1
|
Li Y, Yang H, Liu L, Jiang L, Xie P, Wang X, Cong X, Zhu R, Lu Z, Sun M, Zhang J. From neurotoxicity to neuroprotection: Rethinking GABA AR-targeting anesthetics. Cell Biol Toxicol 2025; 41:104. [PMID: 40516005 DOI: 10.1007/s10565-025-10057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025]
Abstract
The brain growth spurt (BGS) represents a pivotal window in neurodevelopment, defined by rapid neurogenesis, heightened synaptogenesis, and the dynamic establishment of neural networks. During this phase, heightened brain plasticity significantly enhances learning and memory abilities, while also increasing the brain's susceptibility to disruptions. Anesthetics, particularly those targeting γ-aminobutyric acid type A receptors (GABAARs), interfere with GABAergic and glutamatergic systems, disrupt brain-derived neurotrophic factor (BDNF) signaling, and exacerbate neurotoxic effects. These agents activate glial cells, induce inflammation, and contribute to oxidative stress, while also disrupting calcium homeostasis and triggering endoplasmic reticulum stress. Furthermore, anesthetics alter the expression of non-coding RNAs, which affects gene regulation and long-term memory formation. The extent of neurotoxic effects is contingent upon a constellation of factors, including the timing, dosage, and frequency of anesthetic exposure, as well as individual susceptibility. Notably, perioperative administration of anesthetic agents has been implicated in long-term cognitive dysfunction, thereby emphasizing the critical importance of precisely modulated dosing regimens and temporally optimized delivery strategies to mitigate potential neurodevelopmental risks. In contrast, neuroactive steroids demonstrate promising neuroprotective potential by modulating GABAAR activity, enhancing BDNF release, and regulating oxidative stress and inflammation. New strategies for preventing and reversing anesthetic-induced neurotoxicity could include novel anesthetic combinations, anti-apoptotic agents, antioxidants, or nutritional supplements. These findings underscore the complex and multifactorial effects of anesthetic agents on the developing brain and emphasize the urgent need to establish and refine anesthetic strategies that safeguard neural integrity during vulnerable windows of neurodevelopment.
Collapse
Affiliation(s)
- Yubao Li
- Xinxiang Medical University, Xinxiang, Henan, China
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongliang Yang
- Xinxiang Medical University, Xinxiang, Henan, China
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Lu Liu
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Lulu Jiang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Peilin Xie
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiaoling Wang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuhui Cong
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ruilou Zhu
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhongyuan Lu
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Institute of ElectrophysiologyHenan Academy of Innovations in Medical Science, Zhengzhou, China.
| |
Collapse
|
2
|
Nagappa S, Kalappa S, Sridhara RB, Biligi DS, Annapoorneshwari R, Ramachandraiah. Impact of sevoflurane anesthesia on S-adenosylmethionine in neonates under general anesthesia. J Anaesthesiol Clin Pharmacol 2025; 41:323-332. [PMID: 40248795 PMCID: PMC12002701 DOI: 10.4103/joacp.joacp_26_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2025] Open
Abstract
Background and Aims Preclinical studies in rodents and primates have shown that anesthesia was neurotoxic to the developing brain after exposure in the neonatal period. Sevoflurane a commonly used inhalational anesthetic, especially in pediatric surgery, might cause behavioral impairment in the developing brain. Although favored for its rapid onset and minimal airway disturbance, sevoflurane has been implicated in neurotoxic effects such as anesthesia-induced developmental neurotoxicity in rodents, through various mechanisms. One of the mechanisms was disturbances in methylation metabolism which can be easily treated if it is proved. This study aims to evaluate the levels of S-adenosylmethionine [SAM] following sevoflurane anesthesia in neonates and to correlate the duration of sevoflurane exposure and S-adenosylmethionine levels. Material and Methods Sixty neonates were included in the study under general anesthesia. Pre- and postsevoflurane exposure arterial blood samples were collected in ethylenediamine tetraacetic acid vacutainers. Each sample was centrifuged at 1000 rpm for 10 min. Plasma was separated and stored at -80°C, then subjected to S-adenosylmethionine enzyme-linked immunoassay test for preand postsevoflurane exposure levels of SAM. Results The difference between the pre- and post-SAM values is not statistically significant and also with increasing the duration of sevoflurane exposure there was no reduction in the SAM levels (r = 0.17), and the correlation was not significant (P = 0.18). Conclusion Single exposure to sevoflurane does not impact SAM levels in neonates undergoing general anesthesia.
