1
|
Bonaldo B, Casile A, Bettarelli M, Marraudino M, Gotti S. Perinatal exposure to bisphenol A or S alters differently sexual behavior and kisspeptin system in mice. ENVIRONMENTAL RESEARCH 2025; 269:120888. [PMID: 39828186 DOI: 10.1016/j.envres.2025.120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The effects of bisphenol A (BPA), a highly diffused endocrine-disrupting chemical found mainly in plastics, on neural circuits and behaviors are well-known. However, the effects of its substitutes have not been fully investigated. Thus, in the present study, we compare the effects of perinatal exposure to bisphenol A or S (BPS) on reproductive behaviors and related hypothalamic kisspeptin system in mice. C57BL/6J dams were orally treated with 4 μg/kg body weight/day of BPA, BPS, or vehicle from mating until the weaning of the offspring. In the adult offspring, we performed the two-bedding T-Maze test, and we observed the spontaneous sexual behavior. Exposure to BPA caused a delay in puberty onset in females, while BPS caused anticipation in males, and both altered the estrous cycle in females. The sexual and sexual-related behaviors were partially altered in males, especially in the BPA-exposed ones. Regarding the kisspeptin immunoreactivity in the analyzed hypothalamic nuclei, in BPA- or BPS-treated females, we observed an increase within the rostral periventricular area, while BPA led to an increase in the paraventricular nucleus, and BPS induced a reduction compared to control females. Among males, we observed a significant increase in the arcuate nucleus of BPA-treated males and a significant decrease in the paraventricular nucleus of BPS-treated ones. These results support the idea that perinatal exposure to low doses of either BPA or BPS is altering, in a sexually differentiated way, some reproductive-relevant parameters, sexual behaviors, and kisspeptin hypothalamic nuclei.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy; School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
2
|
Moralia MA, Bothorel B, Andry V, Goumon Y, Simonneaux V. Bisphenol A induces sex-dependent alterations in the neuroendocrine response of Djungarian hamsters to photoperiod. CHEMOSPHERE 2025; 370:143955. [PMID: 39701315 DOI: 10.1016/j.chemosphere.2024.143955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
In nature, species synchronize reproduction and energy metabolism with seasons to optimize survival and growth. This study investigates the effect of oral exposure to bisphenol A (BPA) on phenotypic and neuroendocrine seasonal adaptations in the Djungarian hamster, which in contrast to conventional laboratory rodents, is a well-recognized seasonal model. Adult female and male hamsters were orally exposed to BPA (5, 50, or 500 μg/kg/d) or vehicle during a 10-week transition from a long (LP) to short (SP) photoperiod (winter transition) or vice versa (summer transition). Changes in body weight, food intake, and pelage color were monitored weekly and, at the end of the exposure, expression of hypophysio-hypothalamic markers of photoperiodic (TSHβ, deiodinases), reproductive (Rfrp, kisspeptin) and metabolic (somatostatin, Pomc) integration, reproductive organ activity, and glycemia were assessed. Our results revealed sex-specific effects of BPA on acquiring SP and LP phenotypes. During LP to SP transition, females exposed to 500 μg/kg/d BPA exhibited delayed body weight loss and reduced feed efficiency associated with a lower expression of somatostatin, while males exposed to 5 μg/kg/d BPA showed an accelerated acquisition of SP-induced metabolic parameters. During SP to LP transition, females exposed to 5 μg/kg/d BPA displayed a faster LP adaptation in reproductive and metabolic parameters, along with kisspeptin downregulation occurring 5 weeks earlier and Pomc upregulation delayed for up to 10 weeks. In males, BPA exposure led to decreased expression of central photoperiodic integrators, with no effect on the acquisition of the LP phenotype. This pioneering study investigating EDCs' effects on mammalian seasonal physiology shows that BPA alters the dynamics of metabolic adaptation to both SP and LP transitions with marked sex dimorphism, causing temporal discordance in seasonal adaptation between males and females. These findings emphasize the importance of investigating EDCs' effects on non-conventional animal models, providing insights into wildlife physiology.
Collapse
Affiliation(s)
- Marie-Azélie Moralia
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France
| | - Béatrice Bothorel
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France
| | - Virginie Andry
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France
| | - Yannick Goumon
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France
| | - Valérie Simonneaux
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
3
|
Chaichian S, Khodabandehloo F, Haghighi L, Govahi A, Mehdizadeh M, Ajdary M, Varma RS. Toxicological Impact of Bisphenol A on Females' Reproductive System: Review Based on Experimental and Epidemiological Studies. Reprod Sci 2024; 31:1781-1799. [PMID: 38532232 DOI: 10.1007/s43032-024-01521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The study encompassing research papers documented in the last two decades pertaining to the possible influence of bisphenol A (BPA) on the fertility of females are appraised with emphasis on the influence of BPA in reproductive organs (uterus and ovaries) and pregnancy outcomes including discussion on the reproductive process (implantation, estrous cycle, hormone secretion); outcomes reveal a connection amongst BPA and female infertility. Ovary, uterus, and its shape as well as function can alter a person's ability to become pregnant by influencing the hypothalamus-pituitary axis in the ovarian model. Additionally, implantation and the estrous cycle may be affected by BPA. However, more research is warranted to comprehend the underlying action mechanisms and to promptly identify any imminent reproductive harm.
Collapse
Affiliation(s)
- Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khodabandehloo
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ladan Haghighi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
4
|
Lei B, Yang Y, Xu L, Zhang X, Yu M, Yu J, Li N, Yu Y. Molecular insights into the effects of tetrachlorobisphenol A on puberty initiation in Wistar rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168643. [PMID: 37992829 DOI: 10.1016/j.scitotenv.2023.168643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Tetrachlorobisphenol A (TCBPA) is the chlorinated derivative of bisphenol A (BPA). Several studies have found that BPA adversely affects the reproductive activity largely through binding to estrogen receptors and the critical period of BPA exposure advances the vaginal opening time in the female offspring via the kisspeptin/G protein-coupled receptor 54 (KGG) system. However, whether TCBPA can affect puberty initiation via KGG and the roles of estrogen receptors in this process remain unknown. Therefore, this study investigated the influence of TCBPA on the onset time of puberty in Wistar rats and the related molecular mechanisms by combing in vitro GT1-7 cells and molecular docking. In female Wistar rats, TCBPA at ≥100 mg/kg bw/day (49.2 μmol/L in rat body) markedly advanced vaginal opening time and increased serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and gonadotropin-releasing hormone (GnRH). It also increased the relative gene expression of LH receptor (LHR), GnRH1, and FSH receptor (FSHR) in hypothalamic-pituitary-gonadal (HPG) axis tissues. In GT1-7 cells, TCBPA increased genes and proteins associated with KGG pathway and activated the extracellular-regulated protein kinase 1/2 (Erk1/2) and phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathways via G protein-coupled estrogen membrane receptor 1 (GPER1) and estrogen receptor alpha (ERα). Docking analyses supported its interactions with GPER1 and ERα, and treatment with specific inhibitors of ERα- and GPER1-modulated PI3K/Akt and Erk1/2 signaling suppressed its effects. Taken together, TCBPA-induced advancement of puberty initiation in Wistar rats thus results primarily from increased LH, GnRH, and FSH secretion together with GnRH1, FSHR, and LHR upregulation driven by ERα- and GPER1-modulated Erk1/2 and PI3K/Akt signaling. Our results provide new molecular insights into the reproductive toxicity of EDCs.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Marinello WP, Gillera SEA, Han Y, Richardson JR, St Armour G, Horman BM, Patisaul HB. Gestational exposure to FireMaster® 550 (FM 550) disrupts the placenta-brain axis in a socially monogamous rodent species, the prairie vole (Microtus ochrogaster). Mol Cell Endocrinol 2023; 576:112041. [PMID: 37562579 PMCID: PMC10795011 DOI: 10.1016/j.mce.2023.112041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Gestational flame retardant (FR) exposure has been linked to heightened risk of neurodevelopmental disorders, but the mechanisms remain largely unknown. Historically, toxicologists have relied on traditional, inbred rodent models, yet those do not always best model human vulnerability or biological systems, especially social systems. Here we used prairie voles (Microtus ochrogaster), a monogamous and bi-parental rodent, leveraged for decades to decipher the underpinnings of social behaviors, to examine the impact of fetal FR exposure on gene targets in the mid-gestational placenta and fetal brain. We previously established gestational exposure to the commercial mixture Firemaster 550 (FM 550) impairs sociality, particularly in males. FM 550 exposure disrupted placental monoamine production, particularly serotonin, and genes required for axon guidance and cellular respiration in the fetal brains. Effects were dose and sex specific. These data provide insights on the mechanisms by which FRs impair neurodevelopment and later in life social behaviors.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | | | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Genevieve St Armour
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
6
|
Howdeshell KL, Beverly BEJ, Blain RB, Goldstone AE, Hartman PA, Lemeris CR, Newbold RR, Rooney AA, Bucher JR. Evaluating endocrine disrupting chemicals: A perspective on the novel assessments in CLARITY-BPA. Birth Defects Res 2023; 115:1345-1397. [PMID: 37646438 DOI: 10.1002/bdr2.2238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Brandiese E J Beverly
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | - Retha R Newbold
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| | - Andrew A Rooney
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - John R Bucher
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| |
Collapse
|
7
|
Park CJ, Minabe S, Hess RA, Lin PCP, Zhou S, Bashir ST, Barakat R, Gal A, Ko CJ. Single neonatal estrogen implant sterilizes female animals by decreasing hypothalamic KISS1 expression. Sci Rep 2023; 13:9627. [PMID: 37316510 DOI: 10.1038/s41598-023-36727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Reproductive sterilization by surgical gonadectomy is strongly advocated to help manage animal populations, especially domesticated pets, and to prevent reproductive behaviors and diseases. This study explored the use of a single-injection method to induce sterility in female animals as an alternative to surgical ovariohysterectomy. The idea was based on our recent finding that repetitive daily injection of estrogen into neonatal rats disrupted hypothalamic expression of Kisspeptin (KISS1), the neuropeptide that triggers and regulates pulsatile secretion of GnRH. Neonatal female rats were dosed with estradiol benzoate (EB) either by daily injections for 11 days or by subcutaneous implantation of an EB-containing silicone capsule designed to release EB over 2-3 weeks. Rats treated by either method did not exhibit estrous cyclicity, were anovulatory, and became infertile. The EB-treated rats had fewer hypothalamic Kisspeptin neurons, but the GnRH-LH axis remained responsive to Kisspeptin stimulation. Because it would be desirable to use a biodegradable carrier that is also easier to handle, an injectable EB carrier was developed from PLGA microspheres to provide pharmacokinetics comparable to the EB-containing silicone capsule. A single neonatal injection of EB-microspheres at an equivalent dosage resulted in sterility in the female rat. In neonatal female Beagle dogs, implantation of an EB-containing silicone capsule also reduced ovarian follicle development and significantly inhibited KISS1 expression in the hypothalamus. None of the treatments produced any concerning health effects, other than infertility. Therefore, further development of this technology for sterilization in domestic female animals, such as dogs and cats is worthy of investigation.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Epivara, Inc, Champaign, IL, 61820, USA
| | - Shiori Minabe
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, 028-3694, Japan
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Epivara, Inc, Champaign, IL, 61820, USA
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | | | - Shah Tauseef Bashir
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - CheMyong Jay Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
- Epivara, Inc, Champaign, IL, 61820, USA.
