1
|
Letner JG, Lam JLW, Copenhaver MG, Barrow M, Patel PR, Richie JM, Lee J, Kim HS, Cai D, Weiland JD, Phillips J, Blaauw D, Chestek CA. A method for efficient, rapid, and minimally invasive implantation of individual non-functional motes with penetrating subcellular-diameter carbon fiber electrodes into rat cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636655. [PMID: 39974888 PMCID: PMC11838573 DOI: 10.1101/2025.02.05.636655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Objective Distributed arrays of wireless neural interfacing chips with 1-2 channels each, known as "neural dust", could enhance brain machine interfaces (BMIs) by removing the wired connection through the scalp and increasing biocompatibility with their submillimeter size. Although several approaches for neural dust have emerged, a procedure for implanting them in batches that builds upon the safety and performance of currently used electrodes remains to be demonstrated. Approach Here, we demonstrate the feasibility of implanting batches of wireless motes that rest on the cortical surface with carbon fiber electrodes of subcellular diameter (6.8-8.4 μm) that penetrate to a target brain depth of 1 mm without insertion aids. To simulate their implantation, we assembled more than 230 mechanically equivalent motes and affixed them to insertion tools with polyethylene glycol (PEG), a quickly dissolvable and biocompatible material. Then, we implanted mote grids of multiple configurations into rat cortex in vivo and evaluated insertion success and their arrangement on the brain surface using photos and videos captured during their implantation. Main Results When placing motes onto the insertion device, we found that they aggregated in molten PEG such that the array pitch was only 5% wider than the dimensions of the mote bases themselves (240 × 240 μm). Overall, we found that motes with this arrangement could be inserted into rat cortex with a high success rate, as 171/186 (92%) motes in 4×4 (N=4) and 5×5 (N=5) square grid configurations were successfully inserted using the insertion device alone. After implantation, measurements of how much motes tilted (22±9°, X̄±S) and had been displaced relative to their original positions were smaller than those measured for devices implanted inside the brain in the literature. Significance Collectively, these data establish the viability of safely implementing motes with ultrasmall electrodes and epicortically-situated chips for use in future BMIs.
Collapse
Affiliation(s)
- Joseph G. Letner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jordan L. W. Lam
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Miranda G. Copenhaver
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Barrow
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Paras R. Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Julianna M. Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jungho Lee
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hun-Seok Kim
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James D. Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Jamie Phillips
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716, USA
| | - David Blaauw
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Cynthia A. Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Robotics Department, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Imamura M, Yoshino M, Kawasaki H. Investigation of the development and evolution of the mammalian cerebrum using gyrencephalic ferrets. Eur J Cell Biol 2024; 103:151466. [PMID: 39546916 DOI: 10.1016/j.ejcb.2024.151466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Mammalian brains have evolved a neocortex, which has diverged in size and morphology in different species over the course of evolution. In some mammals, a substantial increase in the number of neurons and glial cells resulted in the expansion and folding of the cerebrum, and it is believed that these evolutionary changes contributed to the acquisition of higher cognitive abilities in mammals. However, their underlying molecular and cellular mechanisms remain insufficiently elucidated. A major difficulty in addressing these mechanisms stemmed from the lack of appropriate animal models, as conventional experimental animals such as mice and rats have small brains without structurally obvious folds. Therefore, researchers including us have focused on using ferrets instead of mice and rats. Ferrets are domesticated carnivorous mammals with a gyrencephalic cerebrum, and, notably, they are amenable to genetic manipulations including in utero electroporation to knock out genes in the cerebrum. In this review, we highlight recent research into the mechanisms underlying the development and evolution of cortical folds using ferrets.
Collapse
Affiliation(s)
- Masanori Imamura
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Mayuko Yoshino
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
3
|
Xing L, Huttner WB, Namba T. Role of cell metabolism in the pathophysiology of brain size-associated neurodevelopmental disorders. Neurobiol Dis 2024; 199:106607. [PMID: 39029564 DOI: 10.1016/j.nbd.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Cell metabolism is a key regulator of human neocortex development and evolution. Several lines of evidence indicate that alterations in neural stem/progenitor cell (NPC) metabolism lead to abnormal brain development, particularly brain size-associated neurodevelopmental disorders, such as microcephaly. Abnormal NPC metabolism causes impaired cell proliferation and thus insufficient expansion of NPCs for neurogenesis. Therefore, the production of neurons, which is a major determinant of brain size, is decreased and the size of the brain, especially the size of the neocortex, is significantly reduced. This review discusses recent progress understanding NPC metabolism, focusing in particular on glucose metabolism, fatty acid metabolism and amino acid metabolism (e.g., glutaminolysis and serine metabolism). We provide an overview of the contributions of these metabolic pathways to brain development and evolution, as well as to the etiology of neurodevelopmental disorders. Furthermore, we discuss the advantages and disadvantages of various experimental models to study cell metabolism in the developing brain.
