1
|
Kuckuck S, van der Valk ES, Scheurink AJW, van der Voorn B, Iyer AM, Visser JA, Delhanty PJD, van den Berg SAA, van Rossum EFC. Glucocorticoids, stress and eating: The mediating role of appetite-regulating hormones. Obes Rev 2023; 24:e13539. [PMID: 36480471 PMCID: PMC10077914 DOI: 10.1111/obr.13539] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
Disrupted hormonal appetite signaling plays a crucial role in obesity as it may lead to uncontrolled reward-related eating. Such disturbances can be induced not only by weight gain itself but also by glucocorticoid overexposure, for example, due to chronic stress, disease, or medication use. However, the exact pathways are just starting to be understood. Here, we present a conceptual framework of how glucocorticoid excess may impair hormonal appetite signaling and, consequently, eating control in the context of obesity. The evidence we present suggests that counteracting glucocorticoid excess can lead to improvements in appetite signaling and may therefore pose a crucial target for obesity prevention and treatment. In turn, targeting hormonal appetite signals may not only improve weight management and eating behavior but may also decrease detrimental effects of glucocorticoid excess on cardio-metabolic outcomes and mood. We conclude that gaining a better understanding of the relationship between glucocorticoid excess and circulating appetite signals will contribute greatly to improvements in personalized obesity prevention and treatment.
Collapse
Affiliation(s)
- Susanne Kuckuck
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Eline S van der Valk
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Anton J W Scheurink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Bibian van der Voorn
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Anand M Iyer
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| | - Patric J D Delhanty
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| | - Sjoerd A A van den Berg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Department of Clinical Chemistry, Erasmus MC, Rotterdam, Netherlands
| | - Elisabeth F C van Rossum
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| |
Collapse
|
2
|
Juvenile social isolation affects the structure of the tanycyte-vascular interface in the hypophyseal portal system of the adult mice. Neurochem Int 2023; 162:105439. [PMID: 36356785 DOI: 10.1016/j.neuint.2022.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Accumulating evidence indicates that social stress in the juvenile period affects hypothalamic-pituitary-adrenal (HPA) axis activity in adulthood. The biological mechanisms underlying this phenomenon remain unclear. We aimed to elucidate them by comparing adult mice that had experienced social isolation from postnatal day 21-35 (juvenile social isolation (JSI) group) with those reared normally (control group). JSI group mice showed an attenuated HPA response to acute swim stress, while the control group had a normal response to this stress. Activity levels of the paraventricular nucleus in both groups were comparable, as shown by c-Fos immunoreactivities and mRNA expression of c-Fos, Corticotropin-releasing factor (CRF), Glucocorticoid receptor, and Mineralocorticoid receptor. We found greater vascular coverage by tanycytic endfeet in the median eminence of the JSI group mice than in that of the control group mice under basal condition and after acute swim stress. Moreover, CRF content after acute swim stress was greater in the median eminence of the JSI group mice than in that of the control group mice. The attenuated HPA response to acute swim stress was specific to JSI group mice, but not to control group mice. Although a direct link awaits further experiments, tanycyte morphological changes in the median eminence could be related to the HPA response.
Collapse
|
3
|
Bini J, Parikh L, Lacadie C, Hwang JJ, Shah S, Rosenberg SB, Seo D, Lam K, Hamza M, De Aguiar RB, Constable T, Sherwin RS, Sinha R, Jastreboff AM. Stress-level glucocorticoids increase fasting hunger and decrease cerebral blood flow in regions regulating eating. Neuroimage Clin 2022; 36:103202. [PMID: 36126514 PMCID: PMC9486604 DOI: 10.1016/j.nicl.2022.103202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
CONTEXT The neural regulation of appetite and energy homeostasis significantly overlaps with the neurobiology of stress. Frequent exposure to repeated acute stressors may cause increased allostatic load and subsequent dysregulation of the cortico-limbic striatal system leading to inefficient integration of postprandial homeostatic and hedonic signals. It is therefore important to understand the neural mechanisms by which stress generates alterations in appetite that may drive weight gain. OBJECTIVE To determine glucocorticoid effects on metabolic, neural and behavioral factors that may underlie the association between glucocorticoids, appetite and obesity risk. METHODS A randomized double-blind cross-over design of overnight infusion of hydrocortisone or saline followed by a fasting morning perfusion magnetic resonance imaging to assess regional cerebral blood flow (CBF) was completed. Visual Analog Scale (VAS) hunger, cortisol and metabolic hormones were also measured. RESULTS Hydrocortisone relative to saline significantly decreased whole brain voxel based CBF responses in the hypothalamus and related cortico-striatal-limbic regions. Hydrocortisone significantly increased hunger VAS pre-scan, insulin, glucose and leptin, but not other metabolic hormones versus saline CBF groups. Hydrocortisone related increases in hunger were predicted by less reduction of CBF (hydrocortisone minus saline) in the medial OFC, medial brainstem and thalamus, left primary sensory cortex and right superior and medial temporal gyrus. Hunger ratings were also positively associated with plasma insulin on hydrocortisone but not saline day. CONCLUSIONS Increased glucocorticoids at levels akin to those experienced during psychological stress, result in increased fasting hunger and decreased regional cerebral blood flow in a distinct brain network of prefrontal, emotional, reward, motivation, sensory and homeostatic regions that underlie control of food intake.
