Ma Y, Ye K, Zhao X, Ge F, Zheng F, Liu L, Gao X, Wang D, Xia Q. The complex roles of m 6 A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases. Neural Regen Res 2025; 20:1582-1598. [PMID: 38845217 PMCID: PMC11688559 DOI: 10.4103/nrr.nrr-d-23-01872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
N6-methyladenosine (m 6 A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m 6 A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m 6 A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m 6 A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m 6 A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m 6 A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m 6 A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m 6 A's role in neurodegenerative processes. The roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time-specific nature of m 6 A and its varying effects on distinct brain regions and in different environments.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Hronova A, Pritulova E, Hejnova L, Novotny J. An Investigation of the RNA Modification m 6A and Its Regulatory Enzymes in Rat Brains Affected by Chronic Morphine Treatment and Withdrawal. Int J Mol Sci 2025; 26:4371. [PMID: 40362608 PMCID: PMC12072463 DOI: 10.3390/ijms26094371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent methylated modifications of mRNA in eukaryotes. This reversible alteration can directly or indirectly influence biological functions, including RNA degradation, translation, and splicing. This study investigates the impact of chronic morphine administration and varying withdrawal durations (1 day, 1 week, 4 weeks, and 12 weeks) on the m6A modification levels in brain regions critical to addiction development and persistence. Our findings indicate that in the prefrontal cortex, the m6A levels and METTL3 expression decrease, accompanied by an increase in FTO and ALKBH5 expression, followed by fluctuating, but statistically insignificant changes in methylation-regulating enzymes over prolonged withdrawal. In the striatum, reductions in m6A levels and METTL3 expression are observed at 4 weeks of withdrawal, preceded by non-significant fluctuations in enzyme expression and the m6A modification levels. In contrast, no changes in the m6A modification levels or the expression of related enzymes are detected in the hippocampus and the cerebellum. Our data suggest that m6A modification and its regulatory enzymes undergo region-specific and time-dependent changes in response to chronic morphine exposure and subsequent withdrawal.
Collapse
Affiliation(s)
| | | | | | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic; (A.H.); (E.P.); (L.H.)
| |
Collapse
|
3
|
Lai Y, Su B, Wang X, Zeng C, Chu H, Zhou L, Bing D. Transcriptomic analysis reveals the function of m6A regulators in aged cochlea. Braz J Otorhinolaryngol 2025; 91:101578. [PMID: 40198960 PMCID: PMC12005922 DOI: 10.1016/j.bjorl.2025.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE Presbycusis is a prevalent health issue among the elderly. Previous studies have shown mechanisms related to this condition, but the underlying mechanisms of presbycusis remain elusive. N6-methyladenosine (m6A) modification in regulating gene expression and cellular functions has been implicated in the development of various diseases. Nevertheless, the potential role of m6A regulators in presbycusis is still unclear. In this study, we aim to determine the expression of m6A regulators in the cochleae of young and old mice, and to investigate their potential role in aging. METHODS We sequenced the transcriptome from the cochleae of six young (2-mo) and six old mice (24-mo) bioinformatics analysis. Differential expression analysis and downstream functional analysis was performed to identify m6A regulators. Association of m6A regulators with protein-protein interaction and transcription factor-miRNA networks were constructed to explore their regulatory mechanisms. RESULTS ALKBH5 and YTHDC1 were found upregulated in the aged cochleae. They were strongly correlated with immune-related pathways, immune molecular subtypes, and immune infiltration levels in old mice, suggesting their potential involvement in immune-related mechanisms of presbycusis. Receiver Operating Characteristic (ROC) curve analysis demonstrated the high diagnostic potential molecules of AlkB Homolog 5 (ALKBH5) and YTHDC1. CONCLUSION This study has established a molecular foundation and introduce a novel perspective on the role of m6A regulators in presbycusis, emphasizing ALKBH5 and YTHDC1 as potential markers. LEVEL OF EVIDENCE Acknowledging methodological similarities with Level 3 (non-randomized controlled cohort or case-control studies) in clinical research, we reference Level 3 as a comparative framework, while recognizing the distinct differences between clinical and animal research settings.
Collapse
Affiliation(s)
- Yanbing Lai
- Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Department of Otorhinolaryngology Head and Neck Surgery, Wuhan, China
| | - Bo Su
- Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Department of Otorhinolaryngology Head and Neck Surgery, Wuhan, China
| | - Xiaodi Wang
- Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Department of Otorhinolaryngology Head and Neck Surgery, Wuhan, China
| | - Chenghui Zeng
- Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Department of Otorhinolaryngology Head and Neck Surgery, Wuhan, China
| | - Hanqi Chu
- Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Department of Otorhinolaryngology Head and Neck Surgery, Wuhan, China
| | - Liangqiang Zhou
- Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Department of Otorhinolaryngology Head and Neck Surgery, Wuhan, China
| | - Dan Bing
- Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Department of Otorhinolaryngology Head and Neck Surgery, Wuhan, China.
| |
Collapse
|
4
|
Miller C, Ealy A, Gregory A, Janarthanam C, Albers W, Richardson G, Jin H, Zenitsky G, Anantharam V, Kanthasamy A, Kanthasamy AG. Pathological α-synuclein dysregulates epitranscriptomic writer METTL3 to drive neuroinflammation in microglia. Cell Rep 2025; 44:115618. [PMID: 40279247 DOI: 10.1016/j.celrep.2025.115618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/11/2025] [Accepted: 04/04/2025] [Indexed: 04/27/2025] Open
Abstract
Recent reports suggest dysregulation of the N6-methyladenosine (m6A) RNA modification may contribute to the pathology of neurodegenerative diseases. Herein, we show the m6A methyltransferase complex including METTL3-the catalytic component of the nuclear-localized complex-is robustly upregulated in human microglia and astrocytes exposed to αSynf and Mn. Subcellular localization studies reveal METTL3 was predominantly cytoplasmic following Mn insult but remained nuclear following αSynf stimulation in activated microglia. Functional analysis revealed METTL3 and downstream m6A readers, including YTHDF2 and IGF2BP1-3, may regulate the proinflammatory secretome of activated microglia. Notably, methyltransferase activity and m6A abundance were significantly increased following Mn and αSynf treatment. METTL3 in Mn and αSynfin vivo models of neuroinflammation, along with human postmortem tissues from Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB) patients, was significantly upregulated. This was further confirmed by single-cell RNA sequencing (scRNA-seq) analysis. Overall, we demonstrate the m6A writer METTL3 may function as a major regulator of chronic neuroinflammation in synucleinopathies.
