1
|
Yin W, Ma H, Qu Y, Ren J, Sun Y, Guo ZN, Yang Y. Exosomes: the next-generation therapeutic platform for ischemic stroke. Neural Regen Res 2025; 20:1221-1235. [PMID: 39075892 PMCID: PMC11624871 DOI: 10.4103/nrr.nrr-d-23-02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 07/31/2024] Open
Abstract
Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery. Therefore, there is an urgent need to develop new methods for the treatment of this condition. Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions. They have low immunogenicity, good stability, high delivery efficiency, and the ability to cross the blood-brain barrier. These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke. The rapid development of nanotechnology has advanced the application of engineered exosomes, which can effectively improve targeting ability, enhance therapeutic efficacy, and minimize the dosages needed. Advances in technology have also driven clinical translational research on exosomes. In this review, we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke, including their anti-inflammation, anti-apoptosis, autophagy-regulation, angiogenesis, neurogenesis, and glial scar formation reduction effects. However, it is worth noting that, despite their significant therapeutic potential, there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes. Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke. Ultimately, our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yingying Sun
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Fedor BA, Sander NH, MacLaren M, Liddle LJ, MacLellan CL, Colbourne F. Motor Rehabilitation Provides Modest Functional Benefits After Intracerebral Hemorrhage: a Systematic Review and Meta-Analysis of Translational Rehabilitation Studies. Transl Stroke Res 2025; 16:484-511. [PMID: 37981635 PMCID: PMC11976355 DOI: 10.1007/s12975-023-01205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Few certainties exist regarding the optimal type, timing, or dosage of rehabilitation after stroke. Despite differing injury mechanisms and recovery patterns following ischemic and hemorrhagic stroke, most translational stroke research is conducted after ischemia. As we enter the era of personalized medicine, exploring subtype-specific treatment efficacy is essential to optimizing recovery. Our objective was to characterize common rehabilitation interventions used after in vivo preclinical intracerebral hemorrhage (ICH) and assess the impact of post-ICH rehabilitation (vs. no-rehabilitation) on recovery of motor function. Following PRISMA guidelines, a systematic review (Academic Search Complete, CINAHL, EMBASE, Medline, PubMed Central) identified eligible articles published up to December 2022. Risk of bias (SYRCLE) and study quality (CAMARADES) were evaluated, and random-effects meta-analysis was used to assess treatment efficacy in recovery of forelimb and locomotor functions. Thirty articles met inclusion criteria, and 48 rehabilitation intervention groups were identified. Most used collagenase to model striatal ICH in young, male rodents. Aerobic exercise, enriched rehabilitation, and constraint-induced movement therapy represented ~ 70% of interventions. Study quality was low (median 4/10, range 2-8), and risk of bias was unclear. Rehabilitation provided modest benefits in skilled reaching, spontaneous impaired forelimb use, and locomotor function; however, effects varied substantially by endpoint, treatment type, and study quality. Rehabilitation statistically improves motor function after preclinical ICH, but whether these effects are functionally meaningful is unclear. Incomplete reporting and variable research quality hinder our capacity to analyze and interpret how treatment factors influence rehabilitation efficacy and recovery after ICH.
Collapse
Affiliation(s)
- Britt A Fedor
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| | - Noam H Sander
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Maxwell MacLaren
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Lane J Liddle
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Canada
| | - Crystal L MacLellan
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Frederick Colbourne
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Ademoyegun AB, Awotidebe TO, Odetunde MO, Inaolaji SO, Bakare SO, Azeez FW, Olayemi O. Effects of very early exercise on inflammatory markers and clinical outcomes in patients with ischaemic stroke- a randomized controlled trial. BMC Neurol 2025; 25:121. [PMID: 40119305 PMCID: PMC11927286 DOI: 10.1186/s12883-025-04132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/10/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Apart from the limited evidence of the effects of very early exercise (VEE) on clinical outcomes (COs) in stroke, better knowledge is required to understand the cellular action induced by VEE. This study investigated the effects of VEE on inflammatory markers (IMs) and COs. It further evaluated the association between acute changes in IMs and COs at follow-up in individuals with first-ever mild-to-moderate ischaemic stroke. METHODS A prospective, single-center, single-blind, randomized controlled trial (retrospectively registered: PACTR202406755848901; 10-06-2024) was conducted. Forty-eight patients randomized (1:1) into the VEE group (VEEG) and usual care group (UCG) completed the follow-up. Within 24 h of stroke onset, patients in VEEG underwent 45 min of VEE twice daily, amounting to 1.5 h/d, for seven days while patients in UCG received regular turning and positioning. The levels of IMs including interleukin-6 (IL-6), fibrinogen, leucocytes, neutrophils, lymphocytes, and monocytes were assessed at baseline, 4th, and 7th day for both groups. Thereafter, each patient received 90-min follow-up physiotherapy twice weekly for three months. Motor impairment, physical disability, functional independence, anxiety, depression, and cognition were evaluated at 1st and 3rd month of follow-up. RESULTS On the 4th and 7th day, patients in VEEG show trends of lower levels of IL-6, leucocytes, neutrophils, and monocytes and higher levels of lymphocytes. However, a non-linear effect of VEE on plasma fibrinogen was observed compared to UC. Furthermore, better improvement in motor impairment, physical disability, functional independence, anxiety, depression, and cognition were observed in VEEG. The positive modulation of IMs by VEE was associated with COs over time, including associations between changes in IL-6 at days 4 and 7 and 3-month functional independence (rs = -0.33; p = 0.019; rs = -0.33; p = 0.021), and at day 7 and 3-month motor impairment (rs = 0.30; p = 0.039). CONCLUSIONS Initiating moderate-intensity exercise within 24 h appears beneficial in positively modulating IMs, including IL-6, at the acute stage and improving the physical, motor, cognitive, and affective functions at 1-and 3-month follow-up. The association between exercise-induced acute changes in IMs and improved COs over time highlights the potential role of moderate-intensity VEE in enhancing stroke recovery through positive inflammatory modulation.
Collapse
Affiliation(s)
- Adekola B Ademoyegun
- Department of Physiotherapy, Osun State University Teaching Hospital, PMB 5000, Osogbo, 230221, Nigeria.
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria.
| | - Taofeek O Awotidebe
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Marufat O Odetunde
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Samuel O Inaolaji
- Department of Physiotherapy, Osun State University Teaching Hospital, PMB 5000, Osogbo, 230221, Nigeria
| | - Serifat O Bakare
- Accident and Emergency Unit, Osun State University Teaching Hospital, Osogbo, Nigeria
| | - Funmilola W Azeez
- Accident and Emergency Unit, Osun State University Teaching Hospital, Osogbo, Nigeria
| | - Olanrewaju Olayemi
- Department of Internal Medicine, Osun State University Teaching Hospital, Osogbo, Nigeria
- Department of Medicine, Osun State University, Osogbo, Nigeria
| |
Collapse
|
4
|
Xu J, Song Z. The role of different physical exercises as an anti-aging factor in different stem cells. Biogerontology 2025; 26:63. [PMID: 40009244 DOI: 10.1007/s10522-025-10205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
The senescence process is connected to the characteristics of cellular aging. Understanding their causal network helps develop a framework for creating new treatments to slow down the senescence process. A growing body of research indicates that aging may adversely affect stem cells (SCs). SCs change their capability to differentiate into different cell types and decrease their potential for renewal as they age. Research has indicated that consistent physical exercise offers several health advantages, including a reduced risk of age-associated ailments like tumors, heart disease, diabetes, and neurological disorders. Exercise is a potent physiological stressor linked to higher red blood cell counts and an enhanced immune system, promoting disease resistance. Sports impact mesenchymal SCs (MSCs), hematopoietic SCs (HSCs), neuronal SCs (NuSCs), and muscular SCs (MuSCs), among other aged SCs types. These changes to the niche will probably affect the amount and capability of adult SCs after exercise. In this work, we looked into how different types of SCs age. The impact of physical activity on the aging process has been studied. Additionally, there has been discussion and study on the impact of different sports and physical activities on SCs as an anti-aging component.
Collapse
Affiliation(s)
- Jia Xu
- College of Physical Education, North-West Normal University, Lanzhou, 730070, China
| | - Zhe Song
- Cangzhou Medical College, Cangzhou, 061001, China.
| |
Collapse
|
5
|
Esmealy B, Esmealy L, Gholizadeh L, Nikookheslat S, Sari-Sarraf V. The effects of multicomponent rehabilitation exercise plus soymilk on cognitive impairment and ischemic lesion growth in stroke patients: A randomized controlled trial. J Stroke Cerebrovasc Dis 2025; 34:108207. [PMID: 39716495 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 11/05/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024] Open
Abstract
OBJECTIVES This study aimed to examine the effects of a multicomponent rehabilitation exercise, coupled with soymilk intake post-exercise, on cognitive impairment and ischemic lesion growth among acute stroke patients. METHODS In a four-arm, single-blind, randomized clinical trial, 120 patients with acute stroke were randomly allocated to one of the following groups: 1) the MRE + soymilk, 2) the MRE, 3) the soymilk, and 4) the control group. Each group underwent their respective intervention for a continuous duration of 20 days. Cognitive impairment was assessed using the Montreal Cognitive Assessment, and the growth of ischemic lesions was evaluated through CT scans. RESULTS The MRE combined with soymilk intervention demonstrated statistically significant improvements in cognitive impairment among acute stroke patients (χ² = 51.055, p = 0.000). Group differences began to emerge from Week, with improvements observed across all dimensions of cognitive function, except for abstraction. No significant differences were observed between groups in terms of ischemic lesion growth (χ² =0.934, p = 0.810). CONCLUSION The incorporation of a multicomponent rehabilitation exercise combined with soymilk ingestion demonstrated effectiveness in alleviating cognitive impairment among acute stroke patients. Nevertheless, it did not influence the growth of ischemic lesions.
Collapse
Affiliation(s)
- Babak Esmealy
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
| | - Leyla Esmealy
- Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Leila Gholizadeh
- IMPACCT, Faculty of Health, University of Technology Sydney, Sydney, Australia.
| | - Saeid Nikookheslat
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
| | - Vahid Sari-Sarraf
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
6
|
Smith J, Nagy P, Tod D, Holland C, Jarvis H. The effect of physical exercise and cognition-orientated interventions on post-stroke cognitive function: Protocol for an overview of reviews. PLoS One 2025; 20:e0318567. [PMID: 39879170 PMCID: PMC11778714 DOI: 10.1371/journal.pone.0318567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Strokes are becoming more common, and with improving survival rates, the prevalence of stroke survivors has increased. Almost half of chronic stroke survivors are cognitively impaired, and healthcare services are struggling to manage these patients, leaving some feeling "abandoned". Several systematic reviews have investigated the effect of physical exercise and cognition-orientated interventions on post-stroke cognitive impairment, and have produced conflicting findings, making it difficult for clinicians and guideline producers to make evidence-based decisions. This overview of reviews aims to provide a comprehensive overview of systematic reviews investigating the effect of physical exercise and cognition-orientated interventions on post-stroke cognitive function, assess methodological quality and certainty of evidence, and identify sources of discordance between these reviews. METHODS Eight databases-Embase, Medline, CINAHL, Psycinfo, SPORTDiscus, The Cochrane Database of Systematic reviews, Epistemonikos, and Scopus-plus grey literature sources will be searched. The eligibility criteria include systematic reviews of trials that included an adult stroke population and investigated physical exercise and/or cognition-orientated interventions. Only reviews that assessed at least one of the DSM-5 neurocognitive domains will be included. Screening, data extraction, and quality appraisal will be conducted by two independent reviewers. Methodological quality, certainty of evidence, and primary study overlap will be assessed using the AMSTAR-2, GRADE, and GROOVE tools, respectively. Interventions will be grouped into exercise, cognition-orientated, and combined interventions, and findings will be synthesised narratively. Heterogeneity assessment will be conducted to identify factors causing discordance between reviews. DISCUSSION The findings of this overview will allow decision makers to make evidence-based decisions, stratified by methodological quality and certainty of evidence. Heterogeneity assessment may identify factors causing discordance between systematic reviews, which could inform the design of future studies. TRIAL REGISTRATION Registration: PROSPERO CRD42024534179.