| |
Collapse
|
8
|
Shoorei H, Seify M, Talebi SF, Majidpoor J, Dehaghi YK, Shokoohi M. Different types of bisphenols alter ovarian steroidogenesis: Special attention to BPA. Heliyon 2023; 9:e16848. [PMID: 37303564 PMCID: PMC10250808 DOI: 10.1016/j.heliyon.2023.e16848] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Endocrine disruptors such as bisphenol A (BPA) and some of its analogues, including BPS, BPAF, and BPE, are used extensively in the manufacture of plastics. These synthetic chemicals could seriously alter the functionality of the female reproductive system. Although the number of studies conducted on other types of bisphenols is smaller than the number of studies on BPA, the purpose of this review study was to evaluate the effects of bisphenol compounds, particularly BPA, on hormone production and on genes involved in ovarian steroidogenesis in both in vitro (human and animal cell lines) and in vivo (animal models) studies. The current data show that exposure to bisphenol compounds has adverse effects on ovarian steroidogenesis. For example, BPA, BPS, and BPAF can alter the normal function of the hypothalamic-pituitary-gonadal (HPG) axis by targeting kisspeptin neurons involved in steroid feedback signals to gonadotropin-releasing hormone (GnRH) cells, resulting in abnormal production of LH and FSH. Exposure to BPA, BPS, BPF, and BPB had adverse effects on the release of some hormones, namely 17-β-estradiol (E2), progesterone (P4), and testosterone (T). BPA, BPE, BPS, BPF, and BPAF are also capable of negatively altering the transcription of a number of genes involved in ovarian steroidogenesis, such as the steroidogenic acute regulatory protein (StAR, involved in the transfer of cholesterol from the outer to the inner mitochondrial membrane, where the steroidogenesis process begins), cytochrome P450 family 17 subfamily A member 1 (Cyp17a1, which is involved in the biosynthesis of androgens such as testosterone), 3 beta-hydroxysteroid dehydrogenase enzyme (3β-HSD, involved in the biosynthesis of P4), and cytochrome P450 family 19 subfamily A member 1 (Cyp19a1, involved in the biosynthesis of E2). Exposure to BPA, BPB, BPF, and BPS at prenatal or prepubertal stages could decrease the number of antral follicles by activating apoptosis and autophagy pathways, resulting in decreased production of E2 and P4 by granulosa cells (GCs) and theca cells (TCs), respectively. BPA and BPS impair ovarian steroidogenesis by reducing the function of some important cell receptors such as estrogens (ERs, including ERα and ERβ), progesterone (PgR), the orphan estrogen receptor gamma (ERRγ), the androgen receptor (AR), the G protein-coupled estrogen receptor (GPER), the FSHR (follicle-stimulating hormone receptor), and the LHCGR (luteinizing hormone/choriogonadotropin receptor). In animal models, the effects of bisphenol compounds depend on the type of animals, their age, and the duration and dose of bisphenols, while in cell line studies the duration and doses of bisphenols are the matter.
Collapse
Affiliation(s)
- Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmacology, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yeganeh Koohestani Dehaghi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Shokoohi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Egalini F, Marinelli L, Rossi M, Motta G, Prencipe N, Rossetto Giaccherino R, Pagano L, Grottoli S, Giordano R. Endocrine disrupting chemicals: effects on pituitary, thyroid and adrenal glands. Endocrine 2022; 78:395-405. [PMID: 35604630 PMCID: PMC9637063 DOI: 10.1007/s12020-022-03076-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In recent years, scientific research has increasingly focused on Endocrine Disrupting Chemicals (EDCs) and demonstrated their relevant role in the functional impairment of endocrine glands. This induced regulatory authorities to ban some of these compounds and to carefully investigate others in order to prevent EDCs-related conditions. As a result, we witnessed a growing awareness and interest on this topic. AIMS This paper aims to summarize current evidence regarding the detrimental effects of EDCs on pivotal endocrine glands like pituitary, thyroid and adrenal ones. Particularly, we directed our attention on the known and the hypothesized mechanisms of endocrine dysfunction brought by EDCs. We also gave a glimpse on recent findings from pioneering studies that could in the future shed a light on the pathophysiology of well-known, but poorly understood, endocrine diseases like hormone-producing adenomas. CONCLUSIONS Although intriguing, studies on endocrine dysfunctions brought by EDCs are challenging, in particular when investigating long-term effects of EDCs on humans. However, undoubtedly, it represents a new intriguing field of science research.
Collapse
Affiliation(s)
- Filippo Egalini
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| | - Lorenzo Marinelli
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Mattia Rossi
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Giovanna Motta
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Nunzia Prencipe
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Ruth Rossetto Giaccherino
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Loredana Pagano
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Silvia Grottoli
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Roberta Giordano
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
- Department of Biological and Clinical Science, University of Turin, Regione Gonzole 10, 10043, Orbassano (TO), Italy
| |
Collapse
|
10
|
Golshan M, Hatef A, Kazori N, Socha M, Sokołowska-Mikołajczyk M, Habibi HR, Linhart O, Alavi SMH. A chronic exposure to bisphenol A reduces sperm quality in goldfish associated with increases in kiss2, gpr54, and gnrh3 mRNA and circulatory LH levels at environmentally relevant concentrations. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109342. [PMID: 35417786 DOI: 10.1016/j.cbpc.2022.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
The bisphenol A (BPA)-disrupted reproductive functions have been demonstrated in male animals. In fish, it has been shown that environmentally relevant concentrations of BPA decrease sperm quality associated with inhibition of androgen biosynthesis. However, BPA effects on neuroendocrine regulation of reproduction to affect testicular functions are largely unknown. In the present study, reproductive functions of hypothalamus and pituitary were studied in mature male goldfish exposed to nominal 0.2, 2.0 and 20.0 μg/L BPA. At 90 d of exposure, sperm volume, velocity, and density and motility were decreased in goldfish exposed to 0.2, 2.0, and 20.0 μg/L BPA, respectively (p < 0.05). At 30 d of exposure, there were no significant changes in circulatory LH levels and mRNA transcripts of kiss1, Kiss2, gpr54, and gnrh3. At 90 d of exposure, circulatory LH levels showed trends toward increases in BPA exposed goldfish, which was significant in those exposed to 2.0 μg/L (P < 0.05). At this time, Kiss2, gpr54, and gnrh3 mRNA levels were increased in goldfish exposed to any concentrations of BPA (p < 0.05). This study shows that BPA-diminished sperm quality was accompanied by an increase in circulatory LH levels associated with increases in mRNA transcripts of upstream neuroendocrine regulators of reproduction in goldfish. Further, this is the first study to report circulatory levels of LH in fish exposed to BPA.
Collapse
Affiliation(s)
- Mahdi Golshan
- Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, 133-15745 Tehran, Iran
| | - Azadeh Hatef
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Negar Kazori
- School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Magdalena Socha
- Faculty of Animal Sciences, University of Agriculture in Kraków, Kraków 30-059, Poland
| | | | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany 389 25, Czech Republic
| | | |
Collapse
|
11
|
Marinello WP, Gillera SEA, Fanning MJ, Malinsky LB, Rhodes CL, Horman BM, Patisaul HB. Effects of developmental exposure to FireMaster® 550 (FM 550) on microglia density, reactivity and morphology in a prosocial animal model. Neurotoxicology 2022; 91:140-154. [PMID: 35526706 DOI: 10.1016/j.neuro.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
Abstract
Microglia are known to shape brain sex differences critical for social and reproductive behaviors. Chemical exposures can disrupt brain sexual differentiation but there is limited data regarding how they may impact microglia distribution and function. We focused on the prevalent flame retardant mixture Firemaster 550 (FM 550) which is used in foam-based furniture and infant products including strollers and nursing pillows because it disrupts sexually dimorphic behaviors. We hypothesized early life FM 550 exposure would disrupt microglial distribution and reactivity in brain regions known to be highly sexually dimorphic or associated with social disorders in humans. We used prairie voles (Microtus ochrogaster) because they display spontaneous prosocial behaviors not seen in rats or mice and are thus a powerful model for studying chemical exposure-related impacts on social behaviors and their underlying neural systems. We have previously demonstrated that perinatal FM 550 exposure sex-specifically impacts socioemotional behaviors in prairie voles. We first established that, unlike in rats, the postnatal colonization of the prairie vole brain is not sexually dimorphic. Vole dams were then exposed to FM 550 (0, 500, 1000, 2000 µg/day) via subcutaneous injections through gestation, and pups were directly exposed beginning the day after birth until weaning. Adult offspring's brains were assessed for number and type (ramified, intermediate, ameboid) of microglia in the medial prefrontal cortex (mPFC), cerebellum (lobules VI-VII) and amygdala. Effects were sex- and dose-specific in the regions of interests. Overall, FM 550 exposure resulted in reduced numbers of microglia in most regions examined, with the 1000 µg FM 550 exposed males particularly affected. To further quantify differences in microglia morphology in the 1000 µg FM 550 group, Sholl and skeleton analysis were carried out on individual microglia. Microglia from control females had a more ramified phenotype compared to control males while 1000 µg FM 550-exposed males had decreased branching and ramification compared to same-sex controls. Future studies will examine the impact on the exposure to FM 550 on microglia during development given the critical role of these cells in shaping neural circuits.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | | | - Marley J Fanning
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Lacey B Malinsky
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Cassie L Rhodes
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA.
| |
Collapse
|
12
|
Moralia MA, Quignon C, Simonneaux M, Simonneaux V. Environmental disruption of reproductive rhythms. Front Neuroendocrinol 2022; 66:100990. [PMID: 35227765 DOI: 10.1016/j.yfrne.2022.100990] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Reproduction is a key biological function requiring a precise synchronization with annual and daily cues to cope with environmental fluctuations. Therefore, humans and animals have developed well-conserved photoneuroendocrine pathways to integrate and process daily and seasonal light signals within the hypothalamic-pituitary-gonadal axis. However, in the past century, industrialization and the modern 24/7 human lifestyle have imposed detrimental changes in natural habitats and rhythms of life. Indeed, exposure to an excessive amount of artificial light at inappropriate timing because of shift work and nocturnal urban lighting, as well as the ubiquitous environmental contamination by endocrine-disrupting chemicals, threaten the integrity of the daily and seasonal timing of biological functions. Here, we review recent epidemiological, field and experimental studies to discuss how light and chemical pollution of the environment can disrupt reproductive rhythms by interfering with the photoneuroendocrine timing system.
