1
|
Liu W, Lu J, Li J, Wang L, Chen Y, Wu Y, Zhang Z, Zhang J, Gao F, Jia C, Bao Y, Yang X, Song Z. Gboxin Induced Apoptosis and Ferroptosis of Cervical Cancer Cells by Promoting Autophagy-Mediated Inhibition of Nrf2 Signaling Under Low-Glucose Conditions. Int J Mol Sci 2025; 26:502. [PMID: 39859216 PMCID: PMC11765388 DOI: 10.3390/ijms26020502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Cervical cancer poses a substantial threat to women's health, underscoring the necessity for effective therapeutic agents with low toxicity that specifically target cancer cells. As cancer progresses, increased glucose consumption causes glucose scarcity in the tumor microenvironment (TME). Consequently, it is imperative to identify pharmacological agents capable of effectively killing cancer cells under conditions of low glucose availability within the TME. Previous studies showed that Gboxin, a small molecule, inhibited glioblastoma (GBM) growth by targeting ATP synthase without harming normal cells. However, its effects and mechanisms in cervical cancer cells in low-glucose environments are not clear. This study indicates that Gboxin notably enhanced autophagy, apoptosis, and ferroptosis in cervical cells under low-glucose conditions without significantly affecting cell survival under normal conditions. Further analysis revealed that Gboxin inhibited the activity of complex V and the production of ATP, concurrently leading to a reduction in mitochondrial membrane potential and the mtDNA copy number under low-glucose culture conditions. Moreover, Gboxin inhibited tumor growth under nutrient deprivation conditions in vivo. A mechanistic analysis revealed that Gboxin activated the AMPK signaling pathway by targeting mitochondrial complex V. Furthermore, increased AMPK activation subsequently promoted autophagy and reduced p62 protein levels. The decreased levels of p62 protein facilitated the degradation of Nrf2 by regulating the p62-Keap1-Nrf2 axis, thereby diminishing the antioxidant capacity of cervical cancer cells, ultimately leading to the induction of apoptosis and ferroptosis. This study provides a better theoretical basis for exploring Gboxin as a potential drug for cervical cancer treatment.
Collapse
Affiliation(s)
- Wei Liu
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China; (W.L.); (J.L.); (J.L.); (Y.W.); (F.G.); (Y.B.)
| | - Junlin Lu
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China; (W.L.); (J.L.); (J.L.); (Y.W.); (F.G.); (Y.B.)
| | - Jiarui Li
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China; (W.L.); (J.L.); (J.L.); (Y.W.); (F.G.); (Y.B.)
| | - Lu Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China; (L.W.); (Y.C.); (Z.Z.); (J.Z.); (C.J.)
| | - Yao Chen
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China; (L.W.); (Y.C.); (Z.Z.); (J.Z.); (C.J.)
| | - Yulun Wu
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China; (W.L.); (J.L.); (J.L.); (Y.W.); (F.G.); (Y.B.)
| | - Ziying Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China; (L.W.); (Y.C.); (Z.Z.); (J.Z.); (C.J.)
| | - Jingying Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China; (L.W.); (Y.C.); (Z.Z.); (J.Z.); (C.J.)
| | - Feng Gao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China; (W.L.); (J.L.); (J.L.); (Y.W.); (F.G.); (Y.B.)
| | - Chaoran Jia
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China; (L.W.); (Y.C.); (Z.Z.); (J.Z.); (C.J.)
| | - Yongli Bao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China; (W.L.); (J.L.); (J.L.); (Y.W.); (F.G.); (Y.B.)
| | - Xiaoguang Yang
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun 130024, China; (W.L.); (J.L.); (J.L.); (Y.W.); (F.G.); (Y.B.)