Collapse
Affiliation(s)
- James Smith
- Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Philip Nagy
- Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - David Tod
- Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Carol Holland
- Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Hannah Jarvis
- Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
7
|
Li G, Tao X, Lei B, Hou X, Yang X, Wang L, Zhang S, Lv Y, Wang T, Yu L. Effects of exercise on post-stroke cognitive function: a systematic review and meta-analysis of randomized controlled trials. Top Stroke Rehabil 2024; 31:645-666. [PMID: 38825881 DOI: 10.1080/10749357.2024.2356393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/23/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND A growing body of research examining the effect of exercise on cognitive function in stroke patients, while findings of available studies were conflicting. OBJECTIVES We aimed to estimate the effect of exercise on cognitive function in stroke patients. METHODS For this systematic review and meta-analysis, we searched PubMed, Web of Science, Embase, Cochrane, and Scopus electronic databases, through 13 March 2023. The three-level restricted maximum likelihood random effects model was used to synthesize the data. RESULTS Twenty-five studies met the inclusion criteria. There was a significant effect of exercise on improving cognitive function in stroke patients (Cohen's d = 0.37, 95% CI, 0.16 to 0.58, p < 0.01, I2 = 22.12%). Subgroup analysis showed that exercise significantly improved memory. In addition, aerobic exercise, exercise conducted 12 weeks or more, 3 times or more per week, less than 60 minutes per session, less than 180 minutes per week, and up to 12 months post-stroke increased cognitive function significantly. CONCLUSIONS Exercise improved cognitive function in stroke patients. To improve cognitive function, this meta-analysis provides clinicians with evidence to recommend that stroke patients participate in aerobic exercise at least 3 times per week for 30-60 minutes, with a goal of 180 minutes per week being achieved by increasing the frequency of exercise. Exercise initiated within 12 months post-stroke and continued for 12 weeks or more is most beneficial for improving cognitive function.
Collapse
Affiliation(s)
- Gen Li
- School of Physical Education & Sports Science, South China Normal University, Guangzhou, China
| | - Xifeng Tao
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Bingkai Lei
- School of Physical Education, Xihua University, Chengdu, China
| | - Xiao Hou
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Xiaoguang Yang
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Leiyuyang Wang
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Shiyan Zhang
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Tongling Wang
- Institute of Physical Education, Huzhou University, Huzhou, China
| | - Laikang Yu
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| |
Collapse
|
8
|
Raghavan P. Top-Down and Bottom-Up Mechanisms of Motor Recovery Poststroke. Phys Med Rehabil Clin N Am 2024; 35:235-257. [PMID: 38514216 DOI: 10.1016/j.pmr.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Stroke remains a leading cause of disability. Motor recovery requires the interaction of top-down and bottom-up mechanisms, which reinforce each other. Injury to the brain initiates a biphasic neuroimmune process, which opens a window for spontaneous recovery during which the brain is particularly sensitive to activity. Physical activity during this sensitive period can lead to rapid recovery by potentiating anti-inflammatory and neuroplastic processes. On the other hand, lack of physical activity can lead to early closure of the sensitive period and downstream changes in muscles, such as sarcopenia, muscle stiffness, and reduced cardiovascular capacity, and blood flow that impede recovery.
Collapse
Affiliation(s)
- Preeti Raghavan
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
9
|
Linder SM, Bischof-Bockbrader A, Davidson S, Li Y, Lapin B, Singh T, Lee J, Bethoux F, Alberts JL. The Utilization of Forced-Rate Cycling to Facilitate Motor Recovery Following Stroke: A Randomized Clinical Trial. Neurorehabil Neural Repair 2024; 38:291-302. [PMID: 38420848 PMCID: PMC11071159 DOI: 10.1177/15459683241233577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND The potential for aerobic exercise (AE) to enhance neuroplasticity post-stroke has been theorized but not systematically investigated. Our aim was to determine the effects of forced-rate AE (FE) paired with upper extremity (UE) repetitive task practice (FE + RTP) compared to time-matched UE RTP (RTP only) on motor recovery. METHODS A single center randomized clinical trial was conducted from April 2019 to December 2022. Sixty individuals ≥6 months post-stroke with UE hemiparesis were randomized to FE + RTP (N = 30) or RTP only (N = 30), completing 90-minute sessions, 3×/week for 8 weeks. The FE + RTP group underwent 45-minute of FE (5-minute warm-up, 35-minute main set, and 5-minute cool down) followed by 45-minute of UE RTP. The RTP only group completed 90-minute of RTP. Primary outcomes were the Fugl-Meyer Assessment (FMA) and Action Research Arm Test (ARAT). The 6-minute Walk Test (6MWT, secondary outcome) assessed walking capacity. RESULTS Sixty individuals enrolled and 56 completed the study. The RTP only group completed more RTP in terms of repetitions (411.8 ± 44.4 vs 222.8 ± 28.4, P < .001) and time (72.7 ± 6.7 vs 37.8 ± 2.4 minutes, P < .001) versus FE + RTP. There was no significant difference between groups on the FMA (FE + RTP, 36.2 ± 10.1-44.0 ± 11.8 and RTP only, 34.4 ± 11.0-41.2 ± 13.4, P = .43) or ARAT (FE + RTP, 32.5 ± 16.6-37.7 ± 17.9 and RTP only, 32.8 ± 18.6-36.4 ± 18.5, P = .88). The FE + RTP group demonstrated greater improvements on the 6MWT (274.9 ± 122.0-327.1 ± 141.2 m) versus RTP only (285.5 ± 160.3-316.9 ± 170.0, P = .003). CONCLUSIONS There was no significant difference between groups in the primary outcomes. The FE + RTP improved more on the 6MWT, a secondary outcome. TRIAL REGISTRATION ClinicalTrials.gov: NCT03819764.
Collapse
Affiliation(s)
- Susan M. Linder
- Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Sara Davidson
- Concussion Center, Neurologic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yadi Li
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Outcomes Research and Evaluation, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brittany Lapin
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Outcomes Research and Evaluation, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tamanna Singh
- Department of Cardiovascular Medicine; Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John Lee
- Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA
| | - Francois Bethoux
- Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA
| | - Jay L. Alberts
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Concussion Center, Neurologic Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
10
|
Deijle IA, Jonkers IM, Hooghiemstra AM, Engels G, Twisk JWR, Weinstein HC, Van Schaik SM, Van den Berg-Vos RM. Effects of a 1 year aerobic and strength training on cognitive functioning after transient ischemic attack or minor stroke: A randomized controlled trial. J Stroke Cerebrovasc Dis 2024; 33:107441. [PMID: 37966094 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
OBJECTIVES Patients who have recently suffered a transient ischemic attack (TIA) or minor ischemic stroke are at increased risk of cognitive impairment. In the present study, we aimed to investigate the effect of a 1-year exercise intervention on cognitive functioning up to 2 years post intervention. MATERIAL AND METHODS We conducted a single-blind randomized controlled trial to investigate the effect of an exercise intervention on cognitive functioning, compared with usual care, for up to 2 years. Patients with a TIA or minor stroke were randomly allocated to an intervention group receiving the 1-year exercise intervention (n = 60) or to usual care (n = 59). Outcome measures were assessed at baseline and after 1 and 2 years. We measured cognition with neuropsychological tests on three domains: (1) executive functioning, (2) attention-psychomotor speed, and (3) memory. Linear mixed models were used for longitudinal data to determine the effect of the exercise intervention on cognitive functioning. Statistical analyses were performed using IBM SPSS software 24.0. RESULTS We found that over the two years study period -and corrected for age, sex, and educational level- the intervention group on average improved significantly more in executive functioning than the control group (β = 0.13; 95 % CI [0.02 to 0.25]; p = 0.03). No significant intervention effects were found on either memory or attention-psychomotor speed. CONCLUSIONS Our data show that a 1-year exercise intervention significantly improved executive functioning over time, compared to usual care. We recommend that health care professionals consider broadening standard secondary stroke prevention treatment in patients with TIA/minor stroke by adding exercise and physical activity.
Collapse
Affiliation(s)
- Inger A Deijle
- Department of Neurology, OLVG, Amsterdam, the Netherlands; Department of Quality and Improvement, OLVG, Amsterdam, the Netherlands.
| | - Ilse M Jonkers
- Department of Psychology, Woonzorggroep Samen, Schagen, the Netherlands
| | - Astrid M Hooghiemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gwenda Engels
- Department of Neurology, OLVG, Amsterdam, the Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, the Netherlands
| | | | | | - Renske M Van den Berg-Vos
- Department of Neurology, OLVG, Amsterdam, the Netherlands; Department of Neurology, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Hill G, Johnson F, Uy J, Serrada I, Benyamin B, Van Den Berg M, Hordacre B. Moderate intensity aerobic exercise may enhance neuroplasticity of the contralesional hemisphere after stroke: a randomised controlled study. Sci Rep 2023; 13:14440. [PMID: 37660093 PMCID: PMC10475034 DOI: 10.1038/s41598-023-40902-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
Upregulation of neuroplasticity might help maximize stroke recovery. One intervention that appears worthy of investigation is aerobic exercise. This study aimed to determine whether a single bout of moderate intensity aerobic exercise can enhance neuroplasticity in people with stroke. Participants were randomly assigned (1:1) to a 20-min moderate intensity exercise intervention or remained sedentary (control). Transcranial magnetic stimulation measured corticospinal excitability of the contralesional hemisphere by recording motor evoked potentials (MEPs). Intermittent Theta Burst Stimulation (iTBS) was used to repetitively activate synapses in the contralesional primary motor cortex, initiating the early stages of neuroplasticity and increasing excitability. It was surmised that if exercise increased neuroplasticity, there would be a greater facilitation of MEPs following iTBS. Thirty-three people with stroke participated in this study (aged 63.87 ± 10.30 years, 20 male, 6.13 ± 4.33 years since stroke). There was an interaction between Time*Group on MEP amplitudes (P = 0.009). Participants allocated to aerobic exercise had a stronger increase in MEP amplitude following iTBS. A non-significant trend indicated time since stroke might moderate this interaction (P = 0.055). Exploratory analysis suggested participants who were 2-7.5 years post stroke had a strong MEP facilitation following iTBS (P < 0.001). There was no effect of age, sex, resting motor threshold, self-reported physical activity levels, lesion volume or weighted lesion load (all P > 0.208). Moderate intensity cycling may enhance neuroplasticity in people with stroke. This therapy adjuvant could provide opportunities to maximize stroke recovery.
Collapse
Affiliation(s)
- Gabrielle Hill
- Clinical Rehabilitation, College of Nursing and Health Sciences, Flinders University, Adelaide, 5042, Australia
| | - Finn Johnson
- Allied Health and Human Performance, University of South Australia, Adelaide, 5000, Australia
| | - Jeric Uy
- Allied Health and Human Performance, University of South Australia, Adelaide, 5000, Australia
| | - Ines Serrada
- Allied Health and Human Performance, University of South Australia, Adelaide, 5000, Australia
| | - Beben Benyamin
- Australian Centre for Precision Health, Allied Health and Human Performance, University of South Australia, Adelaide, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, 5000, Australia
| | - Maayken Van Den Berg
- Clinical Rehabilitation, College of Nursing and Health Sciences, Flinders University, Adelaide, 5042, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, City East Campus, GPO Box 2471, Adelaide, 5001, Australia.
| |
Collapse
|
12
|
Ebrahimi V, Rastegar-Moghaddam SH, Mohammadipour A. Therapeutic Potentials of MicroRNA-126 in Cerebral Ischemia. Mol Neurobiol 2023; 60:2062-2069. [PMID: 36596965 DOI: 10.1007/s12035-022-03197-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Stroke is a leading cause of death and disability worldwide. It is among the most common neurological disorders with an 8-10% lifetime risk. Ischemic stroke accounts for about 85% of all strokes and damages the brain tissue via various damaging mechanisms. Following cerebral ischemia, the disrupted blood-brain barrier (BBB) leads to cerebral edema formation caused by activation of oxidative stress, inflammation, and apoptosis, targeting primarily endothelial cells. Activation of the protective mechanisms might favor fewer damages to the neural tissue. MicroRNA (miR)-126 is an endothelial cell-specific miR involved in angiogenesis. MiR-126 orchestrates endothelial progenitor cell functions under hypoxic conditions and could inhibit ischemia-induced oxidative stress and inflammation. It alleviates the BBB disruption by preventing an augment in matrix metalloproteinase level and halting the decrease in the junctional proteins, including zonula occludens-1 (ZO-1), claudin-5, and occludin levels. Moreover, miR-126 enhances post-stroke angiogenesis and neurogenesis. This work provides a therapeutic perspective for miR-126 as a new approach to treating cerebral ischemia.
