1
|
Santos JR, Mendes MC, Dallabrida KG, Gonçalves R, Sampaio TB. Pesticide exposure and the development of Parkinson disease: a systematic review of Brazilian studies. CAD SAUDE PUBLICA 2025; 41:e00011424. [PMID: 40243837 PMCID: PMC11996191 DOI: 10.1590/0102-311xen011424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 04/18/2025] Open
Abstract
Parkinson disease is the second most prevalent neurodegenerative disease globally. Parkinson disease etiology is not fully understood, it is believed to be a multifactorial disease. Pesticide exposure is highlighted among the factors. Thus, this study analyzed the relationship between pesticide exposure and the development of Parkinson disease in Brazil via a systematic review. The review was conducted following the PRISMA methodology and PICOS process, using the PubMed, Web of Science, and Virtual Health Library databases. Inclusion criteria were observational studies, conducted in humans, focusing on the Brazilian population, and investigating the relationship between pesticide exposure and Parkinson disease development. Studies quality was evaluated using the Hawker checklist. A total of 85 publications were identified for eligibility and 12 studies were included in the qualitative synthesis. Regarding study quality, two showed poor, nine moderate, and only one presented high quality. Moreover, 11 studies indicated an association between pesticide exposure and increased occurrence of Parkinson disease in Brazilian people. Additionally, such association was more prevalent in the presence of the following factors: (i) single-nucleotide polymorphism IVS1-7 A→G of PINK1; (ii) variations in the gene and protein expressions of the enzyme glutathione S-transferase; (iii) occupational exposure; (iv) living in a non-urban area; (v) low schooling level, and (iv) being male. This study is the first to infer, via the systematization of observational studies conducted with the Brazilian population, the association between pesticide exposure and the occurrence of Parkinson disease in the country, evidencing the necessity of efficient public policies.
Collapse
Affiliation(s)
| | | | | | | | - Tuane Bazanella Sampaio
- Universidade Estadual do Centro-Oeste, Guarapuava, Brasil
- Universidade Federal de Santa Maria, Santa Maria, Brasil
- Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Brasil
| |
Collapse
|
2
|
Kubens L, Weishaupt AK, Michaelis V, Rohn I, Mohr F, Bornhorst J. Exposure to the environmentally relevant fungicide Maneb: Studying toxicity in the soil nematode Caenorhabditis elegans. ENVIRONMENT INTERNATIONAL 2024; 183:108372. [PMID: 38071851 DOI: 10.1016/j.envint.2023.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024]
Abstract
Maneb is a manganese-containing ethylene bisdithiocarbamate fungicide and is still commonly used as no cases of resistance have been documented. However, studies have shown that Maneb exposure has neurodegenerative potential in mammals, resulting in symptoms affecting the motor system. Despite its extensive use, structural elucidation of Maneb has only recently been accomplished by our group. This study aimed to examine the bioavailability of Maneb, the quantification of oxidative stress-related endpoints and neurotransmitters employing pure Maneb, its metabolites and structural analogues, in the model organism Caenorhabditis elegans. Exposure to Maneb did not increase the bioavailability of Mn compared to manganese chloride, although Maneb was about 8 times more toxic with regard to lethality. Maneb generated not significantly reactive oxygen and nitrogen species (RONS) but decreased the ATP level while increasing the amount of glutathione and its oxidized form in a dose-dependent manner. Nevertheless, an alteration in the neurotransmitter homeostasis of dopamine, acetylcholine, and gamma-butyric acid (GABA) was observed as well as morphological changes in the dopaminergic neurons upon Maneb exposure, which underlines the assumption of the neurotoxic potential of Maneb. This study showed that Maneb exhibits effects based on a combined interaction of the ligand and manganese.
Collapse
Affiliation(s)
- Laura Kubens
- Food Chemistry, University of Wuppertal, Germany; Inorganic Chemistry, University of Wuppertal, Germany
| | - Ann-Kathrin Weishaupt
- Food Chemistry, University of Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | | | | | - Fabian Mohr
- Inorganic Chemistry, University of Wuppertal, Germany
| | - Julia Bornhorst
- Food Chemistry, University of Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| |
Collapse
|
3
|
Shan L, Heusinkveld HJ, Paul KC, Hughes S, Darweesh SKL, Bloem BR, Homberg JR. Towards improved screening of toxins for Parkinson's risk. NPJ Parkinsons Dis 2023; 9:169. [PMID: 38114496 PMCID: PMC10730534 DOI: 10.1038/s41531-023-00615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive and disabling neurodegenerative disorder. The prevalence of PD has risen considerably over the past decades. A growing body of evidence suggest that exposure to environmental toxins, including pesticides, solvents and heavy metals (collectively called toxins), is at least in part responsible for this rapid growth. It is worrying that the current screening procedures being applied internationally to test for possible neurotoxicity of specific compounds offer inadequate insights into the risk of developing PD in humans. Improved screening procedures are therefore urgently needed. Our review first substantiates current evidence on the relation between exposure to environmental toxins and the risk of developing PD. We subsequently propose to replace the current standard toxin screening by a well-controlled multi-tier toxin screening involving the following steps: in silico studies (tier 1) followed by in vitro tests (tier 2), aiming to prioritize agents with human relevant routes of exposure. More in depth studies can be undertaken in tier 3, with whole-organism (in)vertebrate models. Tier 4 has a dedicated focus on cell loss in the substantia nigra and on the presumed mechanisms of neurotoxicity in rodent models, which are required to confirm or refute the possible neurotoxicity of any individual compound. This improved screening procedure should not only evaluate new pesticides that seek access to the market, but also critically assess all pesticides that are being used today, acknowledging that none of these has ever been proven to be safe from a perspective of PD. Importantly, the improved screening procedures should not just assess the neurotoxic risk of isolated compounds, but should also specifically look at the cumulative risk conveyed by exposure to commonly used combinations of pesticides (cocktails). The worldwide implementation of such an improved screening procedure, would be an essential step for policy makers and governments to recognize PD-related environmental risk factors.
Collapse
Affiliation(s)
- Ling Shan
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| | - Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Samantha Hughes
- A-LIFE Amsterdam Institute for Life and Environment, Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Sirwan K L Darweesh
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Paganotto Leandro L, Vitória Takemura Mariano M, Kich Gomes K, Beatriz Dos Santos A, Sousa Dos Anjos J, Rodrigues de Carvalho N, Eugênio Medina Nunes M, Farina M, Posser T, Luis Franco J. Permissible concentration of mancozeb in Brazilian drinking water elicits oxidative stress and bioenergetic impairments in embryonic zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122013. [PMID: 37369298 DOI: 10.1016/j.envpol.2023.122013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Mancozeb (MZ) is widely used as a fungicide in Brazil due to its effectiveness in combating fungal infections in plantations. However, its toxicity to non-target organisms, including aquatic organisms, has been reported in the literature. Recently, Brazilian legislation was updated to allow a concentration of 8 μg/L of MZ in drinking water (Ordinance GM/MS nº 888, of May 4, 2021). However, the safety of this concentration for aquatic organisms has not yet been put to the test. To address this gap, we conducted a study using zebrafish (Danio rerio) embryos at 4 hpf exposed to MZ at the concentration allowed by law, as well as slightly higher sublethal concentrations (24, 72, and 180 μg/L), alongside a control group. We evaluated various morphophysiological markers of toxicity, including survival, spontaneous movements, heart rate, hatching rate, body axis distortion, total body length, total yolk sac area, and total eye area. Additionally, we measured biochemical biomarkers such as reactive oxygen species (ROS) levels, lipid peroxidation, non-protein thiols (NPSH), and mitochondrial bioenergetic parameters. Our results showed that the concentration of 8 μg/L, currently permitted in drinking water according to Brazilian legislation, increased ROS production levels and caused alterations in mitochondrial physiology. Among the markers assessed, mitochondrial bioenergetic function appeared to be the most sensitive indicator of MZ embryotoxicity, as a decrease in complex I activity was observed at concentrations of 8 and 180 μg/L. Furthermore, concentrations higher than 8 μg/L impaired morphophysiological markers. Based on these findings, we can infer that the concentration of MZ allowed in drinking water by Brazilian environmental legislation is not safe for aquatic organisms. Our study provides evidence that this fungicide is a potent embryotoxic agent, highlighting the potential risks associated with its exposure.
Collapse
Affiliation(s)
- Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil; Department of Molecular Biology and Biochemistry. Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Maria Vitória Takemura Mariano
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Ana Beatriz Dos Santos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jaciana Sousa Dos Anjos
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | | | - Mauro Eugênio Medina Nunes
- Department of Genetics and Exercise Metabolism. Graduate Program in Molecular Biology, Federal University of Sao Paulo, 1500 Sena Madureira St, São Paulo, SP, 04021-001, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Thais Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil.
| |
Collapse
|
5
|
Ziech CC, Rodrigues NR, Macedo GE, Gomes KK, Martins IK, Franco JL, Posser T. Pre-imaginal exposure to mancozeb induces morphological and behavioral deficits and oxidative damage in Drosophila melanogaster. Drug Chem Toxicol 2023; 46:575-587. [PMID: 35502483 DOI: 10.1080/01480545.2022.2069802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mancozeb (MZ), a manganese/zinc containing ethylene-bis-dithiocarbamate, is a broad-spectrum fungicide. Chronic exposure to MZ has been related to several organisms' neurological, hormonal, and developmental disorders. However, little is known about the post-natal effects of developmental exposure to MZ. In this study, Drosophila melanogaster was subjected to a pre-imaginal (eggs-larvae-pupae stage) model of exposure to MZ at 0.1 and 0.5 mg/mL. The emergence rate, body size, locomotor performance, sleep patterns, and molecular and biochemical parameters were evaluated in post-emerged flies. Results demonstrate that pre-imaginal exposure to MZ significantly impacted early emerged flies. Additionally, reduced progeny viability, smaller body size and delaying in emergence period, locomotor impairment, and prolonged sleep time were observed. Content of glucose, proteins, and triglycerides were altered, and the bioenergetics efficiency and oxidative phosphorylation at complex I were inhibited. mRNA stade state levels of genes responsive to stress, metabolism, and regulation of circadian cycle (Nrf2, p38, Hsp83, Akt1, GPDH, tor, per, tim, dILP2, and dILP6) were augmented, pointing out to stimulation of antioxidant defenses, insulin-dependent signaling pathway activation, and disruption of sleep regulation. These data were followed by increased lipid peroxidation and lower glutathione levels. In addition, the activity of catalase and glutathione-S-transferase were induced, whereas superoxide dismutase was inhibited. Together, these results demonstrate that developmental exposure to MZ formulation led to phenotype and behavioral alterations in young flies, possibly related to disruption of energetic metabolism, oxidative stress, and deregulation of genes implied in growth, sleep, and metabolism.