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China; (L.W.); (Y.C.); (Z.Z.); (J.Z.); (C.J.)
| |
Collapse
|
2
|
Marchetti B, Tirolo C, L'Episcopo F, Caniglia S, Testa N, Smith JA, Pluchino S, Serapide MF. Parkinson's disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell 2020; 19:e13101. [PMID: 32050297 PMCID: PMC7059166 DOI: 10.1111/acel.13101] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022] Open
Abstract
A common hallmark of age-dependent neurodegenerative diseases is an impairment of adult neurogenesis. Wingless-type mouse mammary tumor virus integration site (Wnt)/β-catenin (WβC) signalling is a vital pathway for dopaminergic (DAergic) neurogenesis and an essential signalling system during embryonic development and aging, the most critical risk factor for Parkinson's disease (PD). To date, there is no known cause or cure for PD. Here we focus on the potential to reawaken the impaired neurogenic niches to rejuvenate and repair the aged PD brain. Specifically, we highlight WβC-signalling in the plasticity of the subventricular zone (SVZ), the largest germinal region in the mature brain innervated by nigrostriatal DAergic terminals, and the mesencephalic aqueduct-periventricular region (Aq-PVR) Wnt-sensitive niche, which is in proximity to the SNpc and harbors neural stem progenitor cells (NSCs) with DAergic potential. The hallmark of the WβC pathway is the cytosolic accumulation of β-catenin, which enters the nucleus and associates with T cell factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors, leading to the transcription of Wnt target genes. Here, we underscore the dynamic interplay between DAergic innervation and astroglial-derived factors regulating WβC-dependent transcription of key genes orchestrating NSC proliferation, survival, migration and differentiation. Aging, inflammation and oxidative stress synergize with neurotoxin exposure in "turning off" the WβC neurogenic switch via down-regulation of the nuclear factor erythroid-2-related factor 2/Wnt-regulated signalosome, a key player in the maintenance of antioxidant self-defense mechanisms and NSC homeostasis. Harnessing WβC-signalling in the aged PD brain can thus restore neurogenesis, rejuvenate the microenvironment, and promote neurorescue and regeneration.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Cataldo Tirolo
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | | | | | - Nunzio Testa
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Jayden A. Smith
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Maria F. Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
| |
Collapse
|
3
|
Meulendyke KA, Queen SE, Engle EL, Shirk EN, Liu J, Steiner JP, Nath A, Tarwater PM, Graham DR, Mankowski JL, Zink MC. Combination fluconazole/paroxetine treatment is neuroprotective despite ongoing neuroinflammation and viral replication in an SIV model of HIV neurological disease. J Neurovirol 2014; 20:591-602. [PMID: 25227932 DOI: 10.1007/s13365-014-0283-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/14/2014] [Indexed: 12/20/2022]
Abstract
Effective combined antiretroviral therapy (cART) in HIV-infected patients has made HIV a treatable infection; however, debilitating HIV-associated neurocognitive disorders (HAND) can still affect approximately 50% of HIV-infected individuals even under cART. While cART has greatly reduced the prevalence of the most severe form of HAND, milder forms have increased in prevalence, leaving the total proportion of HIV-infected individuals suffering from HAND relatively unchanged. In this study, an in vitro drug screen identified fluconazole and paroxetine as protective compounds against HIV gp120 and Tat neurotoxicity. Using an accelerated, consistent SIV/macaque model of HIV-associated CNS disease, we tested the in vivo neuroprotective capabilities of combination fluconazole/paroxetine (FluPar) treatment. FluPar treatment protected macaques from SIV-induced neurodegeneration, as measured by neurofilament light chain in the CSF, APP accumulation in axons, and CaMKIIα in the frontal cortex, but did not significantly reduce markers of neuroinflammation or plasma or CNS viral loads. Since HIV and SIV neurodegeneration is often attributed to accompanying neuroinflammation, this study provides proof of concept that neuroprotection can be achieved even in the face of ongoing neuroinflammation and viral replication.
