1
|
Kurachi T, Shinozuka K, Yoshihara C, Yano-Nashimoto S, Murayama AY, Hata J, Okano H, Saito A, Kuroda KO. Behavioral competition between infant care and sexual behavior in male but not female common marmosets. Neurosci Res 2025:S0168-0102(25)00077-X. [PMID: 40288613 DOI: 10.1016/j.neures.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Sexual desire and parenthood sometimes compete in a sexually dimorphic manner, but the neural mechanism for this remains to be clarified. Here we show that, in the family-living primate common marmoset, fathers temporarily reduce infant care during the postpartum mating period leading to conception, whereas mothers do not. Functional suppression of the calcitonin receptor-expressing MPOA subregion (cMPOA) scalably disrupts infant care in both sexes and abolishes sexual behavior in males. The neuronal activation pattern induced by infant care is not identical to, but overlaps with that induced by male mating in the medial preoptic area (MPOA) of the forebrain. These data suggest that the commonality of the neural mechanism required for infant care and sexual behavior in the MPOA may lead to competition between these behaviors in fathers. Further studies are needed to identify the precise neuronal mechanism regulating this phenomenon in marmosets.
Collapse
Affiliation(s)
- Takuma Kurachi
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, Japan; Department of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, Japan
| | - Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, Japan; School of Life Science and Technology, Institute of Science Tokyo, Kanagawa, Japan
| | - Saori Yano-Nashimoto
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, Japan; Laboratory of Physiology, Department of Basic Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Ayako Y Murayama
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, Japan; Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Hata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Atsuko Saito
- Department of Psychology, Sophia University, Chiyoda-ku, Japan
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, Japan; School of Life Science and Technology, Institute of Science Tokyo, Kanagawa, Japan; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
2
|
Drzewiecki CM, Fox AS. Understanding the heterogeneity of anxiety using a translational neuroscience approach. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:228-245. [PMID: 38356013 PMCID: PMC11039504 DOI: 10.3758/s13415-024-01162-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024]
Abstract
Anxiety disorders affect millions of people worldwide and present a challenge in neuroscience research because of their substantial heterogeneity in clinical presentation. While a great deal of progress has been made in understanding the neurobiology of fear and anxiety, these insights have not led to effective treatments. Understanding the relationship between phenotypic heterogeneity and the underlying biology is a critical first step in solving this problem. We show translation, reverse translation, and computational modeling can contribute to a refined, cross-species understanding of fear and anxiety as well as anxiety disorders. More specifically, we outline how animal models can be leveraged to develop testable hypotheses in humans by using targeted, cross-species approaches and ethologically informed behavioral paradigms. We discuss reverse translational approaches that can guide and prioritize animal research in nontraditional research species. Finally, we advocate for the use of computational models to harmonize cross-species and cross-methodology research into anxiety. Together, this translational neuroscience approach will help to bridge the widening gap between how we currently conceptualize and diagnose anxiety disorders, as well as aid in the discovery of better treatments for these conditions.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- California National Primate Research Center, University of California, Davis, CA, USA.
| | - Andrew S Fox
- California National Primate Research Center, University of California, Davis, CA, USA.
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Kurachi T, Shinozuka K, Yoshihara C, Yano-Nashimoto S, Murayama AY, Hata J, Haga Y, Okano H, Kuroda KO. Distinct roles of amylin and oxytocin signaling in intrafamilial social behaviors at the medial preoptic area of common marmosets. Commun Biol 2023; 6:1231. [PMID: 38052969 PMCID: PMC10698028 DOI: 10.1038/s42003-023-05593-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Calcitonin receptor (Calcr) and its brain ligand amylin in the medial preoptic area (MPOA) are found to be critically involved in infant care and social contact behaviors in mice. In primates, however, the evidence is limited to an excitotoxic lesion study of the Calcr-expressing MPOA subregion (cMPOA) in a family-living primate species, the common marmoset. The present study utilized pharmacological manipulations of the cMPOA and shows that reversible inactivation of the cMPOA abolishes infant-care behaviors in sibling marmosets without affecting other social or non-social behaviors. Amylin-expressing neurons in the marmoset MPOA are distributed in the vicinity of oxytocin neurons in the anterior paraventricular nucleus of the hypothalamus. While amylin infusion facilitates infant carrying selectively, an oxytocin's inverse agonist, atosiban, reduces physical contact with non-infant family members without grossly affecting infant care. These data suggest that the amylin and oxytocin signaling mediate intrafamilial social interactions in a complementary manner in marmosets.