Collapse
Affiliation(s)
- Vahid Ebrahimi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Moghanlou AE, Yazdanian M, Roshani S, Demirli A, Seydyousefi M, Metz GAS, Faghfoori Z. Neuroprotective effects of pre-ischemic exercise are linked to expression of NT-3/NT-4 and TrkB/TrkC in rats. Brain Res Bull 2023; 194:54-63. [PMID: 36646145 DOI: 10.1016/j.brainresbull.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
INTRODUCTION AND OBJECTIVE Stroke causes irreversible damage, particularly to the hippocampus. Evidence suggests that exercise training may mitigate adverse structural and functional consequences of an ischemic lesion in the brain. The purpose of this study was to investigate the effects of preconditioning exercise on expression of neurotrophic factor genes and proteins in hippocampalCA1 region and their relationship with sensorimotor recovery following global ischemia/reperfusion (Is/Re) injury in a rat model of stroke. METHODS Male Wistar rats were randomly assigned to Exercise+Ischemia/Reperfusion (Ex+Is/Re),Control+Ischemia/Reperfusion (Co+Is/Re), and Sham treatments. Rats in the exercise groups ran on a treadmill for 45 min/d for five days/week for 8 consecutive weeks prior to Is/Re lesion.Ischemia was induced by common carotid artery occlusion (CCAO). The ladder rung walking task was used to assess functional impairments and recovery following ischemic lesion.Tissue from hippocampal area CA1 was inspected for ischemia-induced cell loss and gene and protein expression linked to neurotrophins NT-3, NT-4, and their receptorsTrkB and TrkC. RESULTS CCAO caused hippocampal cell death in CA1 and resulted in significant sensori motor impairments in the ladder rung walking task. In contrast, pre-ischemic exercise considerably reduced cell death and supported sensorimotor recovery following CCAO.In addition, NT-3, NT-4,TrkB and TrkC gene expression and their protein levels were significantly increased inthe Ex+Is/Re group compared to Co+Is/Re (p < 0.05). CONCLUSION The findings showed that pre-ischemic exercise can exert neuroprotective effects via NT-3 and NT-4 pathways against ischemia in hippocampal CA1 neurons and promote post-injury sensorimotor recovery.
Collapse
Affiliation(s)
| | | | - Sajad Roshani
- Department of Exercise Physiology and Corrective Exercise, Faculty of Sport Science, Urmia University, Urmia, Iran
| | - Abdullah Demirli
- Department of Coaching Education, Istanbul Esenyurt University, Istanbul, Turkey
| | - Mehdi Seydyousefi
- Department of Physical Education and Sport Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Zeinab Faghfoori
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran; Department of Nutrition, School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
14
|
Wang D, Li L, Pan H, Huang L, Sun X, He C, Wei Q. Comparison of the Effects of Constraint-Induced Movement Therapy and Unconstraint Exercise on Oxidative Stress and Limb Function-A Study on Human Patients and Rats with Cerebral Infarction. Brain Sci 2022; 13:brainsci13010004. [PMID: 36671986 PMCID: PMC9856592 DOI: 10.3390/brainsci13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Most conventional post-stroke rehabilitation treatments do not involve imposed constraints of the unaffected limb. In contrast, Constraint-Induced Movement Therapy (CIMT) is comprised of massed task practice with the affected limb and constraint of the unaffected limb. CIMT is a promising rehabilitation technique used for motor recovery of affected limbs after stroke, but its effectiveness and mechanism are not fully understood. We compared the effects of the two exercise modes on limb function post-stroke in animal models and human subjects, and investigated whether oxidative stress response was involved in regulating the effects. We first conducted a randomized controlled trial (RCT), in which 84 subjects with cerebral infarction were assigned to dose-matched constraint-induced movement therapy (CIMT), or unconstraint exercise (UE), or conventional rehabilitation treatment. Motor functions of the limb are primary outcomes of the RCT measured using Brief Fugl-Meyer upper extremity score (FMA-UE), Ashworth score, and Barthel scale. Psychological influence of CIMT and UE was also examined using Self-Rating Depression Scale (SDS). Next, we investigated the effects of CIMT and UE in rats undergoing middle cerebral artery occlusion and reperfusion (MCAO/R). Motor function, infarct volume, and pathohistological changes were investigated by mNSS, MRI, and histological studies. The role of Keap1-Nrf2-ARE was investigated using qRT-PCR, Western blot, immunochemistry, immunofluorescence, and ELISA experiments. In RCT, patients taking CIMT had a higher score in FMA-UE, Barthel index, and SDS, and a lower score in modified Ashworth, compared to those taking UE. In rats receiving CIMT, motor function was increased, and infarct volume was decreased compared to those receiving UE. The expression of Keap1 protein and mRNA in the peri-infarct tissue was decreased, and Nrf2 and ARE protein and mRNA were increased in rats receiving CIMT compared with UE. Nrf2 agonist t-BHQ increased the benefits of CIMT. In conclusion, CIMT is more effective than UE in improving upper limb motor function, reducing muscle spasm in patients with cerebral infarction compared to UE, but patients receiving CIMT may feel depressed. Moreover, both CIMT and UE are beneficial to limb function recovery and limit the infarct expansion in MCAO/R rats, but CIMT was more effective than UE. Oxidative stress reaction has an essential role in regulating the CIMT induced benefits.
Collapse
Affiliation(s)
- Dong Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 611135, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu 611135, China
- Department of Rehabilitation Medicine, Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Lijuan Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 611135, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu 611135, China
| | - Hongxia Pan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 611135, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu 611135, China
| | - Liyi Huang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 611135, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu 611135, China
| | - Xin Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 611135, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu 611135, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 611135, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu 611135, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 611135, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu 611135, China
- Correspondence: ; Tel.: +86-2885422847
| |
Collapse
|
15
|
Li Y, Lu T, Wei W, Lin Z, Ding L, Li Z, Xue X. Swimming Training Mitigates Neurological Impairment of Intracerebral Haemorrhage in Mice via the Serine-Threonine Kinase/Glycogen Synthase Kinase 3β Signalling Pathway. Neuroscience 2022; 501:72-84. [PMID: 35961525 DOI: 10.1016/j.neuroscience.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
Swimming training (ST) can mitigate functional disorders in neurological diseases, but the effect and mechanism of ST in improving the neurological function of intracerebral haemorrhage (ICH) have not been reported. Our study aimed to explore the protective effect of early ST on ICH mice and its relationship with the serine-threonine kinase (Akt)/glycogen synthase kinase 3β (GSK3β) pathway. Our findings showed that the ICH model mice had poor behavioural manifestations in the Y maze test and open field test compared to the ST group and sham group. The modified neurological severity score was increased in the ICH mice, and 7 days of ST intervention significantly attenuated the neurological deficits. The ratios of myo-inositol/creatine, lactate/creatine and glutamate/creatine were decreased, and the ratios of N-acetylaspartate/creatine and choline/creatine were increased in the ICH mice with ST intervention. ST intervention decreased the expression of Iba1 and GFAP. Seven days of ST significantly increased the expression of p-Akt/Akt compared to that in the ICH mice. Furthermore, the Akt kinase inhibitor GSK690693 exacerbated neurological impairment, increased the expression of Iba1, GFAP and Bax/Bcl-2, and reversed the anti-apoptotic effects and anti-glia activation of ST, which was associated with the inhibition of p-Akt/Akt and p-GSK3β/GSK3β expression. These results indicated that the protective role of ST in ICH was mediated via the Akt/GSK3β pathway. In conclusion, ST displayed neuroprotection by inhibiting apoptosis and glial activation in ICH mice by activating the Akt/GSK3β signalling pathway.
Collapse
Affiliation(s)
- Yongxu Li
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China; College of Rehabilitation Medicine, Fujian University of Chinese Medicine, China
| | - Taotao Lu
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China; College of Rehabilitation Medicine, Fujian University of Chinese Medicine, China
| | - Wei Wei
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Zhicheng Lin
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Linlin Ding
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Zhaohui Li
- Anxi County Hospital of Traditional Chinese Medicine, Quanzhou, Fujian Province, China.
| | - Xiehua Xue
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China; Fujian Key Laboratory of Rehabilitation Technology and Cognition Rehabilitation, China.
| |
Collapse
|
16
|
Dong Y, Weng L, Hu Y, Mao Y, Zhang Y, Lu Z, Shi T, Du R, Wang W, Wang J, Wang X. Exercise for Stroke Rehabilitation: A Bibliometric Analysis of Global Research From 2001 to 2021. Front Aging Neurosci 2022; 14:876954. [PMID: 35783146 PMCID: PMC9247282 DOI: 10.3389/fnagi.2022.876954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo make a bibliometric analysis of global trends in research into exercise interventions for stroke between 2001 and 2021.MethodThis study did the systematic literature from 2001 to 2021 in Web of Science Core Collection. CiteSpace software was used to analyze the relationship of publications with countries, journals, authors, references, and keywords.ResultsA total of 3,484 publications were obtained in the bibliometric analysis. The number of publications increased gradually over the period. The United States have the most number of publications. The journal stroke had the most citations per paper (106.95) and the highest impact factor (IF 2020, 7.194). The most high frequency keywords are “stroke,” “rehabilitation,” and “recovery,” the top of burst key words are “health,” “speed,” and “aerobic exercise”.ConclusionThese findings provide the trends of exercise for stroke s and provided the potential research frontiers in the past 20 years. It will be a useful basis for further research into focus issues, cooperators, development trends.
Collapse
Affiliation(s)
- Yulin Dong
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Linman Weng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yinhu Hu
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Yuxing Mao
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Yajuan Zhang
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Zefeng Lu
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Tingting Shi
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Renren Du
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Wu Wang
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Jinyan Wang
- Department of Treatment, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
- *Correspondence: Jinyan Wang,
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Jinyan Wang,
| |
Collapse
|
17
|
Rodrigues L, Moncion K, Eng JJ, Noguchi KS, Wiley E, de Las Heras B, Sweet SN, Fung J, MacKay-Lyons M, Nelson AJ, Medeiros D, Crozier J, Thiel A, Tang A, Roig M. Intensity matters: protocol for a randomized controlled trial exercise intervention for individuals with chronic stroke. Trials 2022; 23:442. [PMID: 35610659 PMCID: PMC9127488 DOI: 10.1186/s13063-022-06359-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale Cardiovascular exercise is an effective method to improve cardiovascular health outcomes, but also promote neuroplasticity during stroke recovery. Moderate-intensity continuous cardiovascular training (MICT) is an integral part of stroke rehabilitation, yet it may remain a challenge to exercise at sufficiently high intensities to produce beneficial adaptations to neuroplasticity. High-intensity interval training (HIIT) could provide a viable alternative to achieve higher intensities of exercise by using shorter bouts of intense exercise interspersed with periods of recovery. Methods and design This is a two-arm, parallel-group multi-site RCT conducted at the Jewish Rehabilitation Hospital (Laval, Québec, Canada) and McMaster University (Hamilton, Ontario, Canada). Eighty participants with chronic stroke will be recruited at both sites and will be randomly allocated into a HIIT or MICT individualized exercise program on a recumbent stepper, 3 days per week for 12 weeks. Outcomes will be assessed at baseline, at 12 weeks post-intervention, and at an 8-week follow-up. Outcomes The primary outcome is corticospinal excitability, a neuroplasticity marker in brain motor networks, assessed with transcranial magnetic stimulation (TMS). We will also examine additional markers of neuroplasticity, measures of cardiovascular health, motor function, and psychosocial responses to training. Discussion This trial will contribute novel insights into the effectiveness of HIIT to promote neuroplasticity in individuals with chronic stroke. Trial registration ClinicalTrials.govNCT03614585. Registered on 3 August 2018 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06359-w.
