1
|
Taillebois E, Thany SH. The use of insecticide mixtures containing neonicotinoids as a strategy to limit insect pests: Efficiency and mode of action. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105126. [PMID: 35715064 DOI: 10.1016/j.pestbp.2022.105126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Synthetic insecticides continue to be the main strategy for managing insect pests, which are a major concern for both crop protection and public health. As nicotinic acetylcholine receptors play a central role in insect neurotransmission, they are the molecular target of neurotoxic insecticides such as neonicotinoids. These insecticides are used worldwide and have shown high efficiency in culture protection. However, the emergence of insect resistance mechanisms, and negative side-effects on non-target species have highlighted the need for a new control strategy. In this context, the use of insecticide mixtures with synergistic effects have been used in order to decrease the insecticide dose, and thus delay the selection of resistance-strains, and limit their negative impact. In this review, we summarize the available data concerning the mode of action of neonicotinoid mixtures, as well as their toxicity to various insect pests and non-target species. We found that insecticide mixtures containing neonicotinoids may be an effective strategy for limiting insect pests, and in particular resistant strains, although they could also negatively impact non-target species such as pollinating insects.
Collapse
Affiliation(s)
- Emiliane Taillebois
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, UPRES EA 1207-USC INRAE 1328, 1 rue de Chartres, BP 6759, 45067 Orléans, France
| | - Steeve H Thany
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, UPRES EA 1207-USC INRAE 1328, 1 rue de Chartres, BP 6759, 45067 Orléans, France.
| |
Collapse
|
2
|
Osman KA, Ezz El-Din EM, Ahmed NS, El-Seedy AS. Effect of N-acetylcysteine on attenuation of chlropyrifos and its methyl analogue toxicity in male rats. Toxicology 2021; 461:152904. [PMID: 34425170 DOI: 10.1016/j.tox.2021.152904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
The attenuating effect of 150 mg/kg of N-acetylcysteine (NAC) against the oral administration of 7.88 and 202.07 mg/kg/day for 14 days of either chlropyrifos-ethyl (CPE-E) or chlropyrifos-methyl (CPF-M), respectively, in male rat was investigated using biochemical and genetic markers. Biomarkers such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), paraoxonase (PON), adenosine 5'-triphosphatase (ATP-ase), glutathione-S-transferase (GST), catalase (CAT), glutathione reduced (GSH) in serum showed a significant decline in their levels, while calcium (Ca+2), cytochrome C reduction (CYC-R), lipid peroxidation (LPO), nitric oxide (NO) levels showed a significant increase in serum of treated rats. Regarding the genotoxic parameters, when rats are treated either with CPE-E or CPF-M, liver DNA, chromosomal aberration (CA), and micronucleated polychromatic erythrocytes (MnPCE) significantly increased, while the mitotic index (MI) and polychromatic erythrocytes (PCE)/ normochromatic erythrocytes (NCE) ratio were significantly decreased. However, the administration of NAC following the intoxication of CPF-E or CPF-M attenuated the tested biochemical and genotoxic markers. It can be concluded that NAC can be used to ameliorate the toxicity of certain organophosphorus compounds such as CPF-E and CPF-M.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt.
| | - Eslam M Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Ayman S El-Seedy
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|
3
|
|
4
|
Perez-Fernandez C, Morales-Navas M, Guardia-Escote L, Colomina MT, Giménez E, Sánchez-Santed F. Postnatal exposure to low doses of Chlorpyrifos induces long-term effects on 5C-SRTT learning and performance, cholinergic and GABAergic systems and BDNF expression. Exp Neurol 2020; 330:113356. [DOI: 10.1016/j.expneurol.2020.113356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/13/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
|
5
|
Enzymatic decontamination of paraoxon-ethyl limits long-term effects in planarians. Sci Rep 2020; 10:3843. [PMID: 32123261 PMCID: PMC7052158 DOI: 10.1038/s41598-020-60846-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Organophosphorus compounds (OP) are highly toxic molecules used as insecticides that inhibit cholinesterase enzymes involved in neuronal transmission. The intensive use of OP for vector control and agriculture has led to environmental pollutions responsible for severe intoxications and putative long-term effects on humans and wild animals. Many in vivo models were studied over the years to assess OP acute toxicity, but the long-term effects are poorly documented. Planarian, a freshwater flatworm having a cholinergic system, has emerged as a new original model for addressing both toxicity and developmental perturbations. We used Schmidtea mediterranea planarians to evaluate long-term effects of paraoxon-ethyl at two sublethal concentrations over three generations. Toxicity, developmental perturbations and disruption of behavior were rapidly observed and higher sensitivity to paraoxon-ethyl of next generations was noticed suggesting that low insecticide doses can induce transgenerational effects. With the view of limiting OP poisoning, SsoPox, an hyperthermostable enzyme issued from the archaea Saccharolobus solfataricus, was used to degrade paraoxon-ethyl prior to planarian exposure. The degradation products, although not lethal to the worms, were found to decrease cholinesterase activities for the last generation of planarians and to induce abnormalities albeit in lower proportion than insecticides.