Collapse
Affiliation(s)
- Cynthia Camila Ziech
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Nathane Rosa Rodrigues
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil.,Biochemistry Post-Graduation Program, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Giulianna Echeverria Macedo
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Illana Kemmerich Martins
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil.,Biochemistry Post-Graduation Program, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Research Center on Biotechnology - CIPBIOTEC, Universidade Federal do Pampa, São Gabriel, Brazil
| |
Collapse
|
6
|
Pezzini MF, Rampelotto PH, Dall'Agnol J, Guerreiro GTS, Longo L, Suarez Uribe ND, Lange EC, Álvares-da-Silva MR, Joveleviths D. Changes in the gut microbiota of rats after exposure to the fungicide Mancozeb. Toxicol Appl Pharmacol 2023; 466:116480. [PMID: 36963522 DOI: 10.1016/j.taap.2023.116480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Mancozeb is a fungicide commonly used in pest control programs, especially to protect vineyards. Its toxicity has already been evidenced in several studies. However, its influence on the composition and diversity of the gut microbiota remains unknown. In this work, the adverse impact of Mancozeb on the intestinal microbiota was investigated using a rodent model. Adult male Sprague Dawley rats were randomized into three groups: Control (standard diet), MZ1 (Mancozeb dose: 250 mg/kg bw/day), and MZ2 (Mancozeb dose: 500 mg/kg bw/day). After 12 weeks of experiment, animals were euthanized, and feces present in the intestine were collected. After fecal DNA extraction, the V4 region of the 16S rRNA gene was amplified followed by sequencing in an Ion S5™ System. Alpha and beta diversity analysis showed significant differences between Control and Mancozeb groups (MZ1 e MZ2), but no difference between MZ1 and MZ2 was observed. Seven genera significantly increased in abundance following Mancozeb exposure, while five genera decreased. Co-occurrence analyses revealed that the topological properties of the microbial networks, which can be used to infer co-occurrence interaction patterns among microorganisms, were significantly lower in both groups exposed to Mancozeb when compared to Control. In addition, 23 differentially abundant microbial metabolic pathways were identified in Mancozeb-treated groups mainly related to a change in energy metabolism, LPS biosynthesis, and nucleotide biosynthesis. In conclusion, the exposure to Mancozeb presented side effects by changing the composition of the microbiota in rats, increasing bacterial diversity regardless of the dose used, reducing the interaction patterns of the microbial communities, and changing microbial metabolic pathways.
Collapse
Affiliation(s)
- Marina Ferri Pezzini
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Pabulo Henrique Rampelotto
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil.
| | - Juliana Dall'Agnol
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Gabriel Tayguara Silveira Guerreiro
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Larisse Longo
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Nelson D Suarez Uribe
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Elisa Carolina Lange
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Dvora Joveleviths
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Höss S, Reiff N, Asekunowo J, Helder J. Nematode Community of a Natural Grassland Responds Sensitively to the Broad-Spectrum Fungicide Mancozeb in Soil Microcosms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2420-2430. [PMID: 35815477 DOI: 10.1002/etc.5427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Fungicides make up the largest part of total pesticide use, with the dithiocarbamate mancozeb being widely applied as a nonsystemic contact pesticide to protect a wide range of field crops against fungal diseases. Although nematodes are key drivers of soil functioning, data on effects of fungicides, and especially mancozeb, on these nontarget organisms are scarce. Therefore, the effects of mancozeb on a soil nematode community from a natural grassland were assessed in small-scale soil microcosms. Nematodes were exposed to mancozeb-spiked soil in six nominal concentrations (7-133 mg/kg dry soil) and analyzed after 14, 56, and 84 days in terms of densities, genus composition, and functional traits. Because this fungicide is known to quickly degrade in soils (50% degradation time <1 day), mancozeb concentrations were analyzed for all sampling occasions. Chemical analysis revealed considerably lower measured concentrations compared with the aimed nominal soil concentrations at the beginning of the exposure (1-18 mg/kg dry soil), suggesting fast degradation during the spiking process. Nevertheless, the native nematode community responded sensitively to the fungicide mancozeb, revealing lower no-observed-effect concentration and 10% effect concentration (EC10) values than reported for other soil invertebrates such as springtails and earthworms. Using the EC10 for the most sensitive nematode community endpoint (percentage of predators and omnivores: 1.2 mg/kg dry soil), the risk assessment exhibited a toxicity exposure ratio of 0.66 and, thus, a high risk of mancozeb for soil nematodes. Keeping in mind their abundance and their central roles in soil food-web functioning, the demonstrated sensitivity to a widely applied fungicide underscores the relevance of the inclusion of nematodes into routine risk-assessment programs for pesticides. Environ Toxicol Chem 2022;41:2420-2430. © 2022 SETAC.
Collapse
Affiliation(s)
| | | | | | - Johannes Helder
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
8
|
Zhang X, Ye Y, Sun J, Wang JS, Tang L, Xu Y, Ji J, Sun X. Abnormal neurotransmission of GABA and serotonin in Caenorhabditis elegans induced by Fumonisin B1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119141. [PMID: 35301029 DOI: 10.1016/j.envpol.2022.119141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Fumonisin B1 (FB1) is a neurodegenerative mycotoxin synthesized by Fusarium spp., but the potential neurobehavioral toxicity effects in organisms have not been characterized clearly. Caenorhabditis elegans (C. elegans) has emerged as a promising model organism for neurotoxicological studies due to characteristics such as well-functioning nervous system and rich behavioral phenotypes. To investigate whether FB1 has neurobehavioral toxicity effects on C. elegans, the motor behavior, neuronal structure, neurotransmitter content, and gene expression related with neurotransmission of C. elegans were determined after exposed to 20-200 μg/mL FB1 for 24 h and 48 h, respectively. Results showed that FB1 caused behavioral defects, including body bends, head thrashes, crawling distance, mean speed, mean amplitude, mean wavelength, foraging behavior, and chemotaxis learning ability in a dose-, and time-dependent manner. In addition, when C. elegans was exposed to FB1 at a concentration of 200 μg/mL for 24 h and above 100 μg/mL for 48 h, the GABAergic and serotonergic neurons were damaged, but no effect on dopaminergic, glutamatergic, and cholinergic neurons. The relative content of GABA and serotonin decreased significantly. Furthermore, abnormal expression of mRNA levels associated with GABA and serotonin were found in nematodes treated with FB1, such as unc-30, unc-47, unc-49, exp-1, mod-5, cat-1, and tph-1. The neurobehavioral toxicity effect of FB1 may be mediated by abnormal neurotransmission of GABA and serotonin. This study provides useful information for understanding the neurotoxicity of FB1.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Yida Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
9
|
Han GC, Jing HM, Zhang WJ, Zhang N, Li ZN, Zhang GY, Gao S, Ning JY, Li GJ. Effects of lanthanum nitrate on behavioral disorder, neuronal damage and gene expression in different developmental stages of Caenorhabditis elegans. Toxicology 2021; 465:153012. [PMID: 34718030 DOI: 10.1016/j.tox.2021.153012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Rare earth elements (REEs) are widely used in the industry, agriculture, biomedicine, aerospace, etc, and have been shown to pose toxic effects on animals, as such, studies focusing on their biomedical properties are gaining wide attention. However, environmental and population health risks of REEs are still not very clear. Also, the REEs damage to the nervous system and related molecular mechanisms needs further research. In this study, the L1 and L4 stages of the model organism Caenorhabditis elegans were used to evaluate the effects and possible neurotoxic mechanism of lanthanum(III) nitrate hexahydrate (La(NO3)3·6H2O). For the L1 and L4 stage worms, the 48-h median lethal concentrations (LC50s) of La(NO3)3·6H2O were 93.163 and 648.0 mg/L respectively. Our results show that La(NO3)3·6H2O induces growth inhibition and defects in behavior such as body length, body width, body bending frequency, head thrashing frequency and pharyngeal pumping frequency at the L1 and L4 stages in C. elegans. The L1 stage is more sensitive to the toxicity of lanthanum than the L4 stage worms. Using transgenic strains (BZ555, EG1285 and NL5901), we found that La(NO3)3·6H2O caused the loss or break of soma and dendrite neurons in L1 and L4 stages; and α-synuclein aggregation in L1 stage, indicating that Lanthanum can cause toxic damage to dopaminergic and GABAergic neurons. Mechanistically, La(NO3)3·6H2O exposure inhibited or activated the neurotransmitter transporters and receptors (glutamate, serotonin and dopamine) in C. elegans, which regulate behavior and movement functions. Furthermore, significant increase in the production of reactive oxygen species (ROS) was found in the L4 stage C. elegans exposed to La(NO3)3·6H2O. Altogether, our data show that exposure to lanthanum can cause neuronal toxic damage and behavioral defects in C. elegans, and provide basic information for understanding the neurotoxic effect mechanism and environmental health risks of rare earth elements.
Collapse
Affiliation(s)
- Gao-Chao Han
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Hai-Ming Jing
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Wen-Jing Zhang
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China
| | - Nan Zhang
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China
| | - Zi-Nan Li
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China
| | - Guo-Yan Zhang
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Shan Gao
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China
| | - Jun-Yu Ning
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China
| | - Guo-Jun Li
- Institute of Toxicology, Beijing Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine/Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, PR China; School of Public Health, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
10
|
Pajarillo EAB, Lee E, Kang DK. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:750-761. [PMID: 34466679 PMCID: PMC8379138 DOI: 10.1016/j.aninu.2021.03.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Metals such as iron, manganese, copper, and zinc are recognized as essential trace elements. These trace metals play critical roles in development, growth, and metabolism, participating in various metabolic processes by acting as cofactors of enzymes or providing structural support to proteins. Deficiency or toxicity of these metals can impact human and animal health, giving rise to a number of metabolic and neurological disorders. Proper breakdown, absorption, and elimination of these trace metals is a tightly regulated process that requires crosstalk between the host and these micronutrients. The gut is a complex system that serves as the interface between these components, but other factors that contribute to this delicate interaction are not well understood. The gut is home to trillions of microorganisms and microbial genes (the gut microbiome) that can regulate the metabolism and transport of micronutrients and contribute to the bioavailability of trace metals through their assimilation from food sources or by competing with the host. Furthermore, deficiency or toxicity of these metals can modulate the gut microenvironment, including microbiota, nutrient availability, stress, and immunity. Thus, understanding the role of the gut microbiota in the metabolism of manganese, iron, copper, and zinc, as well as in heavy metal deficiencies and toxicities, and vice versa, may provide insight into developing improved or alternative therapeutic strategies to address emerging health concerns. This review describes the current understanding of how the gut microbiome and trace metals interact and affect host health, particularly in pigs.