Collapse
Affiliation(s)
- Lynden Rodrigues
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Québec, Montréal, Canada.,Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Montréal, Québec, Canada.,Feil/Oberfeld/CRIR Research Centre, Jewish Rehabilitation Hospital site of CISSS-Laval, Laval, Québec, Canada
| | - Kevin Moncion
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | - Janice J Eng
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenneth S Noguchi
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | - Elise Wiley
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | - Bernat de Las Heras
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Québec, Montréal, Canada.,Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Montréal, Québec, Canada.,Feil/Oberfeld/CRIR Research Centre, Jewish Rehabilitation Hospital site of CISSS-Laval, Laval, Québec, Canada
| | - Shane N Sweet
- Feil/Oberfeld/CRIR Research Centre, Jewish Rehabilitation Hospital site of CISSS-Laval, Laval, Québec, Canada.,Department of Kinesiology and Physical Education, McGill University, Montréal, Québec, Canada
| | - Joyce Fung
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Québec, Montréal, Canada.,Feil/Oberfeld/CRIR Research Centre, Jewish Rehabilitation Hospital site of CISSS-Laval, Laval, Québec, Canada
| | | | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Diogo Medeiros
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Québec, Montréal, Canada.,Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Montréal, Québec, Canada
| | - Jennifer Crozier
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | - Alexander Thiel
- Department of Neurology & Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Ada Tang
- School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
| | - Marc Roig
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Québec, Montréal, Canada. .,Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Montréal, Québec, Canada. .,Feil/Oberfeld/CRIR Research Centre, Jewish Rehabilitation Hospital site of CISSS-Laval, Laval, Québec, Canada.
| |
Collapse
|
18
|
Lin H, Liu H, Dai Y, Yin X, Li Z, Yang L, Tao J, Liu W, Chen L. Effect of Physical Activity on Cognitive Impairment in Patients With Cerebrovascular Diseases: A Systematic Review and Meta-Analysis. Front Neurol 2022; 13:854158. [PMID: 35599737 PMCID: PMC9120585 DOI: 10.3389/fneur.2022.854158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose This study investigates the effect of physical activity (PA) on cognition in patients with cerebrovascular disease and explored the maximum benefit of different PA characteristics. Methods Databases, such as Pubmed, Web of Science, Embase, and Cochrane Library, were searched from their inception to May 31, 2021. Standardized mean difference (SMD) and 95% confidence intervals (CIs) were calculated to generate a forest plot. In addition, subgroup analysis, moderation analysis, and regression analysis were performed to explore the possible adjustment factors. Results In total, 22 studies that met the criteria were included, demonstrating data from 1,601 participants. The results indicated that PA produced a positive effect on the global cognition for patients with cerebrovascular disease (SMD: 0.20 [95% CI: 0.12-0.27]), at the same time, PA training prominently improved executive function (SMD: 0.09 [95% CI: 0.00-0.17]) and working memory (SMD: 0.25 [95% CI: 0.10-0.40]). Furthermore, patients with baseline cognitive impairment received the greater benefit of PA on cognition (SMD: 0.24 [95% CI: 0.14-0.34]) than those without cognitive impairment before intervention (SMD: 0.15 [95% CI: 0.04-0.26]). For patients in the acute stage (≤ 3 months), PA did not rescue impairment dysfunction significantly (SMD: 0.08 [95% CI: -0.04-0.21]) and remarkable cognitive gains were detected in the chronic stage of participants (>3 months) (SMD: 0.25 [95% CI: 0.16-0.35]). Moderate intensity PA showed a larger pooled effect size (SMD: 0.23 [95% CI: 0.11-0.36]) than low intensity (SMD: -0.01 [95% CI: -0.44-0.43]) and high intensity (SMD: 0.16 [95% CI: 0.03-0.29]). However, the different types, duration, and frequency of PA resulted in no differences in the improvement of cognitive function. Further regression analysis demonstrated that the beneficial effects of PA on cognition are negatively correlated with age (p < 0.05). Conclusions This study revealed that PA can prominently improve the cognitive ability in patients with cerebrovascular diseases and strengthened the evidence that PA held promise as a widely accessible and effective non-drug therapy for vascular cognitive impairment (VCI).
Collapse
Affiliation(s)
- Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - HuanHuan Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yaling Dai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaolong Yin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuanfang Li
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lei Yang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
19
|
Exercise-induced neuroprotection against cerebral ischemia/reperfusion injury is mediated via alleviating inflammasome-induced pyroptosis. Exp Neurol 2021; 349:113952. [PMID: 34921847 DOI: 10.1016/j.expneurol.2021.113952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022]
Abstract
As a primary nonpharmacological tool, exercise training is neuroprotective after experimental ischemic stroke by relieving neuroinflammation. However, the specific mechanism of which and anti-inflammatory effect of exercise at different intensities require in-depth investigations. To explore the issue, middle cerebral artery occlusion-reperfusion (MCAO-r) in mice were utilized, with subsequent exercise training at different intensities (high-intensity interval training versus moderate-intensity continuous training, i.e. HIIT vs. MICT) during an early phase post-modeling. The neurobehavioral assessment showed that MICT improved the performance of neurological deficit scores and rotarod test earlier, while HIIT appeared to be more efficacious to meliorate locomotor impairments and aerobic fitness at the end of intervention. Both exercise regimens inhibited the expressions of NLRP3 inflammasome components (NLRP3, ASC, and Cl.caspase-1) and pyroptosis-associated proteins (GSDMD, Cl.IL-1β, and Cl.IL-18) as indicated by western blot and immunofluorescence co-staining. Multiplex assay panel revealed that both exercise regimens reduced the levels of pro-inflammatory cytokines and upregulated anti-inflammatory cytokine. Furthermore, an increased proportion of M2-like microglia and a diminished proportion of M1-like microglia in the peri-infarct zone were observed by colocalization analysis, which was jointly validated by western blot. Here, for the first time, our study demonstrated that HIIT elicited better improvements at functional and cardiovascular levels than MICT after ischemic stroke, and anti-inflammatory effect of exercise might result from suppression in inflammasome-mediated pyroptosis by shifting microglial polarization toward neuroprotective M2 phenotype.
Collapse
|
20
|
Lu J, Wang J, Yu L, Cui R, Zhang Y, Ding H, Yan G. Treadmill Exercise Attenuates Cerebral Ischemia-Reperfusion Injury by Promoting Activation of M2 Microglia via Upregulation of Interleukin-4. Front Cardiovasc Med 2021; 8:735485. [PMID: 34692788 PMCID: PMC8532515 DOI: 10.3389/fcvm.2021.735485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Exercise has been proven to be an effective therapy for stroke by reducing the microglia-initiated proinflammatory response. Few studies, however, have focused on the phenotypic changes in microglia cells caused by exercise training. The present study was designed to evaluate the influence of treadmill exercise on microglia polarization and the molecular mechanisms involved. Methods: Male Sprague-Dawley rats were randomly assigned into 3 groups: sham, MCAO and exercise. The middle cerebral artery occlusion (MCAO) and exercise groups received MCAO surgery and the sham group a sham operation. The exercise group also underwent treadmill exercise after the surgery. These groups were studied after 4 and 7 days to evaluate behavioral performance using a modified neurological severity score (mNSS), and infarct conditions using 2,3,5-triphenyl tetrazolium chloride. Quantitative real-time polymerase chain reaction (qRT-PCR) and Luminex was employed to determine the expressions of markers of microglia phenotypes. Western blotting was employed to identify the phosphorylation levels of Janus kinase1 (JAK1) and signal transducer and activator of transcription 6 (STAT6). Immunofluorescence was conducted to identify microglia phenotypes. Results: Treadmill exercise was found to improve neurobehavioral outcomes, mainly motor and balance functions, reduce infarct volumes and significantly increase interleukin-4 (IL-4) expression. In addition, treadmill exercise inhibited M1 microglia and promoted M2 microglia activation as evidenced by decreased M1 and increased M2 markers. Furthermore, an obvious increase in p-JAK1 and p-STAT6 was observed in the exercise group. Conclusions: Treadmill exercise ameliorates cerebral ischemia-reperfusion injury by enhancing IL-4 expression to promote M2 microglia polarization, possibly via the JAK1-STAT6 pathway.
Collapse
Affiliation(s)
- Juanjuan Lu
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jie Wang
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Long Yu
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Rong Cui
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ying Zhang
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Hanqing Ding
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guofeng Yan
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Xu L, Zhu L, Zhu L, Chen D, Cai K, Liu Z, Chen A. Moderate Exercise Combined with Enriched Environment Enhances Learning and Memory through BDNF/TrkB Signaling Pathway in Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8283. [PMID: 34444034 PMCID: PMC8392212 DOI: 10.3390/ijerph18168283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the effects and potential mechanisms of exercise combined with an enriched environment on learning and memory in rats. Forty healthy male Wistar rats (7 weeks old) were randomly assigned into 4 groups (N = 10 in each group): control (C) group, treadmill exercise (TE) group, enriched environment (EE) group and the TE + EE group. The Morris water maze (MWM) test was used to evaluate the learning and memory ability in all rats after eight weeks of exposure in the different conditions. Moreover, we employed enzyme-linked immunosorbent assay (ELISA) to determine the expression of brain-derived neurotrophic factor (BDNF) and receptor tyrosine kinase B (TrkB) in the rats. The data showed that the escape latency and the number of platform crossings were significantly better in the TE + EE group compared to the TE, EE or C groups (p < 0.05). In addition, there was upregulation of BDNF and TrkB in rats in the TE + EE group compared to those in the TE, EE or C groups (p < 0.05). Taken together, the data robustly demonstrate that the combination of TE + EE enhances learning and memory ability and upregulates the expression of both BDNF and TrkB in rats. Thus, the BDNF/TrkB signaling pathway might be modulating the effect of exercise and enriched environment in improving learning and memory ability in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (L.X.); (L.Z.); (L.Z.); (D.C.); (K.C.); (Z.L.)
| |
Collapse
|
22
|
Allen MD, Dalton BH, Gilmore KJ, McNeil CJ, Doherty TJ, Rice CL, Power GA. Neuroprotective effects of exercise on the aging human neuromuscular system. Exp Gerontol 2021; 152:111465. [PMID: 34224847 DOI: 10.1016/j.exger.2021.111465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
Human biological aging from maturity to senescence is associated with a gradual loss of muscle mass and neuromuscular function. It is not until very old age (>80 years) however, that these changes often manifest into functional impairments. A driving factor underlying the age-related loss of muscle mass and function is the reduction in the number and quality of motor units (MUs). A MU consists of a single motoneuron, located either in the spinal cord or the brain stem, and all of the muscle fibres it innervates via its peripheral axon. Throughout the adult lifespan, MUs are slowly, but progressively lost. The compensatory process of collateral reinnervation attempts to recapture orphaned muscle fibres following the death of a motoneuron. Whereas this process helps mitigate loss of muscle mass during the latter decades of adult aging, the neuromuscular system has fewer and larger MUs, which have lower quality connections between the axon terminal and innervated muscle fibres. Whether this process of MU death and degradation can be attenuated with habitual physical activity has been a challenging question of great interest. This review focuses on age-related alterations of the human neuromuscular system, with an emphasis on the MU, and presents findings on the potential protective effects of lifelong physical activity. Although there is some discrepancy across studies of masters athletes, if one considers all experimental limitations as well as the available literature in animals, there is compelling evidence of a protective effect of chronic physical training on human MUs. Our tenet is that high-levels of physical activity can mitigate the natural trajectory of loss of quantity and quality of MUs in old age.
