1
|
Castillo-Mendieta T, Bautista-Poblet G, Coyoy-Salgado A, Castillo-García EL, Pinto-Almazán R, Fuentes-Venado CE, Neri-Gómez T, Guerra-Araiza C. Effect of Chronic Tibolone Administration on Memory and Choline Acetyltransferase and Tryptophan Hydroxylase Content in Aging Mice. Brain Sci 2024; 14:903. [PMID: 39335399 PMCID: PMC11430777 DOI: 10.3390/brainsci14090903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Gonadal steroids exert different effects on the central nervous system (CNS), such as preserving neuronal function and promoting neuronal survival. Estradiol, progesterone, and testosterone reduce neuronal loss in the CNS in animal models of neurodegeneration. However, hormone replacement therapy has been associated with higher rates of endometrial, prostate, and breast cancer. Tibolone (TIB), the metabolites of which show estrogenic and progestogenic effects, is an alternative to reduce this risk. However, the impact of TIB on memory and learning, as well as on choline acetyltransferase (ChAT) and tryptophan hydroxylase (TPH) levels in the hippocampus of aging males, is unknown. We administered TIB to aged C57BL/6J male mice at different doses (0.01 or 1.0 mg/kg per day for 12 weeks) and evaluated its effects on memory and learning and the content of ChAT and TPH. We assessed memory and learning with object recognition and elevated T-maze tasks. Additionally, we determined ChAT and TPH protein levels in the hippocampus by Western blotting. TIB administration increased the percentage of time spent on the novel object in the object recognition task. In addition, the latency of leaving the enclosed arm increased in both TIB groups, suggesting an improvement in fear-based learning. We also observed decreased ChAT content in the group treated with the 0.01 mg/kg TIB dose. In the case of TPH, no changes were observed with either TIB dose. These results show that long-term TIB administration improves memory without affecting locomotor activity and modulates cholinergic but not serotonergic systems in the hippocampus of aged male mice.
Collapse
Affiliation(s)
- Tzayaka Castillo-Mendieta
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 03940, Mexico
| | - Guadalupe Bautista-Poblet
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
- Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City C.P. 09340, Mexico
| | - Angélica Coyoy-Salgado
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
| | - Emily L. Castillo-García
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
- Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City C.P. 09340, Mexico
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City C.P. 11340, Mexico; (R.P.-A.)
| | - Claudia Erika Fuentes-Venado
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City C.P. 11340, Mexico; (R.P.-A.)
- Servicio de Medicina Física y Rehabilitación, Hospital General de Zona No 197 IMSS, Texcoco C.P. 56108, Mexico
| | - Teresa Neri-Gómez
- Laboratorio de Patología Molecular, Unidad de Investigación Biomolecular en Cardiología, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 03940, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Mexico City C.P. 06720, Mexico (A.C.-S.)
| |
Collapse
|
2
|
Asadpoordezaki Z, Coogan AN, Henley BM. Chronobiology of Parkinson's disease: Past, present and future. Eur J Neurosci 2023; 57:178-200. [PMID: 36342744 PMCID: PMC10099399 DOI: 10.1111/ejn.15859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder predominately affecting midbrain dopaminergic neurons that results in a broad range of motor and non-motor symptoms. Sleep complaints are among the most common non-motor symptoms, even in the prodromal period. Sleep alterations in Parkinson's disease patients may be associated with dysregulation of circadian rhythms, intrinsic 24-h cycles that control essential physiological functions, or with side effects from levodopa medication and physical and mental health challenges. The impact of circadian dysregulation on sleep disturbances in Parkinson's disease is not fully understood; as such, we review the systems, cellular and molecular mechanisms that may underlie circadian perturbations in Parkinson's disease. We also discuss the potential benefits of chronobiology-based personalized medicine in the management of Parkinson's disease both in terms of behavioural and pharmacological interventions. We propose that a fuller understanding of circadian clock function may shed important new light on the aetiology and symptomatology of the disease and may allow for improvements in the quality of life for the millions of people with Parkinson's disease.