Collapse
Affiliation(s)
- Edward Alain B. Pajarillo
- Department of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee 32307, FL, USA
| | - Eunsook Lee
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
11
|
Seralini GE, Jungers G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicol Rep 2021; 8:1538-1557. [PMID: 34430217 PMCID: PMC8365328 DOI: 10.1016/j.toxrep.2021.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endocrine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly with the development or functioning of the nervous system through either a neuroendocrine or a more general mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specifically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the precise mechanisms underlying this neurodisruption have also been established. It was previously believed that EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80 % of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum residues, and their various mechanisms of action are similar to those of "spam" in electronic communications technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.
Collapse
Affiliation(s)
- Gilles-Eric Seralini
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| | - Gerald Jungers
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| |
Collapse
|
12
|
Valbuena D, Cely-Santos M, Obregón D. Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112141. [PMID: 33676136 DOI: 10.1016/j.jenvman.2021.112141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Pesticides are a major tool for the intensification of agriculture, and helped to increase food, feed and biofuel production. Yet, there are persistent concerns about the negative effects of pesticides in human health and the environment, particularly in low and middle income countries (LMICs). Given the lack of information on pesticide exposure and hazard, Colombia exemplifies the need to narrow the information gap on pesticide risk in LMICs. We assessed pesticide hazard in Colombia based on the official toxicity categorization, compared it to more integral international standards, and identified main actions to narrow this information gap. Results showed that Colombia has been a relevant regional actor in pesticide production and trade, reaching almost 75 million kilogrammes and liters sold in 2016. Based on acute toxicity for humans, a quarter of the amount of pesticides sales and imports, and a third of the exports in 2016 ranged from moderately to extremenly toxic. The top-selling agrochemicals in 2016 (glyphosate with 14% of the total sales, chlorpyrifos 7.5% and mancozeb 6.9%) are also commonly used in other countries, reflecting a homogenized global industry. Compared to integral international categorizations, we found that for that year 63% of the pesticides sold with slightly acute toxicity are actually considered highly hazardous pesticides (HHP) for humans or the environment, evidencing the need to use a more integral hazard categorization in the country. Narrowing the information gap in pesticide use and associated risks demands a transparent process of knowledge creation and sharing, including funtional information and monitoring systems. This should be part of an integral assessment and regulation that better defines HHP, their production and trade to reduce pesticide risk while informing a transition towards sustainable food systems.
Collapse
Affiliation(s)
- Diego Valbuena
- Land Use Planning Group, Wageningen University, the Netherlands.
| | - Marcela Cely-Santos
- Ciencias Sociales y Saberes de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Colombia
| | | |
Collapse
|
13
|
Islam MS, Azim F, Saju H, Zargaran A, Shirzad M, Kamal M, Fatema K, Rehman S, Azad MAM, Ebrahimi-Barough S. Pesticides and Parkinson's disease: Current and future perspective. J Chem Neuroanat 2021; 115:101966. [PMID: 33991619 DOI: 10.1016/j.jchemneu.2021.101966] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 11/24/2022]
Abstract
Inappropriate use of pesticides has globally exposed mankind to a number of health hazards. Still their production is rising at the rate of 11 % annually and, has already exceeded more than 5 million tons in 2000 (FAO 2017). Plenty of available data reveals that pesticides exposures through agricultural use and food-preservative residue consumption may lead to neurodegenerative disorders like Parkinson's and Alzheimer's diseases. Parkinson's disease (PD) is a progressive motor impairment and a neurodegenerative disorder, considered as the leading source of motor disability. Pesticides strongly inhibit mitochondrial Complex-I, causing mitochondrial dysfunction and death of dopaminergic neurons in the substantia nigra (SN), thus leading to pathophysiologic implications of PD. Current medical treatment strategies, including pharmacotherapeutics and supportive therapies can only provide symptomatic relief. While complementary and alternative medicines including traditional medicine or acupuncture are considered as beneficial ways of treatment with significant clinical effect. Medically non-responding cases can be treated by surgical means, 'Deep Brain Stimulation'. Cell therapy is also an emerging and promising technology for disease modeling and drug development in PD. Their main aim is to replace and/or support the lost and dying dopaminergic neurons in the SN. Recently I/II clinical phase trial (Japan) have used dopaminergic progenitors generated from induced pluripotent stem (iPS) cells which can unveil a successful cell therapy to treat PD symptoms efficiently. This review focuses on PD caused by pesticides use, current treatment modalities, and ongoing research updates. Since PD is not a cell-autonomous disease rather caused by multiple factors, a combinatorial therapeutic approach may address not only the motor-related symptoms but also non-motor cognitive-behavioral issues.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Dept. of Tissue Engineering and Applied Cell Sciences, Tehran University of Medical Sciences, Iran.
| | - Fazli Azim
- Dept. of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; IHITC: Isolation Hospital & Infection Treatment Centre, Islamabad, Pakistan.
| | - Hedaeytullah Saju
- School of Persian Medicine (Traditional Medicine), Tehran University of Medical Science, Tehran, Iran.
| | - Arman Zargaran
- School of Persian Medicine (Traditional Medicine), Tehran University of Medical Science, Tehran, Iran.
| | - Meysam Shirzad
- School of Persian Medicine (Traditional Medicine), Tehran University of Medical Science, Tehran, Iran.
| | - Mostofa Kamal
- Shaheed Suhrawardi Medical College & Hospital, Dhaka, Bangladesh.
| | - Kaniz Fatema
- National Institute of Cardiovascular Diseases and Hospital (NICVD), Dhaka, Bangladesh.
| | - Sumbul Rehman
- Faculty of Unani Medicine, Department of Ilmul Advia (Unani Pharmacology), Aligarh Muslim University, India.
| | - M A Momith Azad
- Dept of Research & Product Development (Natural Medicine), The IBN SINA Pharma Ltd, Bangladesh.
| | - Somayeh Ebrahimi-Barough
- Dept. of Tissue Engineering and Applied Cell Sciences, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
14
|
Queirós L, Martins AC, Krum BN, Ke T, Aschner M, Pereira JL, Gonçalves FJM, Milne GL, Pereira P. Assessing the neurotoxicity of the carbamate methomyl in Caenorhabditis elegans with a multi-level approach. Toxicology 2021; 451:152684. [PMID: 33508380 DOI: 10.1016/j.tox.2021.152684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/04/2020] [Accepted: 01/13/2021] [Indexed: 01/19/2023]
Abstract
The neurotoxicity and developmental effects of a widely applied insecticide (methomyl) was investigated by a multi-level approach (behavior and biometry, biochemical alterations and neurodegeneration) in Caenorhabditis elegans upon a short-term exposure (1 h) and a post-exposure period (48 h). The 1-h exposure to sub-lethal concentrations of methomyl (lower than 0.320 g L-1; i.e. below the estimated LC10) triggered significant changes on motor behavior and development impairment. The type of movement was significantly altered in methomyl-exposed worms, as well as biometric parameters (worms frequently idle and moving more backwards than controls; small body area, length and wavelength). These effects were followed by an increase of acetylcholine levels. Interestingly, after the 48-h recovery period, movement of previously exposed worms was similar to controls, and a concentration-dependent reversion of biometric endpoints was recorded, pointing out the transient action of the carbamate in line with an apparent absence of cholinergic neurons damage. This study provided new insight on the neurotoxicity of methomyl by showing that effects on movement and development were transient, and apparently did not result in neurodegeneration in cholinergic neurons. Moreover, these findings reinforced the advantages of using C. elegans in a multi-level approach for pesticide effects assessment.
Collapse
Affiliation(s)
- L Queirós
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - A C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - B N Krum
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Physiology and Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - T Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - J L Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| | - F J M Gonçalves
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| | - G L Milne
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240, USA
| | - P Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
15
|
Pajarillo E, Nyarko-Danquah I, Adinew G, Rizor A, Aschner M, Lee E. Neurotoxicity mechanisms of manganese in the central nervous system. ADVANCES IN NEUROTOXICOLOGY 2021; 5:215-238. [PMID: 34263091 DOI: 10.1016/bs.ant.2020.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Getinet Adinew
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Asha Rizor
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
16
|
Wang Z, Kottawatta KSA, Kodithuwakku SP, Fernando TS, Lee YL, Ng EHY, Yeung WSB, Lee KF. The fungicide Mancozeb reduces spheroid attachment onto endometrial epithelial cells through downregulation of estrogen receptor β and integrin β3 in Ishikawa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111606. [PMID: 33396126 DOI: 10.1016/j.ecoenv.2020.111606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Mancozeb is a metal-containing ethylene bis-dithiocarbamate fungicide widely used in agriculture. Ethylene thiourea (ETU) is the primary metabolite of Mancozeb. Mancozeb has been associated with spontaneous abortions and abnormal menstruation in women. However, the effects of Mancozeb and ETU on embryo attachment remain unknown. The human blastocyst surrogate trophoblastic spheroids (JEG-3), endometrial epithelial surrogate adenocarcinoma cells (Ishikawa), or human primary endometrial epithelial cells (EECs) monolayer were used in the spheroid attachment models. Ishikawa and EECs were pretreated with different concentrations of Mancozeb or ETU for 48 h before the attachment assay. Gene expression profiles of Ishikawa cells were examined to understand how Mancozeb modulates endometrial receptivity with Microarray. The genes altered by Mancozeb were confirmed by qPCR and compared with the ETU treated groups. Mancozeb and ETU treatment inhibited cell viability at 10 μg/mL and 5000 µg/mL, respectively. At non-cytotoxic concentrations, Mancozeb at 3 μg/mL and ETU at 300 μg/mL reduced JEG-3 spheroid attachment onto Ishikawa cells. A similar result was observed with human primary endometrial epithelial cells. Mancozeb at 3 μg/mL modified the transcription of 158 genes by at least 1.5-fold in Microarray analysis. The expression of 10 differentially expressed genes were confirmed by qPCR. Furthermore, Mancozeb decreased spheroid attachment possibly through downregulating the expression of endometrial estrogen receptor β and integrin β3, but not mucin 1. These results were confirmed in both overexpression and knockdown experiments and co-culture assay. Mancozeb but not its metabolite ETU reduced spheroid attachment through modulating gene expression profile and decreasing estrogen receptor β and integrin β3 expression of endometrial epithelial cells.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Obstetrics and Gynaecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kottawattage S A Kottawatta
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, The University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Suranga P Kodithuwakku
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Animal Science, Faculty of Agriculture, The University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Thevarathanthrige S Fernando
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yin-Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China.