Collapse
Affiliation(s)
- Cameron Miller
- Isakson Center for Neurological Disease Research, The University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Alyssa Ealy
- Isakson Center for Neurological Disease Research, The University of Georgia, Athens, GA 30602, USA; Department of Physiology and Pharmacology, The University of Georgia, Athens, GA 30602, USA
| | - Amanda Gregory
- Isakson Center for Neurological Disease Research, The University of Georgia, Athens, GA 30602, USA
| | - Chelva Janarthanam
- Isakson Center for Neurological Disease Research, The University of Georgia, Athens, GA 30602, USA; Department of Physiology and Pharmacology, The University of Georgia, Athens, GA 30602, USA
| | - William Albers
- Isakson Center for Neurological Disease Research, The University of Georgia, Athens, GA 30602, USA; Department of Biology, The University of Georgia, Athens, GA 30602, USA
| | - Gabriel Richardson
- Isakson Center for Neurological Disease Research, The University of Georgia, Athens, GA 30602, USA
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, The University of Georgia, Athens, GA 30602, USA; Department of Physiology and Pharmacology, The University of Georgia, Athens, GA 30602, USA
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, The University of Georgia, Athens, GA 30602, USA
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, The University of Georgia, Athens, GA 30602, USA; Department of Physiology and Pharmacology, The University of Georgia, Athens, GA 30602, USA
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, The University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Anumantha G Kanthasamy
- Isakson Center for Neurological Disease Research, The University of Georgia, Athens, GA 30602, USA; Department of Biology, The University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, USA; Department of Physiology and Pharmacology, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Wang Y, Zhao T, Yuan C, Chen X. The Role of N6-Methyladenosine (m6A) RNA Modification in the Pathogenesis of Parkinson's Disease. Biomolecules 2025; 15:617. [PMID: 40427510 PMCID: PMC12108881 DOI: 10.3390/biom15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a high prevalence among the middle-aged and elderly population. The pathogenesis of PD is closely linked to the misfolding and aggregation of α-synuclein, which contributes to the formation of Lewy bodies. These processes are associated with the degeneration of dopaminergic neurons, a key neuropathological change that underlies the motor symptoms of PD. In addition, genetic susceptibility, mitochondrial dysfunction, oxidative stress and neuroinflammation are involved in the progress of the disease. Previous studies indicated that the dysregulation of epigenetic modifications, including DNA methylation and histone acetylation, may be the key pathophysiological factors in PD. N6-methyladenosine (m6A) is a dynamically reversible modification in eukaryotes RNA, and could regulate mRNA degradation, stability, maturation, and translation. Recently, clinical research has shown that the global m6A level is significantly reduced in PD patients as well as the expression changes in m6A-associated proteins. Moreover, the dysregulation of m6A modification was shown to impact dopamine metabolism and damage dopaminergic neurons, indicating that m6A RNA modification may play a critical role in the pathogenesis of PD. In this review, we summarize recent clinical studies on m6A RNA modification in PD patients and discuss the regulatory role of m6A modification in dopamine metabolism and dopaminergic neurons death. Furthermore, based on the different m6A modification databases and prediction websites, we analyzed the potential m6A modification sites on the mRNA of key PD pathogenic genes (SNCA, PRKN, PINK1, and LRRK2) for the first time, aiming to offer new gene targets and perspectives understanding the pathogenesis of PD.
Collapse
Affiliation(s)
| | | | | | - Xuechai Chen
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China; (Y.W.); (T.Z.); (C.Y.)
| |
Collapse
|
6
|
Wei S, Tao HY, Duan Z, Wang Y. Environmental Exposure, Epitranscriptomic Perturbations, and Human Diseases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6387-6399. [PMID: 40126397 PMCID: PMC11978485 DOI: 10.1021/acs.est.5c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Epitranscriptomics is a rapidly evolving field, and it examines how chemical modifications on RNA regulate gene expression. Increasing lines of evidence support that exposure to various environmental agents can change substantially chemical modifications on RNA, thereby perturbing gene expression and contributing to disease development in humans. However, the molecular mechanisms through which environmental exposure impairs RNA modification-associated proteins ("reader", "writer", and "eraser" or RWE proteins) and alters the landscape of RNA modifications remain poorly understood. Here, we provide our perspectives on the current knowledge about how environmental exposure alters the epitranscriptome, where we focus on dynamic changes in RNA modifications and their regulatory proteins elicited by exposure to environmental agents. We discuss how these epitranscriptomic alterations may contribute to the development of human diseases, especially neurodegeneration and cancer. We also discuss the potential and technical challenges of harnessing RNA modifications as biomarkers for monitoring environmental exposure. Finally, we emphasize the need to integrate multiomics approaches to decipher the complex interplay between environmental exposure and the epitranscriptome and offer a forward-looking viewpoint on future research priorities that may inform public health interventions and environmental regulations.