Collapse
Affiliation(s)
- Jason Bini
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Lisa Parikh
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Cheryl Lacadie
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Janice J Hwang
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Saloni Shah
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Samuel B Rosenberg
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Dongju Seo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Katherine Lam
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Muhammad Hamza
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Renata Belfort De Aguiar
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Robert S Sherwin
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.
| | - Ania M Jastreboff
- Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; Division of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
4
|
Werdermann M, Berger I, Scriba LD, Santambrogio A, Schlinkert P, Brendel H, Morawietz H, Schedl A, Peitzsch M, King AJF, Andoniadou CL, Bornstein SR, Steenblock C. Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state. Mol Metab 2020; 43:101112. [PMID: 33157254 PMCID: PMC7691554 DOI: 10.1016/j.molmet.2020.101112] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Metabolic diseases are an increasing problem in society with the brain-metabolic axis as a master regulator of the human body for sustaining homeostasis under metabolic stress. However, metabolic inflammation and disease will trigger sustained activation of the hypothalamic-pituitary-adrenal axis. In this study, we investigated the role of metabolic stress on progenitor cells in the hypothalamic-pituitary-adrenal axis. Methods In vitro, we applied insulin and leptin to murine progenitor cells isolated from the pituitary and adrenal cortex and examined the role of these hormones on proliferation and differentiation. In vivo, we investigated two different mouse models of metabolic disease, obesity in leptin-deficient ob/ob mice and obesity achieved via feeding with a high-fat diet. Results Insulin was shown to lead to enhanced proliferation and differentiation of both pituitary and adrenocortical progenitors. No alterations in the progenitors were noted in our chronic metabolic stress models. However, hyperactivation of the hypothalamic-pituitary-adrenal axis was observed and the expression of the appetite-regulating genes Npy and Agrp changed in both the hypothalamus and adrenal. Conclusions It is well-known that chronic stress and stress hormones such as glucocorticoids can induce metabolic changes including obesity and diabetes. In this article, we show for the first time that this might be based on an early sensitization of stem cells of the hypothalamic-pituitary-adrenal axis. Thus, pituitary and adrenal progenitor cells exposed to high levels of insulin are metabolically primed to a hyper-functional state leading to enhanced hormone production. Likewise, obese animals exhibit a hyperactive hypothalamic-pituitary-adrenal axis leading to adrenal hyperplasia. This might explain how stress in early life can increase the risk for developing metabolic syndrome in adulthood. Insulin enhances proliferation and differentiation of adrenocortical and pituitary progenitors. Obesity leads to hyperactivation and priming of the HPA axis. Obesity leads to overexpression of appetite-regulating genes in the hypothalamus. Obesity leads to a decrease in the expression of appetite-regulating genes in the adrenal gland.
Collapse
Affiliation(s)
- Martin Werdermann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Ilona Berger
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Laura D Scriba
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Alice Santambrogio
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany; Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Pia Schlinkert
- Department of Pharmacology and Toxicology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Andreas Schedl
- University of Côte d'Azur, INSERM, CNRS, iBV, Parc Valrose, Nice, 06108, France.
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Aileen J F King
- Department of Diabetes, School of Life Course Sciences, King's College London, Great Maze Pond, London, SE1 9RT, UK.
| | - Cynthia L Andoniadou
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany; Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany; Diabetes and Nutritional Sciences Division, King's College London, Guy's Campus, London, SE1 1UL, UK.
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| |
Collapse
|
5
|
Cella EC, Conte J, Stolte RCK, Lorenzon F, Gregorio T, Simas BB, Rafacho A, Lima FB. Gestational exposure to excessive levels of dexamethasone impairs maternal care and impacts on the offspring's survival in rats. Life Sci 2020; 264:118599. [PMID: 33127510 DOI: 10.1016/j.lfs.2020.118599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Administration of dexamethasone (DEX) during late gestation is a model to study growth restriction in rodents, but the pup's mortality index can be high, depending on DEX dosage, and little is known about the effects of DEX on maternal care (MC). Considering that an inadequate MC can also contribute to pup's mortality in this model, we evaluated the effects of DEX on dams' behavior and its consequences on offspring survival. We also investigated whether the cross-fostering of pups from dams treated or not with DEX could improve pup's survival. Wistar rats were treated with DEX (14th to 19th day of gestation -0.2 mg/kg, B.W, in the drinking water). Nest building, MC and responses in the elevated plus-maze, forced swimming and object recognition tests were evaluated. DEX reduced gestational weight gain and impaired neonatal development, reducing pup's survival to 0% by the 3rd postnatal day. DEX-treated dams reduced the expression of typical MC and increased anxiety-like behaviors. After cross-fostering, DEX-treated mothers behaved similarly to controls, indicating that a healthy offspring is crucial to induce adequate MC. Cross-fostering increased the survival index from zero to 25% in the DEX offspring. Postnatal development of the DEX offspring was comparable to controls after cross-fostering. We concluded that exposure to DEX during late gestation causes behavioral changes that compromise the maternal emotional state, disrupting the expression of MC. Although it does not seem to be the main cause of pup's mortality, our data indicate that an adequate MC improves pup's survival in this model.