Collapse
Affiliation(s)
- Marie-Azélie Moralia
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Clarisse Quignon
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Marine Simonneaux
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Valérie Simonneaux
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
13
|
Xiang R, Yan J, Cheng S, Yang Y, Wang H, Xie J, Zhang L, Chen J. Developmental immunotoxicity and its potential gender differences of perinatal exposure to 4-nonylphenol on offspring rats: JAK-STAT signaling pathway involved. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113560. [PMID: 35468439 DOI: 10.1016/j.ecoenv.2022.113560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The aim of our study was to explore the developmental immunotoxicity (DIT) and its potential gender differences of perinatal exposure to 4-nonylphenol (4-NP), which was significant for the risk assessment of 4-NP exposure to fetuses and infants. Wistar pregnant rats were given the National Institution of Health (NIH)- 31 modified feed containing 0, 10, 100 and 500 mg/kg 4-NP from the gestation day (GD) 6 to the postnatal day (PND) 21. At PND21, the offspring rats were randomly selected to detect developmental immunotoxicity related indicators. Results suggested that high-dose 4-NP perinatal exposure caused growth retardation in infancy of male offspring rats, which was not obvious in female offspring rats. Also, 4-NP perinatal exposure induced DIT (mainly manifested as immunosuppression) with potential gender differences, including decreased weight of immune organs, suppressed immune function, decreased ratio of transforming growth factor (TGF)-β/interleukin (IL)- 17A, increased ratio of T helper (Th) 17/regulatory T (Treg) cells et al. In addition, exploration of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway showed that JAK-STAT pathway mediated the leftward of Th17/Treg cells balance. Furthermore, the DIT to female offspring rats was more sensitive than to the males, which may be related to the differences of biological processes involved and needed to be further explored.
Collapse
Affiliation(s)
- Rong Xiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiuming Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shupin Cheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Yi Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Chengdu 363 Hospital affiliated with Southwest Medical University, Chengdu 610041, Sichuan, China
| | - He Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Health Hospital affiliated to Southern Medical University, Shenzhen 518048, Guangdong, China
| | - Jinghua Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
14
|
Sánchez-Garrido MA, García-Galiano D, Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine. Hum Reprod Update 2022; 28:346-375. [PMID: 35187579 PMCID: PMC9071071 DOI: 10.1093/humupd/dmac005] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - David García-Galiano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Xiong J, Tian Y, Ling A, Liu Z, Zhao L, Cheng G. Genistein affects gonadotrophin-releasing hormone secretion in GT1-7 cells via modulating kisspeptin receptor and key regulators. Syst Biol Reprod Med 2022; 68:138-150. [PMID: 34986716 DOI: 10.1080/19396368.2021.2003910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Epidemiological studies have shown that genistein, an isoflavonoid phytoestrogen from soybean, affects endocrine and reproductive systems and alters pubertal onset. Administration of genistein in mice could impact the electrophysiology of hypothalamic neurons associated with the secretion of gonadotropin-releasing hormone (GnRH), a key component of hypothalamic-pituitary-gonadal (HPG) axis that governs hormone release and reproductive maturation. However, whether genistein could directly influence GnRH secretion in GnRH-specific neurons requires further investigation. Here, mouse hypothalamic GT1-7 neurons were recruited as a GnRH-expressing model to directly evaluate the effect and mechanisms of genistein on GnRH release. Results from this study demonstrated that genistein treatment decreased cell viability, impacted cell cycle distribution, and induced apoptosis of GT1-7 cells. A high concentration of genistein (20 μM) significantly increased GnRH secretion by 122.4% compared to the control. Since GnRH release is regulated by components of the kisspeptin-neurokinin-dynorphin (KNDy) system and regulators including SIRT1, PKCγ, and MKRN3, their transcription and translation were examined. Significant increases were observed for the mRNA and protein levels of the KNDy component kisspeptin receptor (Gpr54/Kissr). Compared to the control, genistein treatment upregulated the level of Sirt1 mRNA level, while it downregulated Prkcg and Mkrn3 expression. Therefore, this study provided direct evidence that genistein treatment could affect GnRH secretion by modulating kisspeptin receptors, SIRT1, PKCγ and MKRN3 in GT1-7 cells.Abbreviations: GnRH: gonadotropin-releasing hormone; HPG: hypothalamic-pituitary-gonadal; KNDy: kisspeptin-neurokinin-dynorphin; LH: luteinizing hormone; FSH: follicle-stimulating hormone; ARC: arcuate nucleus; ER: estrogen receptor; SIRT1: silent information regulator 1; PKCγ: protein kinase c γ: MKRN3: makorin ring finger protein 3; LC: lethal concentration; PI: propidium iodide; ECL: chemiluminescence; BCA: bicinchoninic acid assay; PBS: phosphate-buffered saline; CT: fluorescence reached threshold; PVDF: polyvinylidene difluoride.
Collapse
Affiliation(s)
- Jingyuan Xiong
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ye Tian
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Aru Ling
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhenmi Liu
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Li Zhao
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Franssen D, Svingen T, Lopez Rodriguez D, Van Duursen M, Boberg J, Parent AS. A Putative Adverse Outcome Pathway Network for Disrupted Female Pubertal Onset to Improve Testing and Regulation of Endocrine Disrupting Chemicals. Neuroendocrinology 2022; 112:101-114. [PMID: 33640887 DOI: 10.1159/000515478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
The average age for pubertal onset in girls has declined over recent decades. Epidemiological studies in humans and experimental studies in animals suggest a causal role for endocrine disrupting chemicals (EDCs) that are present in our environment. Of concern, current testing and screening regimens are inadequate in identifying EDCs that may affect pubertal maturation, not least because they do not consider early-life exposure. Also, the causal relationship between EDC exposure and pubertal timing is still a matter of debate. To address this issue, we have used current knowledge to elaborate a network of putative adverse outcome pathways (pAOPs) to identify how chemicals can affect pubertal onset. By using the AOP framework, we highlight current gaps in mechanistic understanding that need to be addressed and simultaneously point towards events causative of pubertal disturbance that could be exploited for alternative test methods. We propose 6 pAOPs that could explain the disruption of pubertal timing by interfering with the central hypothalamic trigger of puberty, GnRH neurons, and by so doing highlight specific modes of action that could be targeted for alternative test method development.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Majorie Van Duursen
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, CHU de Liège, Liège, Belgium
| |
Collapse
|
17
|
Pool KR, Chazal F, Smith JT, Blache D. Estrogenic Pastures: A Source of Endocrine Disruption in Sheep Reproduction. Front Endocrinol (Lausanne) 2022; 13:880861. [PMID: 35574027 PMCID: PMC9097266 DOI: 10.3389/fendo.2022.880861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Phytoestrogens can impact on reproductive health due to their structural similarity to estradiol. Initially identified in sheep consuming estrogenic pasture, phytoestrogens are known to influence reproductive capacity in numerous species. Estrogenic pastures continue to persist in sheep production systems, yet there has been little headway in our understanding of the underlying mechanisms that link phytoestrogens with compromised reproduction in sheep. Here we review the known and postulated actions of phytoestrogens on reproduction, with particular focus on competitive binding with nuclear and non-nuclear estrogen receptors, modifications to the epigenome, and the downstream impacts on normal physiological function. The review examines the evidence that phytoestrogens cause reproductive dysfunction in both the sexes, and that outcomes depend on the developmental period when an individual is exposed to phytoestrogen.
Collapse
|
18
|
Gillera SEA, Marinello WP, Cao KT, Horman BM, Stapleton HM, Patisaul HB. Sex-specific Disruption of the Prairie Vole Hypothalamus by Developmental Exposure to a Flame Retardant Mixture. Endocrinology 2021; 162:6285199. [PMID: 34038511 PMCID: PMC8571712 DOI: 10.1210/endocr/bqab100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Prevalence of neurodevelopmental disorders (NDDs) with social deficits is conspicuously rising, particularly in boys. Flame retardants (FRs) have long been associated with increased risk, and prior work by us and others in multiple species has shown that developmental exposure to the common FR mixture Firemaster 550 (FM 550) sex-specifically alters socioemotional behaviors including anxiety and pair bond formation. In rats, FRs have also been shown to impair aspects of osmoregulation. Because vasopressin (AVP) plays a role in both socioemotional behavior and osmotic balance we hypothesized that AVP and its related nonapeptide oxytocin (OT) would be vulnerable to developmental FM 550 exposure. We used the prairie vole (Microtus ochrogaste) to test this because it is spontaneously prosocial. Using siblings of prairie voles used in a prior study that assessed behavioral deficits resulting from developmental FM 550 exposure across 3 doses, here we tested the hypothesis that FM 550 sex-specifically alters AVP and OT neuronal populations in critical nuclei, such as the paraventricular nucleus (PVN), that coordinate those behaviors, as well as related dopaminergic (determined by tyrosine hydroxylase (TH) immunolabeling) populations. Exposed females had fewer AVP neurons in the anterior PVN and more A13 TH neurons in the zona incerta than controls. By contrast, in FM 550 males, A13 TH neuron numbers in the zona incerta were decreased but only in 1 dose group. These results expand on previous work showing evidence of endocrine disruption of OT/AVP pathways, including to subpopulations of PVN AVP neurons that coordinate osmoregulatory functions in the periphery.