Collapse
Affiliation(s)
- Kelly A Meulendyke
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 North Broadway Street, MRB 819, Baltimore, MD, 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sai T, Uchida K, Nakayama H. Biochemical evaluation of the neurotoxicity of MPTP and MPP⁺ in embryonic and newborn mice. J Toxicol Sci 2013; 38:445-58. [PMID: 23665943 DOI: 10.2131/jts.38.445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
One of the toxicities caused by 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) is damage to dopaminergic neurons. When injected into C57BL/6J mice, MPTP penetrates into the brain and is converted to 1-methyl-4-phenylpyridinium (MPP⁺) by monoamine oxidase (MAO)-B in astrocytes. MPP⁺ has high affinity for the dopamine transporter (DAT) on dopaminergic neurons, and is taken up into the cell to cause cell death. There have been relatively few researches on the acute MPTP toxicity to embryonic or newborn mice. In the present study, we attempted to evaluate the influence of MPTP and MPP⁺ on embryonic and newborn mice by measuring sequential changes in major indexes of MPTP toxicity and MPTP metabolism; levels of Tyrosine Hydroxylase (TH), DAT, MAO-A and MAO-B. In addition, we measured the levels of dopamine and its metabolites, 3,4-dihydroxy-phenylacetic acid (DOPAC) and homovanillic acid (HVA), in the brain of newborn mice. A single injection of MPTP and MPP⁺ reduced the levels of dopamine and its metabolites, DOPAC and HVA, in the brain of newborn mice about 6-12 hr after the injection. Similarly the levels of mRNAs and proteins of DAT and TH were lowered in the brain of embryonic and newborn mice as well. The levels of these indexes were generally recovered at 24 hr after injection, indicating that the neurotoxicity induced by a single injection of MPTP or MPP⁺ is temporary and recoverable in embryonic and newborn mice. By contrast, no significant changes in the expression levels of MAO-A and MAO-B were observed in either MPTP- or MPP⁺-treated mice.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenylpyridinium/metabolism
- 3,4-Dihydroxyphenylacetic Acid/metabolism
- Animals
- Animals, Newborn
- Brain/embryology
- Brain/metabolism
- Dopamine/metabolism
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Female
- Homovanillic Acid/metabolism
- Injections, Intraperitoneal
- MPTP Poisoning/metabolism
- Male
- Maternal-Fetal Exchange
- Mice
- Mice, Inbred C57BL
- Monoamine Oxidase/physiology
- Pregnancy
- Tyrosine 3-Monooxygenase/metabolism
Collapse
|
5
|
Marchetti B, L'Episcopo F, Morale MC, Tirolo C, Testa N, Caniglia S, Serapide MF, Pluchino S. Uncovering novel actors in astrocyte-neuron crosstalk in Parkinson's disease: the Wnt/β-catenin signaling cascade as the common final pathway for neuroprotection and self-repair. Eur J Neurosci 2013; 37:1550-63. [PMID: 23461676 PMCID: PMC3660182 DOI: 10.1111/ejn.12166] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/25/2013] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neuronal cell bodies in the substantia nigra pars compacta and gliosis. The cause and mechanisms underlying the demise of nigrostriatal DAergic neurons are ill-defined, but interactions between genes and environmental factors are recognized to play a critical role in modulating the vulnerability to PD. Current evidence points to reactive glia as a pivotal factor in PD pathophysiology, playing both protective and destructive roles. Here, the contribution of reactive astrocytes and their ability to modulate DAergic neurodegeneration, neuroprotection and neurorepair in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD will be discussed in the light of novel emerging evidence implicating wingless-type mouse mammary tumor virus integration site (Wnt)/β-catenin signaling as a strong candidate in MPTP-induced nigrostriatal DAergic plasticity. In this work, we highlight an intrinsic Wnt1/frizzled-1/β-catenin tone that critically contributes to the survival and protection of adult midbrain DAergic neurons, with potential implications for drug design or drug action in PD. The dynamic interplay between astrocyte-derived factors and neurogenic signals in MPTP-induced nigrostriatal DAergic neurotoxicity and repair will be summarized, together with recent findings showing a critical role of glia-neural stem/progenitor cell (NPC) interactions aimed at overcoming neurodegeneration and inducing neurorestoration. Understanding the intrinsic plasticity of nigrostriatal DAergic neurons and deciphering the signals facilitating the crosstalk between astrocytes, microglia, DAergic neurons and NPCs may have major implications for the role of stem cell technology in PD, and for identifying potential therapeutic targets to induce endogenous neurorepair.