Collapse
Affiliation(s)
- Elisa C Cella
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Júlia Conte
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Rafaela C K Stolte
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Flaviano Lorenzon
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Tamires Gregorio
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Bruna B Simas
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Alex Rafacho
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Fernanda B Lima
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil.
| |
Collapse
|
6
|
Pepple KL, Wilson L, Van Gelder RN, Kovaleva M, Ubah OC, Steven J, Barelle CJ, Porter A. Uveitis Therapy With Shark Variable Novel Antigen Receptor Domains Targeting Tumor Necrosis Factor Alpha or Inducible T-Cell Costimulatory Ligand. Transl Vis Sci Technol 2019; 8:11. [PMID: 31588375 PMCID: PMC6753974 DOI: 10.1167/tvst.8.5.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE We assess the efficacy of two next-generation biologic therapies in treating experimental autoimmune uveitis. METHODS Variable binding domains from shark immunoglobulin novel antigen receptors (VNARs) were fused with a mouse IgG2a constant domain (Fc) to generate VNAR-Fc molecules with binding specificity to tumor necrosis factor alpha (TNFα) or inducible T-cell costimulatory ligand (ICOSL). Treatment with VNAR-Fc fusion proteins was compared to treatment with dexamethasone or vehicle in the Lewis rat model of experimental autoimmune uveitis (EAU). Inflammation control was determined by comparing OCT clinical and histologic scores, and aqueous humor protein concentration. The concentration of 27 inflammatory cytokines in the aqueous humor was measured using a multiplex enzyme-linked immunosorbent assay platform. RESULTS Administration of S17-Fc significantly decreased clinical, histologic, and aqueous protein levels when compared to vehicle treatment. Inflammation scores and aqueous protein levels in A5-Fc-treated animals were decreased compared to vehicle treatment, but not significantly. The concentration of vascular endothelial growth factor (VEGF), regulated on activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein 1 alpha (MIP-1α), interleukin (IL)-1β, LPS-induced CXC chemokine (LIX), monocyte chemoattractant protein-1 (MCP-1), and interferon (IFN)-γ were significantly decreased in the eyes of animals treated with dexamethasone. VNAR treatment demonstrated a trend towards decreased cytokine concentrations, but only VEGF and RANTES were significantly decreased by S17-Fc. CONCLUSIONS Treatment with the anti-TNFα VNAR S17-Fc ameliorates EAU as effectively as treatment with corticosteroids. TRANSLATIONAL RELEVANCE VNAR-Fc molecules are a next-generation therapeutic biologic that overcome the limitations of classical biologic monoclonal antibodies, such as complex structure, large size, and limited tissue penetration. This is a novel drug modality that could result in the development of new therapy options for patients with noninfectious uveitis.
Collapse
Affiliation(s)
- Kathryn L. Pepple
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Leslie Wilson
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Russell N. Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Andrew Porter
- Elasmogen Ltd, Aberdeen, UK
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, UK
| |
Collapse
|
7
|
Berg Schmidt J, Johanneson Bertolt C, Sjödin A, Ackermann F, Vibeke Schmedes A, Lynge Thomsen H, Marie Juncher A, Hjorth MF. Does stress affect food preferences? - a randomized controlled trial investigating the effect of examination stress on measures of food preferences and obesogenic behavior. Stress 2018; 21:556-563. [PMID: 30388041 DOI: 10.1080/10253890.2018.1494149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Lay summary: Human and animal studies have shown that chronic stress interfers with both homeostatic and hedonic appetite control. Here, we investigated the effect of chronic stress on food preferences and eating behavior in real life settings. In random order, fifty healthy students participated in two test periods of 4-5 days; a stressful period (one week prior to an examination) and a nonstressful period (four weeks after an examination). Food preferences were assessed by counting money spent on highly rewarding foods bought with gift certificates, and changes in eating behavior was further assessed by the Three Factor Eating Questionnaire. Cohen's Perceived Stress Scale, the Recovery-Stress Questionnaire, heart rate variability and Cortisol awakening response were used to evaluate the level of stress. Data on glycemic control, blood pressure, physical activity and sleep were also collected. Forty-four subjects had complete data on the primary outcome. Self-perceived stress was higher and recovery lower in the exam period (p ≤ .001). Subjects were less cognitively restrained (p = .037), less moderately-to-vigorously and lightly physically active (p ≤ .037) and were more sedentary (p = .009) in the examination period. However, no difference was found in money spent on high reward foods, disinhibition or hunger between the examination and control condition. Furthermore, no differences in the physiological markers of stress, glycemic measures and sleep were found. Data does not convincingly support the hypothesis that perceived stress increases the preference for highly palatable foods or leads to adverse effects on different markers of health. However, the stressor might have been to mild to induce obesogenic behaviors.