Collapse
Affiliation(s)
- Takuma Kurachi
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, Japan
| | - Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Saori Yano-Nashimoto
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory of Physiology, Department of Basic Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Ayako Y Murayama
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Hata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
| | - Yawara Haga
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, Japan.
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan.
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
4
|
Campos LJ, Arokiaraj CM, Chuapoco MR, Chen X, Goeden N, Gradinaru V, Fox AS. Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100086. [PMID: 37397806 PMCID: PMC10313870 DOI: 10.1016/j.crneur.2023.100086] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 07/04/2023] Open
Abstract
Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise to help open new avenues for study in translational neuroscience and further our understanding of the primate brain.
Collapse
Affiliation(s)
- Lillian J. Campos
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cynthia M. Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Miguel R. Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA, 91320, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Andrew S. Fox
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
5
|
A calcitonin receptor-expressing subregion of the medial preoptic area is involved in alloparental tolerance in common marmosets. Commun Biol 2022; 5:1243. [PMID: 36411342 PMCID: PMC9678893 DOI: 10.1038/s42003-022-04166-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Like humans, common marmoset monkeys utilize family cooperation for infant care, but the neural mechanisms underlying primate parental behaviors remain largely unknown. We investigated infant care behaviors of captive marmosets in family settings and caregiver-infant dyadic situations. Marmoset caregivers exhibited individual variations in parenting styles, comprised of sensitivity and tolerance toward infants, consistently across infants, social contexts and multiple births. Seeking the neural basis of these parenting styles, we demonstrated that the calcitonin receptor-expressing neurons in the marmoset medial preoptic area (MPOA) were transcriptionally activated during infant care, as in laboratory mice. Further, site-specific neurotoxic lesions of this MPOA subregion, termed the cMPOA, significantly reduced alloparental tolerance and total infant carrying, while sparing general health and other social or nonsocial behaviors. These results suggest that the molecularly-defined neural site cMPOA is responsible for mammalian parenting, thus provide an invaluable model to study the neural basis of parenting styles in primates.
Collapse
|
6
|
Ash H, Chang A, Ortiz RJ, Kulkarni P, Rauch B, Colman R, Ferris CF, Ziegler TE. Structural and functional variations in the prefrontal cortex are associated with learning in pre-adolescent common marmosets (Callithrix jacchus). Behav Brain Res 2022; 430:113920. [PMID: 35595058 PMCID: PMC9362994 DOI: 10.1016/j.bbr.2022.113920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/27/2022]
Abstract
There is substantial evidence linking the prefrontal cortex (PFC) to a variety of cognitive abilities, with adolescence being a critical period in its development. In the current study, we investigated the neural basis of differences in learning in pre-adolescent common marmosets. At 8 months old, marmosets were given anatomical and resting state MRI scans (n = 24). At 9 months old, association learning and inhibitory control was tested using a 'go/no go' visual discrimination (VD) task. Marmosets were grouped into 'learners' (n = 12) and "non-learners" (n = 12), and associations between cognitive performance and sub-regional PFC volumes, as well as PFC connectivity patterns, were investigated. "Learners" had significantly (p < 0.05) larger volumes of areas 11, 25, 47 and 32 than 'non-learners', although 'non-learners' had significantly larger volumes of areas 24a and 8 v than "learners". There was also a significant correlation between average % correct responses to the 'punished' stimulus and volume of area 47. Further, 'non-learners' had significantly greater global PFC connections, as well as significantly greater numbers of connections between the PFC and basal ganglia, cerebellum and hippocampus, compared to 'learners'. These results suggest that larger sub-regions of the orbitofrontal cortex and ventromedial PFC, as well more refined PFC connectivity patterns to other brain regions associated with learning, may be important in successful response inhibition. This study therefore offers new information on the neurodevelopment of individual differences in cognition during pre-adolescence in non-human primates.