| |
Collapse
|
17
|
Paganotto Leandro L, Siqueira de Mello R, da Costa-Silva DG, Medina Nunes ME, Rubin Lopes A, Kemmerich Martins I, Posser T, Franco JL. Behavioral changes occur earlier than redox alterations in developing zebrafish exposed to Mancozeb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115783. [PMID: 33065480 DOI: 10.1016/j.envpol.2020.115783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/14/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
As agriculture expands to provide food and wellbeing to the world's growing population, there is a simultaneous increasing concern about the use of agrochemicals, which can harm non-target organisms, mainly in the aquatic environment. The fungicide Mancozeb (MZ) has been used on a large-scale and is a potent inducer of oxidative stress. Therefore, there is an urgent need for the development of more sensitive biomarkers designed to earlier biomonitoring of this compound. Here we tested the hypothesis that behavioral changes induced by sublethal MZ concentrations would occur first as compared to biochemical oxidative stress markers. Embryos at 4 h post-fertilization (hpf) were exposed to Mancozeb at 5, 10 and 20 μg/L. Controls were kept in embryo water only. Behavioral and biochemical parameters were evaluated at 24, 28, 72, and 168 hpf after MZ exposure. The results showed that MZ significantly altered spontaneous movement, escape responses, swimming capacity, and exploratory behavior at all exposure times. However, changes in ROS steady-stead levels and the activity of antioxidant enzymes were observable only at 72 and 168 hpf. In conclusion, behavioral changes occurred earlier than biochemical alterations in zebrafish embryos exposed to MZ, highlighting the potential of behavioral biomarkers as sensitive tools for biomonitoring programs.
Collapse
Affiliation(s)
- Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Renata Siqueira de Mello
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Dennis Guilherme da Costa-Silva
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Mauro Eugênio Medina Nunes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Andressa Rubin Lopes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Illana Kemmerich Martins
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil.
| |
Collapse
|
18
|
Skalny A, Aschner M, Paoliello M, Santamaria A, Nikitina N, Rejniuk V, Jiang Y, Rocha J, Tinkov A. Endocrine-disrupting activity of mancozeb. ARHIV ZA FARMACIJU 2021; 71:491-507. [PMID: 35990020 PMCID: PMC9390121 DOI: 10.5937/arhfarm71-34359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
The objective of the present study was to review the existing data on the mechanisms involved in the endocrine disrupting activity of mancozeb (MCZ) in its main targets, including thyroid and gonads, as well as other endocrine tissues that may be potentially affected by MCZ. MCZ exposure was shown to interfere with thyroid functioning through impairment of thyroid hormone synthesis due to inhibition of sodium-iodine symporter (NIS) and thyroid peroxidase (TPO) activity, as well as thyroglobulin expression. Direct thyrotoxic effect may also contribute to thyroid pathology upon MCZ exposure. Gonadal effects of MCZ involve inhibition of sex steroid synthesis due to inhibition of P450scc (CYP11A1), as well as 3β-HSD and 17β-HSD. In parallel with altered hormone synthesis, MCZ was shown to down-regulate androgen and estrogen receptor signaling. Taken together, these gonad-specific effects result in development of both male and female reproductive dysfunction. In parallel with clearly estimated targets for MCZ endocrine disturbing activity, namely thyroid and gonads, other endocrine tissues may be also involved. Specifically, the fungicide was shown to affect cortisol synthesis that may be mediated by modulation of CYP11B1 activity. Moreover, MCZ exposure was shown to interfere with PPARγ signaling, being a key regulator of adipogenesis. The existing data also propose that endocrine-disrupting effects of MCZ exposure may be mediated by modulation of hypothalamus-pituitary-target axis. It is proposed that MCZ neurotoxicity may at least partially affect central mechanisms of endocrine system functioning. However, further studies are required to unravel the mechanisms of MCZ endocrine disrupting activity and overall toxicity.
Collapse
Affiliation(s)
- Anatoly Skalny
- IM Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Bioelementology, Orenburg State University, Orenburg 460018, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Monica Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Natalia Nikitina
- IM Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Vladimir Rejniuk
- Golikov Research Center of Toxicology, Saint Petersburg 192019, Russia
| | - Yueming Jiang
- Department of Toxicology,School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - João Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexey Tinkov
- Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Bioelementology, Orenburg State University, Orenburg 460018, Russia
- Yaroslavl State University, Yaroslavl 150000, Russia
| |
Collapse
|
19
|
Bradford BR, Whidden E, Gervasio ED, Checchi PM, Raley-Susman KM. Neonicotinoid-containing insecticide disruption of growth, locomotion, and fertility in Caenorhabditis elegans. PLoS One 2020; 15:e0238637. [PMID: 32903270 PMCID: PMC7480852 DOI: 10.1371/journal.pone.0238637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Neonicotinoids, a class of insecticides structurally similar to nicotine that target biting and sucking insects, are the most widely used insecticides today, in part due to their supposed low toxicity in other organisms. However, a growing body of research has found that even low doses of neonicotinoids can induce unexpected negative effects on the physiology and survival of a wide range of non-target organisms. Importantly, no work has been done on the commercial formulations of pesticides that include imidacloprid as the active ingredient, but that also contain many other components. The present study examines the sublethal effects of "Tree and Shrub"™ ("T+S"), a commercial insecticide containing the neonicotinoid imidacloprid as its active ingredient, on Caenorhabditis elegans. We discovered that "T+S" significantly stunted the overall growth in wildtype nematodes, an effect that was exacerbated by concurrent exposure to heat stress. "T+S" also negatively impacted fecundity as measured by increased germline apoptosis, a decrease in egg-laying, and fewer viable offspring. Lastly, exposure to "T+S" resulted in degenerative changes in nicotinic cholinergic neurons in wildtype nematodes. As a whole, these findings demonstrate widespread toxic effects of neonicotinoids to critical functions in nematodes.
Collapse
Affiliation(s)
- Beatrix R. Bradford
- Department of Biology, Marist College, Poughkeepsie, New York, United States of America
| | - Elizabeth Whidden
- Department of Biology, Vassar College, Poughkeepsie, New York, United States of America
| | - Esabelle D. Gervasio
- Department of Biology, Marist College, Poughkeepsie, New York, United States of America
| | - Paula M. Checchi
- Department of Biology, Marist College, Poughkeepsie, New York, United States of America
| | | |
Collapse
|
20
|
Vieira R, Venâncio CAS, Félix LM. Toxic effects of a mancozeb-containing commercial formulation at environmental relevant concentrations on zebrafish embryonic development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21174-21187. [PMID: 32270457 DOI: 10.1007/s11356-020-08412-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
The toxicological knowledge of mancozeb (MZ)-containing commercial formulations on non-target species is scarce and limited. Therefore, the objective of this work was to represent a realistic application scenario by evaluating the toxicity of environmental relevant and higher concentrations of a commercial formulation of MZ using zebrafish embryos. Following determination of the 96-h LC50 value, the embryos at the blastula stage (~ 2 h post-fertilisation, hpf) were exposed to 0.5, 5, and 50 μg L-1 of the active ingredient (~ 40× lower than the 96-h LC50). During the exposure period (96 h), lethal, sublethal, and teratogenic parameters, as well as behaviour analysis, at 120 hpf, were assayed. Biochemical parameters such as oxidative stress-linked enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR)), reactive oxygen species (ROS) levels, and glutathione levels (GSH and GSSG), as well as the activity of degradation (glutathione S-transferase (GST) and carboxylesterase (CarE)), neurotransmission (acetylcholinesterase (AChE)), and anaerobic respiration (lactate dehydrogenase (LDH))-related enzymes, were analysed at the end of the exposure period. Exposed embryos showed a marked decrease in the hatching rate and many malformations (cardiac and yolk sac oedema and spinal torsions), with a higher prevalence at the highest concentration. A dose-dependent decreased locomotor activity and a response to an aversive stimulus, as well as a light-dark transition decline, were observed at environmental relevant concentrations. Furthermore, the activities of SOD and GR increased while the activity of GST, AChE, and MDA contents decreased. Taken together, the involvement of mancozeb metabolites and the generation of ROS are suggested as responsible for the developmental phenotypes. While further studies are needed to fully support the hypothesis presented, the potential cumulative effects of mancozeb-containing formulations and its metabolites could represent an environmental risk which should not be disregarded.
Collapse
Affiliation(s)
- Raquel Vieira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal.