Collapse
Affiliation(s)
- Julie Berg Schmidt
- a Department of Nutrition, Exercise and Sports, faculty of Science , University of Copenhagen , Denmark
| | | | - Anders Sjödin
- a Department of Nutrition, Exercise and Sports, faculty of Science , University of Copenhagen , Denmark
| | - Frederik Ackermann
- a Department of Nutrition, Exercise and Sports, faculty of Science , University of Copenhagen , Denmark
| | - Anne Vibeke Schmedes
- b Department of Clinical Immunology and Biochemistry , Lillebaelt Hospital , Vejle , Denmark
| | - Henriette Lynge Thomsen
- a Department of Nutrition, Exercise and Sports, faculty of Science , University of Copenhagen , Denmark
| | - Anne Marie Juncher
- a Department of Nutrition, Exercise and Sports, faculty of Science , University of Copenhagen , Denmark
| | - Mads F Hjorth
- a Department of Nutrition, Exercise and Sports, faculty of Science , University of Copenhagen , Denmark
| |
Collapse
|
8
|
Yam KY, Ruigrok SR, Ziko I, De Luca SN, Lucassen PJ, Spencer SJ, Korosi A. Ghrelin and hypothalamic NPY/AgRP expression in mice are affected by chronic early-life stress exposure in a sex-specific manner. Psychoneuroendocrinology 2017; 86:73-77. [PMID: 28917185 DOI: 10.1016/j.psyneuen.2017.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/26/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
Early-life stress (ES) is a risk factor for metabolic disorders (e.g. obesity) with a notoriously higher prevalence in women compared to men. However, mechanisms underlying these effects remain elusive. The development of the hypothalamic feeding and metabolic regulatory circuits occurs mostly in the early sensitive postnatal phase in rodents and is tightly regulated by the metabolic hormones leptin and ghrelin. We have previously demonstrated that chronic ES reduces circulating leptin and alters adipose tissue metabolism early and later in life similarly in both sexes. However, it is unknown whether chronic ES might also affect developmental ghrelin and insulin levels, and if it induces changes in hypothalamic feeding circuits, possibly in a sex-dependent manner. We here show that chronic ES, in the form of exposure to limited nesting and bedding material from postnatal day (P)2 to P9 in mice, affects ghrelin levels differently, depending on the form of ghrelin (acylated vs desacylated), on age (P9 vs P14) and on sex, while insulin levels were similarly increased in both sexes after ES at P9. Even though ghrelin levels were more strongly affected in ES-exposed females, hypothalamic neuropeptide Y (NPY) and agouti-related peptide (AgRP) fiber density at P14 were similarly altered in both sexes by ES. In the paraventricular nucleus of the hypothalamus, both NPY and AgRP fiber density were increased, while in the arcuate nucleus of the hypothalamus, NPY was increased and AgRP unaltered. Additionally, the hypothalamic mRNA expression of ghrelin's receptor (i.e. growth hormone secretagogue receptor) was not affected by ES. Taken together, the specific alterations found in these important regulatory circuits after ES might contribute to an altered energy balance and feeding behavior in adulthood and thereby to an increased vulnerability to develop metabolic disorders.
Collapse
Affiliation(s)
- K Y Yam
- Swammerdam Institute for Life Sciences, Centre for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - S R Ruigrok
- Swammerdam Institute for Life Sciences, Centre for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - I Ziko
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - S N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - P J Lucassen
- Swammerdam Institute for Life Sciences, Centre for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - S J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - A Korosi
- Swammerdam Institute for Life Sciences, Centre for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
García-Luna C, Soberanes-Chávez P, de Gortari P. Prepuberal light phase feeding induces neuroendocrine alterations in adult rats. J Endocrinol 2017; 232:15-28. [PMID: 27729464 DOI: 10.1530/joe-16-0402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/11/2016] [Indexed: 01/28/2023]
Abstract
Feeding patterns are important factors in obesity evolvement. Time-restricted feeding schedules (tRF) during resting phase change energy homeostasis regulation, disrupting the circadian release of metabolism-regulating hormones, such as leptin, insulin and corticosterone and promoting body weight gain. Thyroid (HPT) and adrenal (HPA) axes exhibit a circadian regulation and are involved in energy expenditure, thus studying their parameters in tRF paradigms will elucidate their role in energy homeostasis impairments under such conditions. As tRF in young animals is poorly studied, we subjected prepuberal rats to a tRF either in light (LPF) or in darkness phase (DPF) and analyzed HPT and HPA response when they reach adulthood, as well as their arcuate (ARC) and paraventricular (PVN) hypothalamic nuclei neurons' sensitivity to leptin in subsets of 10-week-old animals after fasting and with i.p. leptin treatment. LPF group showed high body weight and food intake, along with increased visceral fat pads, corticosterone, leptin and insulin serum levels, whereas circulating T4 decreased. HPA axis hyperactivity was demonstrated by their high PVN Crf mRNA expression; the blunted activity of HPT axis, by the decreased hypophysiotropic PVN Trh mRNA expression. Trh impaired expression to the positive energy balance in LPF, accounted for their ARC leptin resistance, evinced by an increased Npy and Socs3 mRNA expression. We concluded that the hyperphagia of prepuberal LPF animals could account for the HPA axis hyperactivity and for the HPT blocked function due to the altered ARC leptin signaling and impaired NPY regulation on PVN TRH neurons.