Collapse
|
6
|
Perez-Fernandez C, Morales-Navas M, Guardia-Escote L, Garrido-Cárdenas JA, Colomina MT, Giménez E, Sánchez-Santed F. Long-term effects of low doses of Chlorpyrifos exposure at the preweaning developmental stage: A locomotor, pharmacological, brain gene expression and gut microbiome analysis. Food Chem Toxicol 2020; 135:110865. [DOI: 10.1016/j.fct.2019.110865] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
|
7
|
APOE genetic background and sex confer different vulnerabilities to postnatal chlorpyrifos exposure and modulate the response to cholinergic drugs. Behav Brain Res 2019; 376:112195. [DOI: 10.1016/j.bbr.2019.112195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 01/30/2023]
|
8
|
Perez-Fernandez C, Flores P, Sánchez-Santed F. A Systematic Review on the Influences of Neurotoxicological Xenobiotic Compounds on Inhibitory Control. Front Behav Neurosci 2019; 13:139. [PMID: 31333425 PMCID: PMC6620897 DOI: 10.3389/fnbeh.2019.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/06/2019] [Indexed: 01/24/2023] Open
Abstract
Background: Impulsive and compulsive traits represent a variety of maladaptive behaviors defined by the difficulties to stop an improper response and the control of a repeated behavioral pattern without sensitivity to changing contingencies, respectively. Otherwise, human beings are continuously exposed to plenty neurotoxicological agents which have been systematically linked to attentional, learning, and memory dysfunctions, both preclinical and clinical studies. Interestingly, the link between both impulsive and compulsive behaviors and the exposure to the most important xenobiotic compounds have been extensively developed; although the information has been rarely summarized. For this, the present systematic review schedule and analyze in depth the most important works relating different subtypes of the above-mentioned behaviors with 4 of the most important xenobiotic compounds: Lead (Pb), Methylmercury (MeHg), Polychlorinated biphenyls (PCB), and Organophosphates (OP) in both preclinical and clinical models. Methods: Systematic search strategy on PubMed databases was developed, and the most important information was structured both in text and in separate tables based on rigorous methodological quality assessment. Results: For Lead, Methylmercury, Polychlorinated biphenyls and organophosphates, a total of 44 (31 preclinical), 34 (21), 38 (23), and 30 (17) studies were accepted for systematic synthesis, respectively. All the compounds showed an important empirical support on their role in the modulation of impulsive and, in lesser degree, compulsive traits, stronger and more solid in animal models with inconclusive results in humans in some cases (i.e., MeHg). However, preclinical and clinical studies have systematically focused on different subtypes of the above-mentioned behaviors, as well as impulsive choice or habit conformations have been rarely studied. Discussion: The strong empirical support in preclinical studies contrasts with the lack of connection between preclinical and clinical models, as well as the different methodologies used. Further research should be focused on dissipate these differences as well as deeply study impulsive choice, decision making, risk taking, and cognitive flexibility, both in experimental animals and humans.
