1
|
Sasi S, Sen Bhattacharya B, Sreeraj VS, Venkatasubramanian G. Neural mass modelling of brain stimulation to Alleviate Schizophrenia biomarkers in brain rhythms. Comput Biol Med 2025; 192:110190. [PMID: 40258319 DOI: 10.1016/j.compbiomed.2025.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/11/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
We present a neural mass model (NMM) of the brain thalamo-cortico-thalamic (TCT) network to understand the effectiveness of non-invasive treatment with transcranial Direct Current Stimulation (tDCS) in reversing the anomalous electroencephalogram (EEG) oscillations in Schizophrenia. Our TCT NMM consists of twelve neural populations representing the thalamus and cortex modules of the visual pathway connected in a closed loop; the synaptic pathways are modelled with a 3-state kinetic framework allowing the inclusion of the slow excitatory N-methyl-D-aspartate-receptors (NMDAR). Indeed, a popular hypothesis in Schizophrenia is the hypofunction of the Glutamatergic neurotransmitter receptors, NMDAR, associated with the inhibitory Gamma-amino-butyric-acid (GABA-)ergic populations in the cortex, leading to anomalous brain oscillations. Experimental studies simulate the EEG conditions in Schizophrenia by administering sub-anesthetic dosage of Ketamine, which blocks NMDAR channels at the Magnesium binding sites. We could simulate the Ketamine-induced NMDAR channel blocking by varying the Magnesium concentration in the 3-state synaptic models of appropriate pathways. Our results show Ketamine-induced increased excitatory behaviour in the model output; the changes in the γ and σ band oscillations conform to experimental studies. A model to factor in the neuroplasticity effects of applying tDCS (after (Riedinger and Hutt, 2022)) is interfaced with the TCT NMM. Informed by experimental literature, the simulated extrinsic current induced by tDCS is set to affect the plasticity in selected pathways. With appropriate parameterisation, we could simulate the reversal of the Ketamine-induced altered EEG oscillations. Overall, our in silico study emphasises the potential of NMM in predicting protocols for tDCS towards effective personalised treatment of Schizophrenia.
Collapse
|
2
|
Bastiaens SP, Momi D, Griffiths JD. A comprehensive investigation of intracortical and corticothalamic models of the alpha rhythm. PLoS Comput Biol 2025; 21:e1012926. [PMID: 40209165 DOI: 10.1371/journal.pcbi.1012926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/03/2025] [Indexed: 04/12/2025] Open
Abstract
The electroencephalographic alpha rhythm is one of the most robustly observed and widely studied empirical phenomena in all of neuroscience. However, despite its extensive implication in a wide range of cognitive processes and clinical pathologies, the mechanisms underlying alpha generation in neural circuits remain poorly understood. In this paper we offer a renewed foundation for research on this question, by undertaking a systematic comparison and synthesis of the most prominent theoretical models of alpha rhythmogenesis in the published literature. We focus on four models, each studied intensively by multiple authors over the past three decades: (i) Jansen-Rit, (ii) Moran-David-Friston, (iii) Robinson-Rennie-Wright, and (iv) Liley-Wright. Several common elements are identified, such as the use of second-order differential equations and sigmoidal potential-to-rate operators to represent population-level neural activity. Major differences are seen in other features such as wiring topologies and conduction delays. Through a series of mathematical analyses and numerical simulations, we nevertheless demonstrate that the selected models can be meaningfully compared, by associating parameters and circuit motifs of analogous biological significance. With this established, we conduct explorations of rate constant and synaptic connectivity parameter spaces, with the aim of identifying common patterns in key behaviours, such as the role of excitatory-inhibitory interactions in the generation of oscillations. Finally, using linear stability analysis we identify two qualitatively different alpha-generating dynamical regimes across the models: (i) noise-driven fluctuations and (ii) self-sustained limit-cycle oscillations, emerging due to an Andronov-Hopf bifurcation. The comprehensive survey and synthesis developed here can, we suggest, be used to help guide future theoretical and experimental work aimed at disambiguating these and other candidate theories of alpha rhythmogenesis.
Collapse
Affiliation(s)
- Sorenza P Bastiaens
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Davide Momi
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California, United States of America
| | - John D Griffiths
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Mehraram R, Kries J, De Clercq P, Vandermosten M, Francart T. EEG reveals brain network alterations in chronic aphasia during natural speech listening. Sci Rep 2025; 15:2441. [PMID: 39828755 PMCID: PMC11743778 DOI: 10.1038/s41598-025-86192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Aphasia is a common consequence of a stroke which affects language processing. In search of an objective biomarker for aphasia, we used EEG to investigate how functional network patterns in the cortex are affected in persons with post-stroke chronic aphasia (PWA) compared to healthy controls (HC) while they are listening to a story. EEG was recorded from 22 HC and 27 PWA while they listened to a 25-min-long story. Functional connectivity between scalp regions was measured with the weighted phase lag index. The Network-Based Statistics toolbox was used to detect altered network patterns and to investigate correlations with behavioural tests within the aphasia group. Differences in network geometry were assessed by means of graph theory and a targeted node-attack approach. Group-classification accuracy was obtained with a support vector machine classifier. PWA showed stronger inter-hemispheric connectivity compared to HC in the theta-band (4.5-7 Hz), whilst a weaker subnetwork emerged in the low-gamma band (30.5-49 Hz). Two subnetworks correlated with semantic fluency in PWA respectively in delta- (1-4 Hz) and low-gamma-bands. In the theta-band network, graph alterations in PWA emerged at both local and global level, whilst only local changes were found in the low-gamma-band network. Network metrics discriminated PWA and HC with AUC = 83%. Overall, we demonstrate the potential of EEG-network metrics for the development of informative biomarkers to assess natural speech processing in chronic aphasia. We hypothesize that the detected alterations reflect compensatory mechanisms associated with recovery.
Collapse
Affiliation(s)
- Ramtin Mehraram
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium.
| | - Jill Kries
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Pieter De Clercq
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Maaike Vandermosten
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Tom Francart
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
4
|
Ye C, Zhang Y, Ran C, Ma T. Recent Progress in Brain Network Models for Medical Applications: A Review. HEALTH DATA SCIENCE 2024; 4:0157. [PMID: 38979037 PMCID: PMC11227951 DOI: 10.34133/hds.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Importance: Pathological perturbations of the brain often spread via connectome to fundamentally alter functional consequences. By integrating multimodal neuroimaging data with mathematical neural mass modeling, brain network models (BNMs) enable to quantitatively characterize aberrant network dynamics underlying multiple neurological and psychiatric disorders. We delved into the advancements of BNM-based medical applications, discussed the prevalent challenges within this field, and provided possible solutions and future directions. Highlights: This paper reviewed the theoretical foundations and current medical applications of computational BNMs. Composed of neural mass models, the BNM framework allows to investigate large-scale brain dynamics behind brain diseases by linking the simulated functional signals to the empirical neurophysiological data, and has shown promise in exploring neuropathological mechanisms, elucidating therapeutic effects, and predicting disease outcome. Despite that several limitations existed, one promising trend of this research field is to precisely guide clinical neuromodulation treatment based on individual BNM simulation. Conclusion: BNM carries the potential to help understand the mechanism underlying how neuropathology affects brain network dynamics, further contributing to decision-making in clinical diagnosis and treatment. Several constraints must be addressed and surmounted to pave the way for its utilization in the clinic.
Collapse
Affiliation(s)
- Chenfei Ye
- International Research Institute for Artificial Intelligence,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Yixuan Zhang
- Department of Electronic and Information Engineering,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Chen Ran
- Department of Electronic and Information Engineering,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Ting Ma
- International Research Institute for Artificial Intelligence,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
- Department of Electronic and Information Engineering,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
- Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology,
Harbin Institute of Technology at Shenzhen, China
| |
Collapse
|
5
|
Pirazzini G, Ursino M. Modeling the contribution of theta-gamma coupling to sequential memory, imagination, and dreaming. Front Neural Circuits 2024; 18:1326609. [PMID: 38947492 PMCID: PMC11211613 DOI: 10.3389/fncir.2024.1326609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Gamma oscillations nested in a theta rhythm are observed in the hippocampus, where are assumed to play a role in sequential episodic memory, i.e., memorization and retrieval of events that unfold in time. In this work, we present an original neurocomputational model based on neural masses, which simulates the encoding of sequences of events in the hippocampus and subsequent retrieval by exploiting the theta-gamma code. The model is based on a three-layer structure in which individual Units oscillate with a gamma rhythm and code for individual features of an episode. The first layer (working memory in the prefrontal cortex) maintains a cue in memory until a new signal is presented. The second layer (CA3 cells) implements an auto-associative memory, exploiting excitatory and inhibitory plastic synapses to recover an entire episode from a single feature. Units in this layer are disinhibited by a theta rhythm from an external source (septum or Papez circuit). The third layer (CA1 cells) implements a hetero-associative net with the previous layer, able to recover a sequence of episodes from the first one. During an encoding phase, simulating high-acetylcholine levels, the network is trained with Hebbian (synchronizing) and anti-Hebbian (desynchronizing) rules. During retrieval (low-acetylcholine), the network can correctly recover sequences from an initial cue using gamma oscillations nested inside the theta rhythm. Moreover, in high noise, the network isolated from the environment simulates a mind-wandering condition, randomly replicating previous sequences. Interestingly, in a state simulating sleep, with increased noise and reduced synapses, the network can "dream" by creatively combining sequences, exploiting features shared by different episodes. Finally, an irrational behavior (erroneous superimposition of features in various episodes, like "delusion") occurs after pathological-like reduction in fast inhibitory synapses. The model can represent a straightforward and innovative tool to help mechanistically understand the theta-gamma code in different mental states.
Collapse
|
6
|
Ramon C, Doud A, Holmes MD. Decrease in phase slip rates and phase cone structures during seizure evolution and epileptogenic activities derived from microgrid ECoG data. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100126. [PMID: 38616959 PMCID: PMC11015059 DOI: 10.1016/j.crneur.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/25/2023] [Accepted: 02/03/2024] [Indexed: 04/16/2024] Open
Abstract
Sudden phase changes are related to cortical phase transitions, which likely change in frequency and spatial distribution as epileptogenic activity evolves. A 100 s long section of micro-ECoG data obtained before and during a seizure was selected and analyzed. In addition, nine other short-duration epileptic events were also examined. The data was collected at 420 Hz, imported into MATLAB, downsampled to 200 Hz, and filtered in the 1-50 Hz band. The Hilbert transform was applied to compute the analytic phase, which was then unwrapped, and detrended to look for sudden phase changes. The phase slip rate (counts/s) and its acceleration (counts/s2) were computed with a stepping window of 1-s duration and with a step size of 5 ms. The analysis was performed for theta (3-7 Hz), alpha (7-12 Hz), and beta (12-30 Hz) bands. The phase slip rate on all electrodes in the theta band decreased while it increased for the alpha and beta bands during the seizure period. Similar patterns were observed for isolated epileptogenic events. Spatiotemporal contour plots of the phase slip rates were also constructed using a montage layout of 8 × 8 electrode positions. These plots exhibited dynamic and oscillatory formation of phase cone-like structures which were higher in the theta band and lower in the alpha and beta bands during the seizure period and epileptogenic events. These results indicate that the formation of phase cones might be an excellent biomarker to study the evolution of a seizure and also the cortical dynamics of isolated epileptogenic events.