Collapse
Affiliation(s)
- C García-Luna
- Department of Neurosciences ResearchMolecular Neurophysiology Laboratory, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - P Soberanes-Chávez
- Department of Neurosciences ResearchMolecular Neurophysiology Laboratory, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - P de Gortari
- Department of Neurosciences ResearchMolecular Neurophysiology Laboratory, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
10
|
Early Life Stress Increases Metabolic Risk, HPA Axis Reactivity, and Depressive-Like Behavior When Combined with Postweaning Social Isolation in Rats. PLoS One 2016; 11:e0162665. [PMID: 27611197 PMCID: PMC5017766 DOI: 10.1371/journal.pone.0162665] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022] Open
Abstract
Early-life stress is associated with depression and metabolic abnormalities that increase the risk of cardiovascular disease and diabetes. Such associations could be due to increased glucocorticoid levels. Periodic maternal separation in the neonate and rearing in social isolation are potent stressors that increase hypothalamus-pituitary-adrenal axis activity. Moreover, social isolation promotes feed intake and body weight gain in rats subjected to periodic maternal separation; however, its effects on metabolic risks have not been described. In the present study, we evaluated whether periodic maternal separation, social isolation rearing, and a combination of these two stressors (periodic maternal separation + social isolation rearing) impair glucose homeostasis and its relation to the hypothalamus-pituitary-adrenal axis and depressive-like behavior. Periodic maternal separation increased basal corticosterone levels, induced a passive coping strategy in the forced swimming test, and was associated with a mild (24%) increase in fasting glucose, insulin resistance, and dyslipidemia. Rearing in social isolation increased stress reactivity in comparison to both controls and in combination with periodic maternal separation, without affecting the coping strategy associated with the forced swimming test. However, social isolation also increased body weight gain, fasting glucose (120%), and insulin levels in rats subjected to periodic maternal separation. Correlation analyses showed that stress-induced effects on coping strategy on the forced swimming test (but not on metabolic risk markers) are associated with basal corticosterone levels. These findings suggest that maternal separation and postweaning social isolation affect stress and metabolic vulnerability differentially and that early-life stress-related effects on metabolism are not directly dependent on glucocorticoid levels. In conclusion, our study supports the cumulative stress hypothesis, which suggests that metabolic risk markers arise when vulnerable individuals are exposed to social challenges later in life.
Collapse
|
11
|
Wagner L, Wolf R, Zeitschel U, Rossner S, Petersén Å, Leavitt BR, Kästner F, Rothermundt M, Gärtner UT, Gündel D, Schlenzig D, Frerker N, Schade J, Manhart S, Rahfeld JU, Demuth HU, von Hörsten S. Proteolytic degradation of neuropeptide Y (NPY) from head to toe: Identification of novel NPY-cleaving peptidases and potential drug interactions in CNS and Periphery. J Neurochem 2015; 135:1019-37. [PMID: 26442809 DOI: 10.1111/jnc.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 01/24/2023]
Abstract
The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes, aminopeptidases P, secreted meprin-A (Mep-A), and cathepsin D (CTSD) rapidly hydrolyze NPY, depending on the cell type and tissue under study. Novel degradation of NPY by cathepsins B, D, L, G, S, and tissue kallikrein could also be identified. The expression of DP4, CTSD, and Mep-A at the median eminence indicates that the bioactivity of NPY is regulated by peptidases at the interphase between the periphery and the CNS. Detailed ex vivo studies on human sera and CSF samples recognized CTSD as the major NPY-cleaving enzyme in the CSF, whereas an additional C-terminal truncation by angiotensin-converting enzyme could be detected in serum. The latter finding hints to potential drug interaction between antidiabetic DP4 inhibitors and anti-hypertensive angiotensin-converting enzyme inhibitors, while it ablates suspected hypertensive side effects of only antidiabetic DP4-inhibitors application. The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes, aminopeptidases P, secreted meprin-A (Mep-A), and cathepsin D (CTSD) rapidly hydrolyze NPY, depending on the cell type and tissue under study. Novel degradation of NPY by cathepsins B, D, L, G, S, and tissue kallikrein could also be identified. The expression of DP4, CTSD, and Mep-A at the median eminence indicates that the bioactivity of NPY is regulated by peptidases at the interphase between the periphery and the CNS. Detailed ex vivo studies on human sera and CSF samples recognized CTSD as the major NPY-cleaving enzyme in the CSF, whereas an additional C-terminal truncation by angiotensin-converting enzyme could be detected in serum. The latter finding hints to potential drug interaction between antidiabetic DP4 inhibitors and anti-hypertensive angiotensin-converting enzyme inhibitors, while it ablates suspected hypertensive side effects of only antidiabetic DP4-inhibitors application.