- Laboratory Animal Science (LAS), i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto (UP), Porto, Portugal.
| |
Collapse
|
21
|
Liu F, Luo Q, Zhang Y, Huang K, Cao X, Cui C, Lin K, Zhang M. Trans-generational effect of neurotoxicity and related stress response in Caenorhabditis elegans exposed to tetrabromobisphenol A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134920. [PMID: 31744693 DOI: 10.1016/j.scitotenv.2019.134920] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Tetrabromobisphenol A (TBBPA), one of the most common brominated flame retardants, has been associated with immunotoxicity, neurotoxicity, and reproductive toxicity. However, little attention has been focused on understanding the trans-generational effects of TBBPA. The present study used the Caenorhabditis elegans (C. elegans) animal model to evaluate the trans-generational effects of neurotoxicity induced by environmentally relevant concentrations of TBBPA (0, 0.1, 1, 10, 100, and 1000 µg/L). Multiple indicators including physiological effects (body length, brood size, head thrashes, body bends, and crawling trajectory), degree of neuronal damage (dopamine, GABAergic, and glutamatergic neurons), oxidative stress-related biochemical indicators (superoxide dismutase [SOD] activity, catalase [CAT] enzyme, malondialdehyde [MDA] production, and reactive oxygen species [ROS] accumulation), and stress-related gene expressions have been evaluated in the exposed parental C. elegans generation (G1) and their progeny (G2) under TBBPA-free conditions. The results showed that TBBPA exposure induced adverse effects on physiological endpoints, among which body bends and head thrashes were the most sensitive ones, detected above 1 µg/L in G1 and 100 µg/L in G2 nematodes, respectively. After contaminant exposure, the three neurons revealed damage related to neurobehavioral endpoints, with no hereditary effects in the progeny. The oxidative stress-related biochemical endpoints demonstrated that when the exposure concentrations were above 1 µg/L in maternal worms, impairment can be detected in both generations, but the progeny recovered at low toxicity concentration (1-100 µg/L). The integrated target gene expression profiles were clearly altered in G1 and G2 worms at concentrations between 1 and 1000 µg/L, and a more significant difference existed in two generations of nematodes at low levels (1-10 µg/L) of TBBPA. Studing trans-generational neurotoxicity and the underlying mechanism can generate a precise evaluation of the environmental risk of TBBPA.
Collapse
Affiliation(s)
- Fuwen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qishi Luo
- Branch of Shanghai, Yonker Environmental Protection Co., Ltd, Shanghai 200051, China
| | - Ying Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Branch of Shanghai, Yonker Environmental Protection Co., Ltd, Shanghai 200051, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
22
|
Richardson JR, Fitsanakis V, Westerink RHS, Kanthasamy AG. Neurotoxicity of pesticides. Acta Neuropathol 2019; 138:343-362. [PMID: 31197504 PMCID: PMC6826260 DOI: 10.1007/s00401-019-02033-9] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022]
Abstract
Pesticides are unique environmental contaminants that are specifically introduced into the environment to control pests, often by killing them. Although pesticide application serves many important purposes, including protection against crop loss and against vector-borne diseases, there are significant concerns over the potential toxic effects of pesticides to non-target organisms, including humans. In many cases, the molecular target of a pesticide is shared by non-target species, leading to the potential for untoward effects. Here, we review the history of pesticide usage and the neurotoxicity of selected classes of pesticides, including insecticides, herbicides, and fungicides, to humans and experimental animals. Specific emphasis is given to linkages between exposure to pesticides and risk of neurological disease and dysfunction in humans coupled with mechanistic findings in humans and animal models. Finally, we discuss emerging techniques and strategies to improve translation from animal models to humans.
Collapse
Affiliation(s)
- Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| | - Vanessa Fitsanakis
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences and Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, USA
| |
Collapse
|
23
|
Morales-Ovalles Y, Miranda-Contreras L, Peña-Contreras Z, Dávila-Vera D, Balza-Quintero A, Sánchez-Gil B, Mendoza-Briceño RV. Developmental exposure to mancozeb induced neurochemical and morphological alterations in adult male mouse hypothalamus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:139-146. [PMID: 30391875 DOI: 10.1016/j.etap.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Mancozeb, a dithiocarbamate widely used in agriculture, is considered a developmental hazard in humans; however, more evidences are still needed concerning the consequences of chronic exposure to this pesticide. Mancozeb neurotoxicity in developing mouse hypothalamus was evaluated by subchronic exposure of male Mus musculus mice to low and high doses of mancozeb (30 and 90 mg/kg body weight, respectively) from late neonatal until adolescence. Variations in hypothalamic amino acid neurotransmitter levels and changes in histological as well as cytological characteristics were analyzed in young adult experimental mice and compared with control. A dose-dependent increase in excitation/ inhibition ratio was observed in mancozeb-exposed hypothalamus, indicating an overall state of excitoxicity. Histopathological and ultrastructural studies showed increased apoptosis, neuroinflammation and demyelination, demonstrating mancozeb-induced cytotoxicity in hypothalamic neurosecretory cells. In summary, both neurochemical and morphological data revealed mancozeb-induced alterations during development of hypothalamic circuitry that are critical for maturation of the neuroendocrine system.
Collapse
Affiliation(s)
- Yasmin Morales-Ovalles
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | | | - Zulma Peña-Contreras
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | - Delsy Dávila-Vera
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | - Alirio Balza-Quintero
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | - Beluardi Sánchez-Gil
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | | |
Collapse
|
24
|
Costa-Silva DG, Lopes AR, Martins IK, Leandro LP, Nunes MEM, de Carvalho NR, Rodrigues NR, Macedo GE, Saidelles AP, Aguiar C, Doneda M, Flores EMM, Posser T, Franco JL. Mancozeb exposure results in manganese accumulation and Nrf2-related antioxidant responses in the brain of common carp Cyprinus carpio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15529-15540. [PMID: 29569203 DOI: 10.1007/s11356-018-1724-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Manganese (Mn)-containing dithiocarbamates such as Mancozeb (MZ) have been shown to induce oxidative stress-related toxicity in rodents and humans. However, little is known about the neurotoxic effects induced by MZ in fish. In this study, carp (Cyprinus carpio) were exposed to non-lethal waterborne concentrations of MZ, and oxidative stress parameters as well as metal accumulation in fish brains were evaluated. The experimental groups were as follows: control, MZ 5 mg/L, and MZ 10 mg/L. Fish were exposed for 7 days, and then brain was removed and prepared for subsequent analysis of antioxidant enzymes, reactive oxygen species (ROS), and expression of Nrf2 and phosphoNrf2. In parallel, manganese (Mn) levels were evaluated in blood and brain tissues. Mn levels were significantly increased in blood and brain of MZ-exposed carps. In addition, a concentration-dependent increase (p < 0.05) in ROS levels was observed in parallel to increments (p < 0.05) in the activity of major antioxidant enzymes, such as GPx, GR, and GST. On the other hand, significant decreases (p < 0.05) in CAT and SOD activities were observed. The expression of total and phosphorylated forms of Nrf2 was significantly (p < 0.05) upregulated in the brain of carps exposed to Mz when compared to the control, indicating an activation of the Nrf2 antioxidant pathway. Our study showed for the first time the activation of the Nrf2/ARE pathway and bioaccumulation of Mn induced by MZ exposure in fish species, highlighting important mechanisms of action and its toxicological impacts to aquatic organisms.
Collapse
Affiliation(s)
| | - Andressa Rubim Lopes
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Illana Kemmerich Martins
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Luana Paganotto Leandro
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Mauro Eugênio Medina Nunes
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | | | - Nathane Rosa Rodrigues
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Giulianna Echeveria Macedo
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Ana Paula Saidelles
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Cassiana Aguiar
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Morgana Doneda
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | - Thais Posser
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Jeferson Luis Franco
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil.
| |
Collapse
|
25
|
Montgomery K, Corona C, Frye R, Barnett R, Bailey A, Fitsanakis VA. Transport of a manganese/zinc ethylene-bis-dithiocarbamate fungicide may involve pre-synaptic dopaminergic transporters. Neurotoxicol Teratol 2018; 68:66-71. [PMID: 29807111 DOI: 10.1016/j.ntt.2018.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/24/2022]
Abstract
Mancozeb (MZ), an organic-metal fungicide used predominantly on vegetables and fruits, has been linked to neurodegeneration and behavioral disruptions in a variety of organisms, including humans. Both γ-aminobutyric acid and dopamine neurons appear to be more vulnerable to MZ exposure than other neuronal populations. Based on these observations, we hypothesized that MZ may be differentially transported into these cells through their presynaptic neurotransmitter transporters. To test this, we pretreated Caenorhabditis elegans with transporter antagonists followed by exposure to various concentrations of MZ. Potential neuroprotection was monitored via green fluorescence associated with various neuron populations in transgenic worm strains. Neurodegeneration associated with subacute MZ treatment (30 min) was not altered by transporter antagonist pretreatment. On the other hand, pretreatment with a dopamine transporter antagonist (GBR12909) appeared to protect dopaminergic neurons from chronic (24 h) MZ treatment. These results are consistent with other reports that dopamine transporter levels or activity may modulate toxicity for neurotoxicants.
Collapse
Affiliation(s)
- Kara Montgomery
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Caleb Corona
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rebekah Frye
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Reid Barnett
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Andrew Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Vanessa A Fitsanakis
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| |
Collapse
|
26
|
Morgado RG, Ferreira NGC, Cardoso DN, Silva PV, Soares AMVM, Loureiro S. Joint effects of chlorpyrifos and mancozeb on the terrestrial isopod Porcellionides pruinosus: A multiple biomarker approach. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1446-1457. [PMID: 29336492 DOI: 10.1002/etc.4089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/20/2017] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
The exposure to pesticides by nontarget soil biota has long been regarded as a serious downside of modern agricultural regimes and the subject of heated debate. Of utmost relevance is the exposure to pesticide mixtures because their effects have been shown to not necessarily reflect the individual toxicity of their components, and even the simple addition of effects may lead to consequences not clearly anticipated. In the present study, a multiple biomarker approach was employed to identify the mechanistic and time effects underlying several single and mixture treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in juveniles and adults of the terrestrial isopod Porcellionides pruinosus. The effects of the individual pesticides and the mixtures at recommended doses were mostly transitory under these controlled conditions and one-pulse exposure. Whereas imbalances were identified on detoxification and oxidative stress-related enzymes, the isopods generally showed the ability to recover through the end of the experiment. However, juveniles displayed greater vulnerability than adults. Most of the differences between life stages occurred in energy-related parameters where distinct performances and stress-handling behaviors were observed, suggesting higher metabolic costs to juveniles. Our results stress that understanding the time dependence of the underlying mechanisms governing the joint effects of the pesticides can help in assessing and anticipating the effects of the pesticide mixtures. Moreover, we emphasize the importance of taking life stage-related differences into consideration when evaluating the environmental risks of pesticides and pesticide mixtures. Environ Toxicol Chem 2018;37:1446-1457. © 2018 SETAC.
