1
|
Yang K, Ishizuka K, Tomoda T, Sawa A. Aberrant aging-associated p62 autophagic cascade in biopsied olfactory neuronal cells from patients with psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:68. [PMID: 40268926 PMCID: PMC12019308 DOI: 10.1038/s41537-025-00617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Sequestosome-1/p62, a key mediator in the clearance of damaged organelles and macromolecules during autophagy, serves as a marker of biological aging. We demonstrate elevated p62 in biopsied neuronal cells in patients with psychosis compared to healthy controls. In healthy controls, p62-indicated biological/autophagic age is positively correlated with chronological age over time, whereas in patients, neuronal p62-indicated biological/autophagic age shows no correlation with chronological age, being significantly higher than chronological age from the onset of the disease.
Collapse
Affiliation(s)
- Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Toshifumi Tomoda
- Centre for Addiction and Mental Health, Department of Psychiatry, Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Jiang L, Shao M, Song C, Zhou L, Nie W, Yu H, Wang S, Liu Y, Yu L. The Role of Epigenetic Mechanisms in the Development of PM 2.5-Induced Cognitive Impairment. TOXICS 2025; 13:119. [PMID: 39997934 PMCID: PMC11861554 DOI: 10.3390/toxics13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
PM2.5 is fine particulate matter with a diameter of less than 2.5 μm. Recent evidence has shown that exposure to PM2.5 markedly elevates the risk of neurodegenerative diseases, neurodevelopmental disorders, and cardiovascular diseases, which may culminate in cognitive impairment. Nevertheless, the precise mechanisms through which PM2.5 affects cognitive function are unclear. Recent studies have demonstrated that PM2.5-induced epigenetic alterations are associated with the development of cognitive impairment. Epigenetic alterations include modifications to DNA methylation, histone modifications, and non-coding RNAs. The underlying mechanisms of epigenetic alterations are related to inflammation, synaptic dysfunction, cardiovascular factors, and alterations in neuronal structure and function. This review reports the latest findings on the relationship between PM2.5-induced epigenetic alterations and the development of cognitive disorders, offering novel insights into the cognitive effects of air pollution.
Collapse
Affiliation(s)
- Lishan Jiang
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Mingxia Shao
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Chao Song
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Li Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Wenke Nie
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Hang Yu
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Siqi Wang
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Yongping Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Li Yu
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
3
|
Stark R. The olfactory bulb: A neuroendocrine spotlight on feeding and metabolism. J Neuroendocrinol 2024; 36:e13382. [PMID: 38468186 DOI: 10.1111/jne.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
Olfaction is the most ancient sense and is needed for food-seeking, danger protection, mating and survival. It is often the first sensory modality to perceive changes in the external environment, before sight, taste or sound. Odour molecules activate olfactory sensory neurons that reside on the olfactory epithelium in the nasal cavity, which transmits this odour-specific information to the olfactory bulb (OB), where it is relayed to higher brain regions involved in olfactory perception and behaviour. Besides odour processing, recent studies suggest that the OB extends its function into the regulation of food intake and energy balance. Furthermore, numerous hormone receptors associated with appetite and metabolism are expressed within the OB, suggesting a neuroendocrine role outside the hypothalamus. Olfactory cues are important to promote food preparatory behaviours and consumption, such as enhancing appetite and salivation. In addition, altered metabolism or energy state (fasting, satiety and overnutrition) can change olfactory processing and perception. Similarly, various animal models and human pathologies indicate a strong link between olfactory impairment and metabolic dysfunction. Therefore, understanding the nature of this reciprocal relationship is critical to understand how olfactory or metabolic disorders arise. This present review elaborates on the connection between olfaction, feeding behaviour and metabolism and will shed light on the neuroendocrine role of the OB as an interface between the external and internal environments. Elucidating the specific mechanisms by which olfactory signals are integrated and translated into metabolic responses holds promise for the development of targeted therapeutic strategies and interventions aimed at modulating appetite and promoting metabolic health.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 PMCID: PMC11560121 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Yang K, Hasegawa Y, Bhattarai JP, Hua J, Dower M, Etyemez S, Prasad N, Duvall L, Paez A, Smith A, Wang Y, Zhang YF, Lane AP, Ishizuka K, Kamath V, Ma M, Kamiya A, Sawa A. Inflammation-related pathology in the olfactory epithelium: its impact on the olfactory system in psychotic disorders. Mol Psychiatry 2024; 29:1453-1464. [PMID: 38321120 PMCID: PMC11189720 DOI: 10.1038/s41380-024-02425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.