Collapse
Affiliation(s)
- Songbo Wei
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Huan-Yu Tao
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Zheng Duan
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
7
|
Wang J, Ran Y, Li Z, Zhao T, Zhang F, Wang J, Liu Z, Chen X. Salsolinol as an RNA m6A methylation inducer mediates dopaminergic neuronal death by regulating YAP1 and autophagy. Neural Regen Res 2025; 20:887-899. [PMID: 38886960 PMCID: PMC11433901 DOI: 10.4103/nrr.nrr-d-23-01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00032/figure1/v/2024-06-17T092413Z/r/image-tiff Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, Sal) is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, an environmental toxin that causes Parkinson's disease. However, the mechanism by which Sal mediates dopaminergic neuronal death remains unclear. In this study, we found that Sal significantly enhanced the global level of N6-methyladenosine (m6A) RNA methylation in PC12 cells, mainly by inducing the downregulation of the expression of m6A demethylases fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5). RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway. The m6A reader YTH domain-containing family protein 2 (YTHDF2) promoted the degradation of m6A-containing Yes-associated protein 1 (YAP1) mRNA, which is a downstream key effector in the Hippo signaling pathway. Additionally, downregulation of YAP1 promoted autophagy, indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity. These findings reveal the role of Sal on m6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy. Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Jianan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Tianyuan Zhao
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Fangfang Zhang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Juan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
8
|
Liu L, Zhao YJ, Zhang F. RNA methylation modifications in neurodegenerative diseases: Focus on their enzyme system. J Adv Res 2025:S2090-1232(25)00027-X. [PMID: 39765326 DOI: 10.1016/j.jare.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) constitute a significant public health challenge, as they are increasingly contributing to global mortality and morbidity, particularly among the elderly population. Pathogenesis of NDs is intricate and multifactorial. Recently, post-transcriptional modifications (PTMs) of RNA, with a particular focus on mRNA methylation, have been gaining increasing attention. At present, several regulatory genes associated with mRNA methylation have been identified and closely associated with neurodegenerative disorders. AIM OF REVIEW This review aimed to summarize the RNA methylation enzymes system, including the writer, reader, and eraser proteins and delve into their functions in the central nervous system (CNS), hoping to open new avenues for exploring the mechanisms and therapeutic strategies for NDs. KEY SCIENTIFIC CONCEPTS OF REVIEW Recently, studies have highlighted the critical role of RNA methylation in the development and function of the CNS, and abnormalities in this process may contribute to brain damage and NDs, aberrant expression of enzymes involved in RNA methylation has been implicated in the onset and development of NDs.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
9
|
Jingrui W, Haihui Y, Jinjin Y, Le F. IGF2BP2 Regulates the Progression of Alzheimer's Disease Through m6A-Mediated NLRP3 Inflammasome. Immun Inflamm Dis 2025; 13:e70121. [PMID: 39783247 PMCID: PMC11713527 DOI: 10.1002/iid3.70121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Recent studies show that N6-methyladenosine (m6A) plays an important role in the pathogenesis of the Alzheimer's disease (AD), while the mechanisms involved were studied insufficiently. AIMS The present study aimed to explore the effect of human insulin-like growth factor 2 (IGF2) mRNA binding proteins 2 (IGF2BP2), one of the m6A-binding proteins on the progression of AD. MATERIALS & METHODS The mRNA and protein expression level were determined using RT-qPCR and western blot, respectively. MTT assay was carried out to evaluate cell viability. The content of ROS, antioxidant enzymes, IL-1β and pyroptosis, as well as m6A contents were determined using relative commercial kit. The AD models were built using Aβ1-42 -stimulated hippocampal neuron in vitro and AD mice in vivo. RESULTS Our results showed that IGF2BP2 was significantly upregulated in the Aβ1-42 -stimulated hippocampal neuron. IGF2BP2 inhibition reversed the decreased cell viability and the increased cell apoptosis induced by Aβ1-42. IGF2BP2 siRNA transfection alleviated Aβ1-42 induced pyroptosis and pyroptosis-related proteins upregulation. we also found that IGF2BP2 inhibition downregulated the expression of NLRP3 through m6A methylation. Furthermore, overexpression of NLRP3 partly reversed the effect of IGF2BP2 inhibition on Aβ1-42 -induced hippocampal neuron injury. In addition, IGF2BP2 improved cognitive function and alleviated Aβ1-42 neuronal injury in vivo. CONCLUSION Knockdown of IGF2BP2 inhibit neuronal damage and pyroptosis in the hippocampus cells, and improve cognitive function in AD partly through m6A-mediated NLRP3 inflammasome.
Collapse
Affiliation(s)
- Wu Jingrui
- College of Medical TechnologyXi'an Medical CollegeXi'anShaanxiChina
| | - Yang Haihui
- College of Medical TechnologyXi'an Medical CollegeXi'anShaanxiChina
| | - Yan Jinjin
- Depatment of Medical TechnologyHuyi DistrictXi'anShaanxiChina
| | - Fang Le
- Department of Clinical LaboratoryNorinco General HospitalXi'anShaanxiChina
| |
Collapse
|
10
|
Qadri SW, Shah NM, Muddashetty RS. Epitranscriptome-Mediated Regulation of Neuronal Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70004. [PMID: 39963903 DOI: 10.1002/wrna.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 12/02/2024] [Accepted: 01/24/2025] [Indexed: 04/10/2025]
Abstract
Epitranscriptomic modification of RNA is an important layer of regulation for gene expression. RNA modifications come in many flavors and generate a complex tapestry of a regulatory network. Here, we focus on two major RNA modifications, one on rRNA (2'O Methylation) and another on mRNA (N6-Methyladenosine [m6A]) and their impact on translation. The 2'O methyl group addition on the ribose sugar of rRNA plays a critical role in RNA folding, ribosome assembly, and its interaction with many RNA binding proteins. Differential methylation of these sites contributes to ribosome heterogeneity and generates potential "specialized ribosomes." Specialized ribosomes are proposed to play a variety of important roles in maintaining pluripotency, lineage specification, and compartmentalized and activity-mediated translation in neurons. The m6A modification, on the other hand, determines the stability, transport, and translation of subclasses of mRNA. The dynamic nature of m6A owing to the localization and activity of its writers, readers, and erasers makes it a powerful tool for spatiotemporal regulation of translation. While substantial information has accumulated on the nature and abundance of these modifications, their functional consequences are still understudied. In this article, we review the literature constructing the body of our understanding of these two modifications and their outcome on the regulation of translation in general and their impact on the nervous system in particular. We also explore the possibility of how these modifications may collaborate in modulating translation and provoke the thought to integrate the functions of multiple epitranscriptome modifications.