Collapse
Affiliation(s)
- Hayley Ash
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA.
| | - Arnold Chang
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Richard J Ortiz
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA; Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Beth Rauch
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Ricki Colman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Toni E Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
7
|
Correia-Caeiro C, Burrows A, Wilson DA, Abdelrahman A, Miyabe-Nishiwaki T. CalliFACS: The common marmoset Facial Action Coding System. PLoS One 2022; 17:e0266442. [PMID: 35580128 PMCID: PMC9113598 DOI: 10.1371/journal.pone.0266442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
Facial expressions are subtle cues, central for communication and conveying emotions in mammals. Traditionally, facial expressions have been classified as a whole (e.g. happy, angry, bared-teeth), due to automatic face processing in the human brain, i.e., humans categorise emotions globally, but are not aware of subtle or isolated cues such as an eyebrow raise. Moreover, the same facial configuration (e.g. lip corners pulled backwards exposing teeth) can convey widely different information depending on the species (e.g. humans: happiness; chimpanzees: fear). The Facial Action Coding System (FACS) is considered the gold standard for investigating human facial behaviour and avoids subjective interpretations of meaning by objectively measuring independent movements linked to facial muscles, called Action Units (AUs). Following a similar methodology, we developed the CalliFACS for the common marmoset. First, we determined the facial muscular plan of the common marmoset by examining dissections from the literature. Second, we recorded common marmosets in a variety of contexts (e.g. grooming, feeding, play, human interaction, veterinary procedures), and selected clips from online databases (e.g. YouTube) to identify their facial movements. Individual facial movements were classified according to appearance changes produced by the corresponding underlying musculature. A diverse repertoire of 33 facial movements was identified in the common marmoset (15 Action Units, 15 Action Descriptors and 3 Ear Action Descriptors). Although we observed a reduced range of facial movement when compared to the HumanFACS, the common marmoset's range of facial movements was larger than predicted according to their socio-ecology and facial morphology, which indicates their importance for social interactions. CalliFACS is a scientific tool to measure facial movements, and thus, allows us to better understand the common marmoset's expressions and communication. As common marmosets have become increasingly popular laboratory animal models, from neuroscience to cognition, CalliFACS can be used as an important tool to evaluate their welfare, particularly in captivity.
Collapse
Affiliation(s)
| | - Anne Burrows
- Department of Physical Therapy, Duquesne University, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Duncan Andrew Wilson
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Graduate School of Letters, Kyoto University, Kyoto, Japan
| | - Abdelhady Abdelrahman
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | | |
Collapse
|
8
|
Hayashi T, Hou Y, Glasser MF, Autio JA, Knoblauch K, Inoue-Murayama M, Coalson T, Yacoub E, Smith S, Kennedy H, Van Essen DC. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage 2021; 229:117726. [PMID: 33484849 PMCID: PMC8079967 DOI: 10.1016/j.neuroimage.2021.117726] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/13/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022] Open
Abstract
Multi-modal neuroimaging projects such as the Human Connectome Project (HCP) and UK Biobank are advancing our understanding of human brain architecture, function, connectivity, and their variability across individuals using high-quality non-invasive data from many subjects. Such efforts depend upon the accuracy of non-invasive brain imaging measures. However, 'ground truth' validation of connectivity using invasive tracers is not feasible in humans. Studies using nonhuman primates (NHPs) enable comparisons between invasive and non-invasive measures, including exploration of how "functional connectivity" from fMRI and "tractographic connectivity" from diffusion MRI compare with long-distance connections measured using tract tracing. Our NonHuman Primate Neuroimaging & Neuroanatomy Project (NHP_NNP) is an international effort (6 laboratories in 5 countries) to: (i) acquire and analyze high-quality multi-modal brain imaging data of macaque and marmoset monkeys using protocols and methods adapted from the HCP; (ii) acquire quantitative invasive tract-tracing data for cortical and subcortical projections to cortical areas; and (iii) map the distributions of different brain cell types with immunocytochemical stains to better define brain areal boundaries. We are acquiring high-resolution structural, functional, and diffusion MRI data together with behavioral measures from over 100 individual macaques and marmosets in order to generate non-invasive measures of brain architecture such as myelin and cortical thickness maps, as well as functional and diffusion tractography-based connectomes. We are using classical and next-generation anatomical tracers to generate quantitative connectivity maps based on brain-wide counting of labeled cortical and subcortical neurons, providing ground truth measures of connectivity. Advanced statistical modeling techniques address the consistency of both kinds of data across individuals, allowing comparison of tracer-based and non-invasive MRI-based connectivity measures. We aim to develop improved cortical and subcortical areal atlases by combining histological and imaging methods. Finally, we are collecting genetic and sociality-associated behavioral data in all animals in an effort to understand how genetic variation shapes the connectome and behavior.