Collapse
Affiliation(s)
- Ceon Ramon
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, 98195, USA
- Regional Epilepsy Center, Harborview Medical Center, Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Alexander Doud
- Providence Spokane Neuroscience Institute, 105 West 8th Avenue, Spokane, WA, 99204, USA
| | - Mark D. Holmes
- Regional Epilepsy Center, Harborview Medical Center, Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Drążyk D, Przewrocki K, Górska-Klimowska U, Binder M. Distinct Spectral Profiles of Awake Resting EEG in Disorders of Consciousness: The Role of Frequency and Topography of Oscillations. Brain Topogr 2024; 37:138-151. [PMID: 38158511 PMCID: PMC10771586 DOI: 10.1007/s10548-023-01024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/18/2023] [Indexed: 01/03/2024]
Abstract
The prolonged disorders of consciousness (PDOC) pose a challenge for an accurate clinical diagnosis, mainly due to patients' scarce or ambiguous behavioral responsiveness. Measurement of brain activity can support better diagnosis, independent of motor restrictions. Methods based on spectral analysis of resting-state EEG appear as a promising path, revealing specific changes within the internal brain dynamics in PDOC patients. In this study we used a robust method of resting-state EEG power spectrum parameter extraction to identify distinct spectral properties for different types of PDOC. Sixty patients and 37 healthy volunteers participated in this study. Patient group consisted of 22 unresponsive wakefulness patients, 25 minimally conscious patients and 13 patients emerging from the minimally conscious state. Ten minutes of resting EEG was acquired during wakefulness and transformed into individual power spectra. For each patient, using the spectral decomposition algorithm, we extracted maximum peak frequency within 1-14 Hz range in the centro-parietal region, and the antero-posterior (AP) gradient of the maximal frequency peak. All patients were behaviorally diagnosed using coma recovery scale-revised (CRS-R). The maximal peak frequency in the 1-14 Hz range successfully predicted both neurobehavioral capacity of patients as indicated by CRS-R total score and PDOC diagnosis. Additionally, in patients in whom only one peak within the 1-14 Hz range was observed, the AP gradient significantly contributed to the accuracy of prediction. We have identified three distinct spectral profiles of patients, likely representing separate neurophysiological modes of thalamocortical functioning. Etiology did not have significant influence on the obtained results.
Collapse
Affiliation(s)
- Dominika Drążyk
- Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium
| | - Karol Przewrocki
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
| | | | - Marek Binder
- Institute of Psychology, Jagiellonian University, Ul. Ingardena 6, 30-060, Krakow, Poland.
| |
Collapse
|
8
|
Shen Z, Zhang H, Du L, He X, Sun X. The important role of glial transmitters released by astrocytes in Alzheimer's disease: A perspective from dynamical modeling. CHAOS (WOODBURY, N.Y.) 2023; 33:113109. [PMID: 37921585 DOI: 10.1063/5.0154322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
This paper aims to establish a coupling model of neuronal populations and astrocytes and, on this basis, explore the possible mechanism of electroencephalography (EEG) slowing in Alzheimer's disease (AD) from the viewpoint of dynamical modeling. First and foremost, excitatory and inhibitory time constants are shown to induce the early symptoms of AD. The corresponding dynamic nature is mainly due to changes in the amplitude and frequency of the oscillatory behavior. However, there are also a few cases that can be attributed to the change of the oscillation mode caused by the limit cycle bifurcation and birhythmicity. Then, an improved neural mass model influenced by astrocytes is proposed, considering the important effects of glutamate and adenosine triphosphate (ATP) released by astrocytes on the synaptic transmission process reported in experiments. The results show that a dysfunctional astrocyte disrupts the physiological state, causing three typical EEG slowing phenomena reported clinically: the decreased dominant frequency, the decreased rhythmic activity in the α band, and the increased rhythmic activity in the δ+θ band. In addition, astrocytes may control AD when the effect of ATP on synaptic connections is greater than that of glutamate. The control rate depends on the ratio of the effect of glutamate on excitatory and inhibitory synaptic connections. These modeling results can not only reproduce some experimental and clinical results, but, more importantly, may offer a prediction of some underlying phenomena, helping to inspire the disease mechanisms and therapeutic methods of targeting astrocytes.
Collapse
Affiliation(s)
- Zhuan Shen
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an, Shaanxi 710072, China
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Honghui Zhang
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an, Shaanxi 710072, China
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lin Du
- MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an, Shaanxi 710072, China
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaoyan He
- School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
| | - Xiaojuan Sun
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
9
|
Hidisoglu E, Chiantia G. Frontal EEG alterations induced by hippocampal amyloid pathology in rats. Adv Med Sci 2023; 68:353-358. [PMID: 37757662 DOI: 10.1016/j.advms.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE In this study, it was aimed to determine the dose-dependent effects of hippocampal amyloid beta (Aβ) on frontal EEG activity and to elucidate the possible non-invasive biomarkers by recording spontaneous EEG in free-moving rats. MATERIAL AND METHODS Male albino Wistar rats aged 3 months were randomly divided into 4 groups (n = 8 for each group), obtained by intrahippocampal injection of saline or different doses of Aβ1-42 i.e. 0.01 μg/μl, 0.1 μg/μl, and 1 μg/μl. After two weeks of recovery period, spontaneous EEG recordings were obtained from frontal regions and spectral power analyses were performed. RESULTS We detected a general slowdown in the brain activity two weeks after Aβ1-42 injection. We observed significant increases in frontal alpha power (p = 0.0021) and significant decreases in frontal beta power (p = 0.0003) between the Sh and Aβ1-42-injected groups. More specifically, the ratio of the frontal EEG beta and alpha power (rFBA) was significantly affected by the intrahippocampal injection of Aβ1-42 (p < 0.0001). Also, we observed that rFBA was negatively and strongly correlated with hippocampal Aβ1-42 peptide levels (r = -0.781, p < 0.0001). CONCLUSION Our findings indicate that spontaneous frontal EEG beta and alpha activity were significantly affected by the intrahippocampal injection of Aβ1-42. However, the results suggest that the power ratios of these bands are more sensitive to the hippocampal amyloid pathology. As such, it is proposed that the rFBA may be a more effective biomarker for diagnosing hippocampal pathology induced by Aβ1-42.
Collapse
Affiliation(s)
- Enis Hidisoglu
- Department of Drug Science and Technology, University of Turin, Turin, Italy; Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey.
| | | |
Collapse
|
10
|
Chu C, Zhang Z, Wang J, Wang L, Shen X, Bai L, Li Z, Dong M, Liu C, Yi G, Zhu X. Evolution of brain network dynamics in early Parkinson's disease with mild cognitive impairment. Cogn Neurodyn 2023; 17:681-694. [PMID: 37265660 PMCID: PMC10229513 DOI: 10.1007/s11571-022-09868-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022] Open
Abstract
How mild cognitive impairment (MCI) is instantiated in dynamically interacting and spatially distributed functional brain networks remains an unexplored mystery in early Parkinson's disease (PD). We applied a machine-learning technology based on personalized sliding-window algorithm to track continuously time-varying and overlapping subnetworks under the functional brain networks calculated form resting state electroencephalogram data within a sample of 33 early PD patients (13 early PD patients with MCI and 20 early PD patients without MCI). We decoded a set of subnetworks that captured surprisingly dynamically varying and integrated interactions among certain brain lobes. We observed that the master expressed subnetworks were particularly transient, and flexibly switching between high and low expression during integration into a dynamic brain network. This transience was particularly salient in a subnetwork predominantly linking temporal-parietal-occipital lobes, which decreases in both expression and flexibility in early PD patients with MCI and expresses their degree of cognitive impairment. Moreover, MCI induced a regularly interrupted, slow evolution of subnetworks in functional brain network dynamics in early PD at the individual level, and the dynamic expression characteristics of subnetworks also reflected the degree of cognitive impairment in patients with early PD. Collectively, these results provide novel and deeper insights regarding MCI-induced abnormal dynamical interaction and large-scale changes in functional brain network of early PD.
Collapse
Affiliation(s)
- Chunguang Chu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Zhen Zhang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Liufang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Xiao Shen
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Lipeng Bai
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Zhuo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Mengmeng Dong
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| |
Collapse
|
11
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
12
|
Yi G, Wang Y, Wang L, Chu C, Wang J, Shen X, Han X, Li Z, Bai L, Li Z, Zhang R, Wang Y, Zhu X, Liu C. Capturing the Abnormal Brain Network Activity in Early Parkinsons Disease With Mild Cognitive Impairment Based on Dynamic Functional Connectivity. IEEE Trans Neural Syst Rehabil Eng 2023; 31:1238-1247. [PMID: 37022414 DOI: 10.1109/tnsre.2023.3243035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The early Parkinson's disease (PD) with mild cognitive impairment (ePD-MCI) is a typical non-motor symptom reflected by the brain dysfunction of PD, which can be well depicted by the dynamic characteristics of brain functional connectivity networks. The aim of this study is to determine the unclear dynamic changes in functional connectivity networks induced by MCI in early PD patients. In this paper, the electroencephalogram (EEG) of each subject was reconstructed into the dynamic functional connectivity networks with five frequency bands based on adaptive sliding window method. By evaluating the fluctuations of dynamic functional connectivity and the transition stability of functional network state in ePD-MCI patients compared with early PD without mild cognitive impairment patients, it was found that in the alpha band, the functional network stability of central region, right frontal, parietal, occipital, and left temporal lobes was abnormally increased, and the dynamic connectivity fluctuations in these regions were significantly decreased in ePD-MCI group. In the gamma band, ePD-MCI patients showed decreased functional network stability in the central, left frontal, and right temporal lobes, and active dynamic connectivity fluctuations in the left frontal, temporal, and parietal lobes. The aberrant duration of network state in ePD-MCI patients was significantly negatively correlated with cognitive function in the alpha band, which might pave the way to identify and predict cognitive impairment in early PD patients.