Collapse
Affiliation(s)
- Lei Xing
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Developmental Biology, Fujita Health University School of Medicine, Toyoake, Japan; International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Japan.
| |
Collapse
|
4
|
Garcia KE, Wang X, Santiago SE, Bakshi S, Barnes AP, Kroenke CD. Longitudinal MRI of the developing ferret brain reveals regional variations in timing and rate of growth. Cereb Cortex 2024; 34:bhae172. [PMID: 38679479 PMCID: PMC11056283 DOI: 10.1093/cercor/bhae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
Normative ferret brain development was characterized using magnetic resonance imaging. Brain growth was longitudinally monitored in 10 ferrets (equal numbers of males and females) from postnatal day 8 (P8) through P38 in 6-d increments. Template T2-weighted images were constructed at each age, and these were manually segmented into 12 to 14 brain regions. A logistic growth model was used to fit data from whole brain volumes and 8 of the individual regions in both males and females. More protracted growth was found in males, which results in larger brains; however, sex differences were not apparent when results were corrected for body weight. Additionally, surface models of the developing cortical plate were registered to one another using the anatomically-constrained Multimodal Surface Matching algorithm. This, in turn, enabled local logistic growth parameters to be mapped across the cortical surface. A close similarity was observed between surface area expansion timing and previous reports of the transverse neurogenic gradient in ferrets. Regional variation in the extent of surface area expansion and the maximum expansion rate was also revealed. This characterization of normative brain growth over the period of cerebral cortex folding may serve as a reference for ferret studies of brain development.
Collapse
Affiliation(s)
- Kara E Garcia
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Evansville, IN 47715, United States
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Xiaojie Wang
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
| | - Sarah E Santiago
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Stuti Bakshi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
| | - Anthony P Barnes
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
- Oregon Health and Science Advanced Imaging Research Center, Portland, OR 97239, United States
| |
Collapse
|
5
|
Kawasaki H. Investigation of the mechanisms underlying the development and evolution of folds of the cerebrum using gyrencephalic ferrets. J Comp Neurol 2024; 532:e25615. [PMID: 38587214 DOI: 10.1002/cne.25615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
The mammalian cerebrum has changed substantially during evolution, characterized by increases in neurons and glial cells and by the expansion and folding of the cerebrum. While these evolutionary alterations are thought to be crucial for acquiring higher cognitive functions, the molecular mechanisms underlying the development and evolution of the mammalian cerebrum remain only partially understood. This is, in part, because of the difficulty in analyzing these mechanisms using mice only. To overcome this limitation, genetic manipulation techniques for the cerebrum of gyrencephalic carnivore ferrets have been developed. Furthermore, successful gene knockout in the ferret cerebrum has been accomplished through the application of the CRISPR/Cas9 system. This review mainly highlights recent research conducted using gyrencephalic carnivore ferrets to investigate the mechanisms underlying the development and evolution of cortical folds.
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Lossi L. Anatomical features for an adequate choice of the experimental animal model in biomedicine: III. Ferret, goat, sheep, and horse. Ann Anat 2022; 244:151978. [PMID: 35787443 DOI: 10.1016/j.aanat.2022.151978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
The anatomical characteristics of each of the many species today employed in biomedical research are very important when selecting the correct animal model(s), especially for conducting translational research. In previous papers, these features have been considered for fish (D'Angelo et al. Ann. Anat, 2016, 205:75), the most common laboratory rodents, rabbits, and pigs (Lossi et al. 2016). I here follow this line of discussion by dealing with the importance of proper knowledge of ferrets, goats, sheep, and horses' main anatomical features in translational research.
