1
|
Bose M, Talwar I, Suresh V, Mishra U, Biswas S, Yadav A, Suryavanshi ST, Hippenmeyer S, Tole S. Dual role of FOXG1 in regulating gliogenesis in the developing neocortex via the FGF signalling pathway. eLife 2025; 13:RP101851. [PMID: 40085500 PMCID: PMC11908781 DOI: 10.7554/elife.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
In the developing vertebrate central nervous system, neurons and glia typically arise sequentially from common progenitors. Here, we report that the transcription factor Forkhead Box G1 (Foxg1) regulates gliogenesis in the mouse neocortex via distinct cell-autonomous roles in progenitors and postmitotic neurons that regulate different aspects of the gliogenic FGF signalling pathway. We demonstrate that loss of Foxg1 in cortical progenitors at neurogenic stages causes premature astrogliogenesis. We identify a novel FOXG1 target, the pro-gliogenic FGF pathway component Fgfr3, which is suppressed by FOXG1 cell-autonomously to maintain neurogenesis. Furthermore, FOXG1 can also suppress premature astrogliogenesis triggered by the augmentation of FGF signalling. We identify a second novel function of FOXG1 in regulating the expression of gliogenic cues in newborn neocortical upper-layer neurons. Loss of FOXG1 in postmitotic neurons non-autonomously enhances gliogenesis in the progenitors via FGF signalling. These results fit well with the model that newborn neurons secrete cues that trigger progenitors to produce the next wave of cell types, astrocytes. If FGF signalling is attenuated in Foxg1 null progenitors, they progress to oligodendrocyte production. Therefore, loss of FOXG1 transitions the progenitor to a gliogenic state, producing either astrocytes or oligodendrocytes depending on FGF signalling levels. Our results uncover how FOXG1 integrates extrinsic signalling via the FGF pathway to regulate the sequential generation of neurons, astrocytes, and oligodendrocytes in the cerebral cortex.
Collapse
Affiliation(s)
- Mahima Bose
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| | - Ishita Talwar
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| | - Varun Suresh
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| | - Urvi Mishra
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| | - Shiona Biswas
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| | - Anuradha Yadav
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| | - Shital T Suryavanshi
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| | | | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| |
Collapse
|
2
|
Pal S, Lim JWC, Richards LJ. Diverse axonal morphologies of individual callosal projection neurons reveal new insights into brain connectivity. Curr Opin Neurobiol 2024; 84:102837. [PMID: 38271848 PMCID: PMC11265515 DOI: 10.1016/j.conb.2023.102837] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
In the mature brain, functionally distinct areas connect to specific targets, mediating network activity required for function. New insights are still occurring regarding how specific connectivity occurs in the developing brain. Decades of work have revealed important insights into the molecular and genetic mechanisms regulating cell type specification in the brain. This work classified long-range projection neurons of the cerebral cortex into three major classes based on their primary target (e.g. subcortical, intracortical, and interhemispheric projections). However, painstaking single-cell mapping reveals that long-range projection neurons of the corpus callosum connect to multiple and overlapping ipsilateral and contralateral targets with often highly branched axons. In addition, their scRNA transcriptomes are highly variable, making it difficult to identify meaningful subclasses. This work has prompted us to reexamine how cortical projection neurons that comprise the corpus callosum are currently classified and how this stunning array of variability might be achieved during development.