Collapse
Affiliation(s)
- Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuto Hasegawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jun Hua
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Milan Dower
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Semra Etyemez
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neal Prasad
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren Duvall
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Amy Smith
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yingqi Wang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yun-Feng Zhang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vidyulata Kamath
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Atsushi Kamiya
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
6
|
Zhang MX, Hong H, Shi Y, Huang WY, Xia YM, Tan LL, Zhao WJ, Qiao CM, Wu J, Zhao LP, Huang SB, Jia XB, Shen YQ, Cui C. A Pilot Study on a Possible Mechanism behind Olfactory Dysfunction in Parkinson's Disease: The Association of TAAR1 Downregulation with Neuronal Loss and Inflammation along Olfactory Pathway. Brain Sci 2024; 14:300. [PMID: 38671952 PMCID: PMC11048016 DOI: 10.3390/brainsci14040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) is characterized not only by motor symptoms but also by non-motor dysfunctions, such as olfactory impairment; the cause is not fully understood. Our study suggests that neuronal loss and inflammation in brain regions along the olfactory pathway, such as the olfactory bulb (OB) and the piriform cortex (PC), may contribute to olfactory dysfunction in PD mice, which might be related to the downregulation of the trace amine-associated receptor 1 (TAAR1) in these areas. In the striatum, although only a decrease in mRNA level, but not in protein level, of TAAR1 was detected, bioinformatic analyses substantiated its correlation with PD. Moreover, we discovered that neuronal death and inflammation in the OB and the PC in PD mice might be regulated by TAAR through the Bcl-2/caspase3 pathway. This manifested as a decrease of anti-apoptotic protein Bcl-2 and an increase of the pro-apoptotic protein cleaved caspase3, or through regulating astrocytes activity, manifested as the increase of TAAR1 in astrocytes, which might lead to the decreased clearance of glutamate and consequent neurotoxicity. In summary, we have identified a possible mechanism to elucidate the olfactory dysfunction in PD, positing neuronal damage and inflammation due to apoptosis and astrocyte activity along the olfactory pathway in conjunction with the downregulation of TAAR1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Chun Cui
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| |
Collapse
|
7
|
Yang K, Hasegawa Y, Bhattarai JP, Hua J, Dower M, Etyemez S, Prasad N, Duvall L, Paez A, Smith A, Wang Y, Zhang YF, Lane AP, Ishizuka K, Kamath V, Ma M, Kamiya A, Sawa A. Inflammation-related pathology in the olfactory epithelium: its impact on the olfactory system in psychotic disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.09.23.509224. [PMID: 36203543 PMCID: PMC9536041 DOI: 10.1101/2022.09.23.509224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.
Collapse
|
8
|
Hasegawa Y, Kim J, Ursini G, Jouroukhin Y, Zhu X, Miyahara Y, Xiong F, Madireddy S, Obayashi M, Lutz B, Sawa A, Brown SP, Pletnikov MV, Kamiya A. Microglial cannabinoid receptor type 1 mediates social memory deficits in mice produced by adolescent THC exposure and 16p11.2 duplication. Nat Commun 2023; 14:6559. [PMID: 37880248 PMCID: PMC10600150 DOI: 10.1038/s41467-023-42276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Adolescent cannabis use increases the risk for cognitive impairments and psychiatric disorders. Cannabinoid receptor type 1 (Cnr1) is expressed not only in neurons and astrocytes, but also in microglia, which shape synaptic connections during adolescence. However, the role of microglia in mediating the adverse cognitive effects of delta-9-tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, is not fully understood. Here, we report that in mice, adolescent THC exposure produces microglial apoptosis in the medial prefrontal cortex (mPFC), which was exacerbated in a model of 16p11.2 duplication, a representative copy number variation (CNV) risk factor for psychiatric disorders. These effects are mediated by microglial Cnr1, leading to reduction in the excitability of mPFC pyramidal-tract neurons and deficits in social memory in adulthood. Our findings suggest the microglial Cnr1 may contribute to adverse effect of cannabis exposure in genetically vulnerable individuals.