Collapse
Affiliation(s)
| | - Pilar Flores
- Department of Psychology and Health Research Center, University of Almería, Almería, Spain
| | | |
Collapse
|
9
|
Learning, memory and the expression of cholinergic components in mice are modulated by the pesticide chlorpyrifos depending upon age at exposure and apolipoprotein E (APOE) genotype. Arch Toxicol 2019; 93:693-707. [DOI: 10.1007/s00204-019-02387-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
|
10
|
Guardia-Escote L, Basaure P, Blanco J, Cabré M, Pérez-Fernández C, Sánchez-Santed F, Domingo JL, Colomina MT. Postnatal exposure to chlorpyrifos produces long-term effects on spatial memory and the cholinergic system in mice in a sex- and APOE genotype-dependent manner. Food Chem Toxicol 2018; 122:1-10. [DOI: 10.1016/j.fct.2018.09.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/22/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022]
|
11
|
Hussein RM, Mohamed WR, Omar HA. A neuroprotective role of kaempferol against chlorpyrifos-induced oxidative stress and memory deficits in rats via GSK3β-Nrf2 signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:29-37. [PMID: 30497708 DOI: 10.1016/j.pestbp.2018.08.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/25/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
Chlorpyrifos (CPF) is an agricultural pesticide and a potential food contaminant, which causes neurotoxicity. Here, we aimed at exploring the link between the repeated exposure to CPF and memory dysfunction in rats and the possible protective effect of kaempferol, a flavonoid with appreciable antioxidant and anti-inflammatory activities. Rats were divided into: Control group (received drug vehicles for 14 days); CPF-treated group (received subcutaneous 18 mg/kg BW of CPF daily for 14 days and CPF + Kaempferol treated group (received the same CPF dose +21 mg/kg BW of Kaempferol intraperitoneally for 14 days. On the 14th day, Y-maze and novel target recognition behavioral tests were employed to evaluate memory deficits. 24 h after the last dose of CPF, animals were sacrificed, and brain tissues were used for the determination of oxidative stress biomarkers and gene expression levels of GSK3β and Nrf2. The results revealed that CPF-treated rats suffered from severe deterioration of spatial and non-spatial memory functions with low activities of antioxidant enzymes and acetylcholinesterase (AChE). The administration of kaempferol significantly protected against CPF-induced neuronal damage, increased the activities of antioxidant enzymes and AChE and induced a better performance in the behavioral tests. The protective effect of kaempferol was mediated through the inhibition of GSK3β gene expression and the induction of Nrf2 expression in the brain tissues. In conclusion, the repeated exposure to CPF is associated with oxidative stress and memory deficits in rats. However, kaempferol administration effectively alleviated CPF- induced brain toxicity, possibly through the modulation of GSK3β-Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, 62514 Beni-Suef, Egypt.
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
12
|
Vanova N, Pejchal J, Herman D, Dlabkova A, Jun D. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy. J Appl Toxicol 2018. [DOI: 10.1002/jat.3605] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nela Vanova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - David Herman
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Alzbeta Dlabkova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences; University of Defence; Trebesska 1575 500 01 Hradec Kralove Czech Republic
| |
Collapse
|
13
|
Rhoads MK, Hauk P, Gupta V, Bookstaver ML, Stephens K, Payne GF, Bentley WE. Modification and Assembly of a Versatile Lactonase for Bacterial Quorum Quenching. Molecules 2018; 23:E341. [PMID: 29415497 PMCID: PMC6016966 DOI: 10.3390/molecules23020341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 01/05/2023] Open
Abstract
This work sets out to provide a self-assembled biopolymer capsule activated with a multi-functional enzyme for localized delivery. This enzyme, SsoPox, which is a lactonase and phosphotriesterase, provides a means of interrupting bacterial communication pathways that have been shown to mediate pathogenicity. Here we demonstrate the capability to express, purify and attach SsoPox to the natural biopolymer chitosan, preserving its activity to "neutralize" long-chain autoinducer-1 (AI-1) communication molecules. Attachment is shown via non-specific binding and by engineering tyrosine and glutamine affinity 'tags' at the C-terminus for covalent linkage. Subsequent degradation of AI-1, in this case N-(3-oxododecanoyl)-l-homoserine lactone (OdDHL), serves to "quench" bacterial quorum sensing (QS), silencing intraspecies communication. By attaching enzymes to pH-responsive chitosan that, in turn, can be assembled into various forms, we demonstrate device-based flexibility for enzyme delivery. Specifically, we have assembled quorum-quenching capsules consisting of an alginate inner core and an enzyme "decorated" chitosan shell that are shown to preclude bacterial QS crosstalk, minimizing QS mediated behaviors.