Collapse
Affiliation(s)
- Saraswathi Nagappa
- Department of Anesthesiology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Sandhya Kalappa
- Department of Anesthesiology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Raghavendra B. Sridhara
- Department of Anesthesiology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Dayananda S. Biligi
- Department of Pathology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - R Annapoorneshwari
- Department of Pathology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Ramachandraiah
- Department of Anesthesiology, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| |
Collapse
|
3
|
Borzage MT, Peterson BS. A Scoping Review of the Mechanisms Underlying Developmental Anesthetic Neurotoxicity. Anesth Analg 2025; 140:409-426. [PMID: 38536739 PMCID: PMC11427602 DOI: 10.1213/ane.0000000000006897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 09/28/2024]
Abstract
Although anesthesia makes painful or uncomfortable diagnostic and interventional health care procedures tolerable, it may also disrupt key cellular processes in neurons and glia, harm the developing brain, and thereby impair cognition and behavior in children. Many years of studies using in vitro, animal behavioral, retrospective database studies in humans, and several prospective clinical trials in humans have been invaluable in discerning the potential toxicity of anesthetics. The objective of this scoping review was to synthetize the evidence from preclinical studies for various mechanisms of toxicity across diverse experimental designs and relate their findings to those of recent clinical trials in real-world settings.
Collapse
Affiliation(s)
- Matthew Thomas Borzage
- From the Fetal and Neonatal Institute, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, California
| | - Bradley S. Peterson
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, California
| |
Collapse
|
4
|
Lin L, Zhu C, Yan B, Yu P, Yang L, Huang W, Chen J. Gyosaponin ameliorates sevoflurane anesthesia-induced cognitive dysfunction and neuronal apoptosis in rats through modulation of the PI3K/AKT/mTOR pathway. Clinics (Sao Paulo) 2024; 80:100560. [PMID: 39708584 PMCID: PMC11913799 DOI: 10.1016/j.clinsp.2024.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Sevoflurane (Sev) is an inhalational anesthetic for surgical procedures where it can trigger cognitive dysfunction and neuronal apoptosis. Gyosaponin (GpS) was studied for its effects on brain morphology and cognitive behaviors in Sev-anesthetized rats. METHODS Male Sprague-Dawley rats were induced by 3 % Sev anesthesia, and 25 mg/kg and 100 mg/kg GpS were injected into the rats by tail vein. The in vitro model of Sev anesthesia was constructed by treating primary rat hippocampal neurons with 4.1 % Sev in the presence of GpS (5, 10, and 20 μM). The neuroprotective effects of GpS against Sev-induced cognitive deficits in rats were evaluated using the open field and Morris water maze tests. The apoptosis of hippocampal neurons was observed using HE staining and TUNEL assay. Apoptosis-related proteins and proteins related to the PI3K/Akt/mTOR pathway were determined via Western blot. Also, pro-inflammatory factors were measured via ELISA. RESULTS GpS diminished the Sev-triggered apoptosis in neurons and Cleaved caspase-3, BAX, TNF-α, IL-6, lessened oxidative stress damage, and stimulated the PI3K/Akt/mTOR pathway. GpS therapy markedly enhanced learning and memory abilities in rats suffering from Sev-related cognitive impairments. CONCLUSION GpS ameliorates Sev-induced neurotoxicity and cognitive dysfunction by modulating the PI3K/Akt/mTOR pathway and alleviating neuronal apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Lijuan Lin
- Department of Anesthesia, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China
| | - Chenhui Zhu
- Department of Urology, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China
| | - Bing Yan
- Department of Anesthesia, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China
| | - Pinxian Yu
- Department of Anesthesia, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China
| | - Liu Yang
- Department of Anesthesia, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China
| | - Wei Huang
- Department of Anesthesia, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China
| | - Junren Chen
- Department of Anesthesia, Central People's Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, PR China.
| |
Collapse
|
5
|
Yang Q, Liu J, Ding J, Liu J. Neurodevelopmental toxicity of bisphenol AF in zebrafish larvae and the protective effects of curcumin. J Appl Toxicol 2023; 43:1806-1818. [PMID: 37423901 DOI: 10.1002/jat.4514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Bisphenol AF (BPAF) is one of the most commonly used alternatives of bisphenol A in the plastics industry. The effects of BPAF on nervous development are unclear. Curcumin (CUR) has been determined to be an anti-inflammatory and antioxidant agent. In this study, the effects of BPAF on neurotoxicity of zebrafish embryos/larvae and whether CUR could reverse effects induced by BPAF were investigated. The results showed that BPAF treatment induced deficits in locomotor behavior, altered the larval brain development, caused aberrant expression of neurogenesis related genes (elavl3, zn5, α-tubulin, syn2a, and gap43), decreased acetylcholinesterase (AChE) activity, and induced oxidative stress, cell apoptosis, and neuroinflammation in zebrafish larvae. CUR addition could block the adverse effects of BPAF on nervous development by attenuated oxidative stress and cell apoptosis induced by BPAF in zebrafish, enhanced the activity of AChE, and increased the expression of genes involved in the pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, and IL-8). The results of this study indicate that BPAF could induce aberrant development on nervous system. However, CUR exerts neuroprotective effects on BPAF-induced neurotoxicity in zebrafish larvae.
