1
|
Zhang B, Hou M, Huang J, Liu Y, Yang C, Lin J. Pax6 regulates neuronal migration and cell proliferation via interacting with Wnt3a during cortical development. Sci Rep 2025; 15:4726. [PMID: 39922861 PMCID: PMC11807113 DOI: 10.1038/s41598-025-88662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
The paired box 6 (Pax6) gene encodes a highly conserved transcription factor, involved in the development of eyes, brain, and endocrine glands. Homozygous loss of Pax6 resulted in neonatal death in mice, plus loss of eyes and malformation of cerebral cortex. In patients with heterozygous Pax6 mutations, a reduction in thickness of the frontoparietal cortex was detected, which was also observed in small eye mice. In this study, we found that Pax6 overexpression increased the cortical thickness, especially in the intermediate zone of the cortex, which conflicts with the report of Manuel et al. Pax6 overexpression appears to detain neurons in the intermediate zone while promoting cell proliferation. It is worth noting that the impact of Pax6 overexpression on cortical thickness and neuronal migration was temporal, explaining the differences with other reports. We postulated that the alteration of Pax6 isoform ratio by autoregulation might be responsible for this. JASPAR analysis together with the results of qPCR, Western blot, CUT&Tag, and rescue experiments revealed that Pax6 regulates neuronal migration and cell proliferation by indirectly mediating Wnt3a expression. Therefore, we propose that Pax6 participates in corticogenesis via interaction with Wnt3a in regulating neuronal migration and cell proliferation.
Collapse
Affiliation(s)
- Bichao Zhang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Meihua Hou
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jiayan Huang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yunfei Liu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ciqing Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juntang Lin
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China.
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Chen Q, Yuan C, Jiang S, Heng BC, Zou T, Shen Z, Wang P, Zhang C. Small molecules efficiently reprogram apical papilla stem cells into neuron-like cells. Exp Ther Med 2021; 21:546. [PMID: 33850518 DOI: 10.3892/etm.2021.9978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Stem cell-based therapy may provide a novel approach for neural tissue regeneration. A small molecule cocktail-based culture protocol was previously shown to enhance neurogenic differentiation of stem cells from dental tissues. The present study aimed to investigate the early phase of small molecule-induced neurogenic differentiation of stem cells from the apical papilla (SCAP). SCAP were cultured in neural-induction medium or neural-induction medium with small molecules (NIMS-SCAP) and examined for their cell morphologies. Expression levels of neural progenitor cell-related markers, including Nestin, paired-box gene 6 (Pax6) and Sry-related HMG box 2 (Sox2), were examined using western blotting and immunocytofluorescence. Expression of differentiated neuron-related markers, including neurofilament protein (NFM), neuron-specific nuclear protein (NeuN) and microtubule-associated protein (MAP)-2, were also examined using western blotting, while NFM and MAP2 gene expression and cell proliferation were assessed using reverse transcription-quantitative (RT-q)PCR and Cell Counting Kit (CCK)-8 assays, respectively. SCAP morphology was affected by small molecules after as little as 30 min. Specifically, Nestin, Pax6 and Sox2 expression detected using western blotting was increased by day 3 but then decreased over the course of 7 days with neural induction, while immunocytofluorescence revealed expression of all three markers in NIMS-SCAP. The protein levels of NFM, NeuN and MAP2 on day 7 were significantly upregulated in NIMS-SCAP, as detected using western blotting, while NFM and MAP2 gene expression levels detected using RT-qPCR were significantly increased on days 5 and 7. Proliferation of NIMS-SCAP ceased after 5 days. Electrophysiological analysis showed that only SCAP cultured in NIMS had the functional activity of neuronal cells. Thus, small molecules reprogrammed SCAP into neural progenitor cells within the first 3 days, followed by further differentiation into neuron-like cells.
Collapse
Affiliation(s)
- Qixin Chen
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, SAR, P.R. China.,Department of Implant Dentistry, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Changyong Yuan
- Department of Implant Dentistry, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Shan Jiang
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Ting Zou
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Zhongshan Shen
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Penglai Wang
- Department of Implant Dentistry, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| |
Collapse
|
3
|
Tuoc T, Dere E, Radyushkin K, Pham L, Nguyen H, Tonchev AB, Sun G, Ronnenberg A, Shi Y, Staiger JF, Ehrenreich H, Stoykova A. Ablation of BAF170 in Developing and Postnatal Dentate Gyrus Affects Neural Stem Cell Proliferation, Differentiation, and Learning. Mol Neurobiol 2016; 54:4618-4635. [PMID: 27392482 PMCID: PMC5509785 DOI: 10.1007/s12035-016-9948-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/03/2016] [Indexed: 10/27/2022]
Abstract
The BAF chromatin remodeling complex plays an essential role in brain development. However its function in postnatal neurogenesis in hippocampus is still unknown. Here, we show that in postnatal dentate gyrus (DG), the BAF170 subunit of the complex is expressed in radial glial-like (RGL) progenitors and in cell types involved in subsequent steps of adult neurogenesis including mature astrocytes. Conditional deletion of BAF170 during cortical late neurogenesis as well as during adult brain neurogenesis depletes the pool of RGL cells in DG, and promotes terminal astrocyte differentiation. These derangements are accompanied by distinct behavioral deficits, as reflected by an impaired accuracy of place responding in the Morris water maze test, during both hidden platform as well as reversal learning. Inducible deletion of BAF170 in DG during adult brain neurogenesis resulted in mild spatial learning deficits, having a more pronounced effect on spatial learning during the reversal test. These findings demonstrate involvement of BAF170-dependent chromatin remodeling in hippocampal neurogenesis and cognition and suggest a specific role of adult neurogenesis in DG in adaptive behavior.