Collapse
Affiliation(s)
| | - William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Kevin T Cao
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, NC State University, Raleigh NC 27695, USA
- Correspondence: Heather B Patisaul, Professor of Biological Sciences, NC State University, 127 David Clark Labs, Raleigh, NC 27695, USA. E-mail:
| |
Collapse
|
19
|
Early Postnatal Genistein Administration Affects Mice Metabolism and Reproduction in a Sexually Dimorphic Way. Metabolites 2021; 11:metabo11070449. [PMID: 34357343 PMCID: PMC8303179 DOI: 10.3390/metabo11070449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
The phytoestrogen genistein (GEN) may interfere with permanent morphological changes in the brain circuits sensitive to estrogen. Due to the frequent use of soy milk in the neonatal diet, we aimed to study the effects of early GEN exposure on some physiological and reproductive parameters. Mice of both sexes from PND1 to PND8 were treated with GEN (50 mg/kg body weight, comparable to the exposure level in babies fed with soy-based formulas). When adult, we observed, in GEN-treated females, an advanced pubertal onset and an altered estrous cycle, and, in males, a decrease of testicle weight and fecal testosterone concentration. Furthermore, we observed an increase in body weight and altered plasma concentrations of metabolic hormones (leptin, ghrelin, triiodothyronine) limited to adult females. Exposure to GEN significantly altered kisspeptin and POMC immunoreactivity only in females and orexin immunoreactivity in both sexes. In conclusion, early postnatal exposure of mice to GEN determines long-term sex-specific organizational effects. It impairs the reproductive system and has an obesogenic effect only in females, which is probably due to the alterations of neuroendocrine circuits controlling metabolism; thus GEN, should be classified as a metabolism disrupting chemical.
Collapse
|
20
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
21
|
Fernandez-Garcia JM, Carrillo B, Tezanos P, Collado P, Pinos H. Genistein during Development Alters Differentially the Expression of POMC in Male and Female Rats. Metabolites 2021; 11:293. [PMID: 34063209 PMCID: PMC8147459 DOI: 10.3390/metabo11050293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Phytoestrogens are considered beneficial for health, but some studies have shown that they may cause adverse effects. This study investigated the effects of genistein administration during the second week of life on energy metabolism and on the circuits regulating food intake. Two different genistein doses, 10 or 50 µg/g, were administered to male and female rats from postnatal day (P) 6 to P13. Physiological parameters, such as body weight and caloric intake, were then analyzed at P90. Moreover, proopiomelanocortin (POMC) expression in the arcuate nucleus (Arc) and orexin expression in the dorsomedial hypothalamus (DMH), perifornical area (PF) and lateral hypothalamus (LH) were studied. Our results showed a delay in the emergence of sex differences in the body weight in the groups with higher genistein doses. Furthermore, a significant decrease in the number of POMC-immunoreactive (POMC-ir) cells in the Arc in the two groups of females treated with genistein was observed. In contrast, no alteration in orexin expression was detected in any of the structures analyzed in either males or females. In conclusion, genistein can modulate estradiol's programming actions on the hypothalamic feeding circuits differentially in male and female rats during development.
Collapse
Affiliation(s)
- Jose Manuel Fernandez-Garcia
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain; (J.M.F.-G.); (B.C.); (P.C.)
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), 28040 Madrid, Spain
| | - Beatriz Carrillo
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain; (J.M.F.-G.); (B.C.); (P.C.)
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), 28040 Madrid, Spain
| | - Patricia Tezanos
- Departamento de Neurociencia Traslacional, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain;
| | - Paloma Collado
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain; (J.M.F.-G.); (B.C.); (P.C.)
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), 28040 Madrid, Spain
| | - Helena Pinos
- Departamento de Psicobiología, Facultad Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain; (J.M.F.-G.); (B.C.); (P.C.)
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), 28040 Madrid, Spain
| |
Collapse
|
22
|
Gore AC, Thompson LM, Bell M, Mennigen JA. Transgenerational effects of polychlorinated biphenyls: 2. Hypothalamic gene expression in rats†. Biol Reprod 2021; 105:690-704. [PMID: 33824955 DOI: 10.1093/biolre/ioab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 01/07/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are endocrine-disrupting chemicals (EDCs) with well-established effects on reproduction and behavior in developmentally-exposed (F1) individuals. Because of evidence for transgenerational effects of EDCs on the neuroendocrine control of reproductive physiology, we tested the hypothesis that prenatal PCB exposure leads to unique hypothalamic gene-expression profiles in three generations. Pregnant Sprague-Dawley rats were treated on gestational days 16 and 18 with the PCB mixture Aroclor 1221 (A1221), vehicle (3% DMSO in sesame oil), or estradiol benzoate (EB, 50 μg/kg), the latter a positive control for estrogenic effects of A1221. Maternal- and paternal-lineage F2 and F3 generations were bred using untreated partners. The anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC), involved in the hypothalamic control of reproduction, were dissected from F1 to F3 females and males, RNA extracted, and gene expression measured in a qPCR array. We detected unique gene-expression profiles in each generation, which were sex- and lineage-specific. In the AVPV, treatment significantly changed 10, 25, and 11 transcripts in F1, F2, and F3 generations, whereas 10, 1, and 12 transcripts were changed in these generations in the ARC. In the F1 AVPV and ARC, most affected transcripts were decreased by A1221. In the F2 AVPV, most effects of A1221 were observed in females of the maternal lineage, whereas only Pomc expression changed in the F2 ARC (by EB). The F3 AVPV and ARC were mainly affected by EB. It is notable that results in one generation do not predict results in another, and that lineage was a major determinant in results. Thus, transient prenatal exposure of F1 rats to A1221 or EB can alter hypothalamic gene expression across three generations in a sex- and lineage-dependent manner, leading to the conclusion that the legacy of PCBs continues for generations.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Mandee Bell
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Jan A Mennigen
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
23
|
Lopez-Rodriguez D, Franssen D, Bakker J, Lomniczi A, Parent AS. Cellular and molecular features of EDC exposure: consequences for the GnRH network. Nat Rev Endocrinol 2021; 17:83-96. [PMID: 33288917 DOI: 10.1038/s41574-020-00436-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.
Collapse
Affiliation(s)
| | - Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Bakker
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), OHSU, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium.
- Department of Pediatrics, University Hospital Liège, Liège, Belgium.
| |
Collapse
|
24
|
Bigambo FM, Sun H, Yan W, Wu D, Xia Y, Wang X, Wang X. Association between phenols exposure and earlier puberty in children: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2020; 190:110056. [PMID: 32805251 DOI: 10.1016/j.envres.2020.110056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/21/2020] [Accepted: 08/01/2020] [Indexed: 05/19/2023]
Abstract
OBJECTIVE To identify the association between phenolic chemicals and the risk of earlier puberty based on the available evidence by systematic review and meta-analysis. METHODS Databases PubMed, Web of Science, and Cochrane Library were searched and retrieved appropriate journal articles on the association between phenols exposure and earlier puberty in children published before February 14, 2020. Stata software version 12.0 and Excel were used for statistical analysis. RESULTS Nine studies were included in the meta-analysis with total subjects of 4737. All the subjects included in our studies were girls. The pooled estimate has shown the association between 2, 5- dichrolophenol exposure, and earlier puberty in children with effect size (ES) 1.13 (95% CI: 1.06, 1.20). Exposed to other types of phenolic chemicals such as bisphenol A, Triclosan, Benzophenone-3 were not statistically significant associated with the risk of earlier puberty in children with the overall pooled estimates of ES of 1.09 (95%CI: 0.88, 1.35), ES 1.05(95% CI: 0.96, 1.15), and ES 0.98 (95% CI: 0.88, 1.10) respectively. CONCLUSION Our results portray that phenols particularly 2, 5- dichlorophenol exposure might be associated with the risk of earlier puberty in children. Also, caution should be taken to other type of phenolic chemicals since in subgroup analysis some individual studies have shown a positive relationship between bisphenol A, Triclosan and Benzophenone-3 exposures, and the risk of earlier puberty in children. Future cohort studies should be conducted with more sample sizes to determine the relationship between 2, 5- dichlorophenol, and the risk of earlier puberty in children of all gender.
Collapse
Affiliation(s)
- Francis Manyori Bigambo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hanqing Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wu Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xu Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Nanjing Children's Hospital Affiliated to Nanjing Medical University, 210008, Nanjing, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
25
|
Neonatal exposure to genistein affects reproductive physiology and behavior in female and male Long-Evans rats. Behav Pharmacol 2020; 31:610-621. [PMID: 32925206 DOI: 10.1097/fbp.0000000000000569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study was designed to examine the effects of neonatal genistein exposure on measures of reproductive physiology and behavior. Approximately 24 h after birth, female and male Long-Evans rat pups were injected daily with genistein (150 µg, subcutaneous; n = 29) or olive oil (n = 23) between postnatal days 1 and 5. After weaning, we examined all subjects daily until they reached puberty (i.e. vaginal opening in female rats and preputial separation in male rats). For all female subjects, we also examined vaginal cytology. After monitoring estrous cyclicity, the female subjects were given the opportunity to interact with a gonadally intact male or a sexually receptive female rat on the day of behavioral estrus to assess sexual motivation (i.e. partner-preference test with and without physical contact), which has never been evaluated before. For all male subjects, we assessed the development of copulatory behavior and sexual motivation (partner-preference test without physical contact). Consistent with previous findings, we found that neonatal exposure to genistein did not affect puberty onset in female or male rats. However, female rats exposed to genistein displayed significantly more irregular estrous cycles than controls. Neonatal genistein exposure also altered the development of male copulatory behavior, as indicated by an increase in mount frequency and intromission frequency and shorter interintromission intervals. We extended previous findings confirming that neither female nor male sexual motivation was affected by neonatal genistein. The results of the present study have important implications for the development of reproductive physiology and behavior in human neonates exposed to genistein in soy-based baby formula.