Collapse
Affiliation(s)
- Qian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jianmei Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Jie Ding
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Jining Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| |
Collapse
|
6
|
Zhang H, Niu Y, Qiu L, Yang J, Sun J, Xia J. Melatonin-mediated mitophagy protects against long-term impairments after repeated neonatal sevoflurane exposures. Int Immunopharmacol 2023; 125:111210. [PMID: 37976600 DOI: 10.1016/j.intimp.2023.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Melatonin is known to have protective effects in aging, neurodegenerative disorders and mitochondria-related diseases, while there is a poor understanding of the effects of melatonin treatment on mitophagy in neonatal cognitive dysfunction after repeated sevoflurane exposures. This study explores the protective effects of melatonin on mitophagy and cognition in developing rats exposed to sevoflurane. METHODS Postnatal day six (P6) neonatal rats were exposed to 3 % sevoflurane for 2 h daily from P6 to P8. In the intervention groups, rats received 3-Methyladenine (3-MA) intracerebroventricularly from P6 to P8 and melatonin intraperitoneally from P6 to P8 following water drinking once daily from P21 to P41, respectively. Behavioral tests, including open field (OF), novel object recognition (NOR), and fear conditioning (FC) tests, were performed to assess cognitive function during young adulthood. In another experiment, rat brains were harvested for biochemical, histopathological, and electron microscopy studies. RESULTS Rats exposed to sevoflurane showed disordered mitophagy and mitochondrial dysfunction as revealed by increased mitophagy marker proteins (microtubule-associated protein 1 light chain 3 (LC3) II/I, and parkin), decreased autophagy marker protein (sequestosome 1 (P62/SQSTM1)), electron transport chain (ETC) proteins and ATP levels. Immunofluorescent staining of LC3 was co-localized mostly with a neuronal marker and microglial marker but was not co-localized with a marker for astrocytes in rats exposed to sevoflurane. These rats had poorer performance in the NOR and FC tests than control rats during young adulthood. Melatonin treatment reversed the abnormal expression of mitophagy proteins, mitochondrial energy metabolism, the activity of microglia, and impaired cognition. These ameliorations were blocked by an autophagy inhibitor, 3-MA, except for the activation of microglia. CONCLUSION We have demonstrated that melatonin inhibits microglial activation by enhancing mitophagy and finally significantly reduces sevoflurane-induced deficits in cognition in neonatal rats. These results suggest that melatonin might be beneficial if considered when the anesthesia must be administered at a very young age.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yingqiao Niu
- Department of Anesthesiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Lili Qiu
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jiaojiao Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Jiangyan Xia
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
7
|
Areias J, Sola C, Chastagnier Y, Pico J, Bouquier N, Dadure C, Perroy J, Szabo V. Whole-brain characterization of apoptosis after sevoflurane anesthesia reveals neuronal cell death patterns in the mouse neonatal neocortex. Sci Rep 2023; 13:14763. [PMID: 37679476 PMCID: PMC10484929 DOI: 10.1038/s41598-023-41750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
In the last two decades, safety concerns about general anesthesia (GA) arose from studies documenting brain cell death in various pharmacological conditions and animal models. Nowadays, a thorough characterization of sevoflurane-induced apoptosis in the entire neonatal mouse brain would help identify and further focus on underlying mechanisms. We performed whole-brain mapping of sevoflurane-induced apoptosis in post-natal day (P) 7 mice using tissue clearing and immunohistochemistry. We found an anatomically heterogenous increase in cleaved-caspase-3 staining. The use of a novel P7 brain atlas showed that the neocortex was the most affected area, followed by the striatum and the metencephalon. Histological characterization in cortical slices determined that post-mitotic neurons were the most affected cell type and followed inter- and intracortical gradients with maximal apoptosis in the superficial layers of the posterodorsal cortex. The unbiased anatomical mapping used here allowed us to confirm sevoflurane-induced apoptosis in the perinatal period, neocortical involvement, and indicated striatal and metencephalic damage while suggesting moderate hippocampal one. The identification of neocortical gradients is consistent with a maturity-dependent mechanism. Further research could then focus on the interference of sevoflurane with neuronal migration and survival during development.