Collapse
Affiliation(s)
- Syed Wasifa Qadri
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nisa Manzoor Shah
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
11
|
Hashmi MATS, Fatima H, Ahmad S, Rehman A, Safdar F. The interplay between epitranscriptomic RNA modifications and neurodegenerative disorders: Mechanistic insights and potential therapeutic strategies. IBRAIN 2024; 10:395-426. [PMID: 39691424 PMCID: PMC11649393 DOI: 10.1002/ibra.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 12/19/2024]
Abstract
Neurodegenerative disorders encompass a group of age-related conditions characterized by the gradual decline in both the structure and functionality of the central nervous system (CNS). RNA modifications, arising from the epitranscriptome or RNA-modifying protein mutations, have recently been observed to contribute significantly to neurodegenerative disorders. Specific modifications like N6-methyladenine (m6A), N1-methyladenine (m1A), 5-methylcytosine (m5C), pseudouridine and adenosine-to-inosine (A-to-I) play key roles, with their regulators serving as crucial therapeutic targets. These epitranscriptomic changes intricately control gene expression, influencing cellular functions and contributing to disease pathology. Dysregulation of RNA metabolism, affecting mRNA processing and noncoding RNA biogenesis, is a central factor in these diseases. This review underscores the complex relationship between RNA modifications and neurodegenerative disorders, emphasizing the influence of RNA modification and the epitranscriptome, exploring the function of RNA modification enzymes in neurodegenerative processes, investigating the functional consequences of RNA modifications within neurodegenerative pathways, and evaluating the potential therapeutic advancements derived from assessing the epitranscriptome.
Collapse
Affiliation(s)
| | | | - Sadia Ahmad
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Amna Rehman
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Fiza Safdar
- Department of BiochemistryUniversity of NarowalNarowalPakistan
| |
Collapse
|
12
|
Barone S, Cerchia C, Summa V, Brindisi M. Methyl-Transferase-Like Protein 16 (METTL16): The Intriguing Journey of a Key Epitranscriptomic Player Becoming an Emerging Biological Target. J Med Chem 2024; 67:14786-14806. [PMID: 39150226 DOI: 10.1021/acs.jmedchem.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Key epitranscriptomic players have been increasingly characterized for their structural features and their involvement in several diseases. Accordingly, the design and synthesis of novel epitranscriptomic modulators have started opening a glimmer for drug discovery. m6A is a reversible modification occurring on a specific site and is catalyzed by three sets of proteins responsible for opposite functions. Writers (e.g., methyl-transferase-like protein (METTL) 3/METTL14 complex and METTL16) introduce the methyl group on adenosine N-6, by transferring the methyl group from the methyl donor S-adenosyl-methionine (SAM) to the substrate. Despite the rapidly advancing drug discovery progress on METTL3/METTL14, the METTL16 m6A writer has been marginally explored so far. We herein provide the first comprehensive overview of structural and biological features of METTL16, highlighting the state of the art in the field of its biological and structural characterization. We also showcase initial efforts in the identification of structural templates and preliminary structure-activity relationships for METTL16 modulators.
Collapse
Affiliation(s)
- Simona Barone
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Cerchia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
13
|
Meng X, Wang Y, Zhao W, Chen Y, Li W, Peng K, Xu H, Yang Y, Shan X, Huo W, Liu H, Ji F. Identification of differential m6A RNA methylomes and ALKBH5 as a potential prevention target in the developmental neurotoxicity induced by multiple sevoflurane exposures. FASEB J 2024; 38:e23793. [PMID: 39003634 DOI: 10.1096/fj.202400664r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Sevoflurane, as a commonly used inhaled anesthetic for pediatric patients, has been reported that multiple sevoflurane exposures are associated with a greater risk of developing neurocognitive disorder. N6-Methyladenosine (m6A), as the most common mRNA modification in eukaryotes, has emerged as a crucial regulator of brain function in processes involving synaptic plasticity, learning and memory, and neurodevelopment. Nevertheless, the relevance of m6A RNA methylation in the multiple sevoflurane exposure-induced developmental neurotoxicity remains mostly elusive. Herein, we evaluated the genome-wide m6A RNA modification and gene expression in hippocampus of mice that received with multiple sevoflurane exposures using m6A-sequencing (m6A-seq) and RNA-sequencing (RNA-seq). We discovered 19 genes with differences in the m6A methylated modification and differential expression in the hippocampus. Among these genes, we determined that a total of nine differential expressed genes may be closely associated with the occurrence of developmental neurotoxicity induced by multiple sevoflurane exposures. We further found that the alkB homolog 5 (ALKBH5), but not methyltransferase-like 3 (METTL3) and Wilms tumor 1-associated protein (WTAP), were increased in the hippocampus of mice that received with multiple sevoflurane exposures. And the IOX1, as an inhibitor of ALKBH5, significantly improved the learning and memory defects and reduced neuronal damage in the hippocampus of mice induced by multiple sevoflurane exposures. The current study revealed the role of m6A methylated modification and m6A-related regulators in sevoflurane-induced cognitive impairment, which might provide a novel insight into identifying biomarkers and therapeutic strategies for inhaled anesthetic-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Xiaowen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Yichan Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Weiming Zhao
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Ying Chen
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenting Li
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Hanbing Xu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Yufan Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Xisheng Shan