Collapse
Affiliation(s)
- Matti D Allen
- Department of Physical Medicine and Rehabilitation, School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON K7L 4X3, Canada; School of Kinesiology and Health Studies, Faculty of Arts and Sciences, Queen's University, Kingston, ON K7L 4X3, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Kevin J Gilmore
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Chris J McNeil
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Timothy J Doherty
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Charles L Rice
- School of Kinesiology, The University of Western Ontario, London, ON, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
23
|
McDonald MW, Jeffers MS, Issa L, Carter A, Ripley A, Kuhl LM, Morse C, Comin CH, Jasmin BJ, Lacoste B, Corbett D. An Exercise Mimetic Approach to Reduce Poststroke Deconditioning and Enhance Stroke Recovery. Neurorehabil Neural Repair 2021; 35:471-485. [PMID: 33825581 PMCID: PMC8135250 DOI: 10.1177/15459683211005019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Evidence supports early rehabilitation after stroke to limit disability. However, stroke survivors are typically sedentary and experience significant cardiovascular and muscular deconditioning. Despite growing consensus that preclinical and clinical stroke recovery research should be aligned, there have been few attempts to incorporate cardiovascular and skeletal muscle deconditioning into animal models of stroke. Here, we demonstrate in rats that a hindlimb sensorimotor cortex stroke results in both cardiovascular and skeletal muscle deconditioning and impairments in gait akin to those observed in humans. To reduce poststroke behavioral, cardiovascular, and skeletal muscle perturbations, we then used a combinatorial intervention consisting of aerobic and resistance exercise in conjunction with administration of resveratrol (RESV), a drug with exercise mimetic properties. A combination of aerobic and resistance exercise mitigated decreases in cardiovascular fitness and attenuated skeletal muscle abnormalities. RESV, beginning 24 hours poststroke, reduced acute hindlimb impairments, improved recovery in hindlimb function, increased vascular density in the perilesional cortex, and attenuated skeletal muscle fiber changes. Early RESV treatment and aerobic and resistance exercise independently provided poststroke benefits, at a time when individuals are rapidly becoming deconditioned as a result of inactivity. Although no additive effects were observed in these experiments, this approach represents a promising strategy to reduce poststroke behavioral impairments and minimize deconditioning. As such, this treatment regime has potential for enabling patients to engage in more intensive rehabilitation at an earlier time following stroke when mechanisms of neuroplasticity are most prevalent.
Collapse
Affiliation(s)
- Matthew W McDonald
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Matthew S Jeffers
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | | | - Anthony Carter
- Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, ON, Canada
| | | | | | | | | | | | - Baptiste Lacoste
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, ON, Canada.,University of Ottawa Brain and Mind Research Institute, ON, Canada
| | - Dale Corbett
- University of Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, ON, Canada
| |
Collapse
|
24
|
Veldema J, Jansen P. Aquatic therapy in stroke rehabilitation: systematic review and meta-analysis. Acta Neurol Scand 2021; 143:221-241. [PMID: 33141446 DOI: 10.1111/ane.13371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022]
Abstract
The main object of this systematic review and meta-analysis is to collect the available evidence of aquatic therapy in stroke rehabilitation and to investigate the effect of this intervention in supporting stroke recovery. The PubMed, the Cochrane Central Register of Controlled Trials and the PEDro databases were searched from their inception through to 31/05/2020 on randomized controlled trials evaluating the effect of aquatic therapy on stroke recovery. Subjects´ characteristics, methodological aspects, intervention description, and outcomes were extracted. Effect sizes were calculated for each study and outcome. Overall, 28 appropriate studies (N = 961) have been identified. A comparison with no intervention indicates that aquatic therapy is effective in supporting walking, balance, emotional status and health-related quality of life, spasticity, and physiological indicators. In comparison with land-based interventions, aquatic therapy shows superior effectiveness on balance, walking, muscular strength, proprioception, health-related quality of life, physiological indicators, and cardiorespiratory fitness. Only on independence in activities of daily living the land- and water-based exercise induce similar effects. Established concepts of water-based therapy (such as the Halliwick, Ai Chi, Watsu, or Bad Ragaz Ring methods) are the most effective, aquatic treadmill walking is the least effective. The current evidence is insufficient to support this therapy form within evidence-based rehabilitation. However, the available data indicate that this therapy can significantly improve a wide range of stroke-induced disabilities. Future research should devote more attention to this highly potent intervention.
Collapse
Affiliation(s)
- Jitka Veldema
- Faculty of Human Sciences University of Regensburg Regensburg Germany
| | - Petra Jansen
- Faculty of Human Sciences University of Regensburg Regensburg Germany
| |
Collapse
|
25
|
Kobayashi M, Shinohara T, Usuda S. Accuracy of wrist-worn heart rate monitors during physical therapy sessions among hemiparetic inpatients with stroke. J Phys Ther Sci 2021; 33:45-51. [PMID: 33519074 PMCID: PMC7829560 DOI: 10.1589/jpts.33.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022] Open
Abstract
[Purpose] We aimed to examine the accuracy of heart rate monitors worn on the wrist by
patients with stroke. The wrist worn heart rate monitor could improve the quality of
rehabilitation by monitoring exercise intensity during physical therapy. [Participants and
Methods] Thirty inpatients with subacute hemiparetic stroke wore heart rate monitors on
both (non-paretic and paretic) wrists, as well as a chest heart rate monitor. We recorded
the heart rate values measured at the wrist and chest every minute during physical therapy
sessions. The wrist monitors were an optical heart rate measurement device based on
photoplethysmography, and the chest monitor was a traditional chest device based on
electrocardiography. The relative and absolute reliabilities between the heart rate
measurements from the wrist and chest monitors were calculated. [Results] The intraclass
correlation coefficients for model 2.1 ranged from 0.75 to 0.79. Bland-Altman analysis
revealed a very slight fixed bias; however, no significant proportional bias was observed.
For the non-paretic and paretic sides, the lower and upper limits of agreement ranged from
−21.8 to 23.8 beats/min and from −20.8 to 21.6 beats/min, and the mean absolute percentage
errors were 6.7% and 5.9%, respectively. The Cohen’s d value was small. [Conclusion] The
relative reliability of the wrist heart rate monitors was substantial. The absolute
reliability as bias in wrist heart rate and chest heart rate was small, but heart rates
estimated from wrist monitors were not particularly accurate.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Geriatrics Research Institute and Hospital: 3-26-8 Ootomo-Machi, Maebashi 371-0847, Japan
| | | | - Shigeru Usuda
- Gunma University Graduate School of Health Sciences, Japan
| |
Collapse
|
26
|
Nemchek V, Haan EM, Mavros R, Macuiba A, Kerr AL. Voluntary exercise ameliorates the good limb training effect in a mouse model of stroke. Exp Brain Res 2021; 239:687-697. [PMID: 33388904 DOI: 10.1007/s00221-020-05994-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
Stroke is the leading cause of long-term disability in the United States, making research on rehabilitation imperative. Stroke rehabilitation typically focuses on recovery of the impaired limb, although this process is tedious. Compensatory use of the intact limb after stroke is more efficient, but it is known to negatively impact the impaired limb. Exercise may help with this problem; research has shown that exercise promotes neuronal growth and prevents cell death. This study used a mouse model to investigate if post-stroke exercise could prevent deterioration of the function of the impaired limb despite compensatory training of the intact limb. Results showed that mice that exercised, in combination with intact limb training, demonstrated improved functional outcome compared to mice that received no training or compensatory limb training only. These findings suggest that exercise can prevent the deterioration of impaired limb functional outcome that is typically seen with intact limb use.
Collapse
Affiliation(s)
- Victoria Nemchek
- Neuroscience Program, Illinois Wesleyan University, Bloomington, IL, USA
| | - Emma M Haan
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Rachel Mavros
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Amanda Macuiba
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Abigail L Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA.
- Neuroscience Program, Illinois Wesleyan University, Bloomington, IL, USA.
| |
Collapse
|
27
|
Akhoundzadeh K, Vakili A. Effect of stem cells-based therapy on astrogliosis in stroke subjected-mice. Stem Cell Investig 2020; 7:21. [PMID: 33437841 DOI: 10.21037/sci-2020-031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/08/2020] [Indexed: 01/18/2023]
Abstract
This study was planned to continue our previous study to assess effect of combination therapy bone marrow stromal cells (BMSCs) with exercise (EX) and triiodothyronine (T3) on stroke-induced astrogliosis in mice. Stroke subjected-mice were divided into five monotherapy groups including sham, control, BMSCs, EX and T3; and three combination therapy groups including BMSCs + EX, BMSCs + T3 and BMSCs + EX + T3. Astrogliosis was assessed in ipsilateral hemisphere at day 7 after MCAO. Combination therapy BMSCs with EX and T3 could significantly decrease stroke-induced astrogliosis. However, monotherapy with BMSCs or EX also improved changes of glial fibrillary acidic protein (GFAP)-positive cells following stroke. Combination therapy BMSCs with EX and T3 didn't have any added effect on astrogliosis compared to monotherapy with BMSCs or EX. With comparing the present findings with the results of neurobehavioral functioning in our earlier study, it seems that decrease of astrogliosis could be helpful for stroke recovery.
Collapse
Affiliation(s)
- Kobra Akhoundzadeh
- Faculty of Nursing, Qom University of Medical Sciences, Qom, Iran.,Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Abedin Vakili
- Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
28
|
Di Raimondo D, Rizzo G, Musiari G, Tuttolomondo A, Pinto A. Role of Regular Physical Activity in Neuroprotection against Acute Ischemia. Int J Mol Sci 2020; 21:ijms21239086. [PMID: 33260365 PMCID: PMC7731306 DOI: 10.3390/ijms21239086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
One of the major obstacles that prevents an effective therapeutic intervention against ischemic stroke is the lack of neuroprotective agents able to reduce neuronal damage; this results in frequent evolution towards a long-term disability with limited alternatives available to aid in recovery. Nevertheless, various treatment options have shown clinical efficacy. Neurotrophins such as brain-derived neurotrophic factor (BDNF), widely produced throughout the brain, but also in distant tissues such as the muscle, have demonstrated regenerative properties with the potential to restore damaged neural tissue. Neurotrophins play a significant role in both protection and recovery of function following neurological diseases such as ischemic stroke or traumatic brain injury. Unfortunately, the efficacy of exogenous administration of these neurotrophins is limited by rapid degradation with subsequent poor half-life and a lack of blood-brain-barrier permeability. Regular exercise seems to be a therapeutic approach able to induce the activation of several pathways related to the neurotrophins release. Exercise, furthermore, reduces the infarct volume in the ischemic brain and ameliorates motor function in animal models increasing astrocyte proliferation, inducing angiogenesis and reducing neuronal apoptosis and oxidative stress. One of the most critical issues is to identify the relationship between neurotrophins and myokines, newly discovered skeletal muscle-derived factors released during and after exercise able to exert several biological functions. Various myokines (e.g., Insulin-Like Growth Factor 1, Irisin) have recently shown their ability to protects against neuronal injury in cerebral ischemia models, suggesting that these substances may influence the degree of neuronal damage in part via inhibiting inflammatory signaling pathways. The aim of this narrative review is to examine the main experimental data available to date on the neuroprotective and anti-ischemic role of regular exercise, analyzing also the possible role played by neurotrophins and myokines.
Collapse
|
29
|
Kramer SF, Cumming T, Johnson L, Churilov L, Bernhardt J. Determining Maximal Tolerable Aerobic Training Intensity in the Acute Phase after Stroke: a Novel Dose Ranging Trial Protocol. J Stroke Cerebrovasc Dis 2020; 29:105359. [PMID: 33045625 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION There is strong evidence that cardiorespiratory fitness (CRF) training improves fitness and mobility after stroke. Despite the large number of studies, the most efficacious dose is yet to be determined. Furthermore, the safety of early post-stroke training, while theoretically beneficial, remains uncertain. The aim of this study is to determine the maximum safe and tolerable intensity of CRF training early post-stroke. METHODS This is a stratified (low to moderate exercise capacity), Phase I, 5+5 dose ranging trial protocol. Participants will be recruited within one month post-stroke and stratified by their exercise-capacity (i.e. low and moderate capacity). Cohorts of five participants will perform 12 interval-based training sessions for four-weeks at a pre-determined target-intensity. The intensity will increase in each consecutive cohort, in each stratum according to pre-defined rules until the maximum safe and tolerable intensity is reached, as determined by the occurrence of dose-limiting events and occurrence of adverse events. Dose-limiting events are defined as symptoms indicative of over-training including pain and inability to perform usual activities. STUDY OUTCOME Maximum safe and tolerable intensity of CRF training in stroke survivors with low and moderate exercise capacity. DISCUSSION This study is a first step in the systematic development of a CRF training intervention. We believe similar dose ranging designs may be useful for development of other rehabilitation interventions in different study populations.