Collapse
Affiliation(s)
- Julie Areias
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Chrystelle Sola
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- Montpellier University Hospital, 191 Av. du Doyen Gaston Giraud, 34295, Montpellier Cedex 05, France
| | - Yan Chastagnier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Pico
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- Montpellier University Hospital, 191 Av. du Doyen Gaston Giraud, 34295, Montpellier Cedex 05, France
| | | | - Christophe Dadure
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- Montpellier University Hospital, 191 Av. du Doyen Gaston Giraud, 34295, Montpellier Cedex 05, France
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Vivien Szabo
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
- Montpellier University Hospital, 191 Av. du Doyen Gaston Giraud, 34295, Montpellier Cedex 05, France.
| |
Collapse
|
8
|
Hogarth K, Tarazi D, Maynes JT. The effects of general anesthetics on mitochondrial structure and function in the developing brain. Front Neurol 2023; 14:1179823. [PMID: 37533472 PMCID: PMC10390784 DOI: 10.3389/fneur.2023.1179823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
The use of general anesthetics in modern clinical practice is commonly regarded as safe for healthy individuals, but exposures at the extreme ends of the age spectrum have been linked to chronic cognitive impairments and persistent functional and structural alterations to the nervous system. The accumulation of evidence at both the epidemiological and experimental level prompted the addition of a warning label to inhaled anesthetics by the Food and Drug Administration cautioning their use in children under 3 years of age. Though the mechanism by which anesthetics may induce these detrimental changes remains to be fully elucidated, increasing evidence implicates mitochondria as a potential primary target of anesthetic damage, meditating many of the associated neurotoxic effects. Along with their commonly cited role in energy production via oxidative phosphorylation, mitochondria also play a central role in other critical cellular processes including calcium buffering, cell death pathways, and metabolite synthesis. In addition to meeting their immense energy demands, neurons are particularly dependent on the proper function and spatial organization of mitochondria to mediate specialized functions including neurotransmitter trafficking and release. Mitochondrial dependence is further highlighted in the developing brain, requiring spatiotemporally complex and metabolically expensive processes such as neurogenesis, synaptogenesis, and synaptic pruning, making the consequence of functional alterations potentially impactful. To this end, we explore and summarize the current mechanistic understanding of the effects of anesthetic exposure on mitochondria in the developing nervous system. We will specifically focus on the impact of anesthetic agents on mitochondrial dynamics, apoptosis, bioenergetics, stress pathways, and redox homeostasis. In addition, we will highlight critical knowledge gaps, pertinent challenges, and potential therapeutic targets warranting future exploration to guide mechanistic and outcomes research.
Collapse
Affiliation(s)
- Kaley Hogarth
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Doorsa Tarazi
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jason T. Maynes
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Rabiee R, Hosseini Hooshiar S, Ghaderi A, Jafarnejad S. Schizophrenia, Curcumin and Minimizing Side Effects of Antipsychotic Drugs: Possible Mechanisms. Neurochem Res 2023; 48:713-724. [PMID: 36357748 DOI: 10.1007/s11064-022-03798-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/12/2022]
Abstract
Schizophrenia is a mental disorder characterized by episodes of psychosis; major symptoms include hallucinations, delusions, and disorganized thinking. More recent theories focus on particular disorders of interneurons, dysfunctions in the immune system, abnormalities in the formation of myelin, and augmented oxidative stress that lead to alterations in brain structure. Decreased dopaminergic activity and increased phospholipid metabolism in the prefrontal cortex might be involved in schizophrenia. Antipsychotic drugs used to treat schizophrenia have many side effects. Alternative therapy such as curcumin (CUR) can reduce the severity of symptoms without significant side effects. CUR has important therapeutic properties such as antioxidant, anti-mutagenic, anti-inflammatory, and antimicrobial functions and protection of the nervous system. Also, the ability of CUR to pass the blood-brain barrier raises new hopes for neuroprotection. CUR can improve and prevent further probable neurological and behavioral disorders in patients with schizophrenia. It decreases the side effects of neuroleptics and retains lipid homeostasis. CUR increases the level of brain-derived neurotrophic factor and improves hyperkinetic movement disorders. CUR may act as an added counteraction mechanism to retain cell integrity and defense against free radical injury. Thus it appears to have therapeutic potential for improvement of schizophrenia. In this study, we review several properties of CUR and its ability to improve schizophrenia and minimize the side effects of antipsychotic drugs, and we explore the underlying mechanisms by which CUR affects schizophrenia and its symptoms.