Collapse
|
13
|
Alexandersen CG, de Haan W, Bick C, Goriely A. A multi-scale model explains oscillatory slowing and neuronal hyperactivity in Alzheimer's disease. J R Soc Interface 2023; 20:20220607. [PMID: 36596460 PMCID: PMC9810432 DOI: 10.1098/rsif.2022.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia and is linked to the spreading of pathological amyloid-β and tau proteins throughout the brain. Recent studies have highlighted stark differences in how amyloid-β and tau affect neurons at the cellular scale. On a larger scale, Alzheimer's patients are observed to undergo a period of early-stage neuronal hyperactivation followed by neurodegeneration and frequency slowing of neuronal oscillations. Herein, we model the spreading of both amyloid-β and tau across a human connectome and investigate how the neuronal dynamics are affected by disease progression. By including the effects of both amyloid-β and tau pathology, we find that our model explains AD-related frequency slowing, early-stage hyperactivation and late-stage hypoactivation. By testing different hypotheses, we show that hyperactivation and frequency slowing are not due to the topological interactions between different regions but are mostly the result of local neurotoxicity induced by amyloid-β and tau protein.
Collapse
Affiliation(s)
| | - Willem de Haan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Christian Bick
- Mathematical Institute, University of Oxford, Oxford, UK,Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Amsterdam Neuroscience—Systems and Network Neuroscience, Amsterdam, The Netherlands
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Cui D, Li H, Liu P, Gu G, Li X, Wang L, Yin S. Analysis of the neural mechanism of spectra decrease in MCI by a thalamo-cortical coupled neural mass model. J Neural Eng 2022; 19. [PMID: 36536986 DOI: 10.1088/1741-2552/aca82b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Objective.In order to deeply understand the neurophysiological mechanism of the spectra decrease in mild cognitive impairment (MCI), this paper studies a new neural mass model, which can simulate various intracerebral electrophysiological activities.Approach. In this study, a thalamo-cortical coupled neural mass model (TCC-NMM) is proposed. The influences of the coupling coefficients and other key parameters on the model spectra are simulated. Then, the unscented Kalman filter (UKF) algorithm is used to reversely identify the parameters in the TCC-NMM. Furthermore, the TCC-NMM and UKF are combined to analyze the spectra reduction mechanism of electroencephalogram (EEG) signals in MCI patients. The independent sample t-test is carried out to statistical analyze the differences of the identified parameters between MCI and normal controls. The Pearson correlation analysis is used to analyze the intrinsic relationship between parameters and the scores of the comprehensive competence assessment scale.Main results.The simulation results show that the decreased cortical synaptic connectivity constantsC1can result in spectra decrease of the TCC-NMM outputs. The real EEG analysis results show that the identified values of parameterC1are significant lower in the MCI group than in control group in frontal and occipital areas and the parametersC1are positively correlated with the Montreal Cognitive Assessment (MoCA) scores in the two areas. This consistency suggests that the cortical synaptic connectivity loss from pyramidal cells to excitatory interneurons (eIN) may be one of the neural mechanisms of EEG spectra decrease in MCI.Significance. (a) In this study, a new mathematical model TCCNMM based on anatomy and neurophysiology is proposed. (b) All key parameters in TCC-NMM are studied in detail through the forward and reverse analysis and the influence of these parameters on the output spectra of the model is pointed out. (c) The possible neural mechanism of the decreased spectra in MCI patients is pointed out by the joint analysis of simulation in forward with TCC-NMM and analysis of the actual EEG signals in reverse with UKF identification algorithm. (d) We find that the identified parameter C1 of MCI patients is significantly lower than that of the control group, which is consistent with the simulation analysis of TCC-NMM. So, we suggest that the decreased MCI alpha power spectrum is likely related to the cortical synaptic connection loss from pyramidal cells to eIN.
Collapse
Affiliation(s)
- Dong Cui
- Hebei Key Laboratory of Information Transmission and Signal Processing, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Han Li
- Hebei Key Laboratory of Information Transmission and Signal Processing, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Pengxiang Liu
- Hebei Key Laboratory of Information Transmission and Signal Processing, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Guanghua Gu
- Hebei Key Laboratory of Information Transmission and Signal Processing, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Xiaoli Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Lei Wang
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, People's Republic of China
| | - Shimin Yin
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, People's Republic of China
| |
Collapse
|
15
|
Köksal Ersöz E, Lazazzera R, Yochum M, Merlet I, Makhalova J, Mercadal B, Sanchez-Todo R, Ruffini G, Bartolomei F, Benquet P, Wendling F. Signal processing and computational modeling for interpretation of SEEG-recorded interictal epileptiform discharges in epileptogenic and non-epileptogenic zones. J Neural Eng 2022; 19. [PMID: 36067727 DOI: 10.1088/1741-2552/ac8fb4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE In partial epilepsies, interictal epileptiform discharges (IEDs) are paroxysmal events observed in epileptogenic and non-epileptogenic zones. IEDs' generation and recurrence are subject to different hypotheses: they appear through glutamatergic and GABAergic processes; they may trigger seizures or prevent seizure propagation. This paper focuses on a specific class of IEDs, spike-waves (SWs), characterized by a short-duration spike followed by a longer duration wave, both of the same polarity. Signal analysis and neurophysiological mathematical models are used to interpret puzzling IED generation. APPROACH Interictal activity was recorded by intracranial stereo-electroencephalography (SEEG) electrodes in five different patients. SEEG experts identified the epileptic and non-epileptic zones in which IEDs were detected. After quantifying spatial and temporal features of the detected IEDs, the most significant features for classifying epileptic and non-epileptic zones were determined. A neurophysiologically-plausible mathematical model was then introduced to simulate the IEDs and understand the underlying differences observed in epileptic and non-epileptic zone IEDs. MAIN RESULTS Two classes of SWs were identified according to subtle differences in morphology and timing of the spike and wave component. Results showed that type-1 SWs were generated in epileptogenic regions also involved at seizure onset, while type-2 SWs were produced in the propagation or non-involved areas. The modeling study indicated that synaptic kinetics, cortical organization, and network interactions determined the morphology of the simulated SEEG signals. Modeling results suggested that the IED morphologies were linked to the degree of preserved inhibition. SIGNIFICANCE This work contributes to the understanding of different mechanisms generating IEDs in epileptic networks. The combination of signal analysis and computational models provides an efficient framework for exploring IEDs in partial epilepsies and classifying epileptogenic and non-epileptogenic zones.
Collapse
Affiliation(s)
- Elif Köksal Ersöz
- INSERM, LTSI - UMR 1099, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35042 , FRANCE
| | - Remo Lazazzera
- INSERM, LTSI - UMR 1099, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35042 , FRANCE
| | - Maxime Yochum
- INSERM, LTSI - UMR 1099, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35042 , FRANCE
| | - Isabelle Merlet
- INSERM, LTSI - UMR 1099, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35042 , FRANCE
| | - Julia Makhalova
- Neurophysiologie clinique, Service d'Epileptologie et de Rythmologie Cerebrale, Assistance Publique Hopitaux de Marseille, Hôpital de la Timone, Marseille, Provence-Alpes-Côte d'Azu, 13354, FRANCE
| | - Borja Mercadal
- Neuroelectrics Barcelona SL, Av. Tibidabo, 47b, Barcelona, 08035, SPAIN
| | - Roser Sanchez-Todo
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Catalunya, 08035, SPAIN
| | - Giulio Ruffini
- Neuroelectrics Barcelona SL, Av. Tibidabo, 47b, Barcelona, Catalunya, 08035, SPAIN
| | - Fabrice Bartolomei
- Neurophysiologie clinique, Service d'Epileptologie et de Rythmologie Cerebrale, Assistance Publique Hopitaux de Marseille, Hôpital de la Timone, Marseille, Provence-Alpes-Côte d'Azu, 13354, FRANCE
| | - Pascal Benquet
- INSERM, LTSI - UMR 1099, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35042 , FRANCE
| | - Fabrice Wendling
- INSERM, LTSI - UMR 1099, Universite de Rennes 1, Campus Beaulieu, Rennes, Bretagne, 35042, FRANCE
| |
Collapse
|
16
|
Yang H, Yang X, Yan S, Sun Z. Effect of acetylcholine deficiency on neural oscillation in a brainstem-thalamus-cortex neurocomputational model related with Alzheimer's disease. Sci Rep 2022; 12:14961. [PMID: 36056083 PMCID: PMC9440203 DOI: 10.1038/s41598-022-19304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Previous works imply that involving brainstem in neuropathological studies of Alzheimer's disease (AD) is of clinically significant. This work constructs a comprehensive neural mass model for cholinergic neuropathogenesis that involves brainstem, thalamus and cortex, wherein how acetylcholine deficiency in AD affects neural oscillation of the model output is systematically explored from the perspective of neurocomputation. By decreasing synapse connectivity parameters in direct cholinergic pathway from brainstem to thalamus or in indirect glutamatergic synapse pathway from cortex to brainstem to mimic the pathological condition of reduced acetylcholine release in patients with AD, the property of neural oscillation in this model is numerically investigated by means of power spectrum in frequency domain and amplitude distribution in time domain. Simulated results demonstrate that decreasing synapse connectivity whether in the direct cholinergic pathway or in the indirect glutamatergic synapse pathway can alter the neural oscillation significantly in three aspects: it induces an obvious decrease of dominant frequency; it leads to a degraded rhythmic activity in the alpha frequency band as well as an enhanced rhythmic activity in the theta frequency band; it results in reduced oscillation amplitude of the model output. These results are agreement with the characteristic of electrophysiological EEG measurement recorded in AD, especially support the hypothesis that cholinergic deficiency is a promising pathophysiological origin of EEG slowing in AD. Our analysis indicates that targeting the cholinergic system may have potential prospects in early diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Hao Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - XiaoLi Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| | - SiLu Yan
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - ZhongKui Sun
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| |
Collapse
|
17
|
Fide E, Yerlikaya D, Öz D, Öztura İ, Yener G. Normalized Theta but Increased Gamma Activity after Acetylcholinesterase Inhibitor Treatment in Alzheimer's Disease: Preliminary qEEG Study. Clin EEG Neurosci 2022; 54:305-315. [PMID: 35957592 DOI: 10.1177/15500594221120723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase inhibitors (AChE-I) are the core treatment of mild to severe Alzheimer's disease (AD). However, the efficacy of AChE-I treatment on electroencephalography (EEG) and cognition remains unclear. We aimed to investigate the EEG power and coherence changes, in addition to neuropsychological performance, following a one-year treatment. Nine de-novo AD patients and demographically-matched healthy controls (HC) were included. After baseline assessments, all AD participants started cholinergic therapy. We found that baseline and follow-up gamma power analyzes were similar between groups. Yet, within the AD group after AChE-I intake, individuals with AD displayed higher gamma power compared to their baselines (P < .039). Also, baseline gamma coherence analysis showed lower values in the AD than in HC (P < .048), while these differences disappeared with increased gamma values of AD patients at the follow-up. Within the AD group after AChE-I intake, individuals with AD displayed higher theta and alpha coherence compared to their baselines (all, P < .039). These increased results within the AD group may result from a subclinical epileptiform activity. Even though AChE-I is associated with lower mortality, our results showed a significant effect on EEG power yet can increase the subclinical epileptiform activity. It is essential to be conscious of the seizure risk that treatment may cause.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey
| | - Deniz Yerlikaya
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey
| | - Didem Öz
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey.,Department of Neurology, 37508Dokuz Eylül University Medical School, Izmir, Turkey.,Global Brain Health Institute, 8785University of California San Francisco, San Francisco, CA, USA.,Brain Dynamics Multidisciplinary Research Center, 37508Dokuz Eylül University, Izmir, Turkey
| | - İbrahim Öztura
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey.,Department of Neurology, 37508Dokuz Eylül University Medical School, Izmir, Turkey.,Brain Dynamics Multidisciplinary Research Center, 37508Dokuz Eylül University, Izmir, Turkey
| | - Görsev Yener
- Brain Dynamics Multidisciplinary Research Center, 37508Dokuz Eylül University, Izmir, Turkey.,Faculty of Medicine, 605730Izmir University of Economics, Izmir, Turkey.,Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
18
|
A novelty detection approach to effectively predict conversion from mild cognitive impairment to Alzheimer’s disease. INT J MACH LEARN CYB 2022. [DOI: 10.1007/s13042-022-01570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractAccurately recognising patients with progressive mild cognitive impairment (pMCI) who will develop Alzheimer’s disease (AD) in subsequent years is very important, as early identification of those patients will enable interventions to potentially reduce the number of those transitioning from MCI to AD. Most studies in this area have concentrated on high-dimensional neuroimaging data with supervised binary/multi-class classification algorithms. However, neuroimaging data is more costly to obtain than non-imaging, and healthcare datasets are normally imbalanced which may reduce classification performance and reliability. To address these challenges, we proposed a new strategy that employs unsupervised novelty detection (ND) techniques to predict pMCI from the AD neuroimaging initiative non-imaging data. ND algorithms, including the k-nearest neighbours (kNN), k-means, Gaussian mixture model (GMM), isolation forest (IF) and extreme learning machine (ELM), were employed and compared with supervised binary support vector machine (SVM) and random forest (RF). We introduced optimisation with nested cross-validation and focused on maximising the adjusted F measure to ensure maximum generalisation of the proposed system by minimising false negative rates. Our extensive experimental results show that ND algorithms (0.727 ± 0.029 kNN, 0.7179 ± 0.0523 GMM, 0.7276 ± 0.0281 ELM) obtained comparable performance to supervised binary SVM (0.7359 ± 0.0451) with 20% stable MCI misclassification tolerance and were significantly better than RF (0.4771 ± 0.0167). Moreover, we found that the non-invasive, readily obtainable, and cost-effective cognitive and functional assessment was the most efficient predictor for predicting the pMCI within 2 years with ND techniques. Importantly, we presented an accessible and cost-effective approach to pMCI prediction, which does not require labelled data.