Collapse
Affiliation(s)
- Laura Lossi
- University of Turin, Department of Veterinary Sciences, Turin, Italy; INN, Istituto Nazionale di Neuroscienze, Turin, Italy.
| |
Collapse
|
7
|
Shinmyo Y, Hamabe-Horiike T, Saito K, Kawasaki H. Investigation of the Mechanisms Underlying the Development and Evolution of the Cerebral Cortex Using Gyrencephalic Ferrets. Front Cell Dev Biol 2022; 10:847159. [PMID: 35386196 PMCID: PMC8977464 DOI: 10.3389/fcell.2022.847159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex has changed significantly during evolution. As a result of the increase in the number of neurons and glial cells in the cerebral cortex, its size has markedly expanded. Moreover, folds, called gyri and sulci, appeared on its surface, and its neuronal circuits have become much more complicated. Although these changes during evolution are considered to have been crucial for the acquisition of higher brain functions, the mechanisms underlying the development and evolution of the cerebral cortex of mammals are still unclear. This is, at least partially, because it is difficult to investigate these mechanisms using mice only. Therefore, genetic manipulation techniques for the cerebral cortex of gyrencephalic carnivore ferrets were developed recently. Furthermore, gene knockout was achieved in the ferret cerebral cortex using the CRISPR/Cas9 system. These techniques enabled molecular investigations using the ferret cerebral cortex. In this review, we will summarize recent findings regarding the mechanisms underlying the development and evolution of the mammalian cerebral cortex, mainly focusing on research using ferrets.
Collapse
Affiliation(s)
- Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshihide Hamabe-Horiike
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kengo Saito
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
8
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
9
|
Kawasaki H. [Investigation of the Mechanisms Underlying Development and Diseases of the Cerebral Cortex Using Mice and Ferrets]. YAKUGAKU ZASSHI 2021; 141:349-357. [PMID: 33642503 DOI: 10.1248/yakushi.20-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Folds of the cerebral cortex, which are called gyri and sulci, are one of the most prominent features of the mammalian brain. However, the mechanisms underlying the development and malformation of cortical folds are largely unknown, mainly because they are difficult to investigate in mice, whose brain do not have cortical folds. To investigate the mechanisms underlying the development and malformation of cortical folds, we developed a genetic manipulation technique for the cerebral cortex of gyrencephalic carnivore ferrets. Genes-of-interest can be expressed in the ferret cortex rapidly and efficiently. We also demonstrated that genes-of-interest can be knocked out in the ferret cortex by combining in utero electroporation and the CRISPR/Cas9 system. Using our technique, we found that fibroblast growth factor (FGF) signaling and sonic hedgehog (Shh) signaling are crucial for cortical folding. In addition, we found that FGF signaling and Shh signaling preferentially increased outer radial glial cells and the thickness of upper layers of the cerebral cortex. Furthermore, over-activation of FGF signaling and Shh signaling resulted in polymicrogyria. Our findings provide in vivo data about the mechanisms of cortical folding in gyrencephalic mammals. Our technique for the ferret cerebral cortex should be useful for investigating the mechanisms underlying the development and diseases of the cerebral cortex that cannot be investigated using mice.
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University
| |
Collapse
|
10
|
Hou S, Ho WL, Wang L, Kuo B, Park JY, Han YG. Biphasic Roles of Hedgehog Signaling in the Production and Self-Renewal of Outer Radial Glia in the Ferret Cerebral Cortex. Cereb Cortex 2021; 31:4730-4741. [PMID: 34002221 DOI: 10.1093/cercor/bhab119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neocortex, the center for higher brain function, emerged in mammals and expanded in the course of evolution. The expansion of outer radial glia (oRGs) and intermediate progenitor cells (IPCs) plays key roles in the expansion and consequential folding of the neocortex. Therefore, understanding the mechanisms of oRG and IPC expansion is important for understanding neocortical development and evolution. By using mice and human cerebral organoids, we previously revealed that hedgehog (HH) signaling expands oRGs and IPCs. Nevertheless, it remained to be determined whether HH signaling expanded oRGs and IPCs in vivo in gyrencephalic species, in which oRGs and IPCs are naturally expanded. Here, we show that HH signaling is necessary and sufficient to expand oRGs and IPCs in ferrets, a gyrencephalic species, through conserved cellular mechanisms. HH signaling increases oRG-producing division modes of ventricular radial glia (vRGs), oRG self-renewal, and IPC proliferation. Notably, HH signaling affects vRG division modes only in an early restricted phase before superficial-layer neuron production peaks. Beyond this restricted phase, HH signaling promotes oRG self-renewal. Thus, HH signaling expands oRGs and IPCs in two distinct but continuous phases during cortical development.