Collapse
Affiliation(s)
- Reyhaneh Rabiee
- Student Research Committee, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeedeh Hosseini Hooshiar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine and Clinical Research Development Unit, Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
10
|
Shan Y, Liu P, Zhou Y, Ding X, Liu H, Yang J. Prenatal Sevoflurane Exposure Impairs the Learning and Memory of Rat Offspring via HMGB1-Induced NLRP3/ASC Inflammasome Activation. ACS Chem Neurosci 2023; 14:699-708. [PMID: 36718586 DOI: 10.1021/acschemneuro.2c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The neurotoxic effects of sevoflurane anesthesia on the immature nervous system have aroused public concern, but the specific effects and mechanism remain poorly understood. Pyroptosis caused by the activation of the NLRP3 inflammasome is pivotal for cell survival and acts as a key player in cognitive impairment. This study was carried out to determine the critical role of the NLRP3 inflammasome and high-mobility group box 1 (HMGB1) in sevoflurane-induced cognitive impairment. On gestational day 20 (G20), 3% sevoflurane was administered for 4 h to pregnant rats. The hippocampus and cerebral cortex of the offspring were harvested at postnatal day 1 (P1) for Western blotting and immunofluorescence staining. Pregnant rat sevoflurane exposure increased the protein levels of NLRP3, ASC, cleaved-caspase 1 (p20), mature-IL-1β (m-IL-1β), and HMGB1 in the cerebral cortex and hippocampus of offspring rats. More microglial cells of offspring were also observed after sevoflurane anesthesia. The Morris water maze (MWM) test was implemented to evaluate cognitive function from postnatal day 30 (P30) to postnatal 35 (P35) of offspring. The sevoflurane-treated offspring took longer than the control rats to find the MWM platform during the learning phase. Furthermore, they had a longer travel distance and less time in the target quadrant than the control rats in the probe trial. Maternal intraperitoneal injection of glycyrrhizin (an inhibitor of HMGB1) attenuated the sevoflurane-induced microglia and NLRP3/ASC inflammasome activation and cognitive impairment of offspring. Simultaneously, the sevoflurane-induced increase in Toll-like receptors (TLR4) and nuclear factor-κB (NF-κB) was significantly reduced by glycyrrhizin. We concluded that the HMGB1 inhibitor may repress the sevoflurane-induced activation of the NLRP3/ASC inflammasome and cognitive dysfunction and that TLR4/NF-κB signaling maybe the key pathway, at least in part.
Collapse
Affiliation(s)
- Yangyang Shan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, China
| | - Panmiao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, China
| | - Yanbo Zhou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, China
| | - Xin Ding
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, China
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang110000, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, China
| |
Collapse
|
11
|
Chen YR, Zhang SX, Fang M, Zhang P, Zhou YF, Yu X, Zhang XN, Chen G. Egr2 contributes to age-dependent vulnerability to sevoflurane-induced cognitive deficits in mice. Acta Pharmacol Sin 2022; 43:2828-2840. [PMID: 35577909 PMCID: PMC9622904 DOI: 10.1038/s41401-022-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/18/2022] [Indexed: 01/27/2023]
Abstract
Sevoflurane inhalation is prone to initiate cognitive deficits in infants. The early growth response-2 (Egr-2) gene is DNA-binding transcription factor, involving in cognitive function. In this study we explored the molecular mechanisms underlying the vulnerability to cognitive deficits after sevoflurane administration. Six-day-old (young) and 6-week-old (early adult) mice received anesthesia with 3% sevoflurane for 2 h daily for 3 days. We showed that multiple exposures of sevoflurane induced significant learning ability impairment in young but not early adult mice, assessed in Morris water maze test on postnatal days 65. The integrated differential expression analysis revealed distinct transcription responses of Egr family members in the hippocampus of the young and early adult mice after sevoflurane administration. Particularly, Egr2 was significantly upregulated after sevoflurane exposure only in young mice. Microinjection of Egr2 shRNA recombinant adeno-associated virus into the dentate gyrus alleviated sevoflurane-induced cognitive deficits, and abolished sevoflurane-induced dendritic spins loss and BDNF downregulation in young mice. On the contrary, microinjection of the Egr2 overexpression virus in the dentate gyrus aggravated learning ability impairment induced by sevoflurane in young mice but not early adult mice. Furthermore, we revealed that sevoflurane markedly upregulated the nuclear factors of activated T-cells NFATC1 and NFATC2 in young mice, which were involved in Egr2 regulation. In conclusion, Egr2 serves as a critical factor for age-dependent vulnerability to sevoflurane-induced cognitive deficits.