Collapse
Affiliation(s)
- Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yujie Hou
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Matthew F Glasser
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA; Department of Neuroscience and Radiology, Washington University Medical School, St Louis, MO USA
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kenneth Knoblauch
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | | | - Tim Coalson
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Stephen Smith
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Henry Kennedy
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai, China
| | - David C Van Essen
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| |
Collapse
|
9
|
Cléry JC, Hori Y, Schaeffer DJ, Menon RS, Everling S. Neural network of social interaction observation in marmosets. eLife 2021; 10:e65012. [PMID: 33787492 PMCID: PMC8024015 DOI: 10.7554/elife.65012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
A crucial component of social cognition is to observe and understand the social interactions of other individuals. A promising nonhuman primate model for investigating the neural basis of social interaction observation is the common marmoset (Callithrix jacchus), a small New World primate that shares a rich social repertoire with humans. Here, we used functional magnetic resonance imaging acquired at 9.4 T to map the brain areas activated by social interaction observation in awake marmosets. We discovered a network of subcortical and cortical areas, predominately in the anterior lateral frontal and medial frontal cortex, that was specifically activated by social interaction observation. This network resembled that recently identified in Old World macaque monkeys. Our findings suggest that this network is largely conserved between New and Old World primates and support the use of marmosets for studying the neural basis of social cognition.
Collapse
Affiliation(s)
- Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
- University of Pittsburgh, Department of NeurobiologyPittsburghUnited States
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
- Department of Physiology and Pharmacology, The University of Western OntarioLondonCanada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
- Department of Physiology and Pharmacology, The University of Western OntarioLondonCanada
| |
Collapse
|
10
|
Huang J, Cheng X, Zhang S, Chang L, Li X, Liang Z, Gong N. Having Infants in the Family Group Promotes Altruistic Behavior of Marmoset Monkeys. Curr Biol 2020; 30:4047-4055.e3. [PMID: 32822603 DOI: 10.1016/j.cub.2020.07.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/05/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022]
Abstract
The common marmoset (Callithrix jacchus) has attracted much attention as a useful model for studying social behaviors [1-3]. They naturally live in a monogamous family group and exhibit cooperative breeding [4], in which parents and older siblings help to carry infants less than 2 months old [5-7]. Marmoset parents also transfer foods to their offspring, a process that may help them learn the food diet [8]. Furthermore, marmosets show spontaneous altruistic behaviors, such as providing food to non-reciprocating and genetically unrelated individuals [9]. These social habits indicate that marmosets may be a useful non-human primate model for studying parenting and altruistic behaviors, as well as underlying neural mechanisms. Using a novel rescue paradigm, we found that marmoset parents and older siblings showed strong motivation to rescue trapped young infants but not juvenile marmosets beyond 2 months of age, and infant calls alone could trigger these parents' rescue behaviors. The marmoset parents showed little rescue of each other, but young infants or infant calls could also induce such parents' mutual rescue. Moreover, all these infant- and mate-rescue behaviors depended on currently having young infants in the family group. Functional MRI studies on awake adult marmosets showed that calls from young infants, but not juvenile marmosets, elicited a large-scale activation of specific brain areas including auditory and insular cortices, and such activation was absent in marmosets not living with infants. Thus, such infant-induced modification of neural activity offers a window for examining the neural basis of altruistic behaviors in marmoset monkeys.
Collapse
Affiliation(s)
- Junfeng Huang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Cheng
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shikun Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liangtang Chang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuebo Li
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhifeng Liang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| | - Neng Gong
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
11
|
Ash H, Ziegler TE, Colman RJ. Early learning in the common marmoset (Callithrix jacchus): Behavior in the family group is related to preadolescent cognitive performance. Am J Primatol 2020; 82:e23159. [PMID: 32515834 PMCID: PMC7440670 DOI: 10.1002/ajp.23159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022]
Abstract
Early environment can have a major impact on development, with family life known to play an important role. Longitudinal studies can therefore help increase our understanding of variance in cognitive abilities in young animals, as well as over time. We followed 22 marmosets (11 male and 11 female) from infancy through to early adolescence. At 3 months old, the marmosets were trained to reliably touch a rewarded stimulus. At 5 months, behavior was observed within the natal group. At 9 months, the marmosets were given a visual discrimination task to assess learning ability. Mann-Whitney U tests found no sex or family size differences in number of errors at 3 or 9 months. While no significant relationships were found between behavior in the family and learning at 3 months, significant negative correlations were found between duration spent in locomotion and learning errors (p = .05), as well as between frequency of calm vocalizations and learning errors (p = .001) at 9 months. A U-shape curve was found between amount of social play and learning at 9 months. Positive family interactions, including moderate amounts of play, as well as calm individual behavior, may therefore be important in learning. This study sheds light on cognitive development in much younger marmosets than previously studied, and helps increase understanding of how individual differences in learning may arise.