Collapse
Affiliation(s)
- Suranjana Pal
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA. https://twitter.com/PalSuranjana
| | - Jonathan W C Lim
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Linda J Richards
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
3
|
Sekine K, Onoguchi M, Hamada M. Transposons contribute to the acquisition of cell type-specific cis-elements in the brain. Commun Biol 2023; 6:631. [PMID: 37301950 PMCID: PMC10257727 DOI: 10.1038/s42003-023-04989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mammalian brains have evolved in stages over a long history to acquire higher functions. Recently, several transposable element (TE) families have been shown to evolve into cis-regulatory elements of brain-specific genes. However, it is not fully understood how TEs are important for gene regulatory networks. Here, we performed a single-cell level analysis using public data of scATAC-seq to discover TE-derived cis-elements that are important for specific cell types. Our results suggest that DNA elements derived from TEs, MER130 and MamRep434, can function as transcription factor-binding sites based on their internal motifs for Neurod2 and Lhx2, respectively, especially in glutamatergic neuronal progenitors. Furthermore, MER130- and MamRep434-derived cis-elements were amplified in the ancestors of Amniota and Eutheria, respectively. These results suggest that the acquisition of cis-elements with TEs occurred in different stages during evolution and may contribute to the acquisition of different functions or morphologies in the brain.
Collapse
Affiliation(s)
- Kotaro Sekine
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Masahiro Onoguchi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.
| | - Michiaki Hamada
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.
- Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
4
|
Pazarlar BA, Aripaka SS, Petukhov V, Pinborg L, Khodosevich K, Mikkelsen JD. Expression profile of synaptic vesicle glycoprotein 2A, B, and C paralogues in temporal neocortex tissue from patients with temporal lobe epilepsy (TLE). Mol Brain 2022; 15:45. [PMID: 35578248 PMCID: PMC9109314 DOI: 10.1186/s13041-022-00931-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractSynaptic vesicle glycoprotein-2 (SV2) is a family of proteins consisting of SV2A, SV2B, and SV2C. This protein family has attracted attention in recent years after SV2A was shown to be an epileptic drug target and a perhaps a biomarker of synaptic density. So far, the anatomical localization of these proteins in the rodent and human brain have been reported, but co-expression of SV2 genes on a cellular level, their expressions in the human brain, comparison to radioligand binding, any possible regulation in epilepsy are not known. We have here analyzed the expression of SV2 genes in neuronal subtypes in the temporal neocortex in selected specimens by using single nucleus-RNA sequencing, and performed quantitative PCR in populations of temporal lobe epilepsy (TLE) patients and healthy controls. [3H]-UCB-J autoradiography was performed to analyze the correlation between the mRNA transcript and binding capacity to SV2A. Our data showed that the SV2A transcript is expressed in all glutamatergic and GABAergic cortical subtypes, while SV2B expression is restricted to only the glutamatergic neurons and SV2C has very limited expression in a small subgroup of GABAergic interneurons. The level of [3H]-UCB-J binding and the concentration of SV2A mRNA is strongly correlated in each patient, and the expression is lower in the TLE patients. There is no relationship between SV2A expression and age, sex, seizure frequency, duration of epilepsy, or whether patients were recently treated with levetiracetam or not. Collectively, these findings point out a neuronal subtype-specific distribution of the expression of the three SV2 genes, and the lower levels of both radioligand binding and expression further emphasize the significance of these proteins in this disease.