Collapse
Affiliation(s)
- Sharon F Kramer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne,245 Burgundy Street, 3084, Heidelberg, Victoria, Australia; NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, 245 Burgundy Street, 3084, Heidelberg, Victoria, Australia.
| | - Toby Cumming
- Florey Institute of Neuroscience and Mental Health, University of Melbourne,245 Burgundy Street, 3084, Heidelberg, Victoria, Australia.
| | - Liam Johnson
- School of Health Sciences, Australian Catholic University, 115 Victoria Parade, 3065 Melbourne, Victoria, Australia.
| | - Leonid Churilov
- Melbourne Medical School, University of Melbourne, 245 Burgundy Street, 3084, Heidelberg, Victoria, Australia.
| | - Julie Bernhardt
- Florey Institute of Neuroscience and Mental Health, University of Melbourne,245 Burgundy Street, 3084, Heidelberg, Victoria, Australia; NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, 245 Burgundy Street, 3084, Heidelberg, Victoria, Australia.
| |
Collapse
|
30
|
Zhang D, Lu Y, Zhao X, Zhang Q, Li L. Aerobic exercise attenuates neurodegeneration and promotes functional recovery - Why it matters for neurorehabilitation & neural repair. Neurochem Int 2020; 141:104862. [PMID: 33031857 DOI: 10.1016/j.neuint.2020.104862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Aerobic exercise facilitates optimal neurological function and exerts beneficial effects in neurologic injuries. Both animal and clinical studies have shown that aerobic exercise reduces brain lesion volume and improves multiple aspects of cognition and motor function after stroke. Studies using animal models have proposed a wide range of potential molecular mechanisms that underlie the neurological benefits of aerobic exercise. Furthermore, additional exercise parameters, including time of initiation, exercise dosage (exercise duration and intensity), and treatment modality are also critical for clinical application, as identifying the optimal combination of parameters will afford patients with maximal functional gains. To clarify these issues, the current review summarizes the known neurological benefits of aerobic exercise under both physiological and pathological conditions and then considers the molecular mechanisms underlying these benefits in the contexts of stroke-like focal cerebral ischemia and cardiac arrest-induced global cerebral ischemia. In addition, we explore the key roles of exercise parameters on the extent of aerobic exercise-induced neurological benefits to elucidate the optimal combination for aerobic exercise intervention. Finally, the current challenges for aerobic exercise implementation after stroke are discussed.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xudong Zhao
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Lei Li
- Department of General Practice & Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
31
|
Sandberg K, Kleist M, Wijkman M, Enthoven P. Effects of In-Bed Cycle Exercise in Patients With Acute Stroke: A Randomized Controlled Trial. Arch Rehabil Res Clin Transl 2020; 2:100085. [PMID: 33543108 PMCID: PMC7853346 DOI: 10.1016/j.arrct.2020.100085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Objective To investigate the effects of in-bed cycle exercise in addition to usual care in patients with acute stroke, National Institutes of Health Stroke Scale (NIHSS) 7-42, regarding walking ability, functional outcomes, and inpatient care days. Design Randomized controlled trial. Setting Hospital care. Participants Patients (N=56) with stroke NIHSS 7-42 were recruited 24-48 hours after stroke onset from 2 stroke units in Sweden. Interventions Both groups received usual care. The intervention group also received 20 minutes bed cycling 5 days per week with a maximum of 15 sessions. Main Outcome Measures The primary outcome was median change in walking ability measured with the 6-minute walk test (6MWT). Secondary outcome measures included the median change in modified Rankin Scale (mRS), Barthel Index (BI) for activities of daily living, and inpatient care days. Measurements were performed at baseline, post intervention (3 weeks), and at 3-month follow-up. Results There was no significant difference in change of walking ability (6MWT) from baseline to follow-up between the intervention and control groups (median, 105m [interquartile range [IQR, 220m] vs 30m [IQR, 118m], respectively, P=.147, d=0.401). There were no significant differences between groups regarding mRS, BI, or inpatient care days. Patients with less serious stroke (NIHSS 7-12) seemed to benefit from the intervention. Conclusion Although this study may have been underpowered, patients with stroke NIHSS 7-42 did not benefit from in-bed cycle exercise in addition to usual care after acute stroke. A larger study is needed to confirm our results.
Collapse
Affiliation(s)
- Klas Sandberg
- Department of Rehabilitation Vrinnevi Hospital, Norrköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Norrköping, Sweden
| | - Marie Kleist
- Department of Rehabilitation Vrinnevi Hospital, Norrköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Norrköping, Sweden
| | - Magnus Wijkman
- Department of Health, Medicine and Caring Sciences, Linköping University, Norrköping, Sweden.,Department of Internal Medicine, Vrinnevi Hospital, Norrköping, Sweden
| | - Paul Enthoven
- Department of Health, Medicine and Caring Sciences, Linköping University, Norrköping, Sweden
| |
Collapse
|
32
|
A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Mol Neurobiol 2020; 57:4218-4231. [PMID: 32691303 DOI: 10.1007/s12035-020-02021-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
After ischemic stroke, survivors experience motor dysfunction and deterioration of memory and cognition. These symptoms are associated with the disruption of normal neuronal function, i.e., the secretion of neurotrophic factors, interhemispheric connections, and synaptic activity, and hence the disruption of the normal neural circuit. Exercise is considered an effective and feasible rehabilitation strategy for improving cognitive and motor recovery following ischemic stroke through the facilitation of neuroplasticity. In this review, our aim was to discuss the mechanisms by which exercise-induced neuroplasticity improves motor function and cognitive ability after ischemic stroke. The associated mechanisms include increases in neurotrophins, improvements in synaptic structure and function, the enhancement of interhemispheric connections, the promotion of neural regeneration, the acceleration of neural function reorganization, and the facilitation of compensation beyond the infarcted tissue. We also discuss some common exercise strategies and a novel exercise therapy, robot-assisted movement, which might be widely applied in the clinic to help stroke patients in the future.
Collapse
|
33
|
Veldema J, Jansen P. Resistance training in stroke rehabilitation: systematic review and meta-analysis. Clin Rehabil 2020; 34:1173-1197. [DOI: 10.1177/0269215520932964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objective: This systematic review and meta-analysis investigates the effects of resistance training in supporting the recovery in stroke patients. Data sources: PubMed, the Cochrane Central Register of Controlled Trials and the PEDro databases were reviewed up to 30 April 2020. Review methods: Randomized controlled trials were included, who compared: (i) resistance training with no intervention, (ii) resistance training with other interventions and (iii) different resistance training protocols in stroke rehabilitation. Results: Overall 30 trials ( n = 1051) were enrolled. The parameters evaluated were: (1) gait, (2) muscular force and motor function, (3) mobility, balance and postural control, (4) health related quality of life, independence and reintegration, (5) spasticity and hypertonia, (6) cardiorespiratory fitness, (7) cognitive abilities and emotional state and (8) other health-relevant physiological indicators. The data indicates that: (i) resistance training is beneficial for the majority of parameters observed, (ii) resistance training is superior to other therapies on muscular force and motor function of lower and upper limbs, health related quality of life, independence and reintegration and other health-relevant physiological indicators, not significantly different from other therapies on walking ability, mobility balance and postural control and spasticity and hypertonia, and inferior to ergometer training on cardiorespiratory fitness and (iii) the type of resistance training protocol significantly impacts its effect; leg press is more efficient than knee extension and high intensity training is superior than low intensity training. Conclusion: Current data indicates that resistance training may be beneficial in supporting the recovery of stroke patients. However, the current evidence is insufficient for evidence-based rehabilitation.
Collapse
Affiliation(s)
- Jitka Veldema
- Faculty of Psychology, Education and Sport Science, University of Regensburg, Regensburg, Germany
| | - Petra Jansen
- Faculty of Psychology, Education and Sport Science, University of Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Szelenberger R, Kostka J, Saluk-Bijak J, Miller E. Pharmacological Interventions and Rehabilitation Approach for Enhancing Brain Self-repair and Stroke Recovery. Curr Neuropharmacol 2020; 18:51-64. [PMID: 31362657 PMCID: PMC7327936 DOI: 10.2174/1570159x17666190726104139] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroplasticity is a natural process occurring in the brain for the entire life. Stroke is the leading cause of long term disability and a huge medical and financial problem throughout the world. Research conducted over the past decade focused mainly on neuroprotection in the acute phase of stroke while very little studies target the chronic stage. Recovery after stroke depends on the ability of our brain to reestablish the structural and functional organization of neurovascular networks. Combining adjuvant therapies and drugs may enhance the repair processes and restore impaired brain functions. Currently, there are some drugs and rehabilitative strategies that can facilitate brain repair and improve clinical effect even years after stroke onset. Moreover, some of the compounds such as citicoline, fluoxetine, niacin, levodopa, etc. are already in clinical use or are being trialed in clinical issues. Many studies are also testing cell therapies; in our review, we focused on studies where cells have been implemented at the early stage of stroke. Next, we discuss pharmaceutical interventions. In this section, we selected methods of cognitive, behavioral, and physical rehabilitation as well as adjuvant interventions for neuroprotection including noninvasive brain stimulation and extremely low-frequency electromagnetic field. The modern rehabilitation represents a new model of physical interventions with the limited therapeutic window up to six months after stroke. However, previous studies suggest that the time window for stroke recovery is much longer than previously thought. This review attempts to present the progress in neuroprotective strategies, both pharmacological and non-pharmacological that can stimulate the endogenous neuroplasticity in post-stroke patients.
Collapse
Affiliation(s)
- Rafał Szelenberger
- Department of General Biochemistry, Faculty of Biology and Environmental Protection. University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Kostka
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection. University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Elżbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland
| |
Collapse
|
35
|
Veldema J, Jansen P. Ergometer Training in Stroke Rehabilitation: Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2020; 101:674-689. [DOI: 10.1016/j.apmr.2019.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
|
36
|
Saunders DH, Sanderson M, Hayes S, Johnson L, Kramer S, Carter DD, Jarvis H, Brazzelli M, Mead GE. Physical fitness training for stroke patients. Cochrane Database Syst Rev 2020; 3:CD003316. [PMID: 32196635 PMCID: PMC7083515 DOI: 10.1002/14651858.cd003316.pub7] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Levels of physical activity and physical fitness are low after stroke. Interventions to increase physical fitness could reduce mortality and reduce disability through increased function. OBJECTIVES The primary objectives of this updated review were to determine whether fitness training after stroke reduces death, death or dependence, and disability. The secondary objectives were to determine the effects of training on adverse events, risk factors, physical fitness, mobility, physical function, health status and quality of life, mood, and cognitive function. SEARCH METHODS In July 2018 we searched the Cochrane Stroke Trials Register, CENTRAL, MEDLINE, Embase, CINAHL, SPORTDiscus, PsycINFO, and four additional databases. We also searched ongoing trials registers and conference proceedings, screened reference lists, and contacted experts in the field. SELECTION CRITERIA Randomised trials comparing either cardiorespiratory training or resistance training, or both (mixed training), with usual care, no intervention, or a non-exercise intervention in stroke survivors. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies, assessed quality and risk of bias, and extracted data. We analysed data using random-effects meta-analyses and assessed the quality of the evidence using the GRADE approach. Diverse outcome measures limited the intended analyses. MAIN RESULTS We included 75 studies, involving 3017 mostly ambulatory participants, which comprised cardiorespiratory (32 studies, 1631 participants), resistance (20 studies, 779 participants), and mixed training interventions (23 studies, 1207 participants). Death was not influenced by any intervention; risk differences were all 0.00 (low-certainty evidence). There were few deaths overall (19/3017 at end of intervention and 19/1469 at end of follow-up). None of the studies assessed death or dependence as a composite outcome. Disability scores were improved at end of intervention by cardiorespiratory training (standardised mean difference (SMD) 0.52, 95% CI 0.19 to 0.84; 8 studies, 462 participants; P = 0.002; moderate-certainty evidence) and mixed training (SMD 0.23, 95% CI 0.03 to 0.42; 9 studies, 604 participants; P = 0.02; low-certainty evidence). There were too few data to assess the effects of resistance training on disability. Secondary outcomes showed multiple benefits for physical fitness (VO2 peak and strength), mobility (walking speed) and physical function (balance). These physical effects tended to be intervention-specific with the evidence mostly low or moderate certainty. Risk factor data were limited or showed no effects apart from cardiorespiratory fitness (VO2 peak), which increased after cardiorespiratory training (mean difference (MD) 3.40 mL/kg/min, 95% CI 2.98 to 3.83; 9 studies, 438 participants; moderate-certainty evidence). There was no evidence of any serious adverse events. Lack of data prevents conclusions about effects of training on mood, quality of life, and cognition. Lack of data also meant benefits at follow-up (i.e. after training had stopped) were unclear but some mobility benefits did persist. Risk of bias varied across studies but imbalanced amounts of exposure in control and intervention groups was a common issue affecting many comparisons. AUTHORS' CONCLUSIONS Few deaths overall suggest exercise is a safe intervention but means we cannot determine whether exercise reduces mortality or the chance of death or dependency. Cardiorespiratory training and, to a lesser extent mixed training, reduce disability during or after usual stroke care; this could be mediated by improved mobility and balance. There is sufficient evidence to incorporate cardiorespiratory and mixed training, involving walking, within post-stroke rehabilitation programmes to improve fitness, balance and the speed and capacity of walking. The magnitude of VO2 peak increase after cardiorespiratory training has been suggested to reduce risk of stroke hospitalisation by ˜7%. Cognitive function is under-investigated despite being a key outcome of interest for patients. Further well-designed randomised trials are needed to determine the optimal exercise prescription, the range of benefits and any long-term benefits.