Collapse
Affiliation(s)
- Ye-Ru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Xia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Man Fang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - You-Fa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Zhang P, Chen Y, Zhang S, Chen G. Mitochondria-Related Ferroptosis Drives Cognitive Deficits in Neonatal Mice Following Sevoflurane Administration. Front Med (Lausanne) 2022; 9:887062. [PMID: 35935755 PMCID: PMC9355652 DOI: 10.3389/fmed.2022.887062] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple sevoflurane exposure may result in cognitive deficits in neonatal animals. This study attempted to investigate the potential mechanism of sevoflurane-induced neurotoxicity in developing hippocampus. Neonatal animals received sevoflurane anesthesia, then the behavioral tests and Golgi-Cox staining were employed to detect the effect of sevoflurane inhalation in adult mice. And the mitochondrial function was evaluated using MitoSOX staining, Fluo calcium indicators, mitochondrial permeability transition pore (mPTP) assay, and JC-1 probe after sevoflurane administration. Meanwhile, mitochondrial lipid hydroperoxide and ferroptosis were measured by MitoPeDPP and Mito-FerroGreen signals following sevoflurane exposure. Moreover, the ferroptosis and behavioral performance were assessed after deferiprone (DFP) treatment. The results showed that sevoflurane administration induced cognitive impairment accompanied by reducing dendritic length, density, and nodes. Additionally, sevoflurane exposure elevated mitochondrial ROS production and cytoplasm calcium levels, triggered the opening of mPTP, and decreased the mitochondrial membrane potential (MMP). However, supplement of elamipretide (SS-31) effectively reversed mitochondrial dysfunction. Mitochondrial lipid hydroperoxide production was increased after sevoflurane administration, whereas Fer-1 treatment reduced lipid hydroperoxide formation. Sevoflurane exposure induced mitochondrial iron overload, whereas Mito-Tempo treatment reduced iron accumulation. Prussian blue staining showed that the hippocampal iron deposition was apparently increased after sevoflurane inhalation. Additionally, the ferroptosis-related protein expression (including ACSL4, COX2, GPX4, and FTH1) was significantly changed, whereas DFP effectively suppressed ferroptosis and enhanced sevoflurane-induced behavioral malfunction. These findings demonstrated that sevoflurane administration elicited mitochondrial dysfunction and iron dyshomeostasis and eventually resulted in cognitive impairments, whereas protecting mitochondrial function and chelating neurotoxic iron effectively reversed these pathological processes.
Collapse
Affiliation(s)
- Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - ShuXia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Peng L, Liu S, Xu J, Xie W, Fang X, Xia T, Gu X. Metformin alleviates prolonged isoflurane inhalation induced cognitive decline via reducing neuroinflammation in adult mice. Int Immunopharmacol 2022; 109:108903. [PMID: 35709590 PMCID: PMC9190296 DOI: 10.1016/j.intimp.2022.108903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
With the widespread use of volatile anesthetic agents in the prolonged sedation for COVID-19 pneumonia and ARDS, there is an urgent need to investigate the effects and treatments of lengthy low-concentration inhaled anesthetics exposure on cognitive function in adults. Previous studies showed that general anesthetics dose- and exposure length-dependently induced neuroinflammatory response and cognitive decline in neonatal and aging animals. The anti-diabetes drug metformin has anti-neuroinflammation effects by modulating microglial polarization and inhibiting astrocyte activation. In this study, we demonstrated that the inhalation of 1.3% isoflurane (a sub-minimal alveolar concentration, sub-MAC) for 6 h impaired recognition of novel objects from Day 1 to Day3 in adult mice. Prolonged sub-MAC isoflurane exposure also triggered typically reactive microglia and A1-like astrocytes in the hippocampus of adult mice on Day 3 after anesthesia. In addition, prolonged isoflurane inhalation switched microglia into a proinflammatory M1 phenotype characterized by elevated CD68 and iNOS as well as decreased arginase-1 and IL-10. Metformin pretreatment before anesthesia enhanced cognitive performance in the novel object test. The positive cellular modifications promoted by metformin pretreatment included the inhibition of reactive microglia and A1-like astrocytes and the polarization of microglia into M2 phenotype in the hippocampus of adult mice. In conclusion, prolonged sub-MAC isoflurane exposure triggered significant hippocampal neuroinflammation and cognitive decline in adult mice which can be alleviated by metformin pretreatment via inhibiting reactive microglia and A1-like astrocytes and promoting microglia polarization toward anti-inflammatory phenotype in the hippocampus.