Collapse
|
19
|
Biophysical mechanism underlying compensatory preservation of neural synchrony over the adult lifespan. Commun Biol 2022; 5:567. [PMID: 35681107 PMCID: PMC9184644 DOI: 10.1038/s42003-022-03489-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
We propose that the preservation of functional integration, estimated from measures of neural synchrony, is a key objective of neurocompensatory mechanisms associated with healthy human ageing. To support this proposal, we demonstrate how phase-locking at the peak alpha frequency in Magnetoencephalography recordings remains invariant over the lifespan in a large cohort of human participants, aged 18-88 years. Using empirically derived connection topologies from diffusion tensor imaging data, we create an in-silico model of whole-brain alpha dynamics. We show that enhancing inter-areal coupling can cancel the effect of increased axonal transmission delays associated with age-related degeneration of white matter tracts, albeit at slower network frequencies. By deriving analytical solutions for simplified connection topologies, we further establish the theoretical principles underlying compensatory network re-organization. Our findings suggest that frequency slowing with age- frequently observed in the alpha band in diverse populations- may be viewed as an epiphenomenon of the underlying compensatory mechanism. Analysis of MEG data from healthy participants and whole-brain network modeling suggests that the brain compensates for age-related disruptions in connectivity by slowing down the frequency of neural synchronization.
Collapse
|
20
|
Sasi S, Sen Bhattacharya B. In silico Effects of Synaptic Connections in the Visual Thalamocortical Pathway. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:856412. [PMID: 35450154 PMCID: PMC9016146 DOI: 10.3389/fmedt.2022.856412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
We have studied brain connectivity using a biologically inspired in silico model of the visual pathway consisting of the lateral geniculate nucleus (LGN) of the thalamus, and layers 4 and 6 of the primary visual cortex. The connectivity parameters in the model are informed by the existing anatomical parameters from mammals and rodents. In the base state, the LGN and layer 6 populations in the model oscillate with dominant alpha frequency, while the layer 4 oscillates in the theta band. By changing intra-cortical hyperparameters, specifically inhibition from layer 6 to layer 4, we demonstrate a transition to alpha mode for all the populations. Furthermore, by increasing the feedforward connectivities in the thalamo-cortico-thalamic loop, we could transition into the beta band for all the populations. On looking closely, we observed that the origin of this beta band is in the layer 6 (infragranular layers); lesioning the thalamic feedback from layer 6 removed the beta from the LGN and the layer 4. This agrees with existing physiological studies where it is shown that beta rhythm is generated in the infragranular layers. Lastly, we present a case study to demonstrate a neurological condition in the model. By changing connectivities in the network, we could simulate the condition of significant (P < 0.001) decrease in beta band power and a simultaneous increase in the theta band power, similar to that observed in Schizophrenia patients. Overall, we have shown that the connectivity changes in a simple visual thalamocortical in silico model can simulate state changes in the brain corresponding to both health and disease conditions.
Collapse
|
21
|
Um YH, Wang SM, Kang DW, Kim NY, Lim HK. Subcortical and Cerebellar Neural Correlates of Prodromal Alzheimer’s Disease with Prolonged Sleep Latency. J Alzheimers Dis 2022; 86:565-578. [PMID: 35068468 PMCID: PMC9028620 DOI: 10.3233/jad-215460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Despite the important associations among sleep, Alzheimer’s disease (AD), subcortical structures, and the cerebellum, structural and functional magnetic resonance imaging (MRI) with regard to these regions and sleep on patients in AD trajectory are scarce. Objective: This study aimed to evaluate the influence of prolonged sleep latency on the structural and functional alterations in the subcortical and cerebellar neural correlates in amyloid-β positive amnestic mild cognitive impairment patients (Aβ+aMCI). Methods: A total of 60 patients with aMCI who were identified as amyloid positive ([18F] flutemetamol+) were recruited in the study, 24 patients with normal sleep latency (aMCI-n) and 36 patients prolonged sleep latency (aMCI-p). Cortical thickness and volumes between the two groups were compared. Volumetric analyses were implemented on the brainstem, thalamus, and hippocampus. Subcortical and cerebellar resting state functional connectivity (FC) differences were measured between the both groups through seed-to-voxel analysis. Additionally, group x Aβ interactive effects on FC values were tested with a general linear model. Result: There was a significantly decreased brainstem volume in aMCI-p subjects. We observed a significant reduction of the locus coeruleus (LC) FC with frontal, temporal, insular cortices, hippocampus, and left thalamic FC with occipital cortex. Moreover, the LC FC with occipital cortex and left hippocampal FC with frontal cortex were increased in aMCI-p subjects. In addition, there was a statistically significant group by regional standardized uptake value ratio interactions discovered in cerebro-cerebellar networks. Conclusion: The aforementioned findings suggest that prolonged sleep latency may be a detrimental factor in compromising structural and functional correlates of subcortical structures and the cerebellum, which may accelerate AD pathophysiology.
Collapse
Affiliation(s)
- Yoo Hyun Um
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nak-Young Kim
- Department of Psychiatry, Keyo Hospital, Keyo Medical Foundation, Uiwang, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
22
|
Sasi S, Bhattacharya BS. Phase entrainment by periodic stimuli in silico: A quantitative study. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.10.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Yang X, Zhang R, Sun Z, Kurths J. Controlling Alzheimer's Disease Through the Deep Brain Stimulation to Thalamic Relay Cells. Front Comput Neurosci 2021; 15:636770. [PMID: 34819845 PMCID: PMC8606419 DOI: 10.3389/fncom.2021.636770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Experimental and clinical studies have shown that the technique of deep brain stimulation (DBS) plays a potential role in the regulation of Alzheimer’s disease (AD), yet it still desires for ongoing studies including clinical trials, theoretical approach and action mechanism. In this work, we develop a modified thalamo-cortico-thalamic (TCT) model associated with AD to explore the therapeutic effects of DBS on AD from the perspective of neurocomputation. First, the neuropathological state of AD resulting from synapse loss is mimicked by decreasing the synaptic connectivity strength from the Inter-Neurons (IN) neuron population to the Thalamic Relay Cells (TRC) neuron population. Under such AD condition, a specific deep brain stimulation voltage is then implanted into the neural nucleus of TRC in this TCT model. The symptom of AD is found significantly relieved by means of power spectrum analysis and nonlinear dynamical analysis. Furthermore, the therapeutic effects of DBS on AD are systematically examined in different parameter space of DBS. The results demonstrate that the controlling effect of DBS on AD can be efficient by appropriately tuning the key parameters of DBS including amplitude A, period P and duration D. This work highlights the critical role of thalamus stimulation for brain disease, and provides a theoretical basis for future experimental and clinical studies in treating AD.
Collapse
Affiliation(s)
- XiaoLi Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - RuiXi Zhang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - ZhongKui Sun
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam, Germany.,Department of Physics, Humboldt University of Berlin, Berlin, Germany.,Centre for Analysis of Complex Systems, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
24
|
Köksal Ersöz E, Wendling F. Canard solutions in neural mass models: consequences on critical regimes. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2021; 11:11. [PMID: 34529192 PMCID: PMC8446153 DOI: 10.1186/s13408-021-00109-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 08/17/2021] [Indexed: 05/06/2023]
Abstract
Mathematical models at multiple temporal and spatial scales can unveil the fundamental mechanisms of critical transitions in brain activities. Neural mass models (NMMs) consider the average temporal dynamics of interconnected neuronal subpopulations without explicitly representing the underlying cellular activity. The mesoscopic level offered by the neural mass formulation has been used to model electroencephalographic (EEG) recordings and to investigate various cerebral mechanisms, such as the generation of physiological and pathological brain activities. In this work, we consider a NMM widely accepted in the context of epilepsy, which includes four interacting neuronal subpopulations with different synaptic kinetics. Due to the resulting three-time-scale structure, the model yields complex oscillations of relaxation and bursting types. By applying the principles of geometric singular perturbation theory, we unveil the existence of the canard solutions and detail how they organize the complex oscillations and excitability properties of the model. In particular, we show that boundaries between pathological epileptic discharges and physiological background activity are determined by the canard solutions. Finally we report the existence of canard-mediated small-amplitude frequency-specific oscillations in simulated local field potentials for decreased inhibition conditions. Interestingly, such oscillations are actually observed in intracerebral EEG signals recorded in epileptic patients during pre-ictal periods, close to seizure onsets.