Collapse
Affiliation(s)
- Rui G Morgado
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Nuno G C Ferreira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Diogo N Cardoso
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Patrícia V Silva
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
27
|
Orexin receptor expression is increased during mancozeb-induced feeding impairments and neurodegenerative events in a marine fish. Neurotoxicology 2018; 67:46-53. [PMID: 29673962 DOI: 10.1016/j.neuro.2018.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/05/2023]
Abstract
Food intake ensures energy resources sufficient for basic metabolism, immune system and reproductive investment. It is already known that food-seeking performances, which are crucially controlled by orexins (ORXs), may be under the influence of environmental factors including pollutants. Among these, mancozeb (mz) is becoming an environmental risk for neurodegenerative diseases. Due to few studies on marine fish exposed to mz, it was our intention to correlate feeding latency, food intake and feeding duration to potential neurodegenerative processes in key diencephalic sites and expression changes of the ORX neuroreceptor (ORXR) in the ornate wrasses (Thalassoma pavo). Hence, fish exposed for 4 days (d) to mz 0.2 mg/l (deriving from a 0.07, 0.14, 0.2, 0.3 mg/l screening test) displayed a significant reduction (p < 0.05) of food intake compared to controls as early as 1d that became more evident (p < 0.01) after 3d. Moreover, significant enhancements of feeding latency were reported after 1d up to 3d (p < 0.001) and even feeding duration was enhanced up to 3d (p < 0.001), which instead moderately increased after 4d (p < 0.05). A reduction (-120%; p < 0.001) of mean body weight was also detected at the end of exposure. Likewise, a notable (p < 0.001) activation of ORXR protein occurred together with mRNA up-regulations in diencephalic areas such as the diffuse nucleus of the inferior lobe (+48%) that also exhibited evident degenerative neuronal fields. Overall, these results highlight an ORX role as a vital component of the neuroprotective program under environmental conditions that interfere with feeding behaviors.
Collapse
|
28
|
Toxicological evaluation of dithiocarbamate fungicide mancozeb on the endocrine functions in male rats. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0013-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Rossi M, Caruso F, Kwok L, Lee G, Caruso A, Gionfra F, Candelotti E, Belli SL, Molasky N, Raley-Susman KM, Leone S, Filipský T, Tofani D, Pedersen J, Incerpi S. Protection by extra virgin olive oil against oxidative stress in vitro and in vivo. Chemical and biological studies on the health benefits due to a major component of the Mediterranean diet. PLoS One 2017; 12:e0189341. [PMID: 29283995 PMCID: PMC5746230 DOI: 10.1371/journal.pone.0189341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/22/2017] [Indexed: 01/13/2023] Open
Abstract
We report the results of in vivo studies in Caenorhabditis elegans nematodes in which addition of extra virgin olive oil (EVOO) to their diet significantly increased their life span with respect to the control group. Furthermore, when nematodes were exposed to the pesticide paraquat, they started to die after two days, but after the addition of EVOO to their diet, both survival percentage and lifespans of paraquat-exposed nematodes increased. Since paraquat is associated with superoxide radical production, a test for scavenging this radical was performed using cyclovoltammetry and the EVOO efficiently scavenged the superoxide. Thus, a linear correlation (y = -0.0838x +19.73, regression factor = 0.99348) was observed for superoxide presence (y) in the voltaic cell as a function of aliquot (x) additions of EVOO, 10 μL each. The originally generated supoeroxide was approximately halved after 10 aliquots (100 μL total). The superoxide scavenging ability was analyzed, theoretically, using Density Functional Theory for tyrosol and hydroxytyrosol, two components of EVOO and was also confirmed experimentally for the galvinoxyl radical, using Electron Paramagnetic Resonance (EPR) spectroscopy. The galvinoxyl signal disappeared after adding 1 μL of EVOO to the EPR cell in 10 minutes. In addition, EVOO significantly decreased the proliferation of human leukemic THP-1 cells, while it kept the proliferation at about normal levels in rat L6 myoblasts, a non-tumoral skeletal muscle cell line. The protection due to EVOO was also assessed in L6 cells and THP-1 exposed to the radical generator cumene hydroperoxide, in which cell viability was reduced. Also in this case the oxidative stress was ameliorated by EVOO, in line with results obtained with tetrazolium dye reduction assays, cell cycle analysis and reactive oxygen species measurements. We ascribe these beneficial effects to EVOO antioxidant properties and our results are in agreement with a clear health benefit of EVOO use in the Mediterranean diet.
Collapse
Affiliation(s)
- Miriam Rossi
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | - Francesco Caruso
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | - Lorraine Kwok
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | - Grace Lee
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | - Alessio Caruso
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | - Fabio Gionfra
- Department of Sciences, University Roma Tre, Roma, Italy
| | | | - Stuart L. Belli
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | - Nora Molasky
- Vassar College, Department of Chemistry, Poughkeepsie, NY, United States of America
| | | | - Stefano Leone
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Tomáš Filipský
- Department of Pharmacology and Toxicology in Hradec Králové, Charles University in Prague, Heyrovského, Czech Republic
| | - Daniela Tofani
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Jens Pedersen
- Department of Biology, University Tor Vergata, Rome, Italy
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Roma, Italy
| |
Collapse
|
30
|
Magnes J, Hastings HM, Raley-Susman KM, Alivisatos C, Warner A, Hulsey-Vincent M. Fourier-Based Diffraction Analysis of Live Caenorhabditis elegans. J Vis Exp 2017. [PMID: 28930977 PMCID: PMC5752230 DOI: 10.3791/56154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This manuscript describes how to classify nematodes using temporal far-field diffraction signatures. A single C. elegans is suspended in a water column inside an optical cuvette. A 632 nm continuous wave HeNe laser is directed through the cuvette using front surface mirrors. A significant distance of at least 20-30 cm traveled after the light passes through the cuvette ensures a useful far-field (Fraunhofer) diffraction pattern. The diffraction pattern changes in real time as the nematode swims within the laser beam. The photodiode is placed off-center in the diffraction pattern. The voltage signal from the photodiode is observed in real time and recorded using a digital oscilloscope. This process is repeated for 139 wild type and 108 "roller" C. elegans. Wild type worms exhibit a rapid oscillation pattern in solution. The "roller" worms have a mutation in a key component of the cuticle that interferes with smooth locomotion. Time intervals that are not free of saturation and inactivity are discarded. It is practical to divide each average by its maximum to compare relative intensities. The signal for each worm is Fourier transformed so that the frequency pattern for each worm emerges. The signal for each type of worm is averaged. The averaged Fourier spectra for the wild type and the "roller" C. elegans are distinctly different and reveal that the dynamic worm shapes of the two different worm strains can be distinguished using Fourier analysis. The Fourier spectra of each worm strain match an approximate model using two different binary worm shapes that correspond to locomotory moments. The envelope of the averaged frequency distribution for actual and modeled worms confirms the model matches the data. This method can serve as a baseline for Fourier analysis for many microscopic species, as every microorganism will have its unique Fourier spectrum.
Collapse
Affiliation(s)
- Jenny Magnes
- Physics and Astronomy Department, Vassar College;
| | - Harold M Hastings
- Division of Science, Mathematics and Computing, Bard College at Simon's Rock
| | | | | | - Adam Warner
- Physics and Astronomy Department, Vassar College
| | | |
Collapse
|
31
|
Xu T, Zhang M, Hu J, Li Z, Wu T, Bao J, Wu S, Lei L, He D. Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements. CHEMOSPHERE 2017; 181:55-62. [PMID: 28426941 DOI: 10.1016/j.chemosphere.2017.04.068] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/03/2017] [Accepted: 04/15/2017] [Indexed: 05/15/2023]
Abstract
Rare earth elements (REEs) are widely used in industry, agriculture, medicine and daily life in recent years. However, environmental and health risks of REEs are still poorly understood. In this study, neurotoxicity of trichloride neodymium, praseodymium and scandium were evaluated using nematode Caenorhabditis elegans as the assay system. Median lethal concentrations (48 h) were 99.9, 157.2 and 106.4 mg/L for NdCl3, PrCl3 and ScCl3, respectively. Sublethal dose (10-30 mg/L) of these trichloride salts significantly inhibited body length of nematodes. Three REEs resulted in significant declines in locomotor frequency of body bending, head thrashing and pharyngeal pumping. In addition, mean speed and wavelength of crawling movement were significantly reduced after chronic exposure. Using transgenic nematodes, we found NdCl3, PrCl3 and ScCl3 resulted in loss of dendrite and soma of neurons, and induced down-expression of dat-1::GFP and unc-47::GFP. It indicates that REEs can lead to damage of dopaminergic and GABAergic neurons. Our data suggest that exposure to REEs may cause neurotoxicity of inducing behavioral deficits and neural damage. These findings provide useful information for understanding health risk of REE materials.