Collapse
Affiliation(s)
- Melissa K Rhoads
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Pricila Hauk
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Valerie Gupta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Michelle L Bookstaver
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Kristina Stephens
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
14
|
Two cholinesterase inhibitors trigger dissimilar effects on behavior and body weight in C57BL/6 mice: The case of chlorpyrifos and rivastigmine. Behav Brain Res 2017; 318:1-11. [DOI: 10.1016/j.bbr.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023]
|
15
|
The Differential Effect of Low-Dose Mixtures of Four Pesticides on the Pea Aphid Acyrthosiphon pisum. INSECTS 2016; 7:insects7040053. [PMID: 27754329 PMCID: PMC5198201 DOI: 10.3390/insects7040053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/29/2016] [Accepted: 10/08/2016] [Indexed: 01/10/2023]
Abstract
The modes of action of most insecticides are known, but little information exists regarding the toxicological interactions involving insecticide mixtures at low doses. The effects of mixtures of four insecticides were investigated using LC10 values (concentration leading to 10% mortality), acetamiprid (ACE, 0.235 µg/mL), chlorpyriphos (CHL, 107.0 µg/mL), deltamethrin (DEL, 5.831 µg/mL), and fipronil (FIP, 3.775 µg/mL) on the larvae of the pea aphid, Acyrthosiphon pisum. After 24 h exposure, 6 of the 11 tested combinations, DEL/FIP, ACE/DEL, CHL/FIP, ACE/DEL/FIP, ACE/CHL/FIP, and ACE/DEL/CHL/FIP, were toxic through an additive effect. Four combinations, ACE/FIP, DEL/CHL, ACE/CHL, and ACE/DEL/CHL had a synergistic effect, whereas only one DEL/CHL/FIP showed an antagonistic effect. The toxic effect of these mixtures was confirmed after 48 h of exposure, revealing an enhanced toxicity of CHL, DEL, and FIP in combination with ACE. We suggest that an insect pest management strategy should be evaluated in the future using different combinations of insecticides.
Collapse
|
16
|
Palumbo R, Gogliettino M, Cocca E, Iannitti R, Sandomenico A, Ruvo M, Balestrieri M, Rossi M, Palmieri G. APEH Inhibition Affects Osteosarcoma Cell Viability via Downregulation of the Proteasome. Int J Mol Sci 2016; 17:ijms17101614. [PMID: 27669226 PMCID: PMC5085647 DOI: 10.3390/ijms17101614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/08/2016] [Accepted: 09/19/2016] [Indexed: 01/13/2023] Open
Abstract
The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH–proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21Waf1, and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Rosanna Palumbo
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), Napoli 80134, Italy.
| | - Marta Gogliettino
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Napoli 80131, Italy.
| | - Ennio Cocca
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Napoli 80131, Italy.
| | - Roberta Iannitti
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), Napoli 80134, Italy.
| | - Annamaria Sandomenico
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), Napoli 80134, Italy.
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), Napoli 80134, Italy.
| | - Marco Balestrieri
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Napoli 80131, Italy.
| | - Mosè Rossi
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Napoli 80131, Italy.
| | - Gianna Palmieri
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Napoli 80131, Italy.
| |
Collapse
|
17
|
Peris-Sampedro F, Reverte I, Basaure P, Cabré M, Domingo JL, Colomina MT. Apolipoprotein E (APOE) genotype and the pesticide chlorpyrifos modulate attention, motivation and impulsivity in female mice in the 5-choice serial reaction time task. Food Chem Toxicol 2016; 92:224-35. [PMID: 27106138 DOI: 10.1016/j.fct.2016.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/02/2016] [Accepted: 03/21/2016] [Indexed: 02/08/2023]
Abstract
Organophosphate pesticides - and chlorpyrifos (CPF) in particular - contribute to a wide range of neurobehavioural disorders. Most experimental research focuses on learning and memory processes, while other behaviours remain understudied. The isoforms of the human apolipoprotein E (apoE) confer different cognitive skills on their carriers, but data on this topic are still limited. The current study was performed to assess whether the APOE genotypic variability differently modulates the effects of CPF on attentional performance, inhibitory control and motivation. Human apoE targeted replacement adult female mice (apoE2, apoE3 and apoE4) were trained to stably perform the 5-choice serial reaction time task (5-CSRTT). Animals were then subjected to daily dietary CPF (3.75 mg/kg body weight) for 4 weeks. After CPF exposure, we established a 4-week CPF-free period to assess recovery. All individuals acquired the task, apoE2 mice showed enhanced learning, while apoE4 mice displayed increased premature and perseverative responding. This genotype-dependent lack of inhibitory control was reversed by CPF. Overall, the pesticide induced protracted impairments in sustained attention and motivation, and it reduced anticipatory responding. ApoE3 mice exhibited delayed attentional disruptions throughout the wash-out period. Taken together, these findings provide notable evidence on the emergence of CPF-related attentional and motivational deficits.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavioural Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| | - Ingrid Reverte
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain
| | - Pia Basaure
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavioural Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Cabré
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Teresa Colomina
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavioural Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain.