Collapse
Affiliation(s)
- Leona Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V., Stuttgart, Germany.,Probiodrug AG, Halle, Germany.,Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Ulrike Zeitschel
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Steffen Rossner
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Lund University, Lund, Sweden
| | - Blair R Leavitt
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia and Children's and Women's Hospital, Vancouver, BC, Canada
| | - Florian Kästner
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Matthias Rothermundt
- Department of Psychiatry, University of Muenster, Muenster, Germany.,St. Rochus-Hospital Telgte, Telgte, Germany
| | | | - Daniel Gündel
- Julius Bernstein Institute for Physiology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Dagmar Schlenzig
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Nadine Frerker
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jutta Schade
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Jens-Ulrich Rahfeld
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Baldock PA, Lin S, Zhang L, Karl T, Shi Y, Driessler F, Zengin A, Hörmer B, Lee NJ, Wong IPL, Lin EJD, Enriquez RF, Stehrer B, During MJ, Yulyaningsih E, Zolotukhin S, Ruohonen ST, Savontaus E, Sainsbury A, Herzog H. Neuropeptide y attenuates stress-induced bone loss through suppression of noradrenaline circuits. J Bone Miner Res 2014; 29:2238-49. [PMID: 24535841 DOI: 10.1002/jbmr.2205] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 12/23/2022]
Abstract
Chronic stress and depression have adverse consequences on many organ systems, including the skeleton, but the mechanisms underlying stress-induced bone loss remain unclear. Here we demonstrate that neuropeptide Y (NPY), centrally and peripherally, plays a critical role in protecting against stress-induced bone loss. Mice lacking the anxiolytic factor NPY exhibit more anxious behavior and elevated corticosterone levels. Additionally, following a 6-week restraint, or cold-stress protocol, Npy-null mice exhibit three-fold greater bone loss compared to wild-type mice, owing to suppression of osteoblast activity. This stress-protective NPY pathway acts specifically through Y2 receptors. Centrally, Y2 receptors suppress corticotropin-releasing factor expression and inhibit activation of noradrenergic neurons in the paraventricular nucleus. In the periphery, they act to control noradrenaline release from sympathetic neurons. Specific deletion of arcuate Y2 receptors recapitulates the Npy-null stress response, coincident with elevated serum noradrenaline. Importantly, specific reintroduction of NPY solely in noradrenergic neurons of otherwise Npy-null mice blocks the increase in circulating noradrenaline and the stress-induced bone loss. Thus, NPY protects against excessive stress-induced bone loss, through Y2 receptor-mediated modulation of central and peripheral noradrenergic neurons.