Collapse
Affiliation(s)
- Ziba Asadpoordezaki
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Beverley M Henley
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| |
Collapse
|
3
|
Santoro M, Fadda P, Klephan KJ, Hull C, Teismann P, Platt B, Riedel G. Neurochemical, histological, and behavioral profiling of the acute, sub-acute, and chronic MPTP mouse model of Parkinson's disease. J Neurochem 2023; 164:121-142. [PMID: 36184945 PMCID: PMC10098710 DOI: 10.1111/jnc.15699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is a heterogeneous multi-systemic disorder unique to humans characterized by motor and non-motor symptoms. Preclinical experimental models of PD present limitations and inconsistent neurochemical, histological, and behavioral readouts. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD is the most common in vivo screening platform for novel drug therapies; nonetheless, behavioral endpoints yielded amongst laboratories are often discordant and inconclusive. In this study, we characterized neurochemically, histologically, and behaviorally three different MPTP mouse models of PD to identify translational traits reminiscent of PD symptomatology. MPTP was intraperitoneally (i.p.) administered in three different regimens: (i) acute-four injections of 20 mg/kg of MPTP every 2 h; (ii) sub-acute-one daily injection of 30 mg/kg of MPTP for 5 consecutive days; and (iii) chronic-one daily injection of 4 mg/kg of MPTP for 28 consecutive days. A series of behavioral tests were conducted to assess motor and non-motor behavioral changes including anxiety, endurance, gait, motor deficits, cognitive impairment, circadian rhythm and food consumption. Impairments in balance and gait were confirmed in the chronic and acute models, respectively, with the latter showing significant correlation with lesion size. The sub-acute model, by contrast, presented with generalized hyperactivity. Both, motor and non-motor changes were identified in the acute and sub-acute regime where habituation to a novel environment was significantly reduced. Moreover, we report increased water and food intake across all three models. Overall, the acute model displayed the most severe lesion size, while across the three models striatal dopamine content (DA) did not correlate with the behavioral performance. The present study demonstrates that detection of behavioral changes following MPTP exposure is challenging and does not correlate with the dopaminergic lesion extent.
Collapse
Affiliation(s)
- Matteo Santoro
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
- Present address:
Department of Neurosurgery, School of MedicineStanford UniversityPalo AltoCaliforniaUSA
| | - Paola Fadda
- Department of NeuroscienceUniversity of CagliariCagliariItaly
| | - Katie J. Klephan
- Newcastle UniversitySchool of Biomedical, Nutritional, and Sport SciencesNewcastle upon TyneUK
- Present address:
AccuRXLondonLondonUK
| | - Claire Hull
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Peter Teismann
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Bettina Platt
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Gernot Riedel
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
4
|
Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson's disease and preclinical models. Mol Neurodegener 2022; 17:2. [PMID: 35000606 PMCID: PMC8744293 DOI: 10.1186/s13024-021-00504-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
The use of animals as models of human physiology is, and has been for many years, an indispensable tool for understanding the mechanisms of human disease. In Parkinson's disease, various mouse models form the cornerstone of these investigations. Early models were developed to reflect the traditional histological features and motor symptoms of Parkinson's disease. However, it is important that models accurately encompass important facets of the disease to allow for comprehensive mechanistic understanding and translational significance. Circadian rhythm and sleep issues are tightly correlated to Parkinson's disease, and often arise prior to the presentation of typical motor deficits. It is essential that models used to understand Parkinson's disease reflect these dysfunctions in circadian rhythms and sleep, both to facilitate investigations into mechanistic interplay between sleep and disease, and to assist in the development of circadian rhythm-facing therapeutic treatments. This review describes the extent to which various genetically- and neurotoxically-induced murine models of Parkinson's reflect the sleep and circadian abnormalities of Parkinson's disease observed in the clinic.
Collapse
Affiliation(s)
- Jeremy Hunt
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Elizabeth J. Coulson
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Aleksandar Videnovic
- Movement Disorders Unit and Division of Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Requejo C, López-de-Ipiña K, Ruiz-Ortega JÁ, Fernández E, Calvo PM, Morera-Herreras T, Miguelez C, Cardona-Grifoll L, Cepeda H, Ugedo L, Lafuente JV. Changes in Day/Night Activity in the 6-OHDA-Induced Experimental Model of Parkinson's Disease: Exploring Prodromal Biomarkers. Front Neurosci 2020; 14:590029. [PMID: 33154717 PMCID: PMC7591774 DOI: 10.3389/fnins.2020.590029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
The search for experimental models mimicking an early stage of Parkinson's disease (PD) before motor manifestations is fundamental in order to explore early signs and get a better prognosis. Interestingly, our previous studies have indicated that 6-hydroxydopamine (6-OHDA) is a suitable model to induce an early degeneration of the nigrostriatal system without any gross motor impairment. Considering our previous findings, we aim to implement a novel system to monitor rats after intrastriatal injection of 6-OHDA to detect and analyze physiological changes underlying prodromal PD. Twenty male Sprague-Dawley rats were unilaterally injected with 6-OHDA (n = 10) or saline solution (n = 10) into the right striatum and placed in enriched environment cages where the activity was monitored. After 2 weeks, the amphetamine test was performed before the sacrifice. Immunohistochemistry was developed for the morphological evaluation and western blot analysis to assess molecular changes. Home-cage monitoring revealed behavioral changes in response to 6-OHDA administration including significant hyperactivity and hypoactivity during the light and dark phase, respectively, turning out in a change of the circadian timing. A preclinical stage of PD was functionally confirmed with the amphetamine test. Moreover, the loss of tyrosine hydroxylase expression was significantly correlated with the motor results, and 6-OHDA induced early proapoptotic events. Our findings provide evidence for a novel prodromal 6-OHDA model following a customized monitoring system that could give insights to detect non-motor deficits and molecular targets to test neuroprotective/neurorestorative agents.