Collapse
|
5
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
6
|
Jossin Y. Reelin Functions, Mechanisms of Action and Signaling Pathways During Brain Development and Maturation. Biomolecules 2020; 10:biom10060964. [PMID: 32604886 PMCID: PMC7355739 DOI: 10.3390/biom10060964] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
During embryonic development and adulthood, Reelin exerts several important functions in the brain including the regulation of neuronal migration, dendritic growth and branching, dendritic spine formation, synaptogenesis and synaptic plasticity. As a consequence, the Reelin signaling pathway has been associated with several human brain disorders such as lissencephaly, autism, schizophrenia, bipolar disorder, depression, mental retardation, Alzheimer’s disease and epilepsy. Several elements of the signaling pathway are known. Core components, such as the Reelin receptors very low-density lipoprotein receptor (VLDLR) and Apolipoprotein E receptor 2 (ApoER2), Src family kinases Src and Fyn, and the intracellular adaptor Disabled-1 (Dab1), are common to most but not all Reelin functions. Other downstream effectors are, on the other hand, more specific to defined tasks. Reelin is a large extracellular protein, and some aspects of the signal are regulated by its processing into smaller fragments. Rather than being inhibitory, the processing at two major sites seems to be fulfilling important physiological functions. In this review, I describe the various cellular events regulated by Reelin and attempt to explain the current knowledge on the mechanisms of action. After discussing the shared and distinct elements of the Reelin signaling pathway involved in neuronal migration, dendritic growth, spine development and synaptic plasticity, I briefly outline the data revealing the importance of Reelin in human brain disorders.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
7
|
Bertacchi M, Romano AL, Loubat A, Tran Mau-Them F, Willems M, Faivre L, Khau van Kien P, Perrin L, Devillard F, Sorlin A, Kuentz P, Philippe C, Garde A, Neri F, Di Giaimo R, Oliviero S, Cappello S, D'Incerti L, Frassoni C, Studer M. NR2F1 regulates regional progenitor dynamics in the mouse neocortex and cortical gyrification in BBSOAS patients. EMBO J 2020; 39:e104163. [PMID: 32484994 PMCID: PMC7327499 DOI: 10.15252/embj.2019104163] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The relationships between impaired cortical development and consequent malformations in neurodevelopmental disorders, as well as the genes implicated in these processes, are not fully elucidated to date. In this study, we report six novel cases of patients affected by BBSOAS (Boonstra‐Bosch‐Schaff optic atrophy syndrome), a newly emerging rare neurodevelopmental disorder, caused by loss‐of‐function mutations of the transcriptional regulator NR2F1. Young patients with NR2F1 haploinsufficiency display mild to moderate intellectual disability and show reproducible polymicrogyria‐like brain malformations in the parietal and occipital cortex. Using a recently established BBSOAS mouse model, we found that Nr2f1 regionally controls long‐term self‐renewal of neural progenitor cells via modulation of cell cycle genes and key cortical development master genes, such as Pax6. In the human fetal cortex, distinct NR2F1 expression levels encompass gyri and sulci and correlate with local degrees of neurogenic activity. In addition, reduced NR2F1 levels in cerebral organoids affect neurogenesis and PAX6 expression. We propose NR2F1 as an area‐specific regulator of mouse and human brain morphology and a novel causative gene of abnormal gyrification.
Collapse
Affiliation(s)
- Michele Bertacchi
- Université Côte d'Azur, CNRS, Inserm, iBV, Paris, France.,Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Agnès Loubat
- Université Côte d'Azur, CNRS, Inserm, iBV, Paris, France
| | - Frederic Tran Mau-Them
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Marjolaine Willems
- Hôpital Arnaud de Villeneuve, Service de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Philippe Khau van Kien
- Hôpital Carémeau, UF de Génétique Médicale et Cytogénétique, Centre de Compétences Anomalies du Développement et Syndromes Malformatifs, CHU de Nîmes, Nîmes, France
| | - Laurence Perrin
- Unité Fonctionnelle de Génétique Clinique, Hôpital Robert Debré, Paris, France
| | - Françoise Devillard
- Département de Génétique et Procréation, Hôpital Couple-Enfant, CHU de Grenoble, Grenoble, France
| | - Arthur Sorlin
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de référence maladies rares « Déficiences intellectuelles de causes rares », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Paul Kuentz
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Génétique Biologique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Christophe Philippe
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Aurore Garde
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Francesco Neri
- Epigenetics Unit, Italian Institute for Genomic Medicine, University of Torino, Torino, Italy.,Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, Napoli, Italy.,Max Planck Institute of Psychiatry, München, Germany
| | - Salvatore Oliviero
- Epigenetics Unit, Italian Institute for Genomic Medicine, University of Torino, Torino, Italy
| | | | - Ludovico D'Incerti
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Carolina Frassoni
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Michèle Studer