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, Medical School, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Sai T, Uchida K, Nakayama H. Involvement of monoamine oxidase-B in the acute neurotoxicity of MPTP in embryonic and newborn mice. ACTA ACUST UNITED AC 2013; 65:365-73. [PMID: 22281418 DOI: 10.1016/j.etp.2011.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/31/2011] [Accepted: 11/29/2011] [Indexed: 02/02/2023]
Affiliation(s)
- Takafumi Sai
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
7
|
Sai T, Uchida K, Nakayama H. Acute toxicity of MPTP and MPP+ in the brain of embryo and newborn mice. ACTA ACUST UNITED AC 2013; 65:113-9. [PMID: 21798732 DOI: 10.1016/j.etp.2011.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 06/03/2011] [Accepted: 06/27/2011] [Indexed: 10/17/2022]
|
8
|
Ito T, Suzuki K, Uchida K, Nakayama H. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neuroblastic apoptosis in the subventricular zone is caused by 1-methy-4-phenylpiridinium (MPP+) converted from MPTP through MAO-B. ACTA ACUST UNITED AC 2012; 64:761-5. [PMID: 21324658 DOI: 10.1016/j.etp.2011.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
|
9
|
L'Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Deleidi M, Serapide MF, Pluchino S, Marchetti B. Plasticity of subventricular zone neuroprogenitors in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson's disease involves cross talk between inflammatory and Wnt/β-catenin signaling pathways: functional consequences for neuroprotection and repair. J Neurosci 2012; 32:2062-85. [PMID: 22323720 PMCID: PMC3556384 DOI: 10.1523/jneurosci.5259-11.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 12/20/2022] Open
Abstract
In Parkinson's disease (PD), neurogenesis is impaired in the subventricular zone (SVZ) of postmortem human PD brains, in primate nonhuman and rodent models of PD. The vital role of Wingless-type MMTV integration site (Wnt)/β-catenin signaling in the modulation of neurogenesis, neuroprotection, and synaptic plasticity coupled to our recent findings uncovering an active role for inflammation and Wnt/β-catenin signaling in MPTP-induced loss and repair of nigrostriatal dopaminergic (DAergic) neurons prompted us to study the impact of neuroinflammation and the Wnt/β-catenin pathway in the response of SVZ neuroprogenitors (NPCs) in MPTP-treated mice. In vivo experiments, using bromodeoxyuridine and cell-specific markers, and ex vivo time course analyses documented an inverse correlation between the reduced proliferation of NPCs and the generation of new neuroblasts with the phase of maximal exacerbation of microglia reaction, whereas a shift in the microglia proinflammatory phenotype correlated with a progressive NPC recovery. Ex vivo and in vitro experiments using microglia-NPC coculture paradigms pointed to NADPH-oxidase (gpPHOX(91)), a major source of microglial ROS, and reactive nitrogen species as candidate inhibitors of NPC neurogenic potential via the activation of glycogen synthase 3 (pGSK-3β(Tyr216)), leading to loss of β-catenin, a chief downstream transcriptional effector. Accordingly, MPTP/MPP(+) (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) caused β-catenin downregulation and pGSK-3β(Tyr216) overexpression, whereas manipulation of Wnt/β-catenin signaling with RNA interference-mediated GSK-3β knockdown or GSK-3β antagonism reversed MPTP-induced neurogenic impairment ex vivo/in vitro or in vivo. Reciprocally, pharmacological modulation of inflammation prevented β-catenin downregulation and restored neurogenesis, suggesting the possibility to modulate this endogenous system with potential consequences for DAergic neuroprotection and self-repair.