Collapse
Affiliation(s)
- Catalina Requejo
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, The Friedman Brain Institute, New York, NY, United States
| | - Karmele López-de-Ipiña
- EleKin Research Group, Department of Systems Engineering and Automation, University of the Basque Country (UPV/EHU), Donostia, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - José Ángel Ruiz-Ortega
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Elsa Fernández
- EleKin Research Group, Department of Systems Engineering and Automation, University of the Basque Country (UPV/EHU), Donostia, Spain
| | - Pilar M. Calvo
- EleKin Research Group, Department of Systems Engineering and Automation, University of the Basque Country (UPV/EHU), Donostia, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Cristina Miguelez
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Laura Cardona-Grifoll
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hodei Cepeda
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Luisa Ugedo
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
6
|
Ashton A, Jagannath A. Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling. Front Neurosci 2020; 14:636. [PMID: 32655359 PMCID: PMC7324687 DOI: 10.3389/fnins.2020.00636] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Sleep and circadian rhythm disruption (SCRD) is a common feature of schizophrenia, and is associated with symptom severity and patient quality of life. It is commonly manifested as disturbances to the sleep/wake cycle, with sleep abnormalities occurring in up to 80% of patients, making it one of the most common symptoms of this disorder. Severe circadian misalignment has also been reported, including non-24 h periods and phase advances and delays. In parallel, there are alterations to physiological circadian parameters such as body temperature and rhythmic hormone production. At the molecular level, alterations in the rhythmic expression of core clock genes indicate a dysfunctional circadian clock. Furthermore, genetic association studies have demonstrated that mutations in several clock genes are associated with a higher risk of schizophrenia. Collectively, the evidence strongly suggests that sleep and circadian disruption is not only a symptom of schizophrenia but also plays an important causal role in this disorder. The alterations in dopamine signaling that occur in schizophrenia are likely to be central to this role. Dopamine is well-documented to be involved in the regulation of the sleep/wake cycle, in which it acts to promote wakefulness, such that elevated dopamine levels can disturb sleep. There is also evidence for the influence of dopamine on the circadian clock, such as through entrainment of the master clock in the suprachiasmatic nuclei (SCN), and dopamine signaling itself is under circadian control. Therefore dopamine is closely linked with sleep and the circadian system; it appears that they have a complex, bidirectional relationship in the pathogenesis of schizophrenia, such that disturbances to one exacerbate abnormalities in the other. This review will provide an overview of the evidence for a role of SCRD in schizophrenia, and examine the interplay of this with altered dopamine signaling. We will assess the evidence to suggest common underlying mechanisms in the regulation of sleep/circadian rhythms and the pathophysiology of schizophrenia. Improvements in sleep are associated with improvements in symptoms, along with quality of life measures such as cognitive ability and employability. Therefore the circadian system holds valuable potential as a new therapeutic target for this disorder.