Collapse
Affiliation(s)
- Hayley Ash
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Toni E. Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI, USA
| |
Collapse
|
12
|
Abstract
AbstractCoping styles describe behavioral differences during stressful or challenging situations. Coping styles are stable over time but little is known about early life manifestation and development of these behavioral differences. We aimed to investigate if differences in the way marmosets produce vocalizations at an early age are related to their coping style in the future. We studied 14 common marmosets (Callithrix jacchus) from three social groups housed at the marmoset colony at Universidad Autónoma de Madrid. We recorded the vocalizations of each marmoset in isolation at 15–17 days of age, analyzing latency to vocalize and calling rate of phee and tsik calls. To measure coping style, we introduced a novel stimulus to the group cages when infants were 3 months old and recorded exploration, headcocking, and approaches to the stimulus. The results showed negative relationships between the latency of phee call (a long-range contact call) at 15–17 days and frequency of exploration and approach to the novel stimulus at 3 months, although both correlations fall above the cut-off points for the false discovery rate. Marmosets that gave long-range calls sooner at 15–17 days of age also showed more exploratory behaviors at 3 months. The results also showed group differences in exploration at 3 months, and twins were more similar to each other than to other infants in the sample. There were no group differences in early vocalizations and no sex differences in any variable. These findings suggest that coping style is stable from as early as 15–17 days after birth and suggest that the group can influence exploration in marmosets.
Collapse
|
13
|
Watanabe K, Tsubouchi T, Yamada T, Hinoi E, Miyawaki I. Telemetered common marmosets is useful for the assessment of electrocardiogram parameters changes induced by multiple cardiac ion channel inhibitors. J Toxicol Sci 2019; 44:441-457. [PMID: 31270301 DOI: 10.2131/jts.44.441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The objective of this study is to assess the response of telemetered common marmosets to multiple cardiac ion channel inhibitors and to clarify the usefulness of this animal model in evaluating the effects of drug candidates on electrocardiogram (ECG). Six multiple cardiac ion channel inhibitors (sotalol, astemizole, flecainide, quinidine, verapamil and terfenadine) were orally administered to telemetered common marmosets and changes in QTc, PR interval and QRS duration were evaluated. Drugs plasma levels were determined to compare the sensitivity in common marmosets to that in humans. QTc prolongation was observed in the marmosets dosed with sotalol, astemizole, flecainide, quinidine, verapamil and terfenadine. PR prolongation was noted after flecainide and verapamil administration, and QRS widening occurred following treatment with flecainide and quinidine. Drugs plasma levels associated with ECG changes in marmosets were similar to those in humans, except for verapamil-induced QTc prolongation. Verapamil-induced change is suggested due to body temperature decrease. These results indicate that telemetered common marmoset is a useful animal for evaluation of the ECG effects of multiple cardiac ion channel inhibitors and the influence of body temperature change should be considered in the assessment.