Collapse
Affiliation(s)
- Yuto Hasegawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juhyun Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Gianluca Ursini
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Yan Jouroukhin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences SUNY, University at Buffalo, Buffalo, NY, USA
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Miyahara
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feiyi Xiong
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samskruthi Madireddy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mizuho Obayashi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Solange P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences SUNY, University at Buffalo, Buffalo, NY, USA.
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Hasegawa Y, Kim J, Ursini G, Jouroukhin Y, Zhu X, Miyahara Y, Xiong F, Madireddy S, Obayashi M, Lutz B, Sawa A, Brown SP, Pletnikov MV, Kamiya A. Microglial cannabinoid receptor type 1 mediates social memory deficits produced by adolescent THC exposure and 16p11.2 duplication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550212. [PMID: 37546830 PMCID: PMC10402026 DOI: 10.1101/2023.07.24.550212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Adolescent cannabis use increases the risk for cognitive impairments and psychiatric disorders. Cannabinoid receptor type 1 (Cnr1) is expressed not only in neurons and astrocytes, but also in microglia, which shape synaptic connections during adolescence. Nonetheless, until now, the role of microglia in mediating the adverse cognitive effects of delta-9-tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, has been unexplored. Here, we report that adolescent THC exposure produces microglial apoptosis in the medial prefrontal cortex (mPFC), which was exacerbated in the mouse model of 16p11.2 duplication, a representative copy number variation (CNV) risk factor for psychiatric disorders. These effects are mediated by microglial Cnr1, leading to reduction in the excitability of mPFC pyramidal-tract neurons and deficits in social memory in adulthood. Our findings highlight the importance of microglial Cnr1 to produce the adverse effect of cannabis exposure in genetically vulnerable individuals.
Collapse
|
10
|
Yang K, Evgrafov OV. Editorial: Olfactory neuroepithelium-derived cellular models to study neurological and psychiatric disorders. Front Neurosci 2023; 17:1203466. [PMID: 37250419 PMCID: PMC10213714 DOI: 10.3389/fnins.2023.1203466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Affiliation(s)
- Kun Yang
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, United States
| | - Oleg V. Evgrafov
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
11
|
Zhu X, Sakamoto S, Ishii C, Smith MD, Ito K, Obayashi M, Unger L, Hasegawa Y, Kurokawa S, Kishimoto T, Li H, Hatano S, Wang TH, Yoshikai Y, Kano SI, Fukuda S, Sanada K, Calabresi PA, Kamiya A. Dectin-1 signaling on colonic γδ T cells promotes psychosocial stress responses. Nat Immunol 2023; 24:625-636. [PMID: 36941398 DOI: 10.1038/s41590-023-01447-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2023] [Indexed: 03/23/2023]
Abstract
The intestinal immune system interacts with commensal microbiota to maintain gut homeostasis. Furthermore, stress alters the microbiome composition, leading to impaired brain function; yet how the intestinal immune system mediates these effects remains elusive. Here we report that colonic γδ T cells modulate behavioral vulnerability to chronic social stress via dectin-1 signaling. We show that reduction in specific Lactobacillus species, which are involved in T cell differentiation to protect the host immune system, contributes to stress-induced social-avoidance behavior, consistent with our observations in patients with depression. Stress-susceptible behaviors derive from increased differentiation in colonic interleukin (IL)-17-producing γδ T cells (γδ17 T cells) and their meningeal accumulation. These stress-susceptible cellular and behavioral phenotypes are causally mediated by dectin-1, an innate immune receptor expressed in γδ T cells. Our results highlight the previously unrecognized role of intestinal γδ17 T cells in the modulation of psychological stress responses and the importance of dectin-1 as a potential therapeutic target for the treatment of stress-induced behaviors.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shinji Sakamoto
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koki Ito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Mizuho Obayashi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lisa Unger
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Yuto Hasegawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shunya Kurokawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| | - Hui Li
- Departments of Mechanical Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, IL, USA
| | - Shinya Hatano
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tza-Huei Wang
- Departments of Mechanical Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yasunobu Yoshikai
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shin-Ichi Kano
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
- Laboratory for Regenerative Microbiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kenji Sanada
- Department of Psychiatry, School of Medicine, Showa University, Tokyo, Japan
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Abstract