Collapse
Affiliation(s)
- Anna Ashton
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
De Lazzari F, Bisaglia M, Zordan MA, Sandrelli F. Circadian Rhythm Abnormalities in Parkinson's Disease from Humans to Flies and Back. Int J Mol Sci 2018; 19:ijms19123911. [PMID: 30563246 PMCID: PMC6321023 DOI: 10.3390/ijms19123911] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Clinical and research studies have suggested a link between Parkinson’s disease (PD) and alterations in the circadian clock. Drosophila melanogaster may represent a useful model to study the relationship between the circadian clock and PD. Apart from the conservation of many genes, cellular mechanisms, signaling pathways, and neuronal processes, Drosophila shows an organized central nervous system and well-characterized complex behavioral phenotypes. In fact, Drosophila has been successfully used in the dissection of the circadian system and as a model for neurodegenerative disorders, including PD. Here, we describe the fly circadian and dopaminergic systems and report recent studies which indicate the presence of circadian abnormalities in some fly PD genetic models. We discuss the use of Drosophila to investigate whether, in adults, the disruption of the circadian system might be causative of brain neurodegeneration. We also consider approaches using Drosophila, which might provide new information on the link between PD and the circadian clock. As a corollary, since PD develops its symptomatology over a large part of the organism’s lifespan and given the relatively short lifespan of fruit flies, we suggest that genetic models of PD could be used to perform lifelong screens for drug-modulators of general and/or circadian-related PD traits.
Collapse
Affiliation(s)
| | - Marco Bisaglia
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Mauro Agostino Zordan
- Department of Biology, University of Padova, 35131 Padova, Italy.
- Cognitive Neuroscience Center, University of Padova, 35100 Padova, Italy.
| | | |
Collapse
|
8
|
Klemann CJHM, Xicoy H, Poelmans G, Bloem BR, Martens GJM, Visser JE. Physical Exercise Modulates L-DOPA-Regulated Molecular Pathways in the MPTP Mouse Model of Parkinson's Disease. Mol Neurobiol 2018; 55:5639-5657. [PMID: 29019056 PMCID: PMC5994219 DOI: 10.1007/s12035-017-0775-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), resulting in motor and non-motor dysfunction. Physical exercise improves these symptoms in PD patients. To explore the molecular mechanisms underlying the beneficial effects of physical exercise, we exposed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP)-treated mice to a four-week physical exercise regimen, and subsequently explored their motor performance and the transcriptome of multiple PD-linked brain areas. MPTP reduced the number of DA neurons in the SNpc, whereas physical exercise improved beam walking, rotarod performance, and motor behavior in the open field. Further, enrichment analyses of the RNA-sequencing data revealed that in the MPTP-treated mice physical exercise predominantly modulated signaling cascades that are regulated by the top upstream regulators L-DOPA, RICTOR, CREB1, or bicuculline/dalfampridine, associated with movement disorders, mitochondrial dysfunction, and epilepsy-related processes. To elucidate the molecular pathways underlying these cascades, we integrated the proteins encoded by the exercise-induced differentially expressed mRNAs for each of the upstream regulators into a molecular landscape, for multiple key brain areas. Most notable was the opposite effect of physical exercise compared to previously reported effects of L-DOPA on the expression of mRNAs in the SN and the ventromedial striatum that are involved in-among other processes-circadian rhythm and signaling involving DA, neuropeptides, and endocannabinoids. Altogether, our findings suggest that physical exercise can improve motor function in PD and may, at the same time, counteract L-DOPA-mediated molecular mechanisms. Further, we hypothesize that physical exercise has the potential to improve non-motor symptoms of PD, some of which may be the result of (chronic) L-DOPA use.
Collapse
Affiliation(s)
- Cornelius J H M Klemann
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Helena Xicoy
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jasper E Visser
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Neurology, Amphia Hospital, Breda, The Netherlands.
| |
Collapse
|
9
|
Protective effects of the resveratrol analog piceid in dopaminergic SH-SY5Y cells. Arch Toxicol 2017; 92:669-677. [PMID: 28980048 DOI: 10.1007/s00204-017-2073-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Age-related motor deficits, such as loss of balance and coordination, are caused, in part, by loss of dopaminergic neurons. Oxidative stress is known to play a role in this neuronal loss. Resveratrol, a natural antioxidant with anticancer and anti-inflammatory potential, has been shown to protect dopaminergic-like cells (SH-SY5Y) against oxidative stress. However, the low bioavailability of resveratrol makes it worthwhile to explore newer compounds with similar properties. Piceid (RV8), an analog of resveratrol, has greater bioavailability than resveratrol, and our studies found that piceid (10, 20, 30 µM) protects SH-SY5Y cells against oxidative stress. Our investigations also found that the neuroprotection afforded by piceid was decreased when the MAP kinases, ERK1/2 and ERK5, were independently inhibited. Since oxidative stress is considered a master operator of apoptosis, our study also scrutinized dopamine-induced apoptosis and whether caspase-3/7 and Bcl-2 are involved, following piceid pretreatment followed by dopamine exposure. Our findings suggested that piceid pretreatment inhibited the dopamine-induced increase in caspase-3/7 activity and dopamine-induced loss of Bcl-2 expression. Overall, these findings suggest that the neuroprotective effects of piceid are mediated via the activation of ERK1/2, ERK5, and inhibition of apoptosis caused by oxidative stress.