Collapse
Affiliation(s)
- Elif Köksal Ersöz
- Univ Rennes, INSERM, LTSI-U1099, Campus de Beaulieu, F - 35000, Rennes, France
| | - Fabrice Wendling
- Univ Rennes, INSERM, LTSI-U1099, Campus de Beaulieu, F - 35000, Rennes, France.
| |
Collapse
|
25
|
Puttaert D, Wens V, Fery P, Rovai A, Trotta N, Coquelet N, De Breucker S, Sadeghi N, Coolen T, Goldman S, Peigneux P, Bier JC, De Tiège X. Decreased Alpha Peak Frequency Is Linked to Episodic Memory Impairment in Pathological Aging. Front Aging Neurosci 2021; 13:711375. [PMID: 34475819 PMCID: PMC8406997 DOI: 10.3389/fnagi.2021.711375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 12/04/2022] Open
Abstract
The Free and Cued Selective Reminding Test (FCSRT) is a largely validated neuropsychological test for the identification of amnestic syndrome from the early stage of Alzheimer's disease (AD). Previous electrophysiological data suggested a slowing down of the alpha rhythm in the AD-continuum as well as a key role of this rhythmic brain activity for episodic memory processes. This study therefore investigates the link between alpha brain activity and alterations in episodic memory as assessed by the FCSRT. For that purpose, 37 patients with altered FCSRT performance underwent a comprehensive neuropsychological assessment, supplemented by 18F-fluorodeoxyglucose positron emission tomography/structural magnetic resonance imaging (18FDG-PET/MR), and 10 min of resting-state magnetoencephalography (MEG). The individual alpha peak frequency (APF) in MEG resting-state data was positively correlated with patients' encoding efficiency as well as with the efficacy of semantic cues in facilitating patients' retrieval of previous stored word. The APF also correlated positively with patients' hippocampal volume and their regional glucose consumption in the posterior cingulate cortex. Overall, this study demonstrates that alterations in the ability to learn and store new information for a relatively short-term period are related to a slowing down of alpha rhythmic activity, possibly due to altered interactions in the extended mnemonic system. As such, a decreased APF may be considered as an electrophysiological correlate of short-term episodic memory dysfunction accompanying pathological aging.
Collapse
Affiliation(s)
- Delphine Puttaert
- Laboratoire de Cartographie Fonctionnelle du Cerveau, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Center for Research in Cognition and Neurosciences, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie Fonctionnelle du Cerveau, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
- Clinic of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrick Fery
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Center for Research in Cognition and Neurosciences, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
- Service of Neuropsychology and Speech Therapy, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Antonin Rovai
- Laboratoire de Cartographie Fonctionnelle du Cerveau, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
- Clinic of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicola Trotta
- Laboratoire de Cartographie Fonctionnelle du Cerveau, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
- Clinic of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Coquelet
- Laboratoire de Cartographie Fonctionnelle du Cerveau, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandra De Breucker
- Department of Geriatrics, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Niloufar Sadeghi
- Department of Radiology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Tim Coolen
- Department of Radiology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie Fonctionnelle du Cerveau, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
- Clinic of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Peigneux
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Center for Research in Cognition and Neurosciences, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Christophe Bier
- Department of Neurology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionnelle du Cerveau, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
- Clinic of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
26
|
Cakir Y. Computational neuronal correlation with enhanced synchronized activity in the basal ganglia and the slowing of thalamic theta and alpha rhythms in Parkinson's disease. Eur J Neurosci 2021; 54:5203-5223. [PMID: 34192822 DOI: 10.1111/ejn.15374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 11/27/2022]
Abstract
The aim of this work is computationally to correlate the synchronized neuronal activity of basal ganglia and slowing in theta and alpha rhythms in electroencephalogram (EEG) signal in thalamic region in case of dopamine depletion and decrease of synaptic connections. The used network topology is a scale-free network with constant node degree. The dopamine-modulated type Izikhevich neuron model is used for modeling the striatal region, consisting of fast-spiking interneurons, D1 and D2 type dopamine expressing medium spiny neurons. On the other hand, the ordinary Izikhevich neuron model is used in the modeling of extrastriatal basal ganglia (BG) regions where globus pallidus (GP) subregion neurons have also dopamine-dependent parameters. The thalamic region of the network is mass modeled including inhibitory input from basal ganglia. Depending on the decrease of synaptic connections and dopamine level, the synchronization among basal ganglia neuron populations is investigated. The effect of synaptic delay on synchronization is also considered. It is observed that the decrease of dopamine neurotransmitter and decrease in the number of synaptic connections cause an increased synchronous activity in BG. Also, slowing in theta and alpha bands in thalamus EEG signals is observed. This shows the causal relation between synchronization and power shifting to lower frequency components in the case of neurodegenerative diseases such as Parkinson's disease (PD).
Collapse
Affiliation(s)
- Yuksel Cakir
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
27
|
Huang CH, Lin CCK. A novel density-based neural mass model for simulating neuronal network dynamics with conductance-based synapses and membrane current adaptation. Neural Netw 2021; 143:183-197. [PMID: 34157643 DOI: 10.1016/j.neunet.2021.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Despite its success in understanding brain rhythms, the neural mass model, as a low-dimensional mean-field network model, is phenomenological in nature, so that it cannot replicate some of rich repertoire of responses seen in real neuronal tissues. Here, using a colored-synapse population density method, we derived a novel neural mass model, termed density-based neural mass model (dNMM), as the mean-field description of network dynamics of adaptive exponential integrate-and-fire (aEIF) neurons, in which two critical neuronal features, i.e., voltage-dependent conductance-based synaptic interactions and adaptation of firing rate responses, were included. Our results showed that the dNMM was capable of correctly estimating firing rate responses of a neuronal population of aEIF neurons receiving stationary or time-varying excitatory and inhibitory inputs. Finally, it was also able to quantitatively describe the effect of spike-frequency adaptation in the generation of asynchronous irregular activity of excitatory-inhibitory cortical networks. We conclude that in terms of its biological reality and calculation efficiency, the dNMM is a suitable candidate to build significantly large-scale network models involving multiple brain areas, where the neuronal population is the smallest dynamic unit.
Collapse
Affiliation(s)
- Chih-Hsu Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chou-Ching K Lin
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
28
|
Yochum M, Modolo J. NMMGenerator: an automatic neural mass model generator from population graphs. J Neural Eng 2021; 18. [PMID: 32688351 DOI: 10.1088/1741-2552/aba799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/14/2020] [Indexed: 11/12/2022]
Abstract
Neural mass models are among the most popular mathematical models of brain activity, since they enable the rapid simulation of large-scale networks involving different neural types at a spatial scale compatible with electrophysiological experiments (e.g. local field potentials). However, establishing neural mass model (NMM) equations associated with specific neuronal network architectures can be tedious and is an error-prone process, restricting their use to scientists who are familiar with mathematics. In order to overcome this challenge, we have developed a user-friendly software that enables a user to construct rapidly, under the form of a graph, a neuronal network with its populations and connectivity patterns. The resulting graph is then automatically translated into the corresponding set of differential equations, which can be solved and displayed within the same software environment. The software is proposed as open access, and should assist in offering the possibility for a wider audience of scientists to develop NMM corresponding to their specific neuroscience research questions.
Collapse
Affiliation(s)
- Maxime Yochum
- Univ Rennes, INSERM, LTSI - U1099, F-35000 Rennes, France
| | - Julien Modolo
- Univ Rennes, INSERM, LTSI - U1099, F-35000 Rennes, France
| |
Collapse
|
29
|
Gandolfi D, Boiani GM, Bigiani A, Mapelli J. Modeling Neurotransmission: Computational Tools to Investigate Neurological Disorders. Int J Mol Sci 2021; 22:4565. [PMID: 33925434 PMCID: PMC8123833 DOI: 10.3390/ijms22094565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
The investigation of synaptic functions remains one of the most fascinating challenges in the field of neuroscience and a large number of experimental methods have been tuned to dissect the mechanisms taking part in the neurotransmission process. Furthermore, the understanding of the insights of neurological disorders originating from alterations in neurotransmission often requires the development of (i) animal models of pathologies, (ii) invasive tools and (iii) targeted pharmacological approaches. In the last decades, additional tools to explore neurological diseases have been provided to the scientific community. A wide range of computational models in fact have been developed to explore the alterations of the mechanisms involved in neurotransmission following the emergence of neurological pathologies. Here, we review some of the advancements in the development of computational methods employed to investigate neuronal circuits with a particular focus on the application to the most diffuse neurological disorders.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
| | - Giulia Maria Boiani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
30
|
Wong-Lin K, Sanchez-Bornot JM, McCombe N, Kaur D, McClean PL, Zou X, Youssofzadeh V, Ding X, Bucholc M, Yang S, Prasad G, Coyle D, Maguire LP, Wang H, Wang H, Atiya NA, Joshi A. Computational Neurology: Computational Modeling Approaches in Dementia. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11588-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Talyansky S, Brinkman BAW. Dysregulation of excitatory neural firing replicates physiological and functional changes in aging visual cortex. PLoS Comput Biol 2021; 17:e1008620. [PMID: 33497380 PMCID: PMC7864437 DOI: 10.1371/journal.pcbi.1008620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/05/2021] [Accepted: 12/08/2020] [Indexed: 11/19/2022] Open
Abstract
The mammalian visual system has been the focus of countless experimental and theoretical studies designed to elucidate principles of neural computation and sensory coding. Most theoretical work has focused on networks intended to reflect developing or mature neural circuitry, in both health and disease. Few computational studies have attempted to model changes that occur in neural circuitry as an organism ages non-pathologically. In this work we contribute to closing this gap, studying how physiological changes correlated with advanced age impact the computational performance of a spiking network model of primary visual cortex (V1). Our results demonstrate that deterioration of homeostatic regulation of excitatory firing, coupled with long-term synaptic plasticity, is a sufficient mechanism to reproduce features of observed physiological and functional changes in neural activity data, specifically declines in inhibition and in selectivity to oriented stimuli. This suggests a potential causality between dysregulation of neuron firing and age-induced changes in brain physiology and functional performance. While this does not rule out deeper underlying causes or other mechanisms that could give rise to these changes, our approach opens new avenues for exploring these underlying mechanisms in greater depth and making predictions for future experiments.