Collapse
Affiliation(s)
- Liangyu Peng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu, China.
| | - Shuai Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu, China.
| | - Jiyan Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu, China.
| | - Wenjia Xie
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu, China.
| | - Xin Fang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu, China
| | - Tianjiao Xia
- Medical School of Nanjing University, Nanjing 210093, Jiangsu, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, Jiangsu, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
14
|
Sümer Coşkun A, Bedel HA, Munzuroğlu M, Derin N, Usta C. Does Resveratrol Prevent Sevoflurane Toxicity in Newborn Rats? J Med Food 2022; 25:557-563. [PMID: 35420459 DOI: 10.1089/jmf.2021.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inhalation anesthetics have been shown to cause neurodevelopmental disorders and neurotoxic effects. In this study, we aimed to investigate the effect of resveratrol on the possible neurotoxic effect of sevoflurane and the brain-derived neurotrophic factor (BDNF) pathway in newborn rats. The animals were divided into four groups: control, sevoflurane, sevoflurane+resveratrol 25 mg/kg, and sevoflurane+resveratrol 50 mg/kg. The groups that received anesthesia were given 3% sevoflurane for 2 h on the postnatal seventh, eighth, and ninth days. Control gas was applied to the control group. The Morris water maze (MWM) test was performed on postnatal 35th day. After performing the open field test on the postnatal 41st day, the animals were dissected, and the hippocampal BDNF levels were determined by Western blot method. In the MWM test, there was a significant decrease in the time spent in the target quadrant in the sevoflurane anesthesia group compared with control group. This reduction was reversed with the resveratrol pretreatment. Sevoflurane exposure significantly decreased hippocampal BDNF levels compared with the control group. The resveratrol 25 mg/kg pretreatment did not reverse this reduction, whereas resveratrol 50 mg/kg ameliorated this impairment. Sevoflurane did not cause any significant difference in the rats' performance in the open field test. However, 50 mg/kg resveratrol pretreatment caused a statistically significant increase in this performance. Our results showed that sevoflurane impaired learning and memory functions in newborn rats and resveratrol reversed this deterioration. Also BDNF might play a role in this beneficial effect of resveratrol.
Collapse
Affiliation(s)
| | - Hatice Aslı Bedel
- Pharmacology Department, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Mustafa Munzuroğlu
- Biophysics Department, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Narin Derin
- Biophysics Department, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Coşkun Usta
- Pharmacology Department, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
15
|
Liu H, Meng X, Li Y, Chen S, Ji Y, Song S, Ji F, Jin X. Neonatal exposure to sevoflurane impairs preference for social novelty in C57BL/6 female mice at early-adulthood. Biochem Biophys Res Commun 2022; 593:129-136. [PMID: 35063768 DOI: 10.1016/j.bbrc.2022.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/08/2022] [Indexed: 11/28/2022]
Abstract
Social interaction deficit is core symptom of children with autism, owing to interaction of genetic predisposition and environmental toxins. Sevoflurane could induce neurotoxicity in developing brain in rodent models. This study aims to investigate whether sevoflurane anesthesia in neonatal period could impair social behaviors in male and female mice. Twenty-eight male and thirty-one female mice were randomly assigned to receive 3.0% sevoflurane or 60% oxygen on postnatal day 6. They were tested for social interaction behaviors at one- and two-month-old. In addition, the cortex and hippocampus of neonatal mice undergoing sevoflurane anesthesia were harvested for immunoblotting analysis. As a result, both male and female mice undergoing sevoflurane anesthesia showed strong sociability and weak preference for social novelty at juvenile age. In addition, the male mice developed normal preference for social novelty at early-adulthood; However, the female mice remained weak preference for social novelty. Furthurmore, sevoflurane anesthesia could decrease the levels of PSD95 but not Neuroligin-1 in the hippocampus but not cortex of neonatal mice. In conclusion, sevoflurane anesthesia in neonatal period could disturb development of social memory and impair preference for social novelty in female mice at early-adulthood, with the potential mechanism of decreasing PSD95 expression in the hippocampus of C57BL/6 mice.
Collapse
Affiliation(s)
- Huayue Liu
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, PR China; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China
| | - Xiaowen Meng
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, PR China; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China
| | - Yixuan Li
- Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
| | - Shiwen Chen
- Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
| | - Yumeng Ji
- Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
| | - Shaoyong Song
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, PR China; Department of Pain Medicine, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215124, PR China
| | - Fuhai Ji
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, PR China; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China.
| | - Xin Jin
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, PR China; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China.