- Université Côte d'Azur, CNRS, Inserm, iBV, Paris, France
| |
Collapse
|
8
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
9
|
Kikkawa T, Sakayori N, Yuuki H, Katsuyama Y, Matsuzaki F, Konno D, Abe T, Kiyonari H, Osumi N. Dmrt
genes participate in the development of Cajal‐Retzius cells derived from the cortical hem in the telencephalon. Dev Dyn 2020; 249:698-710. [DOI: 10.1002/dvdy.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Takako Kikkawa
- Department of Developmental NeuroscienceUnited Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Nobuyuki Sakayori
- Department of Molecular GeneticsInstitute of Biomedical Sciences, Fukushima Medical University Fukushima Japan
| | - Hayato Yuuki
- Department of Developmental NeuroscienceUnited Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| | - Yu Katsuyama
- Department of AnatomyShiga University of Medical Science Otsu Shiga Japan
| | - Fumio Matsuzaki
- Laboratory for Cell AsymmetryRIKEN Center for Biosystems Dynamics Research Kobe Japan
| | - Daijiro Konno
- Laboratory for Cell AsymmetryRIKEN Center for Biosystems Dynamics Research Kobe Japan
- Department of PathophysiologyMedical Institute of Bioregulation, Kyushu University Fukuoka Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic EngineeringRIKEN Center for Biosystems Dynamics Research Kobe Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic EngineeringRIKEN Center for Biosystems Dynamics Research Kobe Japan
| | - Noriko Osumi
- Department of Developmental NeuroscienceUnited Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine Sendai Miyagi Japan
| |
Collapse
|
10
|
Vitalis T, Dauphinot L, Gressens P, Potier MC, Mariani J, Gaspar P. RORα Coordinates Thalamic and Cortical Maturation to Instruct Barrel Cortex Development. Cereb Cortex 2019; 28:3994-4007. [PMID: 29040410 DOI: 10.1093/cercor/bhx262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The retinoic acid-related orphan receptor alpha (RORα) is well-known for its role in cerebellar development and maturation as revealed in staggerer mice. However, its potential involvement in the development of other brain regions has hardly been assessed. Here, we describe a new role of RORα in the development of primary somatosensory maps. Staggerer mice showed a complete disruption of barrels in the somatosensory cortex and of barreloids in the thalamus. This phenotype results from a severe reduction of thalamocortical axon (TCA) branching and a defective maturation of layer IV cortical neurons during postnatal development. Conditional deletion of RORα was conducted in the thalamus or the cortex to determine the specific contribution of RORα in each of these structures to these phenotypes. This showed that RORα is cell-autonomously required in the thalamus for the organization of TCAs into periphery-related clusters and in the somatosensory cortex for the dendritic maturation of layer IV neurons. Microarray analyses revealed that Sema7a, Neph, and Adcy8 are RORα regulated genes that could be implicated in TCA and cortical maturation. Overall, our study outlines a new role of RORα for the coordinated maturation of the somatosensory thalamus and cortex during the assembly of columnar barrel structures.
Collapse
Affiliation(s)
- Tania Vitalis
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
| | - Luce Dauphinot
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS UMR 7225, INSERM U1127, Institut du Cerveau et de la Moelle, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marie-Claude Potier
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS UMR 7225, INSERM U1127, Institut du Cerveau et de la Moelle, Paris, France
| | - Jean Mariani
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS, UMR 8256, Institut de Biologie de Paris Seine (IBPS), Biological adaptation and ageing (B2A), Team Brain Development, Repair and Ageing, Paris, France
- APHP, DHU FAST, Institut de la Longévité, Ivry-Sur-Seine, France
| | - Patricia Gaspar
- Université Pierre et Marie Curie, Sorbonne Université, Paris, France
- INSERM, UMR-S839, Institut du Fer à Moulin, Paris, France
| |
Collapse
|
11
|
Belekhova MG, Kenigfest NB, Vasilyev DS, Chudinova TV. Distribution of Calcium-Binding Proteins and Cytochrome Oxidase Activity in the Projective Zone (Wulst) of the Pigeon Thalamofugal Visual Pathway: A Discussion in the Light of Current Concepts on Homology between the Avian Wulst and the Mammalian Striate (Visual) Cortex. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Abstract
To understand how neurons assemble to form functional circuits, it is necessary to obtain a detailed knowledge of their diversity and to define the developmental specification programs that give rise to this diversity. Invertebrates and vertebrates appear to share common developmental principles of neuronal specification in which cascades of transcription factors temporally pattern progenitors, while spatial cues modify the outcomes of this temporal patterning. Here, we highlight these conserved mechanisms and describe how they are used in distinct neural structures. We present the questions that remain for a better understanding of neuronal specification. Single-cell RNA profiling approaches will potentially shed light on these questions, allowing not only the characterization of neuronal diversity in adult brains, but also the investigation of the developmental trajectories leading to the generation and maintenance of this diversity.