Collapse
Affiliation(s)
- Tiantian Xu
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Manke Zhang
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Jiani Hu
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Zihan Li
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Taipu Wu
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Jianing Bao
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Siyu Wu
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Lili Lei
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Defu He
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
32
|
HSP90 and pCREB alterations are linked to mancozeb-dependent behavioral and neurodegenerative effects in a marine teleost. Toxicol Appl Pharmacol 2017; 323:26-35. [DOI: 10.1016/j.taap.2017.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/08/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022]
|
33
|
Li P, Xu T, Wu S, Lei L, He D. Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans. J Appl Toxicol 2017; 37:1140-1150. [PMID: 28418071 DOI: 10.1002/jat.3468] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022]
Abstract
Nanomaterials of graphene and its derivatives have been widely applied in recent years, but whose impacts on the environment and health are still not well understood. In the present study, the potential adverse effects of graphite (G), graphite oxide nanoplatelets (GO) and graphene quantum dots (GQDs) on the motor nervous system were investigated using nematode Caenorhabditis elegans as the assay system. After being characterized using TEM, SEM, XPS and PLE, three nanomaterials were chronically exposed to C. elegans for 6 days. In total, 50-100 mg l-1 GO caused a significant reduction in the survival rate, but G and GDDs showed low lethality on nematodes. After chronic exposure of sub-lethal dosages, three nanomaterials were observed to distribute primarily in the pharynx and intestine; but GQDs were widespread in nematode body. Three graphene-based nanomaterials resulted in significant declines in locomotor frequency of body bending, head thrashing and pharynx pumping. In addition, mean speed, bending angle-frequency and wavelength of the crawling movement were significantly reduced after exposure. Using transgenic nematodes, we found high concentrations of graphene-based nanomaterials induced down-expression of dat-1::GFP and eat-4::GFP, but no significant changes in unc-47::GFP. This indicates that graphene-based nanomaterials can lead to damages in the dopaminergic and glutamatergic neurons. The present data suggest that chronic exposure of graphene-based nanomaterials may cause neurotoxicity risks of inducing behavioral deficits and neural damage. These findings provide useful information to understand the toxicity and safe application of graphene-based nanomaterials. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ping Li
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Tiantian Xu
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Siyu Wu
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Lili Lei
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China
| | - Defu He
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai, 200241, China.,Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
34
|
Bhaskar R, Mishra AK, Mohanty B. Neonatal Exposure to Endocrine Disrupting Chemicals Impairs Learning Behaviour by Disrupting Hippocampal Organization in Male Swiss Albino Mice. Basic Clin Pharmacol Toxicol 2017; 121:44-52. [DOI: 10.1111/bcpt.12767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/09/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Rakesh Bhaskar
- Department of Zoology; University of Allahabad; Allahabad India
| | | | | |
Collapse
|
35
|
Todt CE, Bailey DC, Pressley AS, Orfield SE, Denney RD, Snapp IB, Negga R, Bailey AC, Montgomery KM, Traynor WL, Fitsanakis VA. Acute exposure to a Mn/Zn ethylene-bis-dithiocarbamate fungicide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans. Neurotoxicology 2016; 57:112-120. [PMID: 27663847 PMCID: PMC5123952 DOI: 10.1016/j.neuro.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/18/2016] [Accepted: 09/18/2016] [Indexed: 02/08/2023]
Abstract
Mn/Zn ethylene-bis-dithiocarbamate (Mn/Zn-EBDC) fungicides are among some the most widely-used fungicides in the world. Although they have been available for over 50 years, little is known about their mechanism of action in fungi, or their potentially toxic mechanisms in humans. To determine if exposure of Caenorhabditis elegans (C. elegans) to a representative fungicide (Manzate; MZ) from this group inhibits mitochondria or produces reactive oxygen species (ROS), we acutely (30min) exposed worms to various MZ concentrations. Initial oxygen consumption studies showed an overall statistically significant decrease in oxygen consumption associated with addition of Complex I- and/or II-substrate in treatment groups compared to controls (*p<0.05). In order to better characterize the individual complex activity, further studies were completed that specifically assessed Complex II or Complex IV. Data indicated that neither of these two complexes were targets of MZ treatment. Results from tetramethylrhodamine ethyl ester (proton gradient) and ATP assays showed statistically significant reductions in both endpoints (*p<0.05, **p<0.01, respectively). Additional studies were completed to determine if MZ treatment also resulted in increased ROS production. These assays provided evidence that hydrogen peroxide, but not superoxide or hydroxyl radical levels were statistically significantly increased (*p<0.05). Taken together, these data indicate exposure of C. elegans to MZ concentrations to which humans are exposed leads to mitochondrial inhibition and concomitant hydrogen peroxide production. Since mitochondrial inhibition and increased ROS are associated with numerous neurodegenerative diseases, we suggest further studies to determine if MZ catalyzes similar toxic processes in mammals.
Collapse
Affiliation(s)
- Callie E Todt
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Denise C Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Aireal S Pressley
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Sarah E Orfield
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rachel D Denney
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Isaac B Snapp
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rekek Negga
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Andrew C Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Kara M Montgomery
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Wendy L Traynor
- King University, Department of Mathematics and Physics, 1350 King College Road, Bristol, TN 37620, USA.
| | - Vanessa A Fitsanakis
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| |
Collapse
|
36
|
Bailey DC, Todt CE, Orfield SE, Denney RD, Snapp IB, Negga R, Montgomery KM, Bailey AC, Pressley AS, Traynor WL, Fitsanakis VA. Caenorhabditis elegans chronically exposed to a Mn/Zn ethylene-bis-dithiocarbamate fungicide show mitochondrial Complex I inhibition and increased reactive oxygen species. Neurotoxicology 2016; 56:170-179. [PMID: 27502893 DOI: 10.1016/j.neuro.2016.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 01/06/2023]
Abstract
Reports have linked human exposure to Mn/Zn ethylene-bis-dithiocarbamate (Mn/Zn-EBDC) fungicides with multiple pathologies, from dermatitis to central nervous system dysfunction. Although members of this family of agrochemicals have been available for over 50 years, their mechanism of toxicity in humans is still unclear. Since mitochondrial inhibition and oxidative stress are implicated in a wide variety of diseases, we hypothesized that Caenorhabditis elegans (C. elegans) exposed to a commercially-available formulation of an Mn/Zn-EBDC-containing fungicide (Manzate; MZ) would also show these endpoints. Thus, worms were treated chronically (24h) with various MZ concentrations and assayed for reduced mitochondrial function and increased levels of reactive oxygen species (ROS). Oxygen consumption studies suggested Complex I inhibition in all treatment groups compared to controls (**p<0.01). In order to verify these findings, assays specific for Complex II or Complex IV activity were also completed. Data analysis from these studies indicated that neither complex was adversely affected by MZ treatment. Additional data from ATP assays indicated a statistically significant decrease (***p<0.001) in ATP levels in all treatment groups when compared to control worms. Further studies were completed to determine if exposure of C. elegans to MZ also resulted in increased ROS concentrations. Studies demonstrated that hydrogen peroxide, but not superoxide or hydroxyl radical, levels were statistically significantly increased (*p<0.05). Since hydrogen peroxide is known to up-regulate glutathione-S-transferase (GST), we used a GST:green fluorescent protein transgenic worm strain to test this hypothesis. Results from these studies indicated a statistically significant increase (***p<0.001) in green pixel number following MZ exposure. Taken together, these data indicate that C. elegans treated with MZ concentrations to which humans are exposed show mitochondrial Complex I inhibition with concomitant hydrogen peroxide production. Since these mechanisms are associated with numerous human diseases, we suggest further studies to determine if MZ exposure induces similar toxic mechanisms in mammals.
Collapse
Affiliation(s)
- Denise C Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Callie E Todt
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Sarah E Orfield
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rachel D Denney
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Isaac B Snapp
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Rekek Negga
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Kara M Montgomery
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Andrew C Bailey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Aireal S Pressley
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Wendy L Traynor
- King University, Department of Mathematics and Physics, 1350 King College Road, Bristol, TN 37620, USA.
| | - Vanessa A Fitsanakis
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| |
Collapse
|
37
|
McVey KA, Snapp IB, Johnson MB, Negga R, Pressley AS, Fitsanakis VA. Exposure of C. elegans eggs to a glyphosate-containing herbicide leads to abnormal neuronal morphology. Neurotoxicol Teratol 2016; 55:23-31. [PMID: 27019975 PMCID: PMC4884470 DOI: 10.1016/j.ntt.2016.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 03/20/2016] [Accepted: 03/20/2016] [Indexed: 12/21/2022]
Abstract
Recent data demonstrate that chronic exposure of Caenorhabditis elegans (C. elegans) to a high-use glyphosate-containing herbicide, Touchdown (TD), potentially damages the adult nervous system. It is unknown, however, whether unhatched worms exposed to TD during the egg stage show abnormal neurodevelopment post-hatching. Therefore, we investigated whether early treatment with TD leads to aberrant neuronal or neurite development in C. elegans. Studies were completed in three different worm strains with green fluorescent protein (GFP)-tagged neurons to facilitate visual neuronal assessment. Initially, eggs from C. elegans with all neurons tagged with GFP were chronically exposed to TD. Visual inspection suggested decreased neurite projections associated with ventral nerve cord neurons. Data analysis showed a statistically significant decrease in overall green pixel numbers at the fourth larval (L4) stage (*p<0.05). We further investigated whether specific neuronal populations were preferentially vulnerable to TD by treating eggs from worms that had all dopaminergic (DAergic) or γ-aminobutyric acid (GABAergic) neurons tagged with GFP. As before, green pixel number associated with these discrete neuronal populations was analyzed at multiple larval stages. Data analysis indicated statistically significant decreases in pixel number associated with DAergic, but not GABAergic, neurons (***p<0.001) at all larval stages. Finally, statistically significant decreases (at the first larval stage, L1) or increases (at the fourth larval stage, L4) in superoxide levels, a developmental signaling molecule, were detected (*p<0.05). These data suggest that early exposure to TD may impair neuronal development, perhaps through superoxide perturbation. Since toxic insults during development may late render individuals more vulnerable to neurodegenerative diseases in adulthood, these studies provide some of the first evidence in this model organism that early exposure to TD may adversely affect the developing nervous system.
Collapse
Affiliation(s)
- Kenneth A McVey
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA; Liberty University College of Osteopathic Medicine, 306 Liberty View Lane, Lynchburg, VA 24502, USA.
| | - Isaac B Snapp
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA; Medical University of South Carolina, Physician Assistant Studies, 151B Rutledge Avenue, Charleston, SC 29425, USA.
| | - Megan B Johnson
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA; Lincoln Memorial University, Debusk College of Osteopathic Medicine, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA.
| | - Rekek Negga
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA; The University of Tennessee Institute of Agriculture, Department of Animal Science, 366 Brehm Animal Science Building, 2506 River Drive, Knoxville, TN 37996, USA.
| | - Aireal S Pressley
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| | - Vanessa A Fitsanakis
- King University, Department of Biology, 1350 King College Road, Bristol, TN 37620, USA.
| |
Collapse
|
38
|
Nascimento S, Baierle M, Göethel G, Barth A, Brucker N, Charão M, Sauer E, Gauer B, Arbo MD, Altknecht L, Jager M, Dias ACG, de Salles JF, Saint' Pierre T, Gioda A, Moresco R, Garcia SC. Associations among environmental exposure to manganese, neuropsychological performance, oxidative damage and kidney biomarkers in children. ENVIRONMENTAL RESEARCH 2016; 147:32-43. [PMID: 26844420 DOI: 10.1016/j.envres.2016.01.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 05/06/2023]
Abstract
Environmental exposure to manganese (Mn) results in several toxic effects, mainly neurotoxicity. This study investigated associations among Mn exposure, neuropsychological performance, biomarkers of oxidative damage and early kidney dysfunction in children aged 6-12 years old. Sixty-three children were enrolled in this study, being 43 from a rural area and 20 from an urban area. Manganese was quantified in blood (B-Mn), hair (H-Mn) and drinking water using inductively coupled plasma mass spectrometry (ICP-MS). The neuropsychological functions assessed were attention, perception, working memory, phonological awareness and executive functions - inhibition. The Intelligence quotient (IQ) was also evaluated. The biomarkers malondialdehyde (MDA), protein carbonyls (PCO), δ-aminolevulinate dehydratase (ALA-D), reactivation indexes with dithiothreitol (ALA-RE/DTT) and ZnCl2 (ALA-RE/ZnCl2), non-protein thiol groups, as well as microalbuminuria (mALB) level and N-acetyl-β-D-glucosaminidase (NAG) activity were assessed. The results demonstrated that Mn levels in blood, hair and drinking water were higher in rural children than in urban children (p<0.01). Adjusted for potential confounding factors, IQ, age, gender and parents' education, significant associations were observed mainly between B-Mn and visual attention (β=0.649; p<0.001). Moreover, B-Mn was negatively associated with visual perception and phonological awareness. H-Mn was inversely associated with working memory, and Mn levels from drinking water with written language and executive functions - inhibition. Rural children showed a significant increase in oxidative damage to proteins and lipids, as well as alteration in kidney function biomarkers (p<0.05). Moreover, significant associations were found between B-Mn, H-Mn and Mn levels in drinking water and biomarkers of oxidative damage and kidney function, besides between some oxidative stress biomarkers and neuropsychological tasks (p<0.05). The findings of this study suggest an important association between environmental exposure to Mn and toxic effects on neuropsychological function, oxidative damage and kidney function in children.