Collapse
Affiliation(s)
- Kenta Watanabe
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd.,Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School
| | | | - Toru Yamada
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School
| | - Izuru Miyawaki
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd
| |
Collapse
|
14
|
Miller CT. Why marmosets? Dev Neurobiol 2018; 77:237-243. [PMID: 28170158 DOI: 10.1002/dneu.22483] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, Neurosciences Graduate Program, University of California, San Diego, California
| |
Collapse
|
15
|
Ke M, He Q, Hong D, Li O, Zhu M, Ou WB, He Y, Wu Y. Leukemia inhibitory factor regulates marmoset induced pluripotent stem cell proliferation via a PI3K/Akt‑dependent Tbx‑3 activation pathway. Int J Mol Med 2018; 42:131-140. [PMID: 29620145 PMCID: PMC5979829 DOI: 10.3892/ijmm.2018.3610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/28/2018] [Indexed: 01/22/2023] Open
Abstract
Leukemia inhibitory factor (LIF) is the most pleiotropic cytokine of the interleukin-6 family, and is widely used to establish and maintain pluripotent stem cells, particularly mouse pluripotent stem cells. However, no reports have fully elucidated the application of LIF in marmoset induced pluripotent stem cell (iPSC) culture, particularly the underlying mechanisms. To demonstrate the feasibility of the application of LIF to marmoset iPSCs, the present study assessed these cells in the presence of LIF. Cell proliferation was measured using MTT assay, cell apoptosis was determined by flow cytometric analysis of fluorescein isothiocyanate Annexin V staining and the differentially expressed genes were analysed using Digital Gene Expression (DGE) analysis. The altered expression of pluripotency-associated genes was confirmed by reverse transcription-quantitative polymerase chain reaction and western blot analysis. Furthermore, following treatment with LY294002, cell proliferation was measured by MTT assay and protein levels were confirmed by western blot analysis. The results showed that LIF significantly promoted the number of proliferating cells, but had no effect on apoptosis. Digital Gene Expression analysis was used to examine the differentially expressed genes of marmoset iPSCs in the presence of LIF. The results showed that the pluripotency-associated transcription factor-encoding gene T-box 3 (Tbx-3) was activated by LIF. Notably, LIF increased the levels of phosphorylated (p-)AKT and Tbx-3 in the marmoset iPSCs. Furthermore, pretreatment with LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), significantly impaired the LIF-induced upregulation of p-AKT and Tbx-3 in the marmoset iPSCs, suggesting that the PI3K/Akt signaling pathway is involved in this regulation. Taken together, the results suggested that LIF is effective in maintaining marmoset iPSCs in cultures, which is associated with the activation of Tbx-3 through regulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Minxia Ke
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Quan He
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Danping Hong
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Ouyang Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Mengyi Zhu
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Wen-Bin Ou
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yulong He
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yuehong Wu
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
16
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Crino OL, Buchanan KL, Fanson BG, Hurley LL, Smiley KO, Griffith SC. Divorce in the socially monogamous zebra finch: Hormonal mechanisms and reproductive consequences. Horm Behav 2017; 87:155-163. [PMID: 27838360 DOI: 10.1016/j.yhbeh.2016.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 11/03/2016] [Accepted: 11/06/2016] [Indexed: 11/20/2022]
Abstract
Up to 80% of all bird species are socially monogamous. Divorce (switching partners) or pair disruption (due to the death of a partner) has been associated with decreased reproductive success, suggesting social monogamy is a strategy that may maximize fitness via coordination between partners. Previous studies have demonstrated the effects of divorce and pair disruption on immediate reproductive success. Here, we used a paired experimental design in the zebra finch (Taeniopygia guttata) to examine the hormonal mechanisms that modulate parental behavior and reproductive success in response to a partnership change (hereafter divorce). Specifically, we examined the effects of divorce on the avian stress hormone corticosterone (CORT) in both parents and nestlings, parental behaviors (incubation and nestling provisioning), prolactin (PRL), and reproductive success. We found that divorce resulted in delayed clutch initiation, reduced clutch mass, and an increase in nestling CORT response to a standardized stressor. These effects on reproductive investment and chick CORT response were not clearly determined by parental endocrine responses. Divorce had no effect on the level of parental CORT. PRL levels were highly correlated within a pair regardless of treatment, were negatively related to the investment that males made in incubation, and increased in experimental males as a result of pair disruption. This study demonstrates the fundamental impact which divorce has not only on reproduction, but also the physiological stress responses of offspring and suggests that in socially monogamous animals the maintenance of a stable partnership over time could be advantageous for long term fitness.
Collapse
Affiliation(s)
- Ondi L Crino
- Centre for Integrative Ecology, Deakin University, School of Life and Environmental Sciences, Geelong, Victoria, Australia; Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.