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Wenwen Huo
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Huayue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
- Ambulatory Surgery Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fuhai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Liu X, Wei X, Wu J, Xu Y, Hu J, Qin C, Chen C, Lin Y. CBLL1 promotes endometrial stromal cell senescence via inhibiting PTEN in recurrent spontaneous abortion. FASEB J 2024; 38:e23833. [PMID: 39012313 DOI: 10.1096/fj.202400972r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Recurrent spontaneous abortion (RSA) is a common pregnancy-related disorder. Cbl proto-oncogene like 1 (CBLL1) is an E3 ubiquitin ligase, which has been reported to vary with the menstrual cycle in the endometrium. However, whether CBLL1 is involved in the occurrence and development of RSA remains unclear. This study aimed to investigate the effects of CBLL1 on RSA. We analyzed the expression of CBLL1 in the decidua of RSA patients, as well as its functional effects on cellular senescence, oxidative stress, and proliferation of human endometrial stromal cells (HESCs). RNA sequencing was employed to identify a key downstream target gene regulated by CBLL1. We found that CBLL1 was upregulated in the decidua of RSA patients. Additionally, overexpression of CBLL1 promoted HESC senescence, increased oxidative stress levels, and inhibited proliferation. Phosphatase and tensin homolog located on chromosome 10 (PTEN) was identified as one of the important downstream target genes of CBLL1. In vivo experiments demonstrated that CBLL1 overexpression in the endometrium caused higher embryo absorption rate in mice. Consequently, elevated CBLL1 expression is a potential cause of RSA, representing a novel therapeutic target for RSA.
Collapse
Affiliation(s)
- Xueqing Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Wei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayi Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yichi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianing Hu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanmei Qin
- Department of Obstetrics and Gynecology, the Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cailian Chen
- Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Yi Lin
- Department of Obstetrics and Gynecology, the Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Feng J, Zhang P, Chen K, Huang P, Liang X, Dong J, Zhu B, Fu Z, Deng T, Zhu L, Chen C, Zhang Y. Soot nanoparticles promote ferroptosis in dopaminergic neurons via alteration of m6A RNA methylation in Parkinson's disease. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134691. [PMID: 38788584 DOI: 10.1016/j.jhazmat.2024.134691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Soot nanoparticles (SNPs) are black carbon prevalent in atmospheric environment with significant impacts on public health, leading to neurodegenerative diseases including development of Parkinson's disease (PD). This study investigated the effects of SNPs exposure on PD symptoms, employing both in vivo and in vitro PD models. In the in vivo experiments, animal behavior assessments showed that SNPs exposure exacerbated motor and cognitive impairments in PD mice. Molecular biology techniques further unveiled that SNPs aggravated degeneration of dopaminergic neurons. In vitro experiments revealed that SNPs exposure intensified ferroptosis of PD cells by increasing reactive oxygen species and iron ion levels, while reducing glutathione levels and mitochondrial membrane potential. Sequencing tests indicated elevated N6-methyladenosine (m6A) alteration of the ferroptosis-related protein, acyl-CoA synthetase long chain family member 4 (ACSL4). This study demonstrates that SNPs may exacerbate the onset and progression of PD by recruiting YTH domain-containing family protein 1 (YTHDF1) protein, enhancing m6A methylation in the ACSL4 5'UTR, amplifying ACSL4 protein expression, and accelerating the ferroptosis process in dopaminergic neurons. These molecular mechanisms underlying SNPs exacerbation of PD development may provide crucial insights for formulating environmental safety regulations and potential therapeutic strategies addressing PD in populations residing in regions with varied air quality.
Collapse
Affiliation(s)
- Jiezhu Feng
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Kunlin Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Peiting Huang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Xiaomei Liang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Jiawei Dong
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Baoyu Zhu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Zhongling Fu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Tongtong Deng
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China.
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yuhu Zhang
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China.
| |
Collapse
|
16
|
Pang P, Zhang S, Fan X, Zhang S. Knockdown of fat mass and obesity alleviates the ferroptosis in Parkinson's disease through m6A-NRF2-dependent manner. Cell Biol Int 2024; 48:431-439. [PMID: 38180302 DOI: 10.1002/cbin.12118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024]
Abstract
Emerging evidence has suggested that N6 -methyladenosine (m6 A) regulates the pathology of Parkinson's disease (PD). Nevertheless, the function of demethylase fat mass and obesity (FTO) associated pathogenesis is still not fully elucidated. Here, this research findings revealed that m6 A-modification was decreased in PD models, meanwhile, the FTO level upregulated in the PD models. Functionally, in N-methyl-4-phenylpyridinium (MPP+) treated SH-SY5Y cells, the ferroptosis significantly upregulated and FTO silencing mitigated the ferroptosis phenotype. Moreover, in silico assays indicated that nuclear factor erythroid 2-related factor-2 (NRF2) acted as the target of FTO, and FTO demethylated the m6 A modification from NRF2 mRNA. Furthermore, FTO impaired the NRF2 mRNA stability via m6 A-dependent pathway. Thus, our findings illustrated an important role of FTO on PD through m6 A-NRF2-ferroptosis manner. Taken together, the study revealed the potential function of FTO on PD nervous system diseases.