Collapse
|
26
|
Rock KD, St Armour G, Horman B, Phillips A, Ruis M, Stewart AK, Jima D, Muddiman DC, Stapleton HM, Patisaul HB. Effects of Prenatal Exposure to a Mixture of Organophosphate Flame Retardants on Placental Gene Expression and Serotonergic Innervation in the Fetal Rat Brain. Toxicol Sci 2020; 176:203-223. [PMID: 32243540 PMCID: PMC7357193 DOI: 10.1093/toxsci/kfaa046] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is a growing need to understand the potential neurotoxicity of organophosphate flame retardants (OPFRs) and plasticizers because use and, consequently, human exposure, is rapidly expanding. We have previously shown in rats that developmental exposure to the commercial flame retardant mixture Firemaster 550 (FM 550), which contains OPFRs, results in sex-specific behavioral effects, and identified the placenta as a potential target of toxicity. The placenta is a critical coordinator of fetal growth and neurodevelopment, and a source of neurotransmitters for the developing brain. We have shown in rats and humans that flame retardants accumulate in placental tissue, and induce functional changes, including altered neurotransmitter production. Here, we sought to establish if OPFRs (triphenyl phosphate and a mixture of isopropylated triarylphosphate isomers) alter placental function and fetal forebrain development, with disruption of tryptophan metabolism as a primary pathway of interest. Wistar rat dams were orally exposed to OPFRs (0, 500, 1000, or 2000 μg/day) or a serotonin (5-HT) agonist 5-methoxytryptamine for 14 days during gestation and placenta and fetal forebrain tissues collected for analysis by transcriptomics and metabolomics. Relative abundance of genes responsible for the transport and synthesis of placental 5-HT were disrupted, and multiple neuroactive metabolites in the 5-HT and kynurenine metabolic pathways were upregulated. In addition, 5-HTergic projections were significantly longer in the fetal forebrains of exposed males. These findings suggest that OPFRs have the potential to impact the 5-HTergic system in the fetal forebrain by disrupting placental tryptophan metabolism.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
| | - Genevieve St Armour
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
| | - Allison Phillips
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Matthew Ruis
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Allison K Stewart
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695
| | - Dereje Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695
| | - David C Muddiman
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
27
|
Jeminiwa BO, Knight RM, Braden TD, Cruz-Espindola C, Boothe DM, Akingbemi BT. Regulation of the neuroendocrine axis in male rats by soy-based diets is independent of age and due specifically to isoflavone action†. Biol Reprod 2020; 103:892-906. [PMID: 32520353 DOI: 10.1093/biolre/ioaa101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
Soy-based foods are consumed for their health beneficial effects, implying that the population is exposed to soy isoflavones in the diet. Herein, male rats at 21, 35, and 75 days of age were maintained either on a casein control diet, soybean meal (SBM), or control diet supplemented with daidzin and genistin (G + D) for 14 days. Feeding of SBM and G + D diets decreased testicular testosterone (T) secretion regardless of age. Altered androgen secretion was due to decreased (P < 0.05) Star and Hsd17β protein in the testes and was associated with increased (P < 0.05) Lhβ and Fshβ subunit protein expression in pituitary glands. Second, male rats were fed either a casein control diet, control diet + daidzin, control diet + genistin, or control diet + genistin + daidzin (G + D). Compared to control, feeding of all isoflavone-containing diets decreased (P < 0.05) testicular T concentrations, and more so in the G + D diet group. Interestingly, Esr1 and androgen receptor protein and pituitary Fshβ with Lhβ subunit protein were increased (P < 0.05) by feeding of genistin and G + D diets, but not the daidzin diet. However, daidzein and genistein both caused a concentration dependent inhibition (P < 0.05) of T secretion by Leydig cells in vitro with IC50 of 184 ηM and 36 ηM, respectively. Results demonstrated that altered testicular steroidogenic capacity and pituitary FSHβ and LHβ subunit expression due to soy-based diets result from specific actions by genistein and daidzein. Experiments to assess effects of isoflavone regulation of intratesticular androgen concentrations on male fertility are warranted.
Collapse
Affiliation(s)
- Bamidele O Jeminiwa
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Rachel M Knight
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Tim D Braden
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Crisanta Cruz-Espindola
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
28
|
Tang C, Zhang J, Liu P, Zhou Y, Hu Q, Zhong Y, Wang X, Chen L. Chronic exposure to low dose of bisphenol A causes follicular atresia by inhibiting kisspeptin neurons in anteroventral periventricular nucleus in female mice. Neurotoxicology 2020; 79:164-176. [PMID: 32407858 DOI: 10.1016/j.neuro.2020.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022]
Abstract
Bisphenol-A (BPA) is an estrogenic chemical extensively used in industrial and household applications. The present study was conducted to investigate the effect of chronic exposure to BPA on the adult female neuroendocrine system. Herein, we found that expose of adult female mice to BPA (50 μg/kg) by oral gavage for 60 days (BPA mice) prolonged diestrus and decreased serum 17β-estradiol (E2) concentration by reducing the number of antral follicles and corpora luteum. In comparison with controls, the levels of serum luteinizing hormone (LH), follicle stimulating hormone (FSH), hypothalamic gonadotrophin releasing hormone (GnRH) and the expression of kisspeptin in anteroventral periventricular nucleus (AVPV) decreased in BPA mice, which could be reversed by injecting kisspeptin-10 (i.c.v.). Treatment with BPA or estrogen receptor α (ERα) antagonist MPP, but not ERβ antagonist PHTPP inhibited E2-induced AVPV-kisspeptin expression in ovariectomized mice. Use of ERα agonist PPT rather than ERβ agonist DPN enhanced AVPV-kisspepetin expression, which decreased after treatment with BPA. The amplitude of the proestrus LH surge decreased in mice exposed to BPA, but was recovered by administering kisspeptin-10. The present study provides in vivo evidence that chronic exposure to a low dose of BPA suppressed ERα-induced activation of AVPV-kisspeptin neurons, leading to prolonged diestrus and reduced ovulation in adult female mice.
Collapse
Affiliation(s)
- Chuanfeng Tang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jia Zhang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Peiyu Liu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Zhou
- Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Qiaoyun Hu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Zhong
- Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
29
|
Curtis SW, Gerkowicz SA, Cobb DO, Kilaru V, Terrell ML, Marder ME, Barr DB, Marsit CJ, Marcus M, Conneely KN, Smith AK. Sex-specific DNA methylation differences in people exposed to polybrominated biphenyl. Epigenomics 2020; 12:757-770. [PMID: 32496131 PMCID: PMC7607410 DOI: 10.2217/epi-2019-0179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Aim: Michigan residents were exposed to polybrominated biphenyls (PBBs) when it was accidentally added to the food supply. Highly exposed individuals report sex-specific health problems, but the underlying biological mechanism behind these different health risks is not known. Materials and methods: DNA methylation in blood from 381 women and 277 men with PBB exposure was analyzed with the MethylationEPIC BeadChip. Results: 675 CpGs were associated with PBBs levels in males, while only 17 CpGs were associated in females (false discovery rate <0.05). No CpGs were associated in both sexes. These CpGs were enriched in different functional regions and transcription factor binding sites in each sex. Conclusion: Exposure to PBBs may have sex-specific effects on the epigenome that may underlie sex-specific adverse health outcomes.
Collapse
Affiliation(s)
- Sarah W Curtis
- Genetics & Molecular Biology Program, Laney Graduate School, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| | - Sabrina A Gerkowicz
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| | - Dawayland O Cobb
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| | - Varun Kilaru
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| | - Metrecia L Terrell
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - M Elizabeth Marder
- Department of Environmental Health, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Carmen J Marsit
- Department of Environmental Health, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Michele Marcus
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
- Department of Pediatrics Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA
| | - Alicia K Smith
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
- Department of Psychiatry & Behavioral Science, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
31
|
Qiu J, Sun Y, Sun W, Wang Y, Fan T, Yu J. Neonatal exposure to bisphenol A advances pubertal development in female rats. Mol Reprod Dev 2020; 87:503-511. [PMID: 32109339 DOI: 10.1002/mrd.23329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/09/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Qiu
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Yanyan Sun
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Wen Sun
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Yonghong Wang
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Teng Fan
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Jian Yu
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| |
Collapse
|
32
|
Stoker C, Andreoli MF, Kass L, Bosquiazzo VL, Rossetti MF, Canesini G, Luque EH, Ramos JG. Perinatal exposure to bisphenol A (BPA) impairs neuroendocrine mechanisms regulating food intake and kisspetin system in adult male rats. Evidences of metabolic disruptor hypothesis. Mol Cell Endocrinol 2020; 499:110614. [PMID: 31606416 DOI: 10.1016/j.mce.2019.110614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Bisphenol A (BPA) is a compound used in the polymerization of plastic polycarbonates. It is an endocrine disruptor and it has been postulated to be an obesogen. Our objective was to determine the influence of perinatal exposure to BPA on body weight, hormone levels, metabolic parameters and hypothalamic signals that regulate food intake and kisspeptin system in adult male rats. Male rats were exposed to 50 μg/kg/day of BPA or vehicle from day 9 of gestation to weaning in the drinking water. Since weaning, they were fed with control or high fat diet for 20 weeks. Perinatal exposure to BPA impaired glucose homeostasis, induced obesity and increased food intake in adult male rats altering hypothalamic signals, partially mimicking and/or producing an exacerbation of the effects of feeding fat diet. We also observed an increase in kisspeptin expression by BPA exposure. Evidences shown in this work support the metabolic disruptor hypothesis for BPA.