| | - Katherine L Buchanan
- Centre for Integrative Ecology, Deakin University, School of Life and Environmental Sciences, Geelong, Victoria, Australia
| | - Benjamin G Fanson
- Centre for Integrative Ecology, Deakin University, School of Life and Environmental Sciences, Geelong, Victoria, Australia
| | - Laura L Hurley
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | | | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Schiel N, Souto A. The common marmoset: An overview of its natural history, ecology and behavior. Dev Neurobiol 2016; 77:244-262. [PMID: 27706919 DOI: 10.1002/dneu.22458] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 01/24/2023]
Abstract
Callithrix jacchus are small-bodied Neotropical primates popularly known as common marmosets. They are endemic to Northeast Brazil and occur in contrasting environments such as the humid Atlantic Forest and the dry scrub forest of the Caatinga. Common marmosets live in social groups, usually containing only one breeding pair. These primates have a parental care system in which individuals help by providing assistance to the infants even when they are not related to them. Free-ranging groups use relatively small home ranges (0.5-5 hectares) and have an omnivorous diet. Because of the shape of their teeth, they actively gouge tree bark to extract and consume exudates. When foraging for live prey, they adjust their strategy according to the type of prey. The successful use of appropriate hunting strategies depends not only on age but also on prey type and seems to be mediated by learning and experience. Indeed, common marmosets have shown unexpected cognitive abilities, such as true imitation. All these aspects seem to have contributed to the ecological success of this species. Callithrix jacchus has been widely studied, especially in captivity; even so, a number of questions remain to be answered about its biology, ecology, and behavior, both in captivity and the wild. A richer understanding of marmosets' natural behavior and ecology can have a significant impact on shaping ongoing and future neuroscience research. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 244-262, 2017.
Collapse
Affiliation(s)
- Nicola Schiel
- Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
19
|
Silva AC. Anatomical and functional neuroimaging in awake, behaving marmosets. Dev Neurobiol 2016; 77:373-389. [PMID: 27706916 DOI: 10.1002/dneu.22456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022]
Abstract
The common marmoset (Callithrix jacchus) is a small New World monkey that has gained significant recent interest in neuroscience research, not only because of its compatibility with gene editing techniques, but also due to its tremendous versatility as an experimental animal model. Neuroimaging modalities, including anatomical (MRI) and functional magnetic resonance imaging (fMRI), complemented by two-photon laser scanning microscopy and electrophysiology, have been at the forefront of unraveling the anatomical and functional organization of the marmoset brain. High-resolution anatomical MRI of the marmoset brain can be obtained with remarkable cytoarchitectonic detail. Functional MRI of the marmoset brain has been used to study various sensory systems, including somatosensory, auditory, and visual pathways, while resting-state fMRI studies have unraveled functional brain networks that bear great correspondence to those previously described in humans. Two-photon laser scanning microscopy of the marmoset brain has enabled the simultaneous recording of neuronal activity from thousands of neurons with single cell spatial resolution. In this article, we aim to review the main results obtained by our group and by our colleagues in applying neuroimaging techniques to study the marmoset brain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 373-389, 2017.
Collapse
Affiliation(s)
- Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
20
|
Vargas-Pinilla P, Babb P, Nunes L, Paré P, Rosa G, Felkl A, Longo D, Salzano FM, Paixão-Côrtes VR, Gonçalves GL, Bortolini MC. Progesterone Response Element Variation in the OXTR Promoter Region and Paternal Care in New World Monkeys. Behav Genet 2016; 47:77-87. [DOI: 10.1007/s10519-016-9806-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 08/10/2016] [Indexed: 01/25/2023]
|
21
|
Smiley KO, Adkins-Regan E. Relationship between prolactin, reproductive experience, and parental care in a biparental songbird, the zebra finch (Taeniopygia guttata). Gen Comp Endocrinol 2016; 232:17-24. [PMID: 26602378 DOI: 10.1016/j.ygcen.2015.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 12/27/2022]
Abstract
Hormonal systems have long been thought to play an important role in stimulating the onset of parental behavior, a critical component of reproductive success in a variety of taxa. Elevations in the peptide hormone prolactin (PRL) have been repeatedly positively correlated with the onset and maintenance of parental care across vertebrate species. A causal role for PRL in parental care has been established in several mammalian species, but less evidence for a causal role of PRL and parental care exists in birds. The zebra finch, a socially monogamous, biparental songbird, is an exceptionally useful animal model to study parental care and other close social relationships. Both sexes share parental care equally, exhibit the same parental behaviors, and show a marked improvement in breeding success with experience. We hypothesize that PRL is critically involved in the expression of zebra finch parental care and predict that circulating PRL levels will increase with breeding experience. To begin testing this, we measured plasma PRL concentrations in 14 male-female zebra finch pairs (N=28) across two breeding cycles, using a repeated measures design. PRL was measured in the birds' first, reproductively inexperienced, breeding cycle beginning at courtship and extending through chick fledging. PRL was measured again during the birds' second, reproductively experienced, breeding cycle, beginning with egg laying until chick fledging. We found that plasma PRL is significantly elevated from non-breeding concentrations during late incubation and early post-hatch care and that this elevation is greater in the reproductively experienced cycle compared to the inexperienced cycle. Findings of this study will be used to inform hypotheses and predictions for future experimental manipulations of PRL during parental care.