Collapse
Affiliation(s)
- P A Baldock
- Neurological Disease Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia; Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sominsky L, Spencer SJ. Eating behavior and stress: a pathway to obesity. Front Psychol 2014; 5:434. [PMID: 24860541 PMCID: PMC4026680 DOI: 10.3389/fpsyg.2014.00434] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/24/2014] [Indexed: 11/13/2022] Open
Abstract
Stress causes or contributes to a huge variety of diseases and disorders. Recent evidence suggests obesity and other eating-related disorders may be among these. Immediately after a stressful event is experienced, there is a corticotropin-releasing-hormone (CRH)-mediated suppression of food intake. This diverts the body’s resources away from the less pressing need to find and consume food, prioritizing fight, flight, or withdrawal behaviors so the stressful event can be dealt with. In the hours following this, however, there is a glucocorticoid-mediated stimulation of hunger and eating behavior. In the case of an acute stress that requires a physical response, such as a predator-prey interaction, this hypothalamic-pituitary-adrenal (HPA) axis modulation of food intake allows the stressful event to be dealt with and the energy used to be replaced afterward. In the case of ongoing psychological stress, however, chronically elevated glucocorticoids can lead to chronically stimulated eating behavior and excessive weight gain. In particular, stress can enhance the propensity to eat high calorie “palatable” food via its interaction with central reward pathways. Activation of this circuitry can also interact with the HPA axis to suppress its further activation, meaning not only can stress encourage eating behavior, but eating can suppress the HPA axis and the feeling of stress. In this review we will explore the theme of eating behavior and stress and how these can modulate one another. We will address the interactions between the HPA axis and eating, introducing a potential integrative role for the orexigenic hormone, ghrelin. We will also examine early life and epigenetic modulation of the HPA axis and how this can influence eating behavior. Finally, we will investigate the clinical implications of changes to HPA axis function and how this may be contributing to obesity in our society.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
14
|
Cahill S, Tuplin E, Holahan MR. Circannual changes in stress and feeding hormones and their effect on food-seeking behaviors. Front Neurosci 2013; 7:140. [PMID: 23966906 PMCID: PMC3735984 DOI: 10.3389/fnins.2013.00140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/19/2013] [Indexed: 12/18/2022] Open
Abstract
Seasonal fluctuations in food availability show a tight association with seasonal variations in body weight and food intake. Seasonal variations in food intake, energy storage, and expenditure appear to be a widespread phenomenon suggesting they may have evolved in anticipation for changing environmental demands. These cycles appear to be driven by changes in external daylength acting on neuroendocrine pathways. A number of neuroendocrine pathways, two of which are the endocrine mechanisms underlying feeding and stress, appear to show seasonal changes in both their circulating levels and reactivity. As such, variation in the level or reactivity to these hormones may be crucial factors in the control of seasonal variations in food-seeking behaviors. The present review examines the relationship between feeding behavior and seasonal changes in circulating hormones. We hypothesize that seasonal changes in circulating levels of glucocorticoids and the feeding-related hormones ghrelin and leptin contribute to seasonal fluctuations in feeding-related behaviors. This review will focus on the seasonal circulating levels of these hormones as well as sensitivity to these hormones in the modulation of food-seeking behaviors.
Collapse
Affiliation(s)
- Shaina Cahill
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | | | | |
Collapse
|
15
|
Liu XY, Shi JH, DU WH, Fan YP, Hu XL, Zhang CC, Xu HB, Miao YJ, Zhou HY, Xiang P, Chen FL. Glucocorticoids decrease body weight and food intake and inhibit appetite regulatory peptide expression in the hypothalamus of rats. Exp Ther Med 2011; 2:977-984. [PMID: 22977608 DOI: 10.3892/etm.2011.292] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/09/2011] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of glucocorticoids (GCs) on appetite and gene expression of the hypothalamic appetite regulatory peptides, neuropeptide Y (NPY), agouti-related protein (AGRP) and cocaine and amphetamine-regulated transcript (CART), in non-obese and obese rats. Both non-obese and obese rats were randomly assigned to three groups: normal saline, low- and high-dose GC groups (NSG, LDG and HDG, respectively), which received an intraperitoneal injection with normal saline (0.2 ml/100 g) or hydrocortisone sodium succinate at 5 and 15 mg/kg, respectively, for 20 days. The expression levels of NPY, AGRP and CART mRNA in the hypothalamus were measured by real-time quantitative PCR. Non-obese and obese rats were found to undergo weight loss after GC injection, and a higher degree of weight loss was observed in the HDG rats. The average and cumulative food intakes in the obese and non-obese rats injected with high-dose GC were lower compared to that in the NSG (p<0.05). mRNA expression levels of the orexigenic neuropeptides, NPY and AGRP, and the anorexigenic neuropeptide, CART, were significantly lower in the HDG than levels in the NSG for both the obese and non-obese rats (p<0.05). GC treatment decreased appetite and body weight, induced apparent glucolipid metabolic disturbances and hyperinsulinemia, while down-regulated mRNA expression levels of the orexigenic neuropeptides, NPY and AGRP, and anorexigenic neuropeptide, CART, in the hypothalamus in the rats. The mechanism which induces this neuropeptide expression requires further study.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Department of Endocrinology, No. 3 People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 201900
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Obesity is fast becoming the scourge of our time. It is one of the biggest causes of death and disease in the industrialized world, and affects as many as 32% of adults and 17% of children in the USA, considered one of the world's fattest nations. It can also cost countries billions of dollars per annum in direct and indirect care, latest estimates putting the USA bill for obesity-related costs at $147 billion in 2008. It is becoming clear that the pathophysiology of obesity is vastly more complicated than the simple equation of energy in minus energy out. A combination of genetics, sex, perinatal environment and life-style factors can influence diet and energy metabolism. In this regard, psychological stress can have significant long-term impact upon the propensity to gain and maintain weight. In this review, we will discuss the ability of psychological stress and ultimately glucocorticoids (GCs) to alter appetite regulation and metabolism. We will specifically focus on (i) GC regulation of appetite and adiposity, (ii) the apparent sexual dimorphism in stress effects on obesity and (iii) the ability of early life stress to programme obesity in the long term.