Collapse
Affiliation(s)
- Shirui Hou
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wan-Ling Ho
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Lei Wang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bryan Kuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jun Young Park
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
11
|
Gilardi C, Kalebic N. The Ferret as a Model System for Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:661759. [PMID: 33996819 PMCID: PMC8118648 DOI: 10.3389/fcell.2021.661759] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
The neocortex is the largest part of the cerebral cortex and a key structure involved in human behavior and cognition. Comparison of neocortex development across mammals reveals that the proliferative capacity of neural stem and progenitor cells and the length of the neurogenic period are essential for regulating neocortex size and complexity, which in turn are thought to be instrumental for the increased cognitive abilities in humans. The domesticated ferret, Mustela putorius furo, is an important animal model in neurodevelopment for its complex postnatal cortical folding, its long period of forebrain development and its accessibility to genetic manipulation in vivo. Here, we discuss the molecular, cellular, and histological features that make this small gyrencephalic carnivore a suitable animal model to study the physiological and pathological mechanisms for the development of an expanded neocortex. We particularly focus on the mechanisms of neural stem cell proliferation, neuronal differentiation, cortical folding, visual system development, and neurodevelopmental pathologies. We further discuss the technological advances that have enabled the genetic manipulation of the ferret in vivo. Finally, we compare the features of neocortex development in the ferret with those of other model organisms.
Collapse
|
12
|
Matsumoto N, Kobayashi N, Uda N, Hirota M, Kawasaki H. Pathophysiological analyses of leptomeningeal heterotopia using gyrencephalic mammals. Hum Mol Genet 2019; 27:985-991. [PMID: 29325060 DOI: 10.1093/hmg/ddy014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022] Open
Abstract
Leptomeningeal glioneuronal heterotopia (LGH) is a focal malformation of the cerebral cortex and frequently found in patients with thanatophoric dysplasia (TD). The pathophysiological mechanisms underlying LGH formation are still largely unclear because of difficulties in obtaining brain samples from human TD patients. Recently, we established a new animal model for analysing cortical malformations of human TD by utilizing our genetic manipulation technique for gyrencephalic carnivore ferrets. Here we investigated the pathophysiological mechanisms underlying the formation of LGH using our TD ferrets. We found that LGH was formed during corticogenesis in TD ferrets. Interestingly, we rarely found Ki-67-positive and phospho-histone H3-positive cells in LGH, suggesting that LGH formation does not involve cell proliferation. We uncovered that vimentin-positive radial glial fibers and doublecortin-positive migrating neurons were accumulated in LGH. This result may indicate that preferential cell migration into LGH underlies LGH formation. Our findings provide novel mechanistic insights into the pathogenesis of LGH in TD.
Collapse
Affiliation(s)
- Naoyuki Matsumoto
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Naoki Kobayashi
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.,Medical Research Training Program, School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Natsu Uda
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.,Medical Research Training Program, School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Miwako Hirota
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.,Medical Research Training Program, School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
13
|
Kalebic N, Gilardi C, Albert M, Namba T, Long KR, Kostic M, Langen B, Huttner WB. Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex. eLife 2018; 7:e41241. [PMID: 30484771 PMCID: PMC6303107 DOI: 10.7554/elife.41241] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023] Open
Abstract
The evolutionary increase in size and complexity of the primate neocortex is thought to underlie the higher cognitive abilities of humans. ARHGAP11B is a human-specific gene that, based on its expression pattern in fetal human neocortex and progenitor effects in embryonic mouse neocortex, has been proposed to have a key function in the evolutionary expansion of the neocortex. Here, we study the effects of ARHGAP11B expression in the developing neocortex of the gyrencephalic ferret. In contrast to its effects in mouse, ARHGAP11B markedly increases proliferative basal radial glia, a progenitor cell type thought to be instrumental for neocortical expansion, and results in extension of the neurogenic period and an increase in upper-layer neurons. Consequently, the postnatal ferret neocortex exhibits increased neuron density in the upper cortical layers and expands in both the radial and tangential dimensions. Thus, human-specific ARHGAP11B can elicit hallmarks of neocortical expansion in the developing ferret neocortex.
Collapse
Affiliation(s)
- Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Carlotta Gilardi
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Mareike Albert
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Milos Kostic
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Barbara Langen
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
14
|
Kawasaki H. Molecular Investigations of the Development and Diseases of Cerebral Cortex Folding using Gyrencephalic Mammal Ferrets. Biol Pharm Bull 2018; 41:1324-1329. [DOI: 10.1248/bpb.b18-00142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
15
|
Nomura T, Hanashima C. Neocortical development and evolution. Neurosci Res 2014; 86:1-2. [PMID: 25457746 DOI: 10.1016/j.neures.2014.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Nishitakatsukasa-cho 13, Taishogun, Kita-ku, Kyoto 603-8334, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Biology, Graduate School of Science, Kobe University, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|