Collapse
Affiliation(s)
- Pengfei Pang
- Department of Neurosurgery, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Shirong Zhang
- Department of Neurosurgery, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Xinxin Fan
- Department of Neurosurgery, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Shitao Zhang
- Department of Neurosurgery, The Affiliated Hospital of Northwest University, Xi'an, China
| |
Collapse
|
17
|
Wang D, Qian W, Wu D, Wu Y, Lu K, Zou G. METTL3 promotes microglial inflammation via MEF2C in spinal cord injury. Cell Tissue Res 2024; 395:189-197. [PMID: 38180567 DOI: 10.1007/s00441-023-03855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Spinal cord injury (SCI) is a significant contributor to disability in contemporary society, resulting in substantial psychological and economic burdens for patients and their family. Microglia-mediated inflammation is an important factor affecting the nerve repair of SCI patients. N6-methyladenosine (m6A) is a prevalent epigenetic modification in mammals, which shows a strong association with inflammation. However, the mechanism of m6A modification regulating microglia-mediated inflammation is still unclear. Here, we observed that METTL3, a m6A methylase, was increased in SCI mice and lipopolysaccharide (LPS)-exposed BV2 cells. Knockdown of METTL3 inhibited the increased expression of iNOS and IL-1β induced by LPS in vitro. Subsequently, MEF2C, myocyte-specific enhancer factor 2C, was decreased in SCI mice and LPS-exposed BV2 cells. Knockdown of MEF2C promoted the expression of iNOS and IL-1β. Sequence analysis showed that there were multiple highly confident m6A modification sites on the MEF2C mRNA. METTL3 antibody could pull down a higher level of MEF2C mRNA than the IgG in RNA binding protein immunoprecipitation assay. Knockdown of METTL3 promoted MEF2C protein expression and MEF2C mRNA expression, accompanied by a reduced m6A modification level on the MEF2C mRNA. Knockdown of MEF2C inhibited the anti-inflammatory effect of METTL3 siRNA. Our results suggest that METTL3 promotes microglia inflammation via regulating MEF2C mRNA m6A modification induced by SCI and LPS treatment.
Collapse
Affiliation(s)
- Dongliang Wang
- Department of Spinal Surgery, Yancheng First People's Hospital, Yancheng, 224006, China
| | - Wei Qian
- Department of Infectious Diseases, Yancheng Third People's Hospital, Yancheng, 224051, China
| | - Duanrong Wu
- Department of Orthopedics, Yancheng First People's Hospital, Yancheng, 224006, China
| | - Ya Wu
- Department of Orthopedics, Yancheng First People's Hospital, Yancheng, 224006, China
| | - Kun Lu
- Department of Orthopedics, Yancheng First People's Hospital, Yancheng, 224006, China
| | - Guoyou Zou
- Department of Orthopedics, Yancheng First People's Hospital, Yancheng, 224006, China.
| |
Collapse
|
18
|
Gionco JT, Bernstein AI. Emerging Role of Environmental Epitranscriptomics and RNA Modifications in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:643-656. [PMID: 38578904 PMCID: PMC11191529 DOI: 10.3233/jpd-230457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
Environmental risk factors and gene-environment interactions play a critical role in Parkinson's disease (PD). However, the relatively large contribution of environmental risk factors in the overwhelming majority of PD cases has been widely neglected in the field. A "PD prevention agenda" proposed in this journal laid out a set of research priorities focused on preventing PD through modification of environmental risk factors. This agenda includes a call for preclinical studies to employ new high-throughput methods for analyzing transcriptomics and epigenomics to provide a deeper understanding of the effects of exposures linked to PD. Here, we focus on epitranscriptomics as a novel area of research with the potential to add to our understanding of the interplay between genes and environmental exposures in PD. Both epigenetics and epitranscriptomics have been recognized as potential mediators of the complex relationship between genes, environment, and disease. Multiple studies have identified epigenetic alterations, such as DNA methylation, associated with PD and PD-related exposures in human studies and preclinical models. In addition, recent technological advancements have made it possible to study epitranscriptomic RNA modifications, such as RNA N6-methyladenosine (m6A), and a handful of recent studies have begun to explore epitranscriptomics in PD-relevant exposure models. Continued exploration of epitranscriptomic mechanisms in environmentally relevant PD models offers the opportunity to identify biomarkers, pre-degenerative changes that precede symptom onset, and potential mitigation strategies for disease prevention and treatment.
Collapse
Affiliation(s)
- John T. Gionco
- Graduate Program in Cell and Developmental Biology, Rutgers University, Piscataway, NJ, USA
| | - Alison I. Bernstein
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
19
|
Zhou J, Han Y, Hou R. Potential role of N6-methyladenosine modification in the development of Parkinson's disease. Front Cell Dev Biol 2023; 11:1321995. [PMID: 38155838 PMCID: PMC10753761 DOI: 10.3389/fcell.2023.1321995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
N6-methyladenosine (m6A) represents the most abundant modification of messenger RNA (mRNA) and is regulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers). A dynamic modification process is implicated in nearly every critical stage of RNA metabolism, including mRNA stability, transcription, translation, splicing, nuclear export, and decay. Notably, m6A methylation is significantly enriched in the brain and has recently been shown to be associated with neurodevelopmental disorders and the development of Parkinson's disease (PD). In this review, we summarize the proteins involved in the process of m6A modification and elucidate the emerging role of m6A modification in PD, which could illuminate alternative strategies for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Jiale Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ruizhe Hou
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Shao N, Ye T, Xuan W, Zhang M, Chen Q, Liu J, Zhou P, Song H, Cai B. The effects of N 6-methyladenosine RNA methylation on the nervous system. Mol Cell Biochem 2023; 478:2657-2669. [PMID: 36899139 DOI: 10.1007/s11010-023-04691-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Epitranscriptomics, also known as "RNA epigenetics", is a type of chemical modification that regulates RNA. RNA methylation is a significant discovery after DNA and histone methylation. The dynamic reversible process of m6A involves methyltransferases (writers), m6A binding proteins (readers), as well as demethylases (erasers). We summarized the current research status of m6A RNA methylation in the neural stem cells' growth, synaptic and axonal function, brain development, learning and memory, neurodegenerative diseases, and glioblastoma. This review aims to provide a theoretical basis for studying the mechanism of m6A methylation and finding its potential therapeutic targets in nervous system diseases.