Collapse
Affiliation(s)
- Seth Talyansky
- Catlin Gabel School, Portland, Oregon, United States of America
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
| | - Braden A. W. Brinkman
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
32
|
Köksal Ersöz E, Modolo J, Bartolomei F, Wendling F. Neural mass modeling of slow-fast dynamics of seizure initiation and abortion. PLoS Comput Biol 2020; 16:e1008430. [PMID: 33166277 PMCID: PMC7676664 DOI: 10.1371/journal.pcbi.1008430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/19/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a dynamic and complex neurological disease affecting about 1% of the worldwide population, among which 30% of the patients are drug-resistant. Epilepsy is characterized by recurrent episodes of paroxysmal neural discharges (the so-called seizures), which manifest themselves through a large-amplitude rhythmic activity observed in depth-EEG recordings, in particular in local field potentials (LFPs). The signature characterizing the transition to seizures involves complex oscillatory patterns, which could serve as a marker to prevent seizure initiation by triggering appropriate therapeutic neurostimulation methods. To investigate such protocols, neurophysiological lumped-parameter models at the mesoscopic scale, namely neural mass models, are powerful tools that not only mimic the LFP signals but also give insights on the neural mechanisms related to different stages of seizures. Here, we analyze the multiple time-scale dynamics of a neural mass model and explain the underlying structure of the complex oscillations observed before seizure initiation. We investigate population-specific effects of the stimulation and the dependence of stimulation parameters on synaptic timescales. In particular, we show that intermediate stimulation frequencies (>20 Hz) can abort seizures if the timescale difference is pronounced. Those results have the potential in the design of therapeutic brain stimulation protocols based on the neurophysiological properties of tissue.
Collapse
Affiliation(s)
| | - Julien Modolo
- University of Rennes, Inserm-U1099, LTSI, Rennes, France
| | - Fabrice Bartolomei
- Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France
| | | |
Collapse
|
33
|
Min BK, Kim HS, Pinotsis DA, Pantazis D. Thalamocortical inhibitory dynamics support conscious perception. Neuroimage 2020; 220:117066. [PMID: 32565278 DOI: 10.1016/j.neuroimage.2020.117066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 11/28/2022] Open
Abstract
Whether thalamocortical interactions play a decisive role in conscious perception remains an open question. We presented rapid red/green color flickering stimuli, which induced the mental perception of either an illusory orange color or non-fused red and green colors. Using magnetoencephalography, we observed 6-Hz thalamic activity associated with thalamocortical inhibitory coupling only during the conscious perception of the illusory orange color. This sustained thalamic disinhibition was temporally coupled with higher visual cortical activation during the conscious perception of the orange color, providing neurophysiological evidence of the role of thalamocortical synchronization in conscious awareness of mental representation. Bayesian model comparison consistently supported the thalamocortical model in conscious perception. Taken together, experimental and theoretical evidence established the thalamocortical inhibitory network as a gateway to conscious mental representations.
Collapse
Affiliation(s)
- Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Hyun Seok Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dimitris A Pinotsis
- Center for Mathematical Neuroscience and Psychology, Department of Psychology, City-University of London, London, EC1V 0HB, UK; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
34
|
Ursino M, Ricci G, Magosso E. Transfer Entropy as a Measure of Brain Connectivity: A Critical Analysis With the Help of Neural Mass Models. Front Comput Neurosci 2020; 14:45. [PMID: 32581756 PMCID: PMC7292208 DOI: 10.3389/fncom.2020.00045] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: Assessing brain connectivity from electrophysiological signals is of great relevance in neuroscience, but results are still debated and depend crucially on how connectivity is defined and on mathematical instruments utilized. Aim of this work is to assess the capacity of bivariate Transfer Entropy (TE) to evaluate connectivity, using data generated from simple neural mass models of connected Regions of Interest (ROIs). Approach: Signals simulating mean field potentials were generated assuming two, three or four ROIs, connected via excitatory or by-synaptic inhibitory links. We investigated whether the presence of a statistically significant connection can be detected and if connection strength can be quantified. Main Results: Results suggest that TE can reliably estimate the strength of connectivity if neural populations work in their linear regions, and if the epoch lengths are longer than 10 s. In case of multivariate networks, some spurious connections can emerge (i.e., a statistically significant TE even in the absence of a true connection); however, quite a good correlation between TE and synaptic strength is still preserved. Moreover, TE appears more robust for distal regions (longer delays) compared with proximal regions (smaller delays): an approximate a priori knowledge on this delay can improve the procedure. Finally, non-linear phenomena affect the assessment of connectivity, since they may significantly reduce TE estimation: information transmission between two ROIs may be weak, due to non-linear phenomena, even if a strong causal connection is present. Significance: Changes in functional connectivity during different tasks or brain conditions, might not always reflect a true change in the connecting network, but rather a change in information transmission. A limitation of the work is the use of bivariate TE. In perspective, the use of multivariate TE can improve estimation and reduce some of the problems encountered in the present study.
Collapse
Affiliation(s)
- Mauro Ursino
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Cesena, Italy
| | - Giulia Ricci
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Cesena, Italy
| | - Elisa Magosso
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Cesena, Italy
| |
Collapse
|
35
|
Whitwell HJ, Bacalini MG, Blyuss O, Chen S, Garagnani P, Gordleeva SY, Jalan S, Ivanchenko M, Kanakov O, Kustikova V, Mariño IP, Meyerov I, Ullner E, Franceschi C, Zaikin A. The Human Body as a Super Network: Digital Methods to Analyze the Propagation of Aging. Front Aging Neurosci 2020; 12:136. [PMID: 32523526 PMCID: PMC7261843 DOI: 10.3389/fnagi.2020.00136] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Biological aging is a complex process involving multiple biological processes. These can be understood theoretically though considering them as individual networks-e.g., epigenetic networks, cell-cell networks (such as astroglial networks), and population genetics. Mathematical modeling allows the combination of such networks so that they may be studied in unison, to better understand how the so-called "seven pillars of aging" combine and to generate hypothesis for treating aging as a condition at relatively early biological ages. In this review, we consider how recent progression in mathematical modeling can be utilized to investigate aging, particularly in, but not exclusive to, the context of degenerative neuronal disease. We also consider how the latest techniques for generating biomarker models for disease prediction, such as longitudinal analysis and parenclitic analysis can be applied to as both biomarker platforms for aging, as well as to better understand the inescapable condition. This review is written by a highly diverse and multi-disciplinary team of scientists from across the globe and calls for greater collaboration between diverse fields of research.
Collapse
Affiliation(s)
- Harry J Whitwell
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | | | - Oleg Blyuss
- School of Physics, Astronomy and Mathematics, University of Hertfordshire, Harfield, United Kingdom.,Department of Paediatrics and Paediatric Infectious Diseases, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Shangbin Chen
- Britton Chance Centre for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Susan Yu Gordleeva
- Laboratory of Systems Medicine of Healthy Aging, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Sarika Jalan
- Complex Systems Laboratory, Discipline of Physics, Indian Institute of Technology Indore, Indore, India.,Centre for Bio-Science and Bio-Medical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Oleg Kanakov
- Laboratory of Systems Medicine of Healthy Aging, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Valentina Kustikova
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ines P Mariño
- Department of Biology and Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Madrid, Spain
| | - Iosif Meyerov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekkehard Ullner
- Department of Physics (SUPA), Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Zaikin
- Department of Paediatrics and Paediatric Infectious Diseases, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Department of Mathematics, Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
36
|
Li X, Yang X, Sun Z. Alpha rhythm slowing in a modified thalamo-cortico-thalamic model related with Alzheimer's disease. PLoS One 2020; 15:e0229950. [PMID: 32163454 PMCID: PMC7067465 DOI: 10.1371/journal.pone.0229950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
A decrease in alpha band power is defined as a hallmark of electroencephalogram (EEG) in Alzheimer’s disease (AD). This study devotes to understanding the neuronal correlates of alpha rhythm slowing associated with AD from the view of neurocomputation. Firstly, a modified computational model of thalamo-cortico-thalamic (TCT) circuitry is constructed by incorporating two important biologically plausible ingredients. One is the disinhibition property between different inhibitory interneurons in the cortical module. The other is the full relay function of thalamic relay nucleus (TCR) to the cortical module. Then, by decreasing synaptic connectivity parameters to mimic the neuropathological condition of synapse loss in AD, the correlation between neuronal synaptic behavior and abnormal alpha rhythm is simulated by means of power spectral analysis. The results indicate that these decreases of synaptic activity, i.e., not only the excitatory synaptic connections from TCR to fast inhibitory interneurons Cfte and from excitatory interneurons to pyramidal neurons Cpxe but also the inhibitory synaptic connections from fast inhibitory interneurons to slow inhibitory interneurons Clfi and from inhibitory interneurons to TCR Ctii, can significantly diminish the peak power density over the alpha band of the thalamic output, which implies that there is a slowing of alpha band. Furthermore, the underlying mechanism behind the alpha rhythmic changes is analyzed using nonlinear dynamical technique. The results reveal that decreases of Cfte, Cpxe, Clfi and Ctii can make the thalamic module transfer from a limit cycle mode to a point attractor mode, which may lead to the alpha rhythm slowing in the modified TCT model. We expect this work can be helpful in identifying early biomarkers of AD’s EEG and understanding potential pathogenesis of AD.
Collapse
Affiliation(s)
- XiaoYuan Li
- College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, PR China
| | - XiaoLi Yang
- College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, PR China
- * E-mail:
| | - ZhongKui Sun
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, PR China
| |
Collapse
|
37
|
Cakir Y. Hybrid modeling of alpha rhythm and the amplitude of low‐frequency fluctuations abnormalities in the thalamocortical region and basal ganglia in Alzheimer's disease. Eur J Neurosci 2020; 52:2944-2961. [DOI: 10.1111/ejn.14666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yuksel Cakir
- Department of Electronics and Communication Engineering Istanbul Technical University Istanbul Turkey
- ICube IMAGeS Strasbourg University Strasbourg France
| |
Collapse
|
38
|
Experimental Study of Reinforcement Learning in Mobile Robots Through Spiking Architecture of Thalamo-Cortico-Thalamic Circuitry of Mammalian Brain. ROBOTICA 2019. [DOI: 10.1017/s0263574719001632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYIn this paper, the behavioral learning of robots through spiking neural networks is studied in which the architecture of the network is based on the thalamo-cortico-thalamic circuitry of the mammalian brain. According to a variety of neurons, the Izhikevich model of single neuron is used for the representation of neuronal behaviors. One thousand and ninety spiking neurons are considered in the network. The spiking model of the proposed architecture is derived and prepared for the learning problem of robots. The reinforcement learning algorithm is based on spike-timing-dependent plasticity and dopamine release as a reward. It results in strengthening the synaptic weights of the neurons that are involved in the robot’s proper performance. Sensory and motor neurons are placed in the thalamus and cortical module, respectively. The inputs of thalamo-cortico-thalamic circuitry are the signals related to distance of the target from robot, and the outputs are the velocities of actuators. The target attraction task is used as an example to validate the proposed method in which dopamine is released when the robot catches the target. Some simulation studies, as well as experimental implementation, are done on a mobile robot named Tabrizbot. Experimental studies illustrate that after successful learning, the meantime of catching target is decreased by about 36%. These prove that through the proposed method, thalamo-cortical structure could be trained successfully to learn to perform various robotic tasks.