Collapse
Affiliation(s)
- Sabrina Nascimento
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marília Baierle
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Anelise Barth
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natália Brucker
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariele Charão
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Health Sciences, Feevale University, Novo Hamburgo, RS, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruna Gauer
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcelo Dutra Arbo
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Louise Altknecht
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Cardiology, University Cardiology Foundation (FUC), Porto Alegre, RS, Brazil
| | - Márcia Jager
- Post-graduate Program in Psychology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ana Cristina Garcia Dias
- Post-graduate Program in Psychology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jerusa Fumagalli de Salles
- Post-graduate Program in Psychology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tatiana Saint' Pierre
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Rafael Moresco
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analyses, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Cardiology, University Cardiology Foundation (FUC), Porto Alegre, RS, Brazil.
| |
Collapse
|
39
|
Wu Q, Cao X, Yan D, Wang D, Aballay A. Genetic Screen Reveals Link between the Maternal Effect Sterile Gene mes-1 and Pseudomonas aeruginosa-induced Neurodegeneration in Caenorhabditis elegans. J Biol Chem 2015; 290:29231-9. [PMID: 26475858 DOI: 10.1074/jbc.m115.674259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence indicates that immune responses to microbial infections may contribute to neurodegenerative diseases. Here, we show that Pseudomonas aeruginosa infection of Caenorhabditis elegans causes a number of neural changes that are hallmarks of neurodegeneration. Using an unbiased genetic screen to identify genes involved in the control of P. aeruginosa-induced neurodegeneration, we identified mes-1, which encodes a receptor tyrosine kinase-like protein that is required for unequal cell divisions in the early embryonic germ line. We showed that sterile but not fertile mes-1 animals were resistant to neurodegeneration induced by P. aeruginosa infection. Similar results were observed using animals carrying a mutation in the maternal effect gene pgl-1, which is required for postembryonic germ line development, and the germ line-deficient strains glp-1 and glp-4. Additional studies indicated that the FOXO transcription factor DAF-16 is required for resistance to P. aeruginosa-induced neurodegeneration in germ line-deficient strains. Thus, our results demonstrate that P. aeruginosa infection results in neurodegeneration phenotypes in C. elegans that are controlled by the germ line in a cell-nonautonomous manner.
Collapse
Affiliation(s)
- Qiuli Wu
- From the Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710 and the Medical School of Southeast University, Nanjing 210009, China
| | - Xiou Cao
- From the Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710 and
| | - Dong Yan
- From the Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710 and
| | - Dayong Wang
- the Medical School of Southeast University, Nanjing 210009, China
| | - Alejandro Aballay
- From the Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710 and
| |
Collapse
|
40
|
do Nascimento SN, Barth A, Göethel G, Baierle M, Charão MF, Brucker N, Moro AM, Bubols GB, Sobreira JS, Sauer E, Rocha R, Gioda A, Dias AC, Salles JF, Garcia SC. Cognitive deficits and ALA-D-inhibition in children exposed to multiple metals. ENVIRONMENTAL RESEARCH 2015; 136:387-395. [PMID: 25460660 DOI: 10.1016/j.envres.2014.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/06/2014] [Accepted: 10/04/2014] [Indexed: 05/29/2023]
Abstract
Children are especially vulnerable to adverse effects of multiple metals exposure. The aim of this study was to assess some metals concentrations such as lead (Pb), arsenic (As), chromium (Cr), manganese (Mn) and iron (Fe) in whole blood, serum, hair and drinking water samples using inductively coupled plasma-mass spectrometry (ICP-MS) in rural and urban children. In addition, evaluate the adverse effects of multiple metals exposure on cognitive function and δ-aminolevulinate dehydratase (ALA-D) activity. The cognitive ability assessment was performed by the Raven's Colored Progressive Matrices (RCPM) test. The ALA-D activity and ALA-D reactivation index (ALA-RE) activity with DTT and ZnCl2 also were determined. Forty-six rural children and 23 urban children were enrolled in this study. Rural children showed percentile IQ scores in the RCPM test significantly decreased in relation to urban children. According to multiple linear regression analysis, the Mn and Fe in hair may account for the cognitive deficits of children. Manganese and Fe in hair also were positively correlated with Mn and Fe in drinking water, respectively. These results suggest that drinking water is possibly a source of metals exposure in children. ALA-D activity was decreased and ALA-RE with DTT and ZnCl2 was increased in rural children in comparison to urban children. Moreover, ALA-D inhibition was correlated with Cr blood levels and ALA-RE/DDT and ALA-RE/ZnCl2 were correlated with levels of Cr and Hg in blood. Thus, our results indicated some adverse effects of children's exposure to multiple metals, such as cognitive deficits and ALA-D inhibition, mainly associated to Mn, Fe, Cr and Hg.
Collapse
Affiliation(s)
- Sabrina N do Nascimento
- Laboratory of Toxicology (LATOX), Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anelise Barth
- Laboratory of Toxicology (LATOX), Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratory of Toxicology (LATOX), Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marília Baierle
- Laboratory of Toxicology (LATOX), Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariele F Charão
- Laboratory of Toxicology (LATOX), Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Brucker
- Laboratory of Toxicology (LATOX), Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Clinical and Toxicological Analyses, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Angela M Moro
- Laboratory of Toxicology (LATOX), Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Faculty of Pharmacy, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Guilherme B Bubols
- Laboratory of Toxicology (LATOX), Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Johanna S Sobreira
- Laboratory of Toxicology (LATOX), Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elisa Sauer
- Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Toxicology (LATOX), Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Rocha
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Adriana Gioda
- Post-graduate Program in Psychology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ana Cristina Dias
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil; Faculty of Pharmacy, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Jerusa F Salles
- Post-graduate Program in Psychology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Solange C Garcia
- Laboratory of Toxicology (LATOX), Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
41
|
Meyer D, Williams PL. Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:284-306. [PMID: 25205216 DOI: 10.1080/10937404.2014.933722] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The use of pesticides is ubiquitous worldwide, and these chemicals exert adverse effects on both target and nontarget species. Understanding the modes of action of pesticides, as well as quantifying exposure concentration and duration, is an important goal of clinicians and environmental health scientists. Some chemical exposures result in adverse effects on the nervous system. The nematode Caenorhabditis elegans (C. elegans) is a model lab organism well established for studying neurotoxicity, since the components of its nervous system are mapped and known, and most of its neurotransmitters correspond to human homologs. This review encompasses published studies in which C. elegans nematodes were exposed to pesticides with known neurotoxic actions. Endpoints measured include changes in locomotion, feeding behavior, brood size, growth, life span, and cell death. From data presented, evidence indicates that C. elegans can serve a role in assessing the effects of neurotoxic pesticides at the sublethal cellular level, thereby advancing our understanding of the mechanisms underlying toxicity induced by these chemicals. A proposed toxicity testing scheme for water-soluble chemicals is also included.
Collapse
Affiliation(s)
- Dean Meyer
- a Department of Environmental Health Science , College of Public Health, The University of Georgia , Athens , Georgia , USA
| | | |
Collapse
|
42
|
Overgaard A, Holst K, Mandrup KR, Boberg J, Christiansen S, Jacobsen PR, Hass U, Mikkelsen JD. The effect of perinatal exposure to ethinyl oestradiol or a mixture of endocrine disrupting pesticides on kisspeptin neurons in the rat hypothalamus. Neurotoxicology 2013; 37:154-62. [DOI: 10.1016/j.neuro.2013.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/01/2013] [Accepted: 04/24/2013] [Indexed: 01/21/2023]
|
43
|
Li P, Zhu J, Kong Q, Jiang B, Wan X, Yue J, Li M, Jiang H, Li J, Gao Z. The ethylene bis-dithiocarbamate fungicide Mancozeb activates voltage-gated KCNQ2 potassium channel. Toxicol Lett 2013; 219:211-7. [DOI: 10.1016/j.toxlet.2013.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|
44
|
Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner M. Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci 2013; 5:18. [PMID: 23730287 PMCID: PMC3657624 DOI: 10.3389/fnagi.2013.00018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/05/2013] [Indexed: 11/13/2022] Open
Abstract
The model species, Caenorhabditis elegans, has been used as a tool to probe for mechanisms underlying numerous neurodegenerative diseases. This use has been exploited to study neurodegeneration induced by metals. The allure of the nematode comes from the ease of genetic manipulation, the ability to fluorescently label neuronal subtypes, and the relative simplicity of the nervous system. Notably, C. elegans have approximately 60-80% of human genes and contain genes involved in metal homeostasis and transport, allowing for the study of metal-induced degeneration in the nematode. This review discusses methods to assess degeneration as well as outlines techniques for genetic manipulation and presents a comprehensive survey of the existing literature on metal-induced degeneration studies in the worm.
Collapse
Affiliation(s)
- Pan Chen
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | | | - Julia Bornhorst
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | - Sudipta Chakraborty
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
- Department of Pharmacology, the Kennedy Center for Research on Human Development, and the Center for Molecular Toxicology, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|