Collapse
Affiliation(s)
- Francesca L'Episcopo
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Cataldo Tirolo
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Nunzio Testa
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Salvatore Caniglia
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Maria C. Morale
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Michela Deleidi
- CNS Repair Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria F. Serapide
- Department of Physiological Sciences, University of Catania, 95125 Catania, Italy
| | - Stefano Pluchino
- CNS Repair Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair and Stem Cell Initiative, University of Cambridge, Cambridge CB2 0PY, United Kingdom, and
| | - Bianca Marchetti
- OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, Medical School and Faculty of Pharmacy, University of Catania, 95125 Catania, Italy
| |
Collapse
|
10
|
The neuroprotective disease-modifying potential of psychotropics in Parkinson's disease. PARKINSONS DISEASE 2011; 2012:753548. [PMID: 22254151 PMCID: PMC3255316 DOI: 10.1155/2012/753548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/12/2011] [Indexed: 12/12/2022]
Abstract
Neuroprotective treatments in Parkinson's disease (PD) have remained elusive. Psychotropics are commonly prescribed in PD without regard to their pathobiological effects. The authors investigated the effects of psychotropics on pathobiological proteins, proteasomal activity, mitochondrial functions, apoptosis, neuroinflammation, trophic factors, stem cells, and neurogenesis. Only findings replicated in at least 2 studies were considered for these actions. Additionally, PD-related gene transcription, animal model, and human neuroprotective clinical trial data were reviewed. Results indicate that, from a PD pathobiology perspective, the safest drugs (i.e., drugs least likely to promote cellular neurodegenerative mechanisms balanced against their likelihood of promoting neuroprotective mechanisms) include pramipexole, valproate, lithium, desipramine, escitalopram, and dextromethorphan. Fluoxetine favorably affects transcription of multiple genes (e.g., MAPT, GBA, CCDC62, HIP1R), although it and desipramine reduced MPTP mouse survival. Haloperidol is best avoided. The most promising neuroprotective investigative priorities will involve disease-modifying trials of the safest agents alone or in combination to capture salutary effects on H3 histone deacetylase, gene transcription, glycogen synthase kinase-3, α-synuclein, reactive oxygen species (ROS), reactive nitrogen species (RNS), apoptosis, inflammation, and trophic factors including GDNF and BDNF.
Collapse
|
11
|
Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone. J Neurosci 2011; 31:13078-87. [PMID: 21917791 DOI: 10.1523/jneurosci.1197-11.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.
Collapse
|
12
|
Rodríguez S, Ito T, He XJ, Uchida K, Nakayama H. Resistance of the golden hamster to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-neurotoxicity is not only related with low levels of cerebral monoamine oxidase-B. ACTA ACUST UNITED AC 2011; 65:127-33. [PMID: 21795029 DOI: 10.1016/j.etp.2011.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/06/2011] [Accepted: 06/27/2011] [Indexed: 10/17/2022]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been proved to be a potent neurotoxin on dopaminergic neurons inducing most of the symptoms and cerebral lesions observed in the idiopathic Parkinson's disease (PD). Although there is a substantial body of theory and researches about the effects of MPTP on susceptible mice and nonhuman primates, there are only few studies in resistant animals, such as golden hamsters (GH). The low levels of cerebral monoamine oxidase-B (MAO-B) enzyme have been proposed as the cause of the GH insensitivity to MPTP. The aim of this study was to elucidate whether MAO-B is the only factor which confer GH resistance to MPTP. Neither loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) nor cell death in the subventricular zone (SVZ) were found in female GH in response to an acute intraperitoneal (ip) MPTP treatment. To prove the role of MAO-B in the MPTP-resistance, female and male GH was intracerebroventricularly (icv) injected with either MPTP or 1-methyl-4-phenylpyridinum (MPP(+)). Neither depletion in the number of dopaminergic neurons, nor astrogliosis, cell death in the SVZ of female and male GH were registered after an icv treatment with MPTP or MPP(+). Furthermore, we demonstrated that MAO-B is located predominantly within the endothelial cells in the blood brain barrier (BBB), but not in the astroglia. The present results raise the possibility that, in GH, other mechanisms, apart from the low levels of regional MAO-B, confer resistance to MPTP and its metabolites.