| |
Collapse
|
16
|
Useinovic N, Maksimovic S, Near M, Quillinan N, Jevtovic-Todorovic V. Do We Have Viable Protective Strategies against Anesthesia-Induced Developmental Neurotoxicity? Int J Mol Sci 2022; 23:ijms23031128. [PMID: 35163060 PMCID: PMC8834847 DOI: 10.3390/ijms23031128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Since its invention, general anesthesia has been an indispensable component of modern surgery. While traditionally considered safe and beneficial in many pathological settings, hundreds of preclinical studies in various animal species have raised concerns about the detrimental and long-lasting consequences that general anesthetics may cause to the developing brain. Clinical evidence of anesthetic neurotoxicity in humans continues to mount as we continue to contemplate how to move forward. Notwithstanding the alarming evidence, millions of children are being anesthetized each year, setting the stage for substantial healthcare burdens in the future. Hence, furthering our knowledge of the molecular underpinnings of anesthesia-induced developmental neurotoxicity is crucially important and should enable us to develop protective strategies so that currently available general anesthetics could be safely used during critical stages of brain development. In this mini-review, we provide a summary of select strategies with primary focus on the mechanisms of neuroprotection and potential for clinical applicability. First, we summarize a diverse group of chemicals with the emphasis on intracellular targets and signal-transduction pathways. We then discuss epigenetic and transgenerational effects of general anesthetics and potential remedies, and also anesthesia-sparing or anesthesia-delaying approaches. Finally, we present evidence of a novel class of anesthetics with a distinct mechanism of action and a promising safety profile.
Collapse
Affiliation(s)
- Nemanja Useinovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
- Correspondence:
| | - Stefan Maksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
| | - Michelle Near
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.M.); (M.N.); (N.Q.); (V.J.-T.)
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Oxidative Stress as a Common Key Event in Developmental Neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6685204. [PMID: 34336113 PMCID: PMC8315852 DOI: 10.1155/2021/6685204] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
The developing brain is extremely sensitive to many chemicals. Perinatal exposure to neurotoxicants has been implicated in several neurodevelopmental disorders, including autism spectrum disorder, attention-deficit hyperactive disorder, and schizophrenia. Studies of the molecular and cellular events related to developmental neurotoxicity have identified a number of “adverse outcome pathways,” many of which share oxidative stress as a key event. Oxidative stress occurs when the balance between the production of free oxygen radicals and the activity of the cellular antioxidant system is dysregulated. In this review, we describe some of the developmental neurotoxins that target the antioxidant system and the mechanisms by which they elicit stress, including oxidative phosphorylation in mitochondria and plasma membrane redox system in rodent models. We also discuss future directions for identifying adverse outcome pathways related to oxidative stress and developmental neurotoxicity, with the goal of improving our ability to quickly and accurately screen chemicals for their potential developmental neurotoxicity.
Collapse
|
18
|
Liu G, Sun Y, Liu F. Curcumin Reduces Neuroinflammation and Improves the Impairments of Anesthetics on Learning and Memory by Regulating the Expression of miR-181a-5p. Neuroimmunomodulation 2021; 28:38-46. [PMID: 33849031 DOI: 10.1159/000514548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The purpose of this study was to explore the role of curcumin (Cur) in isoflurane (ISO)-induced learning and memory dysfunction in Sprague-Dawley rats and further elucidate the mechanism of the protective effect produced by Cur. METHODS Rat models of cognitive impairment were established by inhaling 3% ISO. The Morris water maze test was used to assess the cognitive function of rats. ELISA and qRT-PCR were used to analyze the protein levels of pro-inflammatory cytokines and expression levels of miR-181a-5p, respectively. RESULTS Cur significantly improved the ISO-induced cognitive dysfunction in rats and alleviated the ISO-induced neuroinflammation. miR-181a-5p was overexpressed in ISO-induced rats, while Cur treatment significantly reduced the expression of miR-181a-5p. Overexpression of miR-181a-5p promoted the cognitive impairment and the release of inflammatory cytokines and reversed the neuroprotective effect of Cur. CONCLUSION Cur has a protective effect on ISO-induced cognitive dysfunction, which may be achieved by regulating the expression of miR-181a-5p.
Collapse
Affiliation(s)
- Guizhen Liu
- Department of Anesthesiology, Laiyang Central Hospital, Yantai City, China
| | - Yuchuan Sun
- Department of Anesthesiology, Laiyang Central Hospital, Yantai City, China
| | - Fei Liu
- Department of Anesthesiology, Laiyang Central Hospital, Yantai City, China
| |
Collapse
|
19
|
Zhong H, Xiao R, Ruan R, Liu H, Li X, Cai Y, Zhao J, Fan X. Neonatal curcumin treatment restores hippocampal neurogenesis and improves autism-related behaviors in a mouse model of autism. Psychopharmacology (Berl) 2020; 237:3539-3552. [PMID: 32803366 DOI: 10.1007/s00213-020-05634-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE Autism spectrum disorders (ASDs) are highly prevalent neurodevelopmental disorders characterized by deficits in social communication and interaction, repetitive