Collapse
Affiliation(s)
- Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ting Ye
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weiting Xuan
- Department of Neurosurgery (Rehabilitation), Anhui Hospital of Integrated Chinese and Western Medicine, Hefei, 230031, China
| | - Meng Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qian Chen
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Juan Liu
- Department of Chinese Internal Medicine, Taihe County People's Hospital, Fuyang, 236699, China
| | - Peng Zhou
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Hang Song
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
21
|
Guo X, Wu Y, Wang Q, Zhang J, Sheng X, Zheng L, Wang Y. Huperzine A injection ameliorates motor and cognitive abnormalities via regulating multiple pathways in a murine model of Parkinson's disease. Eur J Pharmacol 2023; 956:175970. [PMID: 37549727 DOI: 10.1016/j.ejphar.2023.175970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
As a common progressive neurodegenerative disorder, the satisfied therapies for Parkinson's disease (PD) are still unavailable. As a natural acetylcholinesterase inhibitor, the neuroprotective characteristic of Huperzine A (HupA) was supported by previous studies. However, questions remain on whether HupA injection (HAI, a main preparation of HupA) intervention conduces to PD treatment and if so, the potential molecular mechanisms. In this study, the efficacies of HAI treatment on PD-like pathological phenotypes were evaluated in a MPTP-induced PD murine model. The network pharmacology, transcriptome sequencing and experimental verification were integrated to comprehensively reveal the primary molecular mechanisms. Therapeutically, HAI intervention significantly improved the impaired locomotor behaviors as well as learning and memory abilities, and prevented the degeneration of dopaminergic neurons of PD mice. The network pharmacology analysis combined with experimental results showed that HAI treatment could effectively restore the disordered transcriptional levels of inflammatory factors and apoptosis related genes in the SNpc and striatum tissues of PD mice. Transcriptome sequencing results found that inflammation and oxidative phosphorylation served as significant functional mechanisms involved in HAI administration. The experimental verification indicated that HAI treatment effectively regulated the abnormal transcription levels of inflammation and oxidative phosphorylation related hub genes in the hippocampal samples of PD mice. In addition, molecular docking suggested strong affinity between HupA and the above core targets. Overall, this work displayed the reliable therapeutic effects of HAI on ameliorating the pathological symptoms of PD mice via modulating multiple pathways. The current findings were expected to provide a potential anti-PD agent.
Collapse
Affiliation(s)
- Xinran Guo
- Developmental Neurobiology Laboratory, Wannan Medical College, 22 Wenchangxi Road, YiJiang District, Wuhu, 241002, China
| | - Yuhan Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, 310012, China
| | - Qingqing Wang
- Zhejiang University-Wepon Pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Zhejiang, 1899 Gudun Road, Yuhang District, Hangzhou, 311100, China
| | - Jianbing Zhang
- Zhejiang University-Wepon Pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Zhejiang, 1899 Gudun Road, Yuhang District, Hangzhou, 311100, China
| | - Xueping Sheng
- Zhejiang University-Wepon Pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Zhejiang, 1899 Gudun Road, Yuhang District, Hangzhou, 311100, China
| | - Lanrong Zheng
- Developmental Neurobiology Laboratory, Wannan Medical College, 22 Wenchangxi Road, YiJiang District, Wuhu, 241002, China
| | - Yule Wang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatric Medicine, Hangzhou First People's Hospital, 261 Huansha Road, Shangcheng District, Hangzhou, 310006, China.
| |
Collapse
|
22
|
Xie L, Zhang X, Xie J, Xu Y, Li XJ, Lin L. Emerging Roles for DNA 6mA and RNA m6A Methylation in Mammalian Genome. Int J Mol Sci 2023; 24:13897. [PMID: 37762200 PMCID: PMC10531503 DOI: 10.3390/ijms241813897] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic methylation has been shown to play an important role in transcriptional regulation and disease pathogenesis. Recent advancements in detection techniques have identified DNA N6-methyldeoxyadenosine (6mA) and RNA N6-methyladenosine (m6A) as methylation modifications at the sixth position of adenine in DNA and RNA, respectively. While the distributions and functions of 6mA and m6A have been extensively studied in prokaryotes, their roles in the mammalian brain, where they are enriched, are still not fully understood. In this review, we provide a comprehensive summary of the current research progress on 6mA and m6A, as well as their associated writers, erasers, and readers at both DNA and RNA levels. Specifically, we focus on the potential roles of 6mA and m6A in the fundamental biological pathways of the mammalian genome and highlight the significant regulatory functions of 6mA in neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (L.X.); (X.Z.); (J.X.); (Y.X.); (X.-J.L.)