| |
Collapse
|
18
|
López-Granero C, Ruiz-Muñoz AM, Nieto-Escámez FA, Colomina MT, Aschner M, Sánchez-Santed F. Chronic dietary chlorpyrifos causes long-term spatial memory impairment and thigmotaxic behavior. Neurotoxicology 2016; 53:85-92. [DOI: 10.1016/j.neuro.2015.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 01/24/2023]
|
19
|
Sánchez-Santed F, Colomina MT, Herrero Hernández E. Organophosphate pesticide exposure and neurodegeneration. Cortex 2016; 74:417-26. [DOI: 10.1016/j.cortex.2015.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
|
20
|
Chronic exposure to chlorpyrifos triggered body weight increase and memory impairment depending on human apoE polymorphisms in a targeted replacement mouse model. Physiol Behav 2015; 144:37-45. [DOI: 10.1016/j.physbeh.2015.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
|
21
|
Peris-Sampedro F, Salazar JG, Cabré M, Reverte I, Domingo JL, Sánchez-Santed F, Colomina MT. Impaired retention in AβPP Swedish mice six months after oral exposure to chlorpyrifos. Food Chem Toxicol 2014; 72:289-94. [DOI: 10.1016/j.fct.2014.07.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023]
|
22
|
Carvajal F, Sanchez-Amate MDC, Lerma-Cabrera JM, Cubero I. Effects of a single high dose of Chlorpyrifos in long-term feeding, ethanol consumption and ethanol preference in male Wistar rats with a previous history of continued ethanol drinking. J Toxicol Sci 2014; 39:425-35. [DOI: 10.2131/jts.39.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Francisca Carvajal
- Department of Psychology, Universidad Autónoma de Chile
- Department of Psychology, Universidad de Almería
| | | | - José Manuel Lerma-Cabrera
- Department of Psychology, Universidad Autónoma de Chile
- Department of Psychology, Universidad de Almería
| | - Inmaculada Cubero
- Department of Psychology, Universidad Autónoma de Chile
- Department of Psychology, Universidad de Almería
| |
Collapse
|
23
|
Carr RL, Graves CA, Mangum LC, Nail CA, Ross MK. Low level chlorpyrifos exposure increases anandamide accumulation in juvenile rat brain in the absence of brain cholinesterase inhibition. Neurotoxicology 2013; 43:82-89. [PMID: 24373905 DOI: 10.1016/j.neuro.2013.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022]
Abstract
The prevailing dogma is that chlorpyrifos (CPF) mediates its toxicity through inhibition of cholinesterase (ChE). However, in recent years, the toxicological effects of developmental CPF exposure have been attributed to an unknown non-cholinergic mechanism of action. We hypothesize that the endocannabinoid system may be an important target because of its vital role in nervous system development. We have previously reported that repeated exposure to CPF results in greater inhibition of fatty acid amide hydrolase (FAAH), the enzyme that metabolizes the endocannabinoid anandamide (AEA), than inhibition of either forebrain ChE or monoacylglycerol lipase (MAGL), the enzyme that metabolizes the endocannabinoid 2-arachidonylglycerol (2-AG). This exposure resulted in the accumulation of 2-AG and AEA in the forebrain of juvenile rats; however, even at the lowest dosage level used (1.0mg/kg), forebrain ChE inhibition was still present. Thus, it is not clear if FAAH activity would be inhibited at dosage levels that do not inhibit ChE. To determine this, 10 day old rat pups were exposed daily for 7 days to either corn oil or 0.5mg/kg CPF by oral gavage. At 4 and 12h post-exposure on the last day of administration, the activities of serum ChE and carboxylesterase (CES) and forebrain ChE, MAGL, and FAAH were determined as well as the forebrain AEA and 2-AG levels. Significant inhibition of serum ChE and CES was present at both 4 and 12h. There was no significant inhibition of the activities of forebrain ChE or MAGL and no significant change in the amount of 2-AG at either time point. On the other hand, while no statistically significant effects were observed at 4h, FAAH activity was significantly inhibited at 12h resulting in a significant accumulation of AEA. Although it is not clear if this level of accumulation impacts brain maturation, this study demonstrates that developmental CPF exposure at a level that does not inhibit brain ChE can alter components of endocannabinoid signaling.
Collapse
Affiliation(s)
- Russell L Carr
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Casey A Graves
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Lee C Mangum
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Carole A Nail
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|