Collapse
|
39
|
Bensaid S, Modolo J, Merlet I, Wendling F, Benquet P. COALIA: A Computational Model of Human EEG for Consciousness Research. Front Syst Neurosci 2019; 13:59. [PMID: 31798421 PMCID: PMC6863981 DOI: 10.3389/fnsys.2019.00059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/07/2019] [Indexed: 01/27/2023] Open
Abstract
Understanding the origin of the main physiological processes involved in consciousness is a major challenge of contemporary neuroscience, with crucial implications for the study of Disorders of Consciousness (DOC). The difficulties in achieving this task include the considerable quantity of experimental data in this field, along with the non-intuitive, nonlinear nature of neuronal dynamics. One possibility of integrating the main results from the experimental literature into a cohesive framework, while accounting for nonlinear brain dynamics, is the use of physiologically-inspired computational models. In this study, we present a physiologically-grounded computational model, attempting to account for the main micro-circuits identified in the human cortex, while including the specificities of each neuronal type. More specifically, the model accounts for thalamo-cortical (vertical) regulation of cortico-cortical (horizontal) connectivity, which is a central mechanism for brain information integration and processing. The distinct neuronal assemblies communicate through feedforward and feedback excitatory and inhibitory synaptic connections implemented in a template brain accounting for long-range connectome. The EEG generated by this physiologically-based simulated brain is validated through comparison with brain rhythms recorded in humans in two states of consciousness (wakefulness, sleep). Using the model, it is possible to reproduce the local disynaptic disinhibition of basket cells (fast GABAergic inhibition) and glutamatergic pyramidal neurons through long-range activation of vasoactive intestinal-peptide (VIP) interneurons that induced inhibition of somatostatin positive (SST) interneurons. The model (COALIA) predicts that the strength and dynamics of the thalamic output on the cortex control the local and long-range cortical processing of information. Furthermore, the model reproduces and explains clinical results regarding the complexity of transcranial magnetic stimulation TMS-evoked EEG responses in DOC patients and healthy volunteers, through a modulation of thalamo-cortical connectivity that governs the level of cortico-cortical communication. This new model provides a quantitative framework to accelerate the study of the physiological mechanisms involved in the emergence, maintenance and disruption (sleep, anesthesia, DOC) of consciousness.
Collapse
Affiliation(s)
| | | | | | - Fabrice Wendling
- INSERM, Laboratoire Traitement du Signal et de l’Image (LTSI)—U1099, University of Rennes, Rennes, France
| | | |
Collapse
|
40
|
Boyer A, Ramdani S, Duffau H, Poulin-Charronnat B, Guiraud D, Bonnetblanc F. Alterations of EEG rhythms during motor preparation following awake brain surgery. Brain Cogn 2018; 125:45-52. [DOI: 10.1016/j.bandc.2018.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022]
|
41
|
Hassan M, Abbas Q, Seo SY, Shahzadi S, Ashwal HA, Zaki N, Iqbal Z, Moustafa AA. Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease (Review). Mol Med Rep 2018; 18:639-655. [PMID: 29845262 PMCID: PMC6059694 DOI: 10.3892/mmr.2018.9044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/05/2017] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a complex and multifactorial disease. In order to understand the genetic influence in the progression of AD, and to identify novel pharmaceutical agents and their associated targets, the present study discusses computational modeling and biomarker evaluation approaches. Based on mechanistic signaling pathway approaches, various computational models, including biochemical and morphological models, are discussed to explore the strategies that may be used to target AD treatment. Different biomarkers are interpreted on the basis of morphological and functional features of amyloid β plaques and unstable microtubule‑associated tau protein, which is involved in neurodegeneration. Furthermore, imaging and cerebrospinal fluids are also considered to be key methods in the identification of novel markers for AD. In conclusion, the present study reviews various biochemical and morphological computational models and biomarkers to interpret novel targets and agonists for the treatment of AD. This review also highlights several therapeutic targets and their associated signaling pathways in AD, which may have potential to be used in the development of novel pharmacological agents for the treatment of patients with AD. Computational modeling approaches may aid the quest for the development of AD treatments with enhanced therapeutic efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Mubashir Hassan
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Chungcheongnam 32588, Republic of Korea
- Institute of Molecular Science and Bioinformatics, Dyal Singh Trust Library, Lahore 54000, Pakistan
| | - Qamar Abbas
- Department of Physiology, University of Sindh, Jamshoro 76080, Pakistan
| | - Sung-Yum Seo
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Chungcheongnam 32588, Republic of Korea
| | - Saba Shahzadi
- Institute of Molecular Science and Bioinformatics, Dyal Singh Trust Library, Lahore 54000, Pakistan
- Department of Bioinformatics, Virtual University Davis Road Campus, Lahore 54000, Pakistan
| | - Hany Al Ashwal
- College of Information Technology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Nazar Zaki
- College of Information Technology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Zeeshan Iqbal
- Institute of Molecular Science and Bioinformatics, Dyal Singh Trust Library, Lahore 54000, Pakistan
| | - Ahmed A. Moustafa
- School of Social Sciences and Psychology, Western Sydney University, Sydney, NSW 2751, Australia
- MARCS Institute for Brain, Behavior and Development, Western Sydney University, Sydney, NSW 2751, Australia
| |
Collapse
|
42
|
Xu Y, Zhang CH, Niebur E, Wang JS. Analytically determining frequency and amplitude of spontaneous alpha oscillation in Jansen's neural mass model using the describing function method. CHINESE PHYSICS B = ZHONGGUO WU LI B 2018; 27:048701. [PMID: 34322160 PMCID: PMC8315699 DOI: 10.1088/1674-1056/27/4/048701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spontaneous alpha oscillations are a ubiquitous phenomenon in the brain and play a key role in neural information processing and various cognitive functions. Jansen's neural mass model (NMM) was initially proposed to study the origin of alpha oscillations. Most of previous studies of the spontaneous alpha oscillations in the NMM were conducted using numerical methods. In this study, we aim to propose an analytical approach using the describing function method to elucidate the spontaneous alpha oscillation mechanism in the NMM. First, the sigmoid nonlinear function in the NMM is approximated by its describing function, allowing us to reformulate the NMM and derive its standard form composed of one nonlinear part and one linear part. Second, by conducting a theoretical analysis, we can assess whether or not the spontaneous alpha oscillation would occur in the NMM and, furthermore, accurately determine its amplitude and frequency. The results reveal analytically that the interaction between linearity and nonlinearity of the NMM plays a key role in generating the spontaneous alpha oscillations. Furthermore, strong nonlinearity and large linear strength are required to generate the spontaneous alpha oscillations.
Collapse
Affiliation(s)
- Yao Xu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
- Qingdao Stomatological Hospital, Department of Medical Technology Equipment, Qingdao 266001, China
| | - Chun-Hui Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Ernst Niebur
- Zanvyl Krieger Mind/Brain Institute and Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Jun-Song Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
43
|
Ferrat LA, Goodfellow M, Terry JR. Classifying dynamic transitions in high dimensional neural mass models: A random forest approach. PLoS Comput Biol 2018; 14:e1006009. [PMID: 29499044 PMCID: PMC5851637 DOI: 10.1371/journal.pcbi.1006009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/14/2018] [Accepted: 01/30/2018] [Indexed: 02/04/2023] Open
Abstract
Neural mass models (NMMs) are increasingly used to uncover the large-scale mechanisms of brain rhythms in health and disease. The dynamics of these models is dependent upon the choice of parameters, and therefore it is crucial to be able to understand how dynamics change when parameters are varied. Despite being considered low dimensional in comparison to micro-scale, neuronal network models, with regards to understanding the relationship between parameters and dynamics, NMMs are still prohibitively high dimensional for classical approaches such as numerical continuation. Therefore, we need alternative methods to characterise dynamics of NMMs in high dimensional parameter spaces. Here, we introduce a statistical framework that enables the efficient exploration of the relationship between model parameters and selected features of the simulated, emergent model dynamics of NMMs. We combine the classical machine learning approaches of trees and random forests to enable studying the effect that varying multiple parameters has on the dynamics of a model. The method proceeds by using simulations to transform the mathematical model into a database. This database is then used to partition parameter space with respect to dynamic features of interest, using random forests. This allows us to rapidly explore dynamics in high dimensional parameter space, capture the approximate location of qualitative transitions in dynamics and assess the relative importance of all parameters in the model in all dimensions simultaneously. We apply this method to a commonly used NMM in the context of transitions to seizure dynamics. We find that the inhibitory sub-system is most crucial for the generation of seizure dynamics, confirm and expand previous findings regarding the ratio of excitation and inhibition, and demonstrate that previously overlooked parameters can have a significant impact on model dynamics. We advocate the use of this method in future to constrain high dimensional parameter spaces enabling more efficient, person-specific, model calibration.
Collapse
Affiliation(s)
- Lauric A. Ferrat
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, UK
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Marc Goodfellow
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, UK
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| | - John R. Terry
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, UK
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| |
Collapse
|
44
|
Gratton G. Brain reflections: A circuit‐based framework for understanding information processing and cognitive control. Psychophysiology 2017; 55. [DOI: 10.1111/psyp.13038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Gabriele Gratton
- Psychology Department and Beckman InstituteUniversity of Illinois at Urbana‐ChampaignUrbana Illinois USA
| |
Collapse
|
45
|
Alderson T, Kehoe E, Maguire L, Farrell D, Lawlor B, Kenny RA, Lyons D, Bokde ALW, Coyle D. Disrupted Thalamus White Matter Anatomy and Posterior Default Mode Network Effective Connectivity in Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2017; 9:370. [PMID: 29167639 PMCID: PMC5682321 DOI: 10.3389/fnagi.2017.00370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) and its prodromal state amnestic mild cognitive impairment (aMCI) are characterized by widespread abnormalities in inter-areal white matter fiber pathways and parallel disruption of default mode network (DMN) resting state functional and effective connectivity. In healthy subjects, DMN and task positive network interaction are modulated by the thalamus suggesting that abnormal task-based DMN deactivation in aMCI may be a consequence of impaired thalamo-cortical white matter circuitry. Thus, this article uses a multimodal approach to assess white matter integrity between thalamus and DMN components and associated effective connectivity in healthy controls (HCs) relative to aMCI patients. Twenty-six HC and 20 older adults with aMCI underwent structural, functional and diffusion MRI scanning using the high angular resolution diffusion-weighted acquisition protocol. The DMN of each subject was identified using independent component analysis (ICA) and resting state effective connectivity was calculated between thalamus and DMN nodes. White matter integrity changes between thalamus and DMN were investigated with constrained spherical deconvolution (CSD) tractography. Significant structural deficits in thalamic white matter projection fibers to posterior DMN components posterior cingulate cortex (PCC) and lateral inferior parietal lobe (IPL) were identified together with significantly reduced effective connectivity from left thalamus to left IPL. Crucially, impaired thalamo-cortical white matter circuitry correlated with memory performance. Disrupted thalamo-cortical structure was accompanied by significant reductions in IPL and PCC cortico-cortical effective connectivity. No structural deficits were found between DMN nodes. Abnormal posterior DMN activity may be driven by changes in thalamic white matter connectivity; a view supported by the close anatomical and functional association of thalamic nuclei effected by AD pathology and the posterior DMN nodes. We conclude that dysfunctional posterior DMN activity in aMCI is consistent with disrupted cortico-thalamo-cortical processing and thalamic-based dissemination of hippocampal disease agents to cortical hubs.