Collapse
Affiliation(s)
- David H Saunders
- University of EdinburghPhysical Activity for Health Research Centre (PAHRC)St Leonards LandHolyrood RoadEdinburghMidlothianUKEH8 8AQ
| | - Mark Sanderson
- University of the West of ScotlandInstitute of Clinical Exercise and Health ScienceRoom A071A, Almada BuildingHamiltonUKML3 0JB
| | - Sara Hayes
- University of LimerickSchool of Allied Health, Ageing Research Centre, Health Research InstituteLimerickIreland
| | - Liam Johnson
- University of MelbourneThe Florey Institute of Neuroscience and Mental HealthHeidelbergAustralia3084
| | - Sharon Kramer
- University of MelbourneThe Florey Institute of Neuroscience and Mental HealthHeidelbergAustralia3084
| | - Daniel D Carter
- University of LimerickSchool of Allied Health, Faculty of Education and Health SciencesLimerickIreland
| | - Hannah Jarvis
- Manchester Metropolitan UniversityResearch Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and EngineeringJohn Dalton BuildingChester StreetManchesterUKM1 5GD
| | - Miriam Brazzelli
- University of AberdeenHealth Services Research UnitHealth Sciences BuildingForesterhillAberdeenUKAB25 2ZD
| | - Gillian E Mead
- University of EdinburghCentre for Clinical Brain SciencesRoom S1642, Royal InfirmaryLittle France CrescentEdinburghUKEH16 4SA
| | | |
Collapse
|
37
|
Swenson S, Blum K, McLaughlin T, Gold MS, Thanos PK. The therapeutic potential of exercise for neuropsychiatric diseases: A review. J Neurol Sci 2020; 412:116763. [PMID: 32305746 DOI: 10.1016/j.jns.2020.116763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Exercise is known to have a myriad of health benefits. There is much to be learned from the effects of exercise and its potential for prevention, attenuation and treatment of multiple neuropsychiatric diseases and behavioral disorders. Furthermore, recent data and research on exercise benefits with respect to major health crises, such as, that of opioid and general substance use disorders, make it very important to better understand and review the mechanisms of exercise and how it could be utilized for effective treatments or adjunct treatments for these diseases. In addition, mechanisms, epigenetics and sex differences are examined and discussed in terms of future research implications.
Collapse
Affiliation(s)
- Sabrina Swenson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Western Univesity Health Sciences, Graduate College, Pomona, CA, USA
| | | | - Mark S Gold
- Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
38
|
Stevenson ME, Kay JJM, Atry F, Wickstrom AT, Krueger JR, Pashaie RE, Swain RA. Wheel running for 26 weeks is associated with sustained vascular plasticity in the rat motor cortex. Behav Brain Res 2020; 380:112447. [PMID: 31870777 DOI: 10.1016/j.bbr.2019.112447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
Abstract
Vascular pathologies represent the leading causes of mortality worldwide. The nervous system has evolved mechanisms to compensate for the cerebral hypoxia caused by many of these conditions. Vessel dilation and growth of new vessels are two prominent responses to hypoxia, both of which play a critical role in maintaining cerebral homeostasis. One way to facilitate cerebrovascular plasticity, and develop neuroprotection against vascular pathologies, is through aerobic exercise. The present study explored the long-term consequences of aerobic exercise on vascular structure and function in the motor cortex. Rats were assigned to a sedentary condition or were provided access to running wheels for 26 weeks. Rats were then anesthetized, and angiograms were captured using spectral domain optical coherence tomography (SD-OCT) to explore cerebrovascular reactivity in response to altered oxygen and carbon dioxide status. Following this procedure, all rats were euthanized, and unbiased stereological quantification of blood vessel density was collected from sections of the primary motor cortex infused with India ink. Results demonstrated that chronic exercise increased capillary and arteriole surface area densities and enhanced arteriole reactivity in response to hypercapnia-hypoxia, as displayed by increased vasodilation within the motor cortex of exercised animals.
Collapse
Affiliation(s)
- Morgan E Stevenson
- Department of Psychology, University of Wisconsin-Milwaukee, United States
| | - Jacob J M Kay
- Department of Psychology, University of Wisconsin-Milwaukee, United States
| | - Farid Atry
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | | | | | - Ramin E Pashaie
- Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Rodney A Swain
- Department of Psychology, University of Wisconsin-Milwaukee, United States.
| |
Collapse
|
39
|
Devasahayam AJ, Chaves AR, Lasisi WO, Curtis ME, Wadden KP, Kelly LP, Pretty R, Chen A, Wallack EM, Newell CJ, Williams JB, Kenny H, Downer MB, McCarthy J, Moore CS, Ploughman M. Vigorous cool room treadmill training to improve walking ability in people with multiple sclerosis who use ambulatory assistive devices: a feasibility study. BMC Neurol 2020; 20:33. [PMID: 31969132 PMCID: PMC6975092 DOI: 10.1186/s12883-020-1611-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aerobic training has the potential to restore function, stimulate brain repair, and reduce inflammation in people with Multiple Sclerosis (MS). However, disability, fatigue, and heat sensitivity are major barriers to exercise for people with MS. We aimed to determine the feasibility of conducting vigorous harness-supported treadmill training in a room cooled to 16 °C (10 weeks; 3times/week) and examine the longer-term effects on markers of function, brain repair, and inflammation among those using ambulatory aids. METHODS Ten participants (9 females) aged 29 to 74 years with an Expanded Disability Status Scale ranging from 6 to 7 underwent training (40 to 65% heart rate reserve) starting at 80% self-selected walking speed. Feasibility of conducting vigorous training was assessed using a checklist, which included attendance rates, number of missed appointments, reasons for not attending, adverse events, safety hazards during training, reasons for dropout, tolerance to training load, subjective reporting of symptom worsening during and after exercise, and physiological responses to exercise. Functional outcomes were assessed before, after, and 3 months after training. Walking ability was measured using Timed 25 Foot Walk test and on an instrumented walkway at both fast and self-selected speeds. Fatigue was measured using fatigue/energy/vitality sub-scale of 36-Item Short-Form (SF-36) Health Survey, Fatigue Severity Scale, modified Fatigue Impact Scale. Aerobic fitness (maximal oxygen consumption) was measured using maximal graded exercise test (GXT). Quality-of-life was measured using SF-36 Health Survey. Serum levels of neurotrophin (brain-derived neurotrophic factor) and cytokine (interleukin-6) were assessed before and after GXT. RESULTS Eight of the ten participants completed training (attendance rates ≥ 80%). No adverse events were observed. Fast walking speed (cm/s), gait quality (double-support (%)) while walking at self-selected speed, fatigue (modified Fatigue Impact Scale), fitness (maximal workload achieved during GXT), and quality-of-life (physical functioning sub-scale of SF-36) improved significantly after training, and improvements were sustained after 3-months. Improvements in fitness (maximal respiratory exchange ratio and maximal oxygen consumption during GXT) were associated with increased brain-derived neurotrophic factor and decreased interleukin-6. CONCLUSION Vigorous cool room training is feasible and can potentially improve walking, fatigue, fitness, and quality-of-life among people with moderate to severe MS-related disability. TRIAL REGISTRATION The study was approved by the Newfoundland and Labrador Health Research Ethics Board (reference number: 2018.088) on 11/07/2018 prior to the enrollment of first participant (retrospectively registered at ClinicalTrials.gov: NCT04066972. Registered on 26 August 2019.
Collapse
Affiliation(s)
- Augustine J Devasahayam
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - Arthur R Chaves
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - Wendy O Lasisi
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - Marie E Curtis
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - Katie P Wadden
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - Liam P Kelly
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - Ryan Pretty
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - Alice Chen
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - Elizabeth M Wallack
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - Caitlin J Newell
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - John B Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Rm H4360, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Hannah Kenny
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - Matthew B Downer
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - Jason McCarthy
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Rm H4360, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Michelle Ploughman
- Recovery & Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Rm 400, L.A. Miller Centre, 100 Forest Road, St. John's, NL, A1A 1E5, Canada.
| |
Collapse
|
40
|
Johnson L, Kramer SF, Catanzariti G, Kaffenberger T, Cumming T, Bernhardt J. Safety of Performing a Graded Exercise Test Early after Stroke and Transient Ischemic Attack. PM R 2019; 12:445-453. [PMID: 31600415 DOI: 10.1002/pmrj.12259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/23/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND Low cardiorespiratory fitness (CRF) is a predictor of stroke risk and poor outcome poststroke. Fitness levels are rarely assessed in the acute phase and it is unclear if it is safe for stroke survivors and people with transient ischemic attack (TIA) to perform a graded exercise test to assess fitness. OBJECTIVE To determine if people within 14 days post stroke can safely perform a graded exercise test. DESIGN Observational study. SETTING Research institute. PARTICIPANTS People with stroke or TIA admitted to an acute stroke unit. INTERVENTION Not applicable. MAIN OUTCOME MEASURES Safety of performing a graded exercise test early post stroke. Safety outcomes were (1) occurrence of an adverse event or (2) <85% blood oxygen saturation (SpO2 ). Participants performed a graded exercise test on a recumbent stepper at a research institute <2 weeks postevent. CRF was determined by measuring peak volume of oxygen uptake (VO2peak ) using a metabolic cart. RESULTS Twenty-nine participants were enrolled in the study (median age 69 years; interquartile range 58-75). Sixteen were diagnosed with TIA and 13 with a mild stroke. Twenty-eight participants completed the test; one participant was unable to perform the test due to back pain. The test was terminated due to standardized stopping criteria in 26 cases (5 = volitional fatigue, 6 = unable to keep required cadence, 15 = reaching 85% HRmax ), one due to safety (ie, SpO2 < 85%), and one was inadvertently terminated before stopping criteria were reached. Average CRF determined by the exercise test was low; mean VO2peak of 16.2 ± 4.5 mL/kg/min for men (n = 20) and 12.4 ± 3.6 mL/kg/min for women (n = 8). CONCLUSIONS Determining exercise capacity early post stroke and TIA using a graded exercise test appears to be safe in patients with mild deficits. This information should be useful to plan tailored exercise programs. Further research should focus on determining safety of exercise testing in more severely affected stroke survivors.