Collapse
Affiliation(s)
- Cora Stoker
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - M Florencia Andreoli
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Verónica L Bosquiazzo
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - M Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - G Canesini
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| |
Collapse
|
33
|
Rock KD, Gillera SEA, Devarasetty P, Horman B, Knudsen G, Birnbaum LS, Fenton SE, Patisaul HB. Sex-specific behavioral effects following developmental exposure to tetrabromobisphenol A (TBBPA) in Wistar rats. Neurotoxicology 2019; 75:136-147. [PMID: 31541695 PMCID: PMC6935469 DOI: 10.1016/j.neuro.2019.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022]
Abstract
Tetrabromobisphenol A (TBBPA) has become a ubiquitous indoor contaminant due to its widespread use as an additive flame retardant in consumer products. Reported evidence of endocrine disruption and accumulation of TBBPA in brain tissue has raised concerns regarding its potential effects on neurodevelopment and behavior. The goal of the present study was to examine the impact of developmental TBBPA exposure, across a wide range of doses, on sexually dimorphic non-reproductive behaviors in male and female Wistar rats. We first ran a pilot study using a single TBBPA dose hypothesized to produce behavioral effects. Wistar rat dams were orally exposed using cookie treats to 0 or 0.1 mg TBBPA/kg bw daily from gestational day (GD) 9 to postnatal day (PND) 21 to assess offspring (both sexes) activity and anxiety-related behaviors. Significant effects were evident in females, with exposure increasing activity levels. Thus, this dose was used as the lowest TBBPA dose in a subsequent, larger study conducted as part of a comprehensive assessment of TBBPA toxicity. Animals were exposed to 0, 0.1, 25, or 250 mg TBBPA/kg bw daily by oral gavage starting on GD 6 through PND 90 (dosed dams GD 6 - PND 21, dosed offspring PND 22 - PND 90). Significant behavioral findings were observed for male offspring, with increased anxiety-like behavior as the primary phenotype. These findings demonstrate that exposure to environmental contaminants, like TBBPA, can have sex-specific effects on behavior highlighting the vulnerability of the developing brain.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sagi Enicole A Gillera
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA; National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Pratyush Devarasetty
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gabriel Knudsen
- Laboratory of Toxicokinetics, National Cancer Institute, Research Triangle Park, NC, 27709, USA
| | - Linda S Birnbaum
- Laboratory of Toxicokinetics, National Cancer Institute, Research Triangle Park, NC, 27709, USA
| | - Suzanne E Fenton
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
34
|
Nesan D, Kurrasch DM. Gestational Exposure to Common Endocrine Disrupting Chemicals and Their Impact on Neurodevelopment and Behavior. Annu Rev Physiol 2019; 82:177-202. [PMID: 31738670 DOI: 10.1146/annurev-physiol-021119-034555] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endocrine disrupting chemicals are common in our environment and act on hormone systems and signaling pathways to alter physiological homeostasis. Gestational exposure can disrupt developmental programs, permanently altering tissues with impacts lasting into adulthood. The brain is a critical target for developmental endocrine disruption, resulting in altered neuroendocrine control of hormonal signaling, altered neurotransmitter control of nervous system function, and fundamental changes in behaviors such as learning, memory, and social interactions. Human cohort studies reveal correlations between maternal/fetal exposure to endocrine disruptors and incidence of neurodevelopmental disorders. Here, we summarize the major literature findings of endocrine disruption of neurodevelopment and concomitant changes in behavior by four major endocrine disruptor classes:bisphenol A, polychlorinated biphenyls, organophosphates, and polybrominated diphenyl ethers. We specifically review studies of gestational and/or lactational exposure to understand the effects of early life exposure to these compounds and summarize animal studies that help explain human correlative data.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
35
|
Gillera SEA, Marinello WP, Horman BM, Phillips AL, Ruis MT, Stapleton HM, Reif DM, Patisaul HB. Sex-specific effects of perinatal FireMaster® 550 (FM 550) exposure on socioemotional behavior in prairie voles. Neurotoxicol Teratol 2019; 79:106840. [PMID: 31730801 DOI: 10.1016/j.ntt.2019.106840] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 01/15/2023]
Abstract
The rapidly rising incidence of neurodevelopmental disorders with social deficits is raising concern that developmental exposure to environmental contaminants may be contributory. Firemaster 550 (FM 550) is one of the most prevalent flame-retardant (FR) mixtures used in foam-based furniture and baby products and contains both brominated and organophosphate components. We and others have published evidence of developmental neurotoxicity and sex specific effects of FM 550 on anxiety-like and exploratory behaviors. Using a prosocial animal model, we investigated the impact of perinatal FM 550 exposure on a range of socioemotional behaviors including anxiety, attachment, and memory. Virtually unknown to toxicologists, but widely used in the behavioral neurosciences, the prairie vole (Microtus ochrogaster) is a uniquely valuable model organism for examining environmental factors on sociality because this species is spontaneously prosocial, biparental, and displays attachment behaviors including pair bonding. Dams were exposed to 0, 500, 1000, or 2000 μg of FM 550 via subcutaneous (sc) injections throughout gestation, and pups were directly exposed beginning the day after birth until weaning. Adult offspring of both sexes were then subjected to multiple tasks including open field, novel object recognition, and partner preference. Effects were dose responsive and sex-specific, with females more greatly affected. Exposure-related outcomes in females included elevated anxiety, decreased social interaction, decreased exploratory motivation, and aversion to novelty. Exposed males also had social deficits, with males in all three dose groups failing to show a partner preference. Our studies demonstrate the utility of the prairie vole for investigating the impact of chemical exposures on social behavior and support the hypothesis that developmental FR exposure impacts the social brain. Future studies will probe the possible mechanisms by which these effects arise.
Collapse
Affiliation(s)
| | - William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Allison L Phillips
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - Matthew T Ruis
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, USA
| | - David M Reif
- Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA.
| |
Collapse
|
36
|
Wu L, Ji X, Kong J. Polymer-Coated Mesoporous Carbon as Enzyme Platform for Oxidation of Bisphenol A in Organic Solvents. ACS OMEGA 2019; 4:16409-16417. [PMID: 31616819 PMCID: PMC6787886 DOI: 10.1021/acsomega.9b01945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/11/2019] [Indexed: 05/08/2023]
Abstract
Bisphenol A (BPA) is not only a widely used chemical but also a toxic pollutant, and its biodegradation in an aqueous environment is hard due to its near insolubility in water. While the enzyme tyrosinase can oxidize BPA in organic solvents, it does so only very slowly. In the present study, we have found that in toluene the catalytic activity of tyrosinase deposited onto coated mesoporous carbon is significantly enhanced when the support is precoated with polyethylenimine. The resultant enzymatically formed o-quinone is both easily recoverable and potentially useful monomer. As a particular example, the o-quinone readily reacts with diamine in toluene to form poly(amino-quinone) polymers, which are suitable for anticorrosion, energy storage, or biosensor applications.
Collapse
Affiliation(s)
- Lidong Wu
- Key
Laboratory of Control of Quality and Safety for Aquatic Products,
Ministry of Agriculture, Chinese Academy
of Fishery Sciences, Beijing 100141, China
- Department of Chemistry and Department of Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiang Ji
- Department of Chemistry and Department of Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jing Kong
- Department of Chemistry and Department of Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Ruiz-Pino F, Miceli D, Franssen D, Vazquez MJ, Farinetti A, Castellano JM, Panzica G, Tena-Sempere M. Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107011. [PMID: 31652106 PMCID: PMC6867420 DOI: 10.1289/ehp5570] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The timing of puberty is highly sensitive to environmental factors, including endocrine disruptors. Among them, bisphenol A (BPA) has been previously analyzed as potential modifier of puberty. Yet, disparate results have been reported, with BPA advancing, delaying, or being neutral in its effects on puberty onset. Likewise, mechanistic analyses addressing the central and peripheral actions/targets of BPA at puberty remain incomplete and conflictive. OBJECTIVE We aimed to provide a comprehensive characterization of the impact of early BPA exposures, especially at low, real-life doses, on the postnatal development of hypothalamic Kiss1/NKB neurons, and its functional consequences on female pubertal maturation. METHODS Pregnant CD1 female mice were orally administered BPA at 5, 10, or 40μg/kg body weight (BW)/d from gestational day 11 to postnatal day 8 (PND8). Vaginal opening, as an external marker of puberty onset, was monitored daily from PND19 to PND30 in the female offspring. Blood and brain samples were collected at PND12, 15, 18, 21, and 30 for measuring circulating levels of gonadotropins and analyzing the hypothalamic expression of Kiss1/kisspeptin and NKB. RESULTS Perinatal exposure to BPA, in a range of doses largely below the no observed adverse effect level (NOAEL; 5mg/kg BW/d, according to the FDA), was associated with pubertal differences in the female progeny compared with those exposed to vehicle alone, with an earlier age of vaginal opening but consistently lower levels of circulating luteinizing hormone. Mice treated with BPA exhibited a persistent, but divergent, impairment of Kiss1 neuronal maturation, with more kisspeptin cells in the rostral (RP3V) hypothalamus but consistently fewer kisspeptin neurons in the arcuate nucleus (ARC). Detailed quantitative analysis of the ARC population, essential for pubertal development, revealed that mice treated with BPA had persistently lower Kiss1 expression during (pre)pubertal maturation, which was associated with lower Tac2 (encoding NKB) levels, even at low doses (5μg/kg BW/d), in the range of the tolerable daily intake (TDI), recently updated by the European Food Safety Authority. CONCLUSIONS Our data attest to the consistent, but divergent, effects of gestational exposures to low concentrations of BPA, via the oral route, on phenotypic and neuroendocrine markers of puberty in female mice, with an unambiguous impact on the developmental maturation not only of Kiss1, but also of the NKB system, both essential regulators of puberty onset. https://doi.org/10.1289/EHP5570.
Collapse
Affiliation(s)
- Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Desiree Miceli
- Department of Neuroscience “Rita Levi Montalcini,” University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Delphine Franssen
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Alice Farinetti
- Department of Neuroscience “Rita Levi Montalcini,” University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Juan Manuel Castellano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - GianCarlo Panzica
- Department of Neuroscience “Rita Levi Montalcini,” University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| |
Collapse
|
38
|
Sergio RP, Susana RM, Alberto DJ, Socorro RM. Leucaena leucocephala extract has estrogenic and antiestrogenic actions on female rat reproduction. Physiol Behav 2019; 211:112683. [PMID: 31533020 DOI: 10.1016/j.physbeh.2019.112683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/26/2023]
Abstract
Leucaena feed has been reported to cause disruptive effects on livestock reproduction, such as low calving percentages in cows, abortion in female goats and pigs, dead fetuses and fetal resorption in pregnant rats. In this study, the effects of Leucaena on different female reproductive variables were analyzed in two different reproductive conditions: gonadally intact and ovariectomized (OVX) female rats. Leucaena (LEU) was administered to females in both experimental conditions for 30 consecutive days. The effects of the legume extract were compared with those of Daidzein (DAI), a phytoestrogen, and of the female hormone estradiol (E2). In intact females, LEU disrupted the estrous cycle and female sexual behavior, decreased the number of follicles and corpora lutea, increased uterine and vaginal epithelium in proestrus and diestrus periods, increased uterine and vaginal relative weights during diestrus, and decreased serum progesterone during proestrus. All these effects were similar to those of DAI but lower than E2-induced effects. In OVX females, LEU decreased body weight, induced lordosis, stimulated vaginal epithelium cornification, increased vaginal weight, and augmented vaginal epithelium thickness. Again, these effects were similar to the effects of DAI and lower than the effects observed with E2. These results indicate that, in gonadally intact females, LEU can produce antiestrogenic effects in sexual behavior but estrogenic effects on uterine and vaginal weight and epithelia, without modifying serum levels of E2. In OVX females, in total absence of endogenous E2, LEU induced estrogenic effects on vaginal weight and epithelia, as well as on sexual behavior.