Collapse
Affiliation(s)
- Thomas Alderson
- Intelligent Systems Research Centre, University Ulster, Derry, United Kingdom
| | - Elizabeth Kehoe
- Trinity College Institute of Neuroscience and Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Liam Maguire
- Intelligent Systems Research Centre, University Ulster, Derry, United Kingdom
| | - Dervla Farrell
- Trinity College Institute of Neuroscience and Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Brian Lawlor
- Mercer's Institute for Research on Ageing, St. James's Hospital, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Rose A Kenny
- Mercer's Institute for Research on Ageing, St. James's Hospital, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | - Arun L W Bokde
- Trinity College Institute of Neuroscience and Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Damien Coyle
- Intelligent Systems Research Centre, University Ulster, Derry, United Kingdom
| |
Collapse
|
46
|
Brueggen K, Fiala C, Berger C, Ochmann S, Babiloni C, Teipel SJ. Early Changes in Alpha Band Power and DMN BOLD Activity in Alzheimer's Disease: A Simultaneous Resting State EEG-fMRI Study. Front Aging Neurosci 2017; 9:319. [PMID: 29056904 PMCID: PMC5635054 DOI: 10.3389/fnagi.2017.00319] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
Simultaneous resting state functional magnetic resonance imaging (rsfMRI)-resting state electroencephalography (rsEEG) studies in healthy adults showed robust positive associations of signal power in the alpha band with BOLD signal in the thalamus, and more heterogeneous associations in cortical default mode network (DMN) regions. Negative associations were found in occipital regions. In Alzheimer's disease (AD), rsfMRI studies revealed a disruption of the DMN, while rsEEG studies consistently reported a reduced power within the alpha band. The present study is the first to employ simultaneous rsfMRI-rsEEG in an AD sample, investigating the association of alpha band power and BOLD signal, compared to healthy controls (HC). We hypothesized to find reduced positive associations in DMN regions and reduced negative associations in occipital regions in the AD group. Simultaneous resting state fMRI-EEG was recorded in 14 patients with mild AD and 14 HC, matched for age and gender. Power within the EEG alpha band (8-12 Hz, 8-10 Hz, and 10-12 Hz) was computed from occipital electrodes and served as regressor in voxel-wise linear regression analyses, to assess the association with the BOLD signal. Compared to HC, the AD group showed significantly decreased positive associations between BOLD signal and occipital alpha band power in clusters in the superior, middle and inferior frontal cortex, inferior temporal lobe and thalamus (p < 0.01, uncorr., cluster size ≥ 50 voxels). This group effect was more pronounced in the upper alpha sub-band, compared to the lower alpha sub-band. Notably, we observed a high inter-individual heterogeneity. Negative associations were only reduced in the lower alpha range in the hippocampus, putamen and cerebellum. The present study gives first insights into the relationship of resting-state EEG and fMRI characteristics in an AD sample. The results suggest that positive associations between alpha band power and BOLD signal in numerous regions, including DMN regions, are diminished in AD.
Collapse
Affiliation(s)
| | - Carmen Fiala
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Christoph Berger
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and Adolescence, University of Rostock, Rostock, Germany
| | - Sina Ochmann
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Rome, Italy.,Department of Neuroscience, IRCCS San Raffaele Pisana, Rome, Italy
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases, Rostock, Germany.,Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
47
|
Sen-Bhattacharya B, Serrano-Gotarredona T, Balassa L, Bhattacharya A, Stokes AB, Rowley A, Sugiarto I, Furber S. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine. Front Neurosci 2017; 11:454. [PMID: 28848380 PMCID: PMC5552764 DOI: 10.3389/fnins.2017.00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/25/2017] [Indexed: 01/23/2023] Open
Abstract
We present a spiking neural network model of the thalamic Lateral Geniculate Nucleus (LGN) developed on SpiNNaker, which is a state-of-the-art digital neuromorphic hardware built with very-low-power ARM processors. The parallel, event-based data processing in SpiNNaker makes it viable for building massively parallel neuro-computational frameworks. The LGN model has 140 neurons representing a "basic building block" for larger modular architectures. The motivation of this work is to simulate biologically plausible LGN dynamics on SpiNNaker. Synaptic layout of the model is consistent with biology. The model response is validated with existing literature reporting entrainment in steady state visually evoked potentials (SSVEP)-brain oscillations corresponding to periodic visual stimuli recorded via electroencephalography (EEG). Periodic stimulus to the model is provided by: a synthetic spike-train with inter-spike-intervals in the range 10-50 Hz at a resolution of 1 Hz; and spike-train output from a state-of-the-art electronic retina subjected to a light emitting diode flashing at 10, 20, and 40 Hz, simulating real-world visual stimulus to the model. The resolution of simulation is 0.1 ms to ensure solution accuracy for the underlying differential equations defining Izhikevichs neuron model. Under this constraint, 1 s of model simulation time is executed in 10 s real time on SpiNNaker; this is because simulations on SpiNNaker work in real time for time-steps dt ⩾ 1 ms. The model output shows entrainment with both sets of input and contains harmonic components of the fundamental frequency. However, suppressing the feed-forward inhibition in the circuit produces subharmonics within the gamma band (>30 Hz) implying a reduced information transmission fidelity. These model predictions agree with recent lumped-parameter computational model-based predictions, using conventional computers. Scalability of the framework is demonstrated by a multi-node architecture consisting of three "nodes," where each node is the "basic building block" LGN model. This 420 neuron model is tested with synthetic periodic stimulus at 10 Hz to all the nodes. The model output is the average of the outputs from all nodes, and conforms to the above-mentioned predictions of each node. Power consumption for model simulation on SpiNNaker is ≪1 W.
Collapse
Affiliation(s)
- Basabdatta Sen-Bhattacharya
- Advanced Processor Technologies Group, School of Computer Science, University of ManchesterManchester, United Kingdom
| | | | | | | | - Alan B. Stokes
- Advanced Processor Technologies Group, School of Computer Science, University of ManchesterManchester, United Kingdom
| | - Andrew Rowley
- Advanced Processor Technologies Group, School of Computer Science, University of ManchesterManchester, United Kingdom
| | - Indar Sugiarto
- Advanced Processor Technologies Group, School of Computer Science, University of ManchesterManchester, United Kingdom
| | - Steve Furber
- Advanced Processor Technologies Group, School of Computer Science, University of ManchesterManchester, United Kingdom
| |
Collapse
|
48
|
Chehelcheraghi M, van Leeuwen C, Steur E, Nakatani C. A neural mass model of cross frequency coupling. PLoS One 2017; 12:e0173776. [PMID: 28380064 PMCID: PMC5381784 DOI: 10.1371/journal.pone.0173776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
Electrophysiological signals of cortical activity show a range of possible frequency and amplitude modulations, both within and across regions, collectively known as cross-frequency coupling. To investigate whether these modulations could be considered as manifestations of the same underlying mechanism, we developed a neural mass model. The model provides five out of the theoretically proposed six different coupling types. Within model components, slow and fast activity engage in phase-frequency coupling in conditions of low ambient noise level and with high noise level engage in phase-amplitude coupling. Between model components, these couplings can be coordinated via slow activity, giving rise to more complex modulations. The model, thus, provides a coherent account of cross-frequency coupling, both within and between components, with which regional and cross-regional frequency and amplitude modulations could be addressed.
Collapse
Affiliation(s)
| | - Cees van Leeuwen
- Brain and Cognition Research Unit, KU Leuven, Leuven, Belgium
- Center for Cognitive Science, TU Kaiserslautern, Kaiserslautern, Germany
| | - Erik Steur
- Brain and Cognition Research Unit, KU Leuven, Leuven, Belgium
| | - Chie Nakatani
- Brain and Cognition Research Unit, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
49
|
A Neural Mass Computational Framework to Study Synaptic Mechanisms Underlying Alpha and Theta Rhythms. COMPUTATIONAL NEUROLOGY AND PSYCHIATRY 2017. [DOI: 10.1007/978-3-319-49959-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
López-Sanz D, Bruña R, Garcés P, Camara C, Serrano N, Rodríguez-Rojo IC, Delgado ML, Montenegro M, López-Higes R, Yus M, Maestú F. Alpha band disruption in the AD-continuum starts in the Subjective Cognitive Decline stage: a MEG study. Sci Rep 2016; 6:37685. [PMID: 27883082 PMCID: PMC5121589 DOI: 10.1038/srep37685] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/01/2016] [Indexed: 11/09/2022] Open
Abstract
The consideration of Subjective Cognitive Decline (SCD) as a preclinical stage of AD remains still a matter of debate. Alpha band alterations represent one of the most significant changes in the electrophysiological profile of AD. In particular, AD patients exhibit reduced alpha relative power and frequency. We used alpha band activity measured with MEG to study whether SCD and MCI elders present these electrophysiological changes characteristic of AD, and to determine the evolution of the observed alterations across AD spectrum. The total sample consisted of 131 participants: 39 elders without SCD, 41 elders with SCD and 51 MCI patients. All of them underwent MEG and MRI scans and neuropsychological assessment. SCD and MCI patients exhibited a similar reduction in alpha band activity compared with the no SCD group. However, only MCI patients showed a slowing in their alpha peak frequency compared with both SCD and no SCD. These changes in alpha band were related to worse cognition. Our results suggest that AD-related alterations may start in the SCD stage, with a reduction in alpha relative power. It is later, in the MCI stage, where the slowing of the spectral profile takes place, giving rise to objective deficits in cognitive functioning.
Collapse
Affiliation(s)
- D López-Sanz
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid, Spain.,Department of Basic Psychology II, Complutense University of Madrid, Spain
| | - R Bruña
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid, Spain
| | - P Garcés
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid, Spain
| | - C Camara
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid, Spain
| | - N Serrano
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid, Spain.,Department of Basic Psychology II, Complutense University of Madrid, Spain
| | - I C Rodríguez-Rojo
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid, Spain.,Department of Basic Psychology II, Complutense University of Madrid, Spain
| | - M L Delgado
- Department of Basic Psychology II, Complutense University of Madrid, Spain
| | - M Montenegro
- Memory Decline Prevention Center Madrid Salud, Ayuntamiento de Madrid, Spain
| | - R López-Higes
- Department of Basic Psychology II, Complutense University of Madrid, Spain
| | - M Yus
- Radiology Department, San Carlos University Hospital, Madrid, Spain
| | - F Maestú
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid, Spain.,Department of Basic Psychology II, Complutense University of Madrid, Spain
| |
Collapse
|