Collapse
|
10
|
Willis GL, Freelance CB. Emerging preclinical interest concerning the role of circadian function in Parkinson's disease. Brain Res 2017; 1678:203-213. [PMID: 28958865 DOI: 10.1016/j.brainres.2017.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 02/08/2023]
Abstract
The importance of circadian function in the aetiology, progression and treatment of Parkinson's disease is a topic of increasing interest to the scientific and clinical community. While clinical studies on this theme are relatively new and limited in number there are many preclinical studies which explore possible circadian involvement in Parkinson's disease and speculate as to the mechanism by which clinical benefit can be derived by manipulating the circadian system. The present review explores the sequelae of circadian related studies from a historical perspective and reveals mechanisms that may be involved in the aetiology and progression of the disease. A systematic review of these studies also sets the stage for understanding the basic neuroscientific approaches which have been applied and provides new direction from which circadian function can be explored.
Collapse
Affiliation(s)
- Gregory L Willis
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Vic 3444, Australia.
| | - Christopher B Freelance
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Vic 3444, Australia
| |
Collapse
|
11
|
Daniele TMDC, de Bruin PFC, Rios ERV, de Bruin VMS. Effects of exercise on depressive behavior and striatal levels of norepinephrine, serotonin and their metabolites in sleep-deprived mice. Behav Brain Res 2017; 332:16-22. [DOI: 10.1016/j.bbr.2017.05.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/21/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022]
|
12
|
Nakamura TJ, Takasu NN, Nakamura W. The suprachiasmatic nucleus: age-related decline in biological rhythms. J Physiol Sci 2016; 66:367-74. [PMID: 26915078 PMCID: PMC10717791 DOI: 10.1007/s12576-016-0439-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Aging is associated with changes in sleep duration and quality, as well as increased rates of pathologic/disordered sleep. While several factors contribute to these changes, emerging research suggests that age-related changes in the mammalian central circadian clock within the suprachiasmatic nucleus (SCN) may be a key factor. Prior work from our group suggests that circadian output from the SCN declines because of aging. Furthermore, we have previously observed age-related infertility in female mice, caused by a mismatch between environmental light-dark cycles and the intrinsic, internal biological clocks. In this review, we address regulatory mechanisms underlying circadian rhythms in mammals and summarize recent literature describing the effects of aging on the circadian system.
Collapse
Affiliation(s)
- Takahiro J Nakamura
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Nana N Takasu
- Laboratory of Oral Chronobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Wataru Nakamura
- Laboratory of Oral Chronobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Fifel K, Piggins H, Deboer T. Modeling sleep alterations in Parkinson's disease: How close are we to valid translational animal models? Sleep Med Rev 2016; 25:95-111. [DOI: 10.1016/j.smrv.2015.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
|
14
|
Mendoza J, Challet E. Circadian insights into dopamine mechanisms. Neuroscience 2014; 282:230-42. [PMID: 25281877 DOI: 10.1016/j.neuroscience.2014.07.081] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/11/2023]
Abstract
Almost every physiological or behavioral process in mammals follows rhythmic patterns, which depend mainly on a master circadian clock located in the hypothalamic suprachiasmatic nucleus (SCN). The dopaminergic (DAergic) system in the brain is principally implicated in motor functions, motivation and drug intake. Interestingly, DA-related parameters and behaviors linked to the motivational and arousal states, show daily rhythms that could be regulated by the SCN or by extra-SCN circadian oscillator(s) modulating DAergic systems. Here we examine what is currently understood about the anatomical and functional central multi-oscillatory circadian system, highlighting how the main SCN clock communicates timing information with other brain clocks to regulate the DAergic system and conversely, how DAergic cues may have feedback effects on the SCN. These studies give new insights into the role of the brain circadian system in DA-related neurologic pathologies, such as Parkinson's disease, attention deficit/hyperactive disorder and drug addiction.