Collapse
Affiliation(s)
- Romero-Palacios Sergio
- Maestría en Biología de la Reproducción Animal, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - Rojas-Maya Susana
- Departamento de Neuroendocrinología de la Conducta Reproductiva, Facultad de Veterinaria, Universidad Nacional Autónoma de Mexico, Mexico
| | - Delgadillo José Alberto
- Centro de Investigación en Reproducción Caprina, Universidad Autónoma Agraria Antonio Narro, Torreón, Coahuila, Mexico
| | - Retana-Márquez Socorro
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México City C.P. 09340, Mexico.
| |
Collapse
|
39
|
Minabe S, Sato M, Inoue N, Watanabe Y, Magata F, Matsuda F, Uenoyama Y, Ozawa H, Tsukamura H. Neonatal Estrogen Causes Irreversible Male Infertility via Specific Suppressive Action on Hypothalamic Kiss1 Neurons. Endocrinology 2019; 160:1223-1233. [PMID: 30920587 DOI: 10.1210/en.2018-00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/21/2019] [Indexed: 01/06/2023]
Abstract
Aberrant exposure to estrogen-like compounds during the critical developmental period may cause improper hypothalamic programming, thus resulting in reproductive dysfunction in adulthood in male mammals. Kisspeptin-neurokinin B-dynorphin A (KNDy) neurons in the arcuate nucleus (ARC) have been suggested to govern tonic GnRH/gonadotropin release to control reproduction in male mammals. In this study, we report that chronic exposure to supraphysiological levels of estrogen during the neonatal period caused an irreversible suppression of KNDy genes in the ARC, resulting in reproductive dysfunction in male rats. Daily estradiol benzoate (EB) administration from days 0 to 10 postpartum caused smaller seminiferous tubules, abnormal spermatogenesis, and a decrease in plasma testosterone in adult male rats. The neonatal EB treatment profoundly suppressed LH pulse and ARC KNDy gene expression at adulthood, but it failed to affect the number of GnRH gene-expressing cells in male rats. The EB treatment failed to affect gene expression of other neuropeptides, such as GHRH, proopiomelanocortin, and agouti-related protein in the ARC, suggesting that ARC KNDy neurons would be a specific target of neonatal estrogen to cause male reproductive dysfunction. Because LH secretory responses to kisspeptin challenge and GnRH expression were spared in male rats with the EB treatment, LH pulse suppression is most probably due to ARC KNDy deficiency. Taken together, the current study indicates that chronic exposure to estrogenic chemicals in the developing brain causes a defect of ARC KNDy neurons, resulting in an inhibition of pulsatile GnRH/LH release and the failure of spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Shiori Minabe
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Marimo Sato
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Youki Watanabe
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Fumie Magata
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
40
|
Bisphenol A Activates Calcium Influx in Immortalized GnRH Neurons. Int J Mol Sci 2019; 20:ijms20092160. [PMID: 31052388 PMCID: PMC6539360 DOI: 10.3390/ijms20092160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
Bisphenol A (BPA) is one of the most widely used chemicals worldwide, e.g., as a component of plastic containers for food and water. It is considered to exert an estrogenic effect, by mimicking estradiol (E2) action. Because of this widespread presence, it has attracted the interest and concern of researchers and regulators. Despite the vast amount of related literature, the potential adverse effects of environmentally significant doses of BPA are still object of controversy, and the mechanisms by which it can perturb endocrine functions, and particularly the neuroendocrine axis, are not adequately understood. One of the ways by which endocrine disruptors (EDCs) can exert their effects is the perturbation of calcium signaling mechanisms. In this study, we addressed the issue of the impact of BPA on the neuroendocrine system with an in vitro approach, using a consolidated model of immortalized Gonadotropin-Releasing Hormone (GnRH) expressing neurons, the GT1–7 cell line, focusing on the calcium signals activated by the endocrine disruptor. The investigation was limited to biologically relevant doses (nM–µM range). We found that BPA induced moderate increases in intracellular calcium concentration, comparable with those induced by nanomolar doses of E2, without affecting cell survival and with only a minor effect on proliferation.
Collapse
|
41
|
Shi M, Sekulovski N, MacLean JA, Whorton A, Hayashi K. Prenatal Exposure to Bisphenol A Analogues on Female Reproductive Functions in Mice. Toxicol Sci 2019; 168:561-571. [PMID: 30629253 DOI: 10.1093/toxsci/kfz014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study was performed to examine whether prenatal exposure to bisphenol (BP) A analogues, BPE and BPS, negatively impacts female reproductive functions and follicular development using mice as a model. CD-1 mice were orally exposed to control treatment (corn oil), BPA, BPE, or BPS (0.5, 20, or 50 µg/kg/day) from gestational day 11 (the presence of vaginal plug = 1) to birth. Exposure to BPA, BPE, and BPS accelerated the onset of puberty and exhibited abnormal estrous cyclicity, especially with lower doses. Females exposed to BPA, BPE, and BPS exhibited mating difficulties starting at 6 months of age. By 9 months, mice exhibited various fertility problems including reduced pregnancy rate, parturition issues, and increased dead pups at birth. Furthermore, the levels of serum testosterone were elevated by BPE or BPS exposure at the age of 9 months, whereas estrogen levels were not affected. On the other hand, the dysregulated expression of steroidogenic enzymes was observed in the ovary at 3, 6, or 9 months of age by BPE or BPS exposure. When we examined neonatal ovary on postnatal day 4, BPA, BPE, and BPS exposure inhibited germ cell nest breakdown and reduced number of primary and secondary follicles. These results suggest that prenatal exposure to BPA analogues, BPE, and BPS, have effects on fertility in later reproductive life probably due to the disruption of early folliculogenesis.
Collapse
Affiliation(s)
- Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Allison Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
42
|
McIlwraith EK, Loganathan N, Belsham DD. Phoenixin Expression Is Regulated by the Fatty Acids Palmitate, Docosahexaenoic Acid and Oleate, and the Endocrine Disrupting Chemical Bisphenol A in Immortalized Hypothalamic Neurons. Front Neurosci 2018; 12:838. [PMID: 30524225 PMCID: PMC6262291 DOI: 10.3389/fnins.2018.00838] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023] Open
Abstract
Phoenixin (PNX) is a newly identified reproductive peptide required for the estrous cycle. It is most highly expressed in the hypothalamus, where it is a positive regulator of gonadotropin-releasing hormone (GnRH) and kisspeptin. However, it is unknown what signals lie upstream of Pnx to coordinate its effects on GnRH and kisspeptin. We investigated the effects of the hormones, estrogen and leptin; the fatty acids, palmitate, docosahexaenoic acid (DHA), oleate and palmitoleate; and the endocrine disrupting chemical BPA on Pnx mRNA levels. We also examined whether the signaling pathways of nitric oxide, lipopolysaccharide, cAMP and protein kinase C could alter Pnx expression. Immortalized hypothalamic neurons were treated from 2 to 24 h with these compounds and Pnx mRNA levels were measured with RT-qPCR. Unexpectedly, only BPA as well as the fatty acids, palmitate, DHA and oleate, could alter Pnx expression; therefore suggesting that Pnx may fulfill a nutrient-sensing role in the hypothalamus. Our study is the first to delineate potential regulators of this novel neuropeptide, and our findings provide some insight into the functional role of PNX in the hypothalamus.
Collapse
Affiliation(s)
- Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Viguié C, Mhaouty-Kodja S, Habert R, Chevrier C, Michel C, Pasquier E. Evidence-based adverse outcome pathway approach for the identification of BPA as en endocrine disruptor in relation to its effect on the estrous cycle. Mol Cell Endocrinol 2018; 475:10-28. [PMID: 29577943 DOI: 10.1016/j.mce.2018.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 02/04/2023]
Abstract
Proper cyclicity is essential to reach successful optimal fertility. In rats and mice, BPA exposure is repeatedly and reliably reported to show an adverse effect on the estrous cycle after exposures at different life stages. In humans, a possible association between modifications of menstrual cycle characteristics (e.g. length of the cycle, duration of menstrual bleeding) and sub-fecundity or spontaneous abortion has been observed. Alterations of ovarian cyclicity can therefore be definitely considered as an adverse health outcome. As a prerequisite for the EU REACH regulation to identify a substance as an endocrine disruptor and a SVHC,1 the proof has to be established that the substance can have deleterious health effects resulting from an endocrine mode of action. This review provides an overview of the currently available data allowing to conclude that the adverse effects of BPA exposure on ovarian cyclicity is mediated by an endocrine mode of action.
Collapse
Affiliation(s)
- Catherine Viguié
- Toxalim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France
| | - René Habert
- Genetic Stability, Stem Cells and Radiations, CEA, INSERM U 967, University Paris-Diderot, CEA Research Center, Fontenay aux Roses, France
| | - Cécile Chevrier
- INSERM, UMR1085, Researche Institute for Environmental and Occupational Health, Rennes, France
| | - Cécile Michel
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | |
Collapse
|
44
|
Sharma RP, Schuhmacher M, Kumar V. The development of a pregnancy PBPK Model for Bisphenol A and its evaluation with the available biomonitoring data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:55-68. [PMID: 29247905 DOI: 10.1016/j.scitotenv.2017.12.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/03/2017] [Accepted: 12/03/2017] [Indexed: 05/20/2023]
Abstract
Recent studies suggest universal fetal exposure to Bisphenol A (BPA) and its association with the adverse birth outcomes. Estimation of the fetal plasma BPA concentration from the maternal plasma BPA would be highly useful to predict its associated risk to this specific population. The objective of current work is to develop a pregnancy-physiologically based pharmacokinetic (P-PBPK) model to predict the toxicokinetic profile of BPA in the fetus during gestational growth, and to evaluate the developed model using biomonitoring data obtained from different pregnancy cohort studies. To achieve this objective, first, the adult PBPK model was developed and validated with the human BPA toxicokinetic data. This validated human PBPK model was extended to develop a P-PBPK model, which included the physiological changes during pregnancy and the fetus sub-model. The developed model would be able to predict the BPA pharmacokinetics (PKs) in both mother and fetus. Transplacental BPA kinetics parameters for this study were taken from the previous pregnant mice study. Both oral and dermal exposure routes were included into the model to simulate total BPA internal exposure. The impact of conjugation and deconjugation of the BPA and its metabolites on fetal PKs was investigated. The developed P-PBPK model was evaluated against the observed BPA concentrations in cord blood, fetus liver and amniotic fluid considering maternal blood concentration as an exposure source. A range of maternal exposure dose for the oral and dermal routes was estimated, so that simulation concentration matched the observed highest and lowest mother plasma concentration in different cohorts' studies. The developed model could be used to address the concerns regarding possible adverse health effects in the fetus being exposed to BPA and might be useful in identifying critical windows of exposure during pregnancy.