Air pollution is a complex mixture of gases and particulate matter, with adsorbed organic and inorganic contaminants, to which exposure is lifelong. Epidemiological studies increasingly associate air pollution with multiple neurodevelopmental disorders and neurodegenerative diseases, findings supported by experimental animal models. This breadth of neurotoxicity across these central nervous system diseases and disorders likely reflects shared vulnerability of their inflammatory and oxidative stress-based mechanisms and a corresponding ability to produce brain metal dyshomeo-stasis. Future research to define the responsible contaminants of air pollution underlying this neurotoxicity is critical to understanding mechanisms of these diseases and disorders and protecting public health.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA;
| |
Collapse
|
13
|
Liu XQ, Huang J, Song C, Zhang TL, Liu YP, Yu L. Neurodevelopmental toxicity induced by PM2.5 Exposure and its possible role in Neurodegenerative and mental disorders. Hum Exp Toxicol 2023; 42:9603271231191436. [PMID: 37537902 DOI: 10.1177/09603271231191436] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Recent extensive evidence suggests that ambient fine particulate matter (PM2.5, with an aerodynamic diameter ≤2.5 μm) may be neurotoxic to the brain and cause central nervous system damage, contributing to neurodevelopmental disorders, such as autism spectrum disorders, neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and mental disorders, such as schizophrenia, depression, and bipolar disorder. PM2.5 can enter the brain via various pathways, including the blood-brain barrier, olfactory system, and gut-brain axis, leading to adverse effects on the CNS. Studies in humans and animals have revealed that PM2.5-mediated mechanisms, including neuroinflammation, oxidative stress, systemic inflammation, and gut flora dysbiosis, play a crucial role in CNS damage. Additionally, PM2.5 exposure can induce epigenetic alterations, such as hypomethylation of DNA, which may contribute to the pathogenesis of some CNS damage. Through literature analysis, we suggest that promising therapeutic targets for alleviating PM2.5-induced neurological damage include inhibiting microglia overactivation, regulating gut microbiota with antibiotics, and targeting signaling pathways, such as PKA/CREB/BDNF and WNT/β-catenin. Additionally, several studies have observed an association between PM2.5 exposure and epigenetic changes in neuropsychiatric disorders. This review summarizes and discusses the association between PM2.5 exposure and CNS damage, including the possible mechanisms by which PM2.5 causes neurotoxicity.
Collapse
Affiliation(s)
- Xin-Qi Liu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Jia Huang
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Chao Song
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Tian-Liang Zhang
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Yong-Ping Liu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Li Yu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| |
Collapse
|
14
|
Olfactory impairment in psychiatric disorders: Does nasal inflammation impact disease psychophysiology? Transl Psychiatry 2022; 12:314. [PMID: 35927242 PMCID: PMC9352903 DOI: 10.1038/s41398-022-02081-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Olfactory impairments contribute to the psychopathology of mental illnesses such as schizophrenia and depression. Recent neuroscience research has shed light on the previously underappreciated olfactory neural circuits involved in regulation of higher brain functions. Although environmental factors such as air pollutants and respiratory viral infections are known to contribute to the risk for psychiatric disorders, the role of nasal inflammation in neurobehavioral outcomes and disease pathophysiology remains poorly understood. Here, we will first provide an overview of published findings on the impact of nasal inflammation in the olfactory system. We will then summarize clinical studies on olfactory impairments in schizophrenia and depression, followed by preclinical evidence on the neurobehavioral outcomes produced by olfactory dysfunction. Lastly, we will discuss the potential impact of nasal inflammation on brain development and function, as well as how we can address the role of nasal inflammation in the pathophysiological mechanisms underlying psychiatric disorders. Considering the current outbreak of Coronavirus Disease 2019 (COVID-19), which often causes nasal inflammation and serious adverse effects for olfactory function that might result in long-lasting neuropsychiatric sequelae, this line of research is particularly critical to understanding of the potential significance of nasal inflammation in the pathophysiology of psychiatric disorders.
Collapse
|
15
|
Yang K, Hua J, Etyemez S, Paez A, Prasad N, Ishizuka K, Sawa A, Kamath V. Volumetric alteration of olfactory bulb and immune-related molecular changes in olfactory epithelium in first episode psychosis patients. Schizophr Res 2021; 235:9-11. [PMID: 34280869 DOI: 10.1016/j.schres.2021.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jun Hua
- Department of Psychiatry, Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Semra Etyemez
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Adrian Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Neal Prasad
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Psychiatry, Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Psychiatry, Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Psychiatry, Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Psychiatry, Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| | - Vidyulata Kamath
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|