Collapse
Affiliation(s)
- Isabel Holguera
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA. .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Hou PS, Kumamoto T, Hanashima C. A Sensitive and Versatile In Situ Hybridization Protocol for Gene Expression Analysis in Developing Amniote Brains. Methods Mol Biol 2017; 1650:319-334. [PMID: 28809032 DOI: 10.1007/978-1-4939-7216-6_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The detection of specific RNA molecules in embryonic tissues has wide research applications including studying gene expression dynamics in brain development and evolution. Recent advances in sequencing technologies have introduced new animal models to explore the molecular principles underlying the assembly and diversification of brain circuits between different amniote species. Here, we provide a step-by-step protocol for a versatile in situ hybridization method that is immediately applicable to a range of amniote embryos including zebra finch and Madagascar ground gecko, two new model organisms that have rapidly emerged for comparative brain studies over recent years. The sensitive detection of transcripts from low to high abundance expression range using the same platform enables direct comparison of gene of interest among different amniotes, providing high-resolution spatiotemporal information of gene expression to dissect the molecular principles underlying brain evolution.
Collapse
Affiliation(s)
- Pei-Shan Hou
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
14
|
Nomura T, Yamashita W, Gotoh H, Ono K. Genetic manipulation of reptilian embryos: toward an understanding of cortical development and evolution. Front Neurosci 2015; 9:45. [PMID: 25759636 PMCID: PMC4338674 DOI: 10.3389/fnins.2015.00045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/02/2015] [Indexed: 11/13/2022] Open
Abstract
The mammalian neocortex is a remarkable structure that is characterized by tangential surface expansion and six-layered lamination. However, how the mammalian neocortex emerged during evolution remains elusive. Because all modern reptiles have a homolog of the neocortex at the dorsal pallium, developmental analyses of the reptilian cortex are valuable to explore the origin of the neocortex. However, reptilian cortical development and the underlying molecular mechanisms remain unclear, mainly due to technical difficulties with sample collection and embryonic manipulation. Here, we introduce a method of embryonic manipulations for the Madagascar ground gecko and Chinese softshell turtle. We established in ovo electroporation and an ex ovo culture system to address neural stem cell dynamics, neuronal differentiation and migration. Applications of these techniques illuminate the developmental mechanisms underlying reptilian corticogenesis, which provides significant insight into the evolutionary steps of different types of cortex and the origin of the mammalian neocortex.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine Kyoto, Japan ; Japan Science and Technology Agency, PRESTO Kawaguchi, Japan
| | - Wataru Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University Kyoto, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine Kyoto, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine Kyoto, Japan
| |
Collapse
|
15
|
Nomura T, Hanashima C. Neocortical development and evolution. Neurosci Res 2014; 86:1-2. [PMID: 25457746 DOI: 10.1016/j.neures.2014.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Nishitakatsukasa-cho 13, Taishogun, Kita-ku, Kyoto 603-8334, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Biology, Graduate School of Science, Kobe University, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|