Collapse
Affiliation(s)
- Liam Johnson
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Melbourne, Australia.,School of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Sharon F Kramer
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Melbourne, Australia
| | - Gabriella Catanzariti
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Australia
| | - Tina Kaffenberger
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Melbourne, Australia
| | - Toby Cumming
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Melbourne, Australia
| | - Julie Bernhardt
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Melbourne, Australia
| |
Collapse
|
41
|
Moftah M, Jadavji NM. Role of behavioral training in reducing functional impairments after stroke. Neural Regen Res 2019; 14:1507-1508. [PMID: 31089041 PMCID: PMC6557093 DOI: 10.4103/1673-5374.255967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mahira Moftah
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
42
|
Linder SM, Rosenfeldt AB, Davidson S, Zimmerman N, Penko A, Lee J, Clark C, Alberts JL. Forced, Not Voluntary, Aerobic Exercise Enhances Motor Recovery in Persons With Chronic Stroke. Neurorehabil Neural Repair 2019; 33:681-690. [PMID: 31313626 DOI: 10.1177/1545968319862557] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. The recovery of motor function following stroke is largely dependent on motor learning-related neuroplasticity. It has been hypothesized that intensive aerobic exercise (AE) training as an antecedent to motor task practice may prime the central nervous system to optimize motor recovery poststroke. Objective. The objective of this study was to determine the differential effects of forced or voluntary AE combined with upper-extremity repetitive task practice (RTP) on the recovery of motor function in adults with stroke. Methods. A combined analysis of 2 preliminary randomized clinical trials was conducted in which participants (n = 40) were randomized into 1 of 3 groups: (1) forced exercise and RTP (FE+RTP), (2) voluntary exercise and RTP (VE+RTP), or (3) time-matched stroke-related education and RTP (Edu+RTP). Participants completed 24 training sessions over 8 weeks. Results. A significant interaction effect was found indicating that improvements in the Fugl-Meyer Assessment (FMA) were greatest for the FE+RTP group (P = .001). All 3 groups improved significantly on the FMA by a mean of 11, 6, and 9 points for the FE+RTP, VE+RTP, and Edu+RTP groups, respectively. No evidence of a treatment-by-time interaction was observed for Wolf Motor Function Test outcomes; however, those in the FE+RTP group did exhibit significant improvement on the total, gross motor, and fine-motor performance times (P ≤ .01 for all observations). Conclusions. Results indicate that FE administered prior to RTP enhanced motor skill acquisition greater than VE or stroke-related education. AE, FE in particular, should be considered as an effective antecedent to enhance motor recovery poststroke.
Collapse
Affiliation(s)
| | | | | | | | | | - John Lee
- 1 Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
43
|
Cherbuin N, Walsh EI. Sugar in mind: Untangling a sweet and sour relationship beyond type 2 diabetes. Front Neuroendocrinol 2019; 54:100769. [PMID: 31176793 DOI: 10.1016/j.yfrne.2019.100769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/17/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022]
Abstract
It is widely recognised that type 2 diabetes (T2D) represents a major disease burden but it is only recently that its role in neurodegeneration has attracted more attention. This research has shown that T2D is associated with impaired cerebral health, cognitive decline and dementia. However, the impact on the brain of progressive metabolic changes associated with the pre-clinical development of the disease is less clear. The aim of this review is to comprehensively summarise how the emergence of risk factors and co-morbid conditions linked to the development of T2D impact cerebral health. Particular attention is directed at characterising how normal but elevated blood glucose levels in individuals without T2D contribute to neurodegenerative processes, and how the main risk factors for T2D including obesity, physical activity and diet modulate these effects. Where available, evidence from the animal and human literature is contrasted, and sex differences in risk and outcomes are highlighted.
Collapse
Affiliation(s)
- Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australia.
| | - Erin I Walsh
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australia
| |
Collapse
|
44
|
Wiener J, McIntyre A, Janssen S, Chow JTY, Batey C, Teasell R. Effectiveness of High‐Intensity Interval Training for Fitness and Mobility Post Stroke: A Systematic Review. PM R 2019; 11:868-878. [DOI: 10.1002/pmrj.12154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/28/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Joshua Wiener
- Parkwood Institute ResearchLawson Health Research Institute London ON Canada
| | - Amanda McIntyre
- Parkwood Institute ResearchLawson Health Research Institute London ON Canada
| | - Scott Janssen
- Parkwood Institute ResearchLawson Health Research Institute London ON Canada
| | - Jeffrey TY Chow
- Parkwood Institute ResearchLawson Health Research Institute London ON Canada
| | - Cristina Batey
- Parkwood InstituteSt. Joseph's Health Care London London ON Canada
- Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Robert Teasell
- Parkwood Institute ResearchLawson Health Research Institute London ON Canada
- Parkwood InstituteSt. Joseph's Health Care London London ON Canada
- Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
45
|
Lotze M, Ladda AM, Stephan KM. Cerebral plasticity as the basis for upper limb recovery following brain damage. Neurosci Biobehav Rev 2019; 99:49-58. [DOI: 10.1016/j.neubiorev.2019.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/05/2023]
|
46
|
Negaresh R, Motl RW, Zimmer P, Mokhtarzade M, Baker JS. Effects of exercise training on multiple sclerosis biomarkers of central nervous system and disease status: a systematic review of intervention studies. Eur J Neurol 2019; 26:711-721. [DOI: 10.1111/ene.13929] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/21/2019] [Indexed: 12/23/2022]
Affiliation(s)
- R. Negaresh
- Department of Physical Education and Sport Sciences Faculty of Humanities Tarbiat Modares University Tehran Iran
| | - R. W. Motl
- Department of Physical Therapy University of Alabama at Birmingham Birmingham AL USA
| | - P. Zimmer
- Department for Molecular and Cellular Sports Medicine German Sport University Cologne Cologne
- Division of Physical Activity, Prevention and Cancer German Cancer Research Center Heidelberg Germany
| | - M. Mokhtarzade
- Department of Physical Education and Sport Sciences Faculty of Humanities Tarbiat Modares University Tehran Iran
| | - J. S. Baker
- Applied Physiology Research Laboratory School of Health and Life Sciences University of the West of Scotland, Lanarkshire Campus Paisley UK
| |
Collapse
|
47
|
Prolonged cortical silent period is related to poor fitness and fatigue, but not tumor necrosis factor, in Multiple Sclerosis. Clin Neurophysiol 2019; 130:474-483. [PMID: 30771724 DOI: 10.1016/j.clinph.2018.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Poor fitness among people with Multiple Sclerosis (MS) aggravates disease symptoms. Whether low fitness levels accompany brain functioning changes is unknown. METHODS MS patients (n = 82) completed a graded maximal exercise test, blood was drawn, and transcranial magnetic stimulation determined resting and active motor thresholds, motor evoked potential latency, and cortical silent period (CSP). RESULTS Sixty-two percent of participants had fitness levels ranked below 10th percentile. Fitness was not associated with disability measured using the Expanded Disability Status Scale (EDSS). Regression analyses revealed that, cardiorespiratory fitness, when controlling for disease demographics, contributed 23.7% (p < 0.001) to the model explaining variance in CSP. Regression analysis using cardiorespiratory fitness and CSP as predictors showed that CSP alone explained 19.9% of variance in subjective fatigue (p = 0.002). Tumor necrosis factor was not associated with any variable. CONCLUSION Low fitness was associated with longer CSP in MS. Longer CSP was, in turn, related to greater MS fatigue. SIGNIFICANCE MS patients had extremely low levels of cardiorespiratory fitness. Poor fitness predicted longer CSP, a marker of greater intracortical inhibition, which was linked to MS fatigue. Future research should examine whether aerobic training could shorten CSP and potentially lessen inhibition of cortical networks.
Collapse
|
48
|
ÖZOCAK O, GÜNDÜZ BAŞÇIL S, GÖLGELİ A. Egzersiz ve Nöroplastisite. DÜZCE ÜNIVERSITESI SAĞLIK BILIMLERI ENSTITÜSÜ DERGISI 2019. [DOI: 10.33631/duzcesbed.446500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
Abstract
Complications after major surgery account for a disproportionate amount of in-hospital morbidity and mortality. Recent efforts have focused on preoperative optimization in an attempt to modify the risk associated with major surgery. Underaddressed, but important, modifiable risk factors are physical fitness and nutritional status. Surgical patients are particularly at risk of 3 related, but distinct, conditions: frailty, sarcopenia, and reduced physical fitness. Exercise-based prehabilitation strategies have shown promise in terms of improving aerobic fitness, although their impact on key clinical perioperative outcome measures have not been fully determined. Preoperative nutritional status also has a strong bearing on perioperative outcome.
Collapse
Affiliation(s)
- John Whittle
- Anesthesiology, Duke University School of Medicine, Duke University Health System, 5th Floor HAFS, DUMC 3094, 2301 Erwin Road, Durham, NC 27710, USA; Perioperative Medicine, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Paul E Wischmeyer
- Nutrition Support Service, Duke Clinical Research Institute, Duke University Hospital, Duke University School of Medicine, 2400 Pratt Street, Durham, NC 27705, USA
| | - Michael P W Grocott
- Critical Care Research Group, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, University Road, Southampton, SO17 1BJ, UK
| | - Timothy E Miller
- Duke University School of Medicine, Duke University Health System, 5th Floor HAFS, DUMC 3094, 2301 Erwin Road, Durham, NC 27710, USA
| |
Collapse
|
50
|
Hwang RJ, Chen HJ, Guo ZX, Lee YS, Liu TY. Effects of aerobic exercise on sad emotion regulation in young women: an electroencephalograph study. Cogn Neurodyn 2018; 13:33-43. [PMID: 30728869 DOI: 10.1007/s11571-018-9511-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/14/2018] [Accepted: 10/22/2018] [Indexed: 11/29/2022] Open
Abstract
The effects of exercise on cognitive abilities have been studied. However, evidence regarding the neural substrates of sad emotion regulation is limited. Women have higher rates for affective disorders than men, but insufficient outcomes assess how aerobic exercises modulate central frontal activation in sad emotion inhibition and resilience among healthy women. This study investigated the effects of aerobic exercise-related brain activity on sad emotion inhibition processing in young women. Sad facial Go/No-Go and neutral Go/No-Go trials were conducted among 30 healthy young women to examine the changes in the N2 component, which reflects frontal inhibition responses, between pre-exercise and post-exercise periods. The first test was performed before aerobic exercise (baseline; 1st) and the second test was performed during an absolute rest period of 90 min after exercise. The sad No-Go stimuli that evoked N200 (N2) event-related potential were recorded and analyzed. The results showed that in the sad No-Go trials, N2 activation at the central-prefrontal cortex was significantly attenuated after exercise compared to the baseline N2 activation. Exercise-modulated N2 activation was not observed in the neutral No-Go trials. The behavioral error rates of sad No-Go trials did not differ between the two experiments. A reduced engagement of central-frontal activation to sad No-Go stimuli was shown after exercise. However, behavioral performance was consistent between the two measurements. The findings scope the benefits of the aerobic exercise on the neural efficiency in responding to sad emotion-eliciting cues as well as adaptive transitions reinstatement for regulatory capabilities in healthy young women.
Collapse
Affiliation(s)
- Ren-Jen Hwang
- Department of Nursing, Chang Gung University of Science and Technology (CGUST), 261 Wei-Hwa 1st Rd, Kwei-Shan, Tao-Yuan, Taiwan, ROC.,Nursing Department, Chang Gung Memorial Hospital, Linkou, Taiwan.,3Center of Clinical Competency Center, Chang Gung University of Science and Technology (CGUST), Tao-Yuan, Taiwan
| | - Hsin-Ju Chen
- Department of Nursing, Chang Gung University of Science and Technology (CGUST), 261 Wei-Hwa 1st Rd, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Zhan-Xian Guo
- Department of Nursing, Chang Gung University of Science and Technology (CGUST), 261 Wei-Hwa 1st Rd, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Yu-Sheun Lee
- Department of Nursing, Chang Gung University of Science and Technology (CGUST), 261 Wei-Hwa 1st Rd, Kwei-Shan, Tao-Yuan, Taiwan, ROC.,4China Medical University Hospital, Taichung City, Taiwan
| | - Tai-Ying Liu
- 5Science and Technology Policy Research and Information Center, National Applied Research Laboratories, 15F, No. 106, Sec. 2, Heping E. Rd, Taipei, 10636 Taiwan, ROC
| |
Collapse
|