Collapse
Affiliation(s)
- Raju Prasad Sharma
- Center of Environmental Food and Toxicological Technology (TecnATox), Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Center of Environmental Food and Toxicological Technology (TecnATox), Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Vikas Kumar
- Center of Environmental Food and Toxicological Technology (TecnATox), Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| |
Collapse
|
45
|
Rock KD, Horman B, Phillips AL, McRitchie SL, Watson S, Deese-Spruill J, Jima D, Sumner S, Stapleton HM, Patisaul HB. EDC IMPACT: Molecular effects of developmental FM 550 exposure in Wistar rat placenta and fetal forebrain. Endocr Connect 2018; 7:305-324. [PMID: 29351906 PMCID: PMC5817967 DOI: 10.1530/ec-17-0373] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022]
Abstract
Firemaster 550 (FM 550) is a flame retardant (FR) mixture that has become one of the most commonly used FRs in foam-based furniture and baby products. Human exposure to this commercial mixture, composed of brominated and organophosphate components, is widespread. We have repeatedly shown that developmental exposure can lead to sex-specific behavioral effects in rats. Accruing evidence of endocrine disruption and potential neurotoxicity has raised concerns regarding the neurodevelopmental effects of FM 550 exposure, but the specific mechanisms of action remains unclear. Additionally, we observed significant, and in some cases sex-specific, accumulation of FM 550 in placental tissue following gestational exposure. Because the placenta is an important source of hormones and neurotransmitters for the developing brain, it may be a critical target of toxicity to consider in the context of developmental neurotoxicity. Using a mixture of targeted and exploratory approaches, the goal of the present study was to identify possible mechanisms of action in the developing forebrain and placenta. Wistar rat dams were orally exposed to FM 550 (0, 300 or 1000 µg/day) for 10 days during gestation and placenta and fetal forebrain tissue collected for analysis. In placenta, evidence of endocrine, inflammatory and neurotransmitter signaling pathway disruption was identified. Notably, 5-HT turnover was reduced in placental tissue and fetal forebrains indicating that 5-HT signaling between the placenta and the embryonic brain may be disrupted. These findings demonstrate that environmental contaminants, like FM 550, have the potential to impact the developing brain by disrupting normal placental functions.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
| | - Brian Horman
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
| | - Allison L Phillips
- Nicholas School of the EnvironmentDuke University, Durham, North Carolina, USA
| | - Susan L McRitchie
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott Watson
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jocelin Deese-Spruill
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dereje Jima
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research CenterNorth Carolina State University, Raleigh, North Carolina, USA
| | - Susan Sumner
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
| | - Heather M Stapleton
- Nicholas School of the EnvironmentDuke University, Durham, North Carolina, USA
| | - Heather B Patisaul
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
46
|
Marraudino M, Bonaldo B, Farinetti A, Panzica G, Ponti G, Gotti S. Metabolism Disrupting Chemicals and Alteration of Neuroendocrine Circuits Controlling Food Intake and Energy Metabolism. Front Endocrinol (Lausanne) 2018; 9:766. [PMID: 30687229 PMCID: PMC6333703 DOI: 10.3389/fendo.2018.00766] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022] Open
Abstract
The metabolism-disrupting chemicals (MDCs) are molecules (largely belonging to the category of endocrine disrupting chemicals, EDCs) that can cause important diseases as the metabolic syndrome, obesity, Type 2 Diabetes Mellitus or fatty liver. MDCs act on fat tissue and liver, may regulate gut functions (influencing absorption), but they may also alter the hypothalamic peptidergic circuits that control food intake and energy metabolism. These circuits are normally regulated by several factors, including estrogens, therefore those EDCs that are able to bind estrogen receptors may promote metabolic changes through their action on the same hypothalamic circuits. Here, we discuss data showing how the exposure to some MDCs can alter the expression of neuropeptides within the hypothalamic circuits involved in food intake and energy metabolism. In particular, in this review we have described the effects at hypothalamic level of three known EDCs: Genistein, an isoflavone (phytoestrogen) abundant in soy-based food (a possible new not-synthetic MDC), Bisphenol A (compound involved in the manufacturing of many consumer plastic products), and Tributyltin chloride (one of the most dangerous and toxic endocrine disruptor, used in antifouling paint for boats).
Collapse
Affiliation(s)
- Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - Alice Farinetti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
- *Correspondence: GianCarlo Panzica
| | - Giovanna Ponti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| |
Collapse
|
47
|
Srilanchakon K, Thadsri T, Jantarat C, Thengyai S, Nosoognoen W, Supornsilchai V. Higher phthalate concentrations are associated with precocious puberty in normal weight Thai girls. J Pediatr Endocrinol Metab 2017; 30:1293-1298. [PMID: 29176028 DOI: 10.1515/jpem-2017-0281] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/04/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND The cause of precocious puberty may be associated with genetics and other conditions such as central nervous system (CNS) insults, or the exposure to endocrine disrupting chemicals (EDCs). Phthalates is known to be one of the EDCs and have estrogenic and antiandrogenic activities, and may be associated with advanced puberty. The objective of the study was to determine the association between urinary phthalate metabolites and advanced puberty. METHODS A cross-sectional study was conducted in patients with precocious puberty (breast onset <8 years, n=42) and early puberty (breast onset 8-9 years, n=17), compared to age-matched controls (n=77). Anthropometric measurements, estradiol, basal and gonadotropin releasing hormone (GnRH)-stimulated follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels, uterine sizes, ovarian diameters and bone ages (BA) were obtained. Urine samples were collected and mono-methyl phthalate (MMP) and mono-ethyl phthalate (MEP) were analyzed by high performance liquid chromatography (HPLC) and adjusted with urine creatinine. RESULTS The median adjusted-MEP concentration in girls with precocious puberty, was greater than in normal girls (6105.09 vs. 4633.98 μg/g Cr: p<0.05), and had the same trend among early puberty and normal puberty (5141.41 vs. 4633.98 μg/g Cr: p=0.4), but was not statistically significant. CONCLUSIONS Precocious puberty girls had an association with increased MEP concentration. This is the first report of the association between urinary phthalate levels and precocious puberty in Thai girls.
Collapse
|
48
|
Leonardi A, Cofini M, Rigante D, Lucchetti L, Cipolla C, Penta L, Esposito S. The Effect of Bisphenol A on Puberty: A Critical Review of the Medical Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:1044. [PMID: 28891963 PMCID: PMC5615581 DOI: 10.3390/ijerph14091044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023]
Abstract
Many scientific studies have revealed a trend towards an earlier onset of puberty and have disclosed an increasing number of children that display precocious puberty. As an explanation, some authors have considered the global socio-economic improvement across different populations, and other authors have considered the action of endocrine disrupting chemicals (EDCs). Among these, bisphenol A (BPA), an aromatic compound largely used worldwide as a precursor of some plastics and chemical additives, is well known for its molecular oestrogen-like and obesogenic actions. We reviewed the medical literature of the previous 20 years that examined associations between BPA exposure and the age of puberty in humans, considering only those referring to clinical or epidemiological data. Of 19 studies, only 7 showed a correlation between BPA and puberty. In particular, the possible disruptive role of BPA on puberty may be seen in those with central precocious puberty or isolated premature breast development aged 2 months to 4 years old, even if the mechanism is undefined. Some studies also found a close relationship between urinary BPA, body weight, and early puberty, which can be explained by the obesogenic effect of BPA itself. The currently available data do not allow establishment of a clear role for BPA in pubertal development because of the conflicting results among all clinical and epidemiological studies examined. Further research is needed to fully understand the potential role of exposure to EDCs and their adverse endocrine health outcomes.
Collapse
Affiliation(s)
- Alberto Leonardi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Marta Cofini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Donato Rigante
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, 00168 Rome, Italy.
| | - Laura Lucchetti
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Clelia Cipolla
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, 00168 Rome, Italy.
| | - Laura Penta
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06129 Perugia, Italy.
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06129 Perugia, Italy.
| |
Collapse
|
49
|
Arambula SE, Fuchs J, Cao J, Patisaul HB. Effects of perinatal bisphenol A exposure on the volume of sexually-dimorphic nuclei of juvenile rats: A CLARITY-BPA consortium study. Neurotoxicology 2017; 63:33-42. [PMID: 28890130 DOI: 10.1016/j.neuro.2017.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Bisphenol A (BPA) is a high volume endocrine disrupting chemical found in a wide variety of products including plastics and epoxy resins. Human exposure is nearly ubiquitous, and higher in children than adults. Because BPA has been reported to interfere with sex steroid hormone signaling, there is concern that developmental exposure, even at levels below the current FDA No Observed Adverse Effect Level (NOAEL) of 5mg/kg body weight (bw)/day, can disrupt brain sexual differentiation. The current studies were conducted as part of the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) program and tested the hypothesis that perinatal BPA exposure would induce morphological changes in hormone sensitive, sexually dimorphic brain regions. Sprague-Dawley rats were randomly assigned to 5 groups: BPA (2.5, 25, or 2500μg/kgbw/day), a reference estrogen (0.5μg ethinylestradiol (EE2)/kgbw/day), or vehicle. Exposure occurred by gavage to the dam from gestational day 6 until parturition, and then to the offspring from birth through weaning. Unbiased stereology was used to quantify the volume of the sexually dimorphic nucleus (SDN), the anteroventral periventricular nucleus (AVPV), the posterodorsal portion of the medial amygdala (MePD), and the locus coeruleus (LC) at postnatal day 28. No appreciable effects of BPA were observed on the volume of the SDN or LC. However, AVPV volume was enlarged in both sexes, even at levels below the FDA NOAEL. Collectively, these data suggest the developing brain is vulnerable to endocrine disruption by BPA at exposure levels below previous estimates by regulatory agencies.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Joelle Fuchs
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
50
|
Pinson A, Franssen D, Gérard A, Parent AS, Bourguignon JP. Neuroendocrine disruption without direct endocrine mode of action: Polychloro-biphenyls (PCBs) and bisphenol A (BPA) as case studies. C R Biol 2017; 340:432-438. [PMID: 28826787 DOI: 10.1016/j.crvi.2017.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/21/2017] [Indexed: 11/26/2022]
Abstract
Endocrine disruption is commonly thought to be restricted to a direct endocrine mode of action i.e. the perturbation of the activation of a given type of hormonal receptor by its natural ligand. Consistent with the WHO definition of an endocrine disrupter, a key issue is the "altered function(s) of the endocrine system". Such altered functions can result from different chemical interactions, beyond agonistic or antagonistic effect at a given receptor. Based on neuroendocrine disruption by polychlorinated biphenyls and bisphenol A, this paper proposes different mechanistic paradigms that can result in adverse health effects. They are a consequence of altered endocrine function(s) secondary to chemical interaction with different steps in the physiological regulatory processes, thus accounting for a possibly indirect endocrine mode of action.
Collapse
Affiliation(s)
- Anneline Pinson
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Quartier Hôpital, Tour 4, 1(er) étage, avenue Hippocrate 15, 4000 Liège, Belgium
| | - Delphine Franssen
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Quartier Hôpital, Tour 4, 1(er) étage, avenue Hippocrate 15, 4000 Liège, Belgium
| | - Arlette Gérard
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Quartier Hôpital, Tour 4, 1(er) étage, avenue Hippocrate 15, 4000 Liège, Belgium
| | - Anne-Simone Parent
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Quartier Hôpital, Tour 4, 1(er) étage, avenue Hippocrate 15, 4000 Liège, Belgium
| | - Jean-Pierre Bourguignon
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Quartier Hôpital, Tour 4, 1(er) étage, avenue Hippocrate 15, 4000 Liège, Belgium.
| |
Collapse
|