Collapse
Affiliation(s)
- Kristina O Smiley
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | - Elizabeth Adkins-Regan
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
22
|
Miller CT, Freiwald WA, Leopold DA, Mitchell JF, Silva AC, Wang X. Marmosets: A Neuroscientific Model of Human Social Behavior. Neuron 2016; 90:219-33. [PMID: 27100195 PMCID: PMC4840471 DOI: 10.1016/j.neuron.2016.03.018] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 10/21/2022]
Abstract
The common marmoset (Callithrix jacchus) has garnered interest recently as a powerful model for the future of neuroscience research. Much of this excitement has centered on the species' reproductive biology and compatibility with gene editing techniques, which together have provided a path for transgenic marmosets to contribute to the study of disease as well as basic brain mechanisms. In step with technical advances is the need to establish experimental paradigms that optimally tap into the marmosets' behavioral and cognitive capacities. While conditioned task performance of a marmoset can compare unfavorably with rhesus monkey performance on conventional testing paradigms, marmosets' social behavior and cognition are more similar to that of humans. For example, marmosets are among only a handful of primates that, like humans, routinely pair bond and care cooperatively for their young. They are also notably pro-social and exhibit social cognitive abilities, such as imitation, that are rare outside of the Apes. In this Primer, we describe key facets of marmoset natural social behavior and demonstrate that emerging behavioral paradigms are well suited to isolate components of marmoset cognition that are highly relevant to humans. These approaches generally embrace natural behavior, which has been rare in conventional primate testing, and thus allow for a new consideration of neural mechanisms underlying primate social cognition and signaling. We anticipate that through parallel technical and paradigmatic advances, marmosets will become an essential model of human social behavior, including its dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| | - Winrich A Freiwald
- Laboratory of Neural Systems, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, 6001 Executive Blvd., Bethesda, MD 20892, USA
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, 358 Meliora Hall, Rochester, NY 14627, USA
| | - Afonso C Silva
- Section on Cerebral Microcirculation, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 6001 Executive Blvd., Bethesda, MD 20892, USA
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD 21205, USA
| |
Collapse
|
23
|
|
24
|
Lairmore MD, Ilkiw J. Animals Used in Research and Education, 1966-2016: Evolving Attitudes, Policies, and Relationships. JOURNAL OF VETERINARY MEDICAL EDUCATION 2015; 42:425-440. [PMID: 26673210 DOI: 10.3138/jvme.0615-087r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Since the inception of the Association of American Veterinary Medical Colleges (AAVMC), the use of animals in research and education has been a central element of the programs of member institutions. As veterinary education and research programs have evolved over the past 50 years, so too have societal views and regulatory policies. AAVMC member institutions have continually responded to these events by exchanging best practices in training their students in the framework of comparative medicine and the needs of society. Animals provide students and faculty with the tools to learn the fundamental knowledge and skills of veterinary medicine and scientific discovery. The study of animal models has contributed extensively to medicine, veterinary medicine, and basic sciences as these disciplines seek to understand life processes. Changing societal views over the past 50 years have provided active examination and continued refinement of the use of animals in veterinary medical education and research. The future use of animals to educate and train veterinarians will likely continue to evolve as technological advances are applied to experimental design and educational systems. Natural animal models of both human and animal health will undoubtedly continue to serve a significant role in the education of veterinarians and in the development of new treatments of animal and human disease. As it looks to the future, the AAVMC as an organization will need to continue to support and promote best practices in the humane care and appropriate use of animals in both education and research.
Collapse
MESH Headings
- Animal Experimentation/history
- Animal Experimentation/legislation & jurisprudence
- Animal Use Alternatives/history
- Animal Use Alternatives/legislation & jurisprudence
- Animal Use Alternatives/trends
- Animal Welfare/history
- Animal Welfare/legislation & jurisprudence
- Animals
- Animals, Laboratory
- Education, Veterinary/history
- Education, Veterinary/methods
- Education, Veterinary/trends
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- History, Ancient
- Human-Animal Bond
- Humans
- Models, Animal
- United States
Collapse
|