Collapse
Affiliation(s)
- Sebastián Rodríguez
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
13
|
Bovetti S, Gribaudo S, Puche AC, De Marchis S, Fasolo A. From progenitors to integrated neurons: role of neurotransmitters in adult olfactory neurogenesis. J Chem Neuroanat 2011; 42:304-16. [PMID: 21641990 DOI: 10.1016/j.jchemneu.2011.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
Adult neurogenesis is due to the persistence of pools of constitutive stem cells able to give rise to a progeny of proliferating progenitors. In rodents, adult neurogenic niches have been found in the subventricular zone (SVZ) along the lateral ventricles and in the subgranular zone of the dentate gyrus in the hippocampus. SVZ progenitors undergo a unique process of tangential migration from the lateral ventricle to the olfactory bulb (OB) where they differentiate mainly into GABAergic interneurons in the granule and glomerular layers. SVZ progenitor proliferation, migration and differentiation into fully integrated neurons, are strictly related processes regulated by complex interactions between cell intrinsic and extrinsic influences. Numerous observations demonstrate that neurotrasmitters are involved in all steps of the adult neurogenic process, but the understanding of their role is hampered by their intricate mechanism of action and by the highly complex network in which neurotransmitters work. By considering the three main steps of olfactory adult neurogenesis (proliferation, migration and integration), this review will discuss recent advances in the study of neurotransmitters, highlighting the regulatory mechanisms upstream and downstream their action.
Collapse
Affiliation(s)
- Serena Bovetti
- Department of Animal & Human Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | | | | | | | | |
Collapse
|
14
|
Neurotransmitter signaling in postnatal neurogenesis: The first leg. ACTA ACUST UNITED AC 2010; 63:60-71. [PMID: 20188124 DOI: 10.1016/j.brainresrev.2010.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/16/2010] [Accepted: 02/18/2010] [Indexed: 12/27/2022]
Abstract
Like the liver or other peripheral organs, two regions of the adult brain possess the ability of self-renewal through a process called neurogenesis. This raises tremendous hope for repairing the damaged brain, and it has stimulated research on identifying signals controlling neurogenesis. Neurogenesis involves several stages from fate determination to synaptic integration via proliferation, migration, and maturation. While fate determination primarily depends on a genetic signature, other stages are controlled by the interplay between genes and microenvironmental signals. Here, we propose that neurotransmitters are master regulators of the different stages of neurogenesis. In favor of this idea, a description of selective neurotransmitter signaling and their functions in the largest neurogenic zone, the subventricular zone (SVZ), is provided. In particular, we emphasize the interactions between neuroblasts and astrocyte-like cells that release gamma-aminobutyric acid (GABA) and glutamate, respectively. However, we also raise several limitations to our knowledge on neurotransmitters in neurogenesis. The function of neurotransmitters in vivo remains largely unexplored. Neurotransmitter signaling has been viewed as uniform, which dramatically contrasts with the cellular and molecular mosaic nature of the SVZ. How neurotransmitters are integrated with other well-conserved molecules, such as sonic hedgehog, is poorly understood. In an effort to reconcile these differences, we discuss how specificity of neurotransmitter functions can be provided through their multitude of receptors and intracellular pathways in different cell types and their possible interactions with sonic hedgehog.
Collapse
|