Collapse
Affiliation(s)
- J Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg cedex, France.
| | - E Challet
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg cedex, France
| |
Collapse
|
15
|
Bjersing JL, Bokarewa MI, Mannerkorpi K. Profile of circulating microRNAs in fibromyalgia and their relation to symptom severity: an exploratory study. Rheumatol Int 2014; 35:635-42. [PMID: 25261961 DOI: 10.1007/s00296-014-3139-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
Fibromyalgia (FM) is characterized by generalized chronic pain and reduced pain thresholds. Disturbed neuroendocrine function and impairment of growth hormone/insulin-like growth factor-1 is common. However, the pathophysiology of FM is not clear. MicroRNAs are important regulatory factors reflecting interface of genes and environment. Our aim was to identify characteristic microRNAs in FM and relations of specific microRNAs with characteristic symptoms. A total of 374 circulating microRNAs were measured in women with FM (n = 20; median 52.5 years) and healthy women (n = 20; 52.5 years) by quantitative PCR. Pain thresholds were examined by algometry. Pain [fibromyalgia impact questionnaire (FIQ) pain] levels were rated (0-100 mm) using FIQ. Fatigue (FIQ fatigue) was rated (0-100 mm) using FIQ and multidimensional fatigue inventory general fatigue. Sleep quantity and quality (1-4) rated from satisfactory to nonsatisfactory. Higher scores indicate more severe symptoms. Eight microRNAs differed significantly between FM and healthy women. Seven microRNAs, miR-103a-3p, miR-107, let-7a-5p, miR-30b-5p, miR-151a-5p, miR-142-3p and miR-374b-5p, were lower in FM. However, levels of miR-320a were higher in FM. MiR-103a-3p correlated with pain (r = 0.530, p = 0.016) and sleep quantity (r = 0.593, p = 0.006) in FM. MiR-320a correlated inversely with pain (r = -0.468, p = 0.037). MiR-374b-5p correlated inversely with pain threshold (r = -0.612, p = 0.004). MiR-30b-5p correlated with sleep quantity (r = 0.509, p = 0.022), and let-7a-5p was associated with sleep symptoms. When adjusted for body mass index, the correlation of sleep quantity with miR-103a and miR-30b was no longer significant. To our knowledge, this is the first study of circulating microRNAs in FM. Levels of several microRNAs differed significantly in FM compared to healthy women. Three microRNAs were associated with pain or pain threshold in FM.
Collapse
Affiliation(s)
- Jan L Bjersing
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, Box 480, 40530, Göteborg, Sweden,
| | | | | |
Collapse
|
16
|
Willison LD, Kudo T, Loh DH, Kuljis D, Colwell CS. Circadian dysfunction may be a key component of the non-motor symptoms of Parkinson's disease: insights from a transgenic mouse model. Exp Neurol 2013; 243:57-66. [PMID: 23353924 PMCID: PMC3994881 DOI: 10.1016/j.expneurol.2013.01.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 12/20/2012] [Accepted: 01/15/2013] [Indexed: 01/09/2023]
Abstract
Sleep disorders are nearly ubiquitous among patients with Parkinson's disease (PD), and they manifest early in the disease process. While there are a number of possible mechanisms underlying these sleep disturbances, a primary dysfunction of the circadian system should be considered as a contributing factor. Our laboratory's behavioral phenotyping of a well-validated transgenic mouse model of PD reveals that the electrical activity of neurons within the master pacemaker of the circadian system, the suprachiasmatic nuclei (SCN), is already disrupted at the onset of motor symptoms, although the core features of the intrinsic molecular oscillations in the SCN remain functional. Our observations suggest that the fundamental circadian deficit in these mice lies in the signaling output from the SCN, which may be caused by known mechanisms in PD etiology: oxidative stress and mitochondrial disruption. Disruption of the circadian system is expected to have pervasive effects throughout the body and may itself lead to neurological and cardiovascular disorders. In fact, there is much overlap in the non-motor symptoms experienced by PD patients and in the consequences of circadian disruption. This raises the possibility that the sleep and circadian dysfunction experienced by PD patients may not merely be a subsidiary of the motor symptoms, but an integral part of the disease. Furthermore, we speculate that circadian dysfunction can even accelerate the pathology underlying PD. If these hypotheses are correct, more aggressive treatment of the circadian misalignment and sleep disruptions in PD patients early in the pathogenesis of the disease may be powerful positive modulators of disease progression and patient quality of life.
Collapse
Affiliation(s)
- L David Willison
- Division of Child and Adolescent Psychiatry, Laboratory of Circadian and Sleep Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|