Collapse
Affiliation(s)
- Sarah J Spencer
- Department of Physiology, Faculty of Medicine, Monash UniversityMelbourne, Vic., Australia.
| | | |
Collapse
|
17
|
Zhang L, Lee NJ, Nguyen AD, Enriquez RF, Riepler SJ, Stehrer B, Yulyaningsih E, Lin S, Shi YC, Baldock PA, Herzog H, Sainsbury A. Additive actions of the cannabinoid and neuropeptide Y systems on adiposity and lipid oxidation. Diabetes Obes Metab 2010; 12:591-603. [PMID: 20590734 DOI: 10.1111/j.1463-1326.2009.01193.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Energy homeostasis is regulated by a complex interaction of molecules and pathways, and new antiobesity treatments are likely to require multiple pharmacological targeting of anorexigenic or orexigenic pathways to achieve effective loss of excess body weight and adiposity. Cannabinoids, acting via the cannabinoid-1 (CB1) receptor, and neuropeptide Y (NPY) are important modulators of feeding behaviour, energy metabolism and body composition. We investigated the interaction of CB1 and NPY in the regulation of energy homeostasis, hypothesizing that dual blockade of CB1 and NPY signalling will induce greater weight and/or fat loss than that induced by single blockade of either system alone. METHODS We studied the effects of the CB1 antagonist Rimonabant on food intake, body weight, body composition, energy metabolism and bone physiology in wild-type (WT) and NPY knockout (NPY(-/-)) mice. Rimonabant was administered orally at 10 mg/kg body weight twice per day for 3 weeks. Oral Rimonabant was delivered voluntarily to mice via a novel method enabling studies to be carried out in the absence of gavage-induced stress. RESULTS Mice with dual blockade of CB1 and NPY signalling (Rimonabant-treated NPY(-/-) mice) exhibited greater reductions in body weight and adiposity than mice with single blockade of either system alone (Rimonabant-treated WT or vehicle-treated NPY(-/-) mice). These changes occurred without loss of lean tissue mass or bone mass. Furthermore, Rimonabant-treated NPY(-/-) mice showed a lower respiratory exchange ratio than that seen in Rimonabant-treated WT or vehicle-treated NPY(-/-) mice, suggesting that this additive effect of dual blockade of CB1 and NPY involves promotion of lipid oxidation. On the other hand, energy expenditure and physical activity were comparable amongst all treatment groups. Interestingly, Rimonabant similarly and transiently reduced spontaneous and fasting-induced food intake in WT and NPY(-/-) mice in the first hour after administration only, suggesting independent regulation of feeding by CB1 and NPY signalling. In contrast, Rimonabant increased serum corticosterone levels in WT mice, but this effect was not seen in NPY(-/-) mice, indicating that NPY signalling may be required for effects of CB1 on the hypothalamo-pituitary-adrenal axis. CONCLUSIONS Dual blockade of CB1 and NPY signalling leads to additive reductions in body weight and adiposity without concomitant loss of lean body mass or bone mass. An additive increase in lipid oxidation in dual CB1 and NPY blockade may contribute to the effect on adiposity. These findings open new avenues for more effective treatment of obesity via dual pharmacological manipulations of the CB1 and NPY systems.
Collapse
Affiliation(s)
- L Zhang
- Neuroscience Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fukumoto K, Morita T, Mayanagi T, Tanokashira D, Yoshida T, Sakai A, Sobue K. Detrimental effects of glucocorticoids on neuronal migration during brain development. Mol Psychiatry 2009; 14:1119-31. [PMID: 19564873 DOI: 10.1038/mp.2009.60] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucocorticoids, the most downstream effectors of the hypothalamus-pituitary-adrenal axis, are one of main mediators of the stress reaction. Indeed, exposure to high levels of stress-triggered glucocorticoids is detrimental to brain development associated with abnormal behaviors in experimental animals and the risk of psychiatric disorders in humans. Despite the wealth of this knowledge, the cellular and molecular mechanisms underlying the detrimental effects of glucocorticoids on brain development remain unclear. Here, we show that excess glucocorticoids retard the radial migration of post-mitotic neurons during the development of the cerebral cortex, and identify an actin regulatory protein, caldesmon, as the glucocorticoids' main target. The upregulation of caldesmon expression is mediated by glucocorticoid receptor-dependent transcription of the CALD1 gene encoding caldesmon. This upregulated caldesmon negatively controls the function of myosin II, leading to changes in cell shape and migration. The depletion of caldesmon in vivo impairs radial migration. The overexpression of caldesmon also causes delayed radial migration during cortical development, mimicking the excessive glucocorticoid-induced retardation of radial migration. We conclude that an appropriate range of caldesmon expression is critical for radial migration, and that its overexpression induced by excess glucocorticoid retards radial migration during cortical development. Thus, this study provides a novel insight into the underlying mechanism of glucocorticoid-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- K Fukumoto
- Department of Neuroscience (D13), Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|