| |
Collapse
|
23
|
Wan X, Ge Y, Xu S, Feng Y, Zhu Y, Yin L, Pu Y, Liang G. m 6A modification and its role in neural development and neurological diseases. Epigenomics 2023; 15:819-833. [PMID: 37718929 DOI: 10.2217/epi-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
N6-methyladenosine (m6A) methylation, the most prevalent post-transcriptional modification in eukaryotes, represents a highly dynamic and reversible process that is regulated by m6A methyltransferases, m6A demethylases and RNA-binding proteins during RNA metabolism, which affects RNA function. Notably, m6A modification is significantly enriched in the brain and exerts regulatory roles in neurogenesis and neurodevelopment through various mechanisms, further influencing the occurrence and progression of neurological disorders. This study systematically summarizes and discusses the latest findings on common m6A regulators, examining their expression, function and mechanisms in neurodevelopment and neurological diseases. Additionally, we explore the potential of m6A modification in diagnosing and treating neurological disorders, aiming to provide new insights into the molecular mechanisms and potential therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yanlu Feng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yuxin Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| |
Collapse
|
24
|
Gao P, Yao F, Pang J, Yin K, Zhu X. m 6A methylation in cellular senescence of age-associated diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1168-1183. [PMID: 37394885 PMCID: PMC10449638 DOI: 10.3724/abbs.2023107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
Cellular senescence is a state of irreversible cellular growth arrest that occurs in response to various stresses. In addition to exiting the cell cycle, senescent cells undergo many phenotypic alterations, including metabolic reprogramming, chromatin rearrangement, and senescence-associated secretory phenotype (SASP) development. Furthermore, senescent cells can affect most physiological and pathological processes, such as physiological development; tissue homeostasis; tumour regression; and age-associated disease progression, including diabetes, atherosclerosis, Alzheimer's disease, and hypertension. Although corresponding anti-senescence therapies are actively being explored for the treatment of age-associated diseases, the specific regulatory mechanisms of senescence remain unclear. N 6-methyladenosine (m 6A), a chemical modification commonly distributed in eukaryotic RNA, plays an important role in biological processes such as translation, shearing, and RNA transcription. Numerous studies have shown that m 6A plays an important regulatory role in cellular senescence and aging-related disease. In this review, we systematically summarize the role of m 6A modifications in cellular senescence with regard to oxidative stress, DNA damage, telomere alterations, and SASP development. Additionally, diabetes, atherosclerosis, and Alzheimer's disease regulation via m 6A-mediated cellular senescence is discussed. We further discuss the challenges and prospects of m 6A in cellular senescence and age-associated diseases with the aim of providing rational strategies for the treatment of these age-associated diseases.
Collapse
Affiliation(s)
- Pan Gao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Feng Yao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Jin Pang
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Kai Yin
- The Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510900China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| |
Collapse
|
25
|
Song H, Chen J, Huang J, Sun P, Liu Y, Xu L, Wei C, Mu X, Lu X, Wang W, Zhang N, Shang M, Mo M, Zhang W, Zhao H, Han F. Epigenetic modification in Parkinson's disease. Front Cell Dev Biol 2023; 11:1123621. [PMID: 37351278 PMCID: PMC10283008 DOI: 10.3389/fcell.2023.1123621] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/18/2023] [Indexed: 06/24/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder caused by genetic, epigenetic, and environmental factors. Recent advance in genomics and epigenetics have revealed epigenetic mechanisms in PD. These epigenetic modifications include DNA methylation, post-translational histone modifications, chromatin remodeling, and RNA-based mechanisms, which regulate cellular functions in almost all cells. Epigenetic alterations are involved in multiple aspects of neuronal development and neurodegeneration in PD. In this review, we discuss current understanding of the epigenetic mechanisms that regulate gene expression and neural degeneration and then highlight emerging epigenetic targets and diagnostic and therapeutic biomarkers for treating or preventing PD.
Collapse
Affiliation(s)
- Hao Song
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Juanli Chen
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jin Huang
- Laboratory of Basic Medical Research, PLA Strategic Support Force Characteristic Medical Centre, Beijing, China
| | - Peng Sun
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanming Liu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Li Xu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Chuanfei Wei
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xin Mu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xianjie Lu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Wei Wang
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Nan Zhang
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Miwei Shang
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mei Mo
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Zhang
- Affiliated Yidu Central Hospital, Weifang Medical University, Weifang, China
| | - Hui Zhao
- Zhengzhou Revogene Scientific Co., LTD., Zhengzhou, Henan, China
| | - Fabin Han
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
- Zhengzhou Revogene Scientific Co., LTD., Zhengzhou, Henan, China
| |
Collapse
|
26
|
Ai S, Li D, Gu X, Xu Y, Wang Y, Wang HL, Chen XT. Profile of N6-methyladenosine of Pb-exposed neurons presents epitranscriptomic alterations in PI3K-AKT pathway-associated genes. Food Chem Toxicol 2023:113821. [PMID: 37269892 DOI: 10.1016/j.fct.2023.113821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
Lead (Pb) is a pervasive heavy metal with multi-organ toxicity. However, the molecular mechanisms of Pb-induced neurotoxicity are not fully understood. The dynamics of N6-methylademine (m6A) is an emerging regulatory mechanism for gene expression, which is closely related to nervous system diseases. To elucidate the association between m6A modification and Pb-mediated neurotoxicity, primary hippocampal neurons exposed to 5 μM Pb for 48 h were used as the paradigm neurotoxic model in this study. According to the results, Pb exposure reprogrammed the transcription spectrum. Simultaneously, Pb exposure remodeled the transcriptome-wide distribution of m6A while disrupting the overall level of m6A in cellular transcripts. United analysis of MeRIP-Seq and RNA-Seq was applied to further identify the core genes whose expression levels are regulated by m6A in the process of lead-induced nerve injury. GO and KEGG analysis unveiled that the modified transcripts were overrepresented by the PI3K-AKT pathway. Mechanically, we elucidated the regulatory role of the methyltransferase like3 (METTL3) in the process of lead-induced neurotoxicity and the downregulation of the PI3K-AKT pathway. In conclusion, our novel findings shed new light on the functional roles of m6A modification in the expressional alternations of downstream transcripts caused by lead, providing an innovative molecular basis to explain Pb neurotoxicity.
Collapse
Affiliation(s)
- Shu Ai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Danyang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Xiaozhen Gu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yi Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, PR China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| | - Xiang-Tao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|