Collapse
Affiliation(s)
- Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August University Göttingen, Göttingen, Germany. .,Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany. .,DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| | - Ekrem Dere
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany. .,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Konstantin Radyushkin
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Linh Pham
- Institute of Neuroanatomy, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Huong Nguyen
- Institute of Neuroanatomy, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Anton B Tonchev
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Anatomy, Histology and Embryology, Medical University of Varna, Varna, Bulgaria
| | - Guoqiang Sun
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Cancer Center, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Anja Ronnenberg
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Cancer Center, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Jochen F Staiger
- Institute of Neuroanatomy, University Medical Center, Georg-August University Göttingen, Göttingen, Germany.,DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Hannelore Ehrenreich
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anastassia Stoykova
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany. .,DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
4
|
Yogarajah M, Matarin M, Vollmar C, Thompson PJ, Duncan JS, Symms M, Moore AT, Liu J, Thom M, van Heyningen V, Sisodiya SM. PAX6, brain structure and function in human adults: advanced MRI in aniridia. Ann Clin Transl Neurol 2016; 3:314-30. [PMID: 27231702 PMCID: PMC4863745 DOI: 10.1002/acn3.297] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 01/13/2023] Open
Abstract
Objective PAX6 is a pleiotropic transcription factor essential for the development of several tissues including the eyes, central nervous system, and some endocrine glands. Recently it has also been shown to be important for the maintenance and functioning of corneal and pancreatic tissues in adults. We hypothesized that PAX6 is important for the maintenance of brain integrity in humans, and that adult heterozygotes may have abnormalities of cortical patterning analogous to those found in mouse models. Methods We used advanced magnetic resonance imaging techniques, including surface‐based morphometry and region‐of‐interest analysis in adult humans heterozygously mutated for PAX6 mutations (n = 19 subjects and n = 21 controls). Using immunohistochemistry, we also studied PAX6 expression in the adult brain tissue of healthy subjects (n = 4) and patients with epilepsy (n = 42), some of whom had focal injuries due to intracranial electrode track placement (n = 17). Results There were significant reductions in frontoparietal cortical area after correcting for age and intracranial volume. A greater decline in thickness of the frontoparietal cortex with age, in subjects with PAX6 mutations compared to controls, correlated with age‐corrected, accelerated decline in working memory. These results also demonstrate genotypic effects: those subjects with the most severe genotypes have the most widespread differences compared with controls. We also demonstrated significant increases in PAX6‐expressing cells in response to acute injury in the adult human brain. Interpretation These findings suggest a role for PAX6 in the maintenance and consequent functioning of the adult brain, homologous to that found in other tissues. This has significant implications for the understanding and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mahinda Yogarajah
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom; Present address: St George's University Hospitals NHS Foundation Trust London United Kingdom
| | - Mar Matarin
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom
| | - Christian Vollmar
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom
| | - Mark Symms
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom
| | - Anthony T Moore
- UCL Institute of Ophthalmology and Moorfields Eye Hospital London United Kingdom; Present address: Department of Ophthalmology University of California San Francisco California
| | - Joan Liu
- Division of Neuropathology UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Maria Thom
- Division of Neuropathology UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Veronica van Heyningen
- MRC Human Genetics UnitI GMM University of Edinburgh Crewe Road Edinburgh EH4 2XU United Kingdom; Present address: UCL Institute of Ophthalmology London United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy UCL Institute of Neurology National Hospital for Neurology and Neurosurgery London WC1N 3BG United Kingdom; Epilepsy Society Chalfont-St-Peter Bucks SL9 0RJ United Kingdom
| |
Collapse
|
5
|
Sakayori N, Kikkawa T, Tokuda H, Kiryu E, Yoshizaki K, Kawashima H, Yamada T, Arai H, Kang JX, Katagiri H, Shibata H, Innis SM, Arita M, Osumi N. Maternal dietary imbalance between omega-6 and omega-3 polyunsaturated fatty acids impairs neocortical development via epoxy metabolites. Stem Cells 2015; 34:470-82. [DOI: 10.1002/stem.2246] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Nobuyuki Sakayori
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
- Research Fellow of the Japan Society for the Promotion of Science; Tokyo Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
| | - Hisanori Tokuda
- Institute for Health Care Science, Suntory Wellness Ltd; Osaka Japan
| | - Emiko Kiryu
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
| | - Kaichi Yoshizaki
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
| | - Hiroshi Kawashima
- Institute for Health Care Science, Suntory Wellness Ltd; Osaka Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes; Tohoku University School of Medicine; Miyagi Japan
| | - Hiroyuki Arai
- Department of Health Chemistry; Graduate School of Pharmaceutical Sciences, University of Tokyo; Tokyo Japan
| | - Jing X. Kang
- Department of Medicine; Massachusetts General Hospital and Harvard Medical School; Massachusetts USA
| | - Hideki Katagiri
- Department of Metabolism and Diabetes; Tohoku University School of Medicine; Miyagi Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd; Osaka Japan
| | - Sheila M. Innis
- Department of Paediatrics; Child and Family Research Institute, University of British Columbia; Vancouver Canada
| | - Makoto Arita
- Department of Health Chemistry; Graduate School of Pharmaceutical Sciences, University of Tokyo; Tokyo Japan
- Laboratory for Metabolomics, Center for Integrative Medical Sciences, RIKEN; Kanagawa Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience; Center for Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine; Miyagi Japan
| |
Collapse
|
6
|
Gan Q, Lee A, Suzuki R, Yamagami T, Stokes A, Nguyen BC, Pleasure D, Wang J, Chen HW, Zhou CJ. Pax6 mediates ß-catenin signaling for self-renewal and neurogenesis by neocortical radial glial stem cells. Stem Cells 2014; 32:45-58. [PMID: 24115331 DOI: 10.1002/stem.1561] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 08/31/2013] [Indexed: 12/21/2022]
Abstract
The Wnt/ß-catenin pathway is a critical stem cell regulator and plays important roles in neuroepithelial cells during early gestation. However, the role of Wnt/ß-catenin signaling in radial glia, a major neural stem cell population expanded by midgestation, remains poorly understood. This study shows that genetic ablation of ß-catenin with hGFAP-Cre mice inhibits neocortical formation by disrupting radial glial development. Reduced radial glia and intermediate progenitors are found in the ß-catenin-deficient neocortex during late gestation. Increased apoptosis and divergent localization of radial glia in the subventricular zone are also observed in the mutant neocortex. In vivo and in vitro proliferation and neurogenesis as well as oligodendrogenesis by cortical radial glia or by dissociated neural stem cells are significantly defective in the mutants. Neocortical layer patterning is not apparently altered, while astrogliogenesis is ectopically increased in the mutants. At the molecular level, the expression of the transcription factor Pax6 is dramatically diminished in the cortical radial glia and the sphere-forming neural stem cells of ß-catenin-deficient mutants. Chromatin immunoprecipitation and luciferase assays demonstrate that ß-catenin/Tcf complex binds to Pax6 promoter and induces its transcriptional activities. The forced expression of Pax6 through lentiviral transduction partially rescues the defective proliferation and neurogenesis by ß-catenin-deficient neural stem cells. Thus, Pax6 is a novel downstream target of the Wnt/ß-catenin pathway, and ß-catenin/Pax6 signaling plays critical roles in self-renewal and neurogenesis of radial glia/neural stem cells during neocortical development.
Collapse
Affiliation(s)
- Qini Gan
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, Sacramento, California, USA; Department of Cell Biology and Human Anatomy, University of California at Davis, School of Medicine, Sacramento, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Curto GG, Nieto-Estévez V, Hurtado-Chong A, Valero J, Gómez C, Alonso JR, Weruaga E, Vicario-Abejón C. Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev 2014; 23:2813-30. [PMID: 25117830 DOI: 10.1089/scd.2014.0058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The paired type homeobox 6 (Pax6) transcription factor (TF) regulates multiple aspects of neural stem cell (NSC) and neuron development in the embryonic central nervous system. However, less is known about the role of Pax6 in the maintenance and differentiation of adult NSCs and in adult neurogenesis. Using the +/Sey(Dey) mouse, we have analyzed how Pax6 heterozygosis influences the self-renewal and proliferation of adult olfactory bulb stem cells (aOBSCs). In addition, we assessed its influence on neural differentiation, neuronal incorporation, and cell death in the adult OB, both in vivo and in vitro. Our results indicate that the Pax6 mutation alters Nestin(+)-cell proliferation in vivo, as well as self-renewal, proliferation, and survival of aOBSCs in vitro although a subpopulation of +/Sey(Dey) progenitors is able to expand partially similar to wild-type progenitors. This mutation also impairs aOBSC differentiation into neurons and oligodendrocytes, whereas it increases cell death while preserving astrocyte survival and differentiation. Furthermore, Pax6 heterozygosis causes a reduction in the variety of neurochemical interneuron subtypes generated from aOBSCs in vitro and in the incorporation of newly generated neurons into the OB in vivo. Our findings support an important role of Pax6 in the maintenance of aOBSCs by regulating cell death, self-renewal, and cell fate, as well as in neuronal incorporation into the adult OB. They also suggest that deregulation of the cell cycle machinery and TF expression in aOBSCs which are deficient in Pax6 may be at the origin of the phenotypes observed in this adult NSC population.
Collapse
Affiliation(s)
- Gloria G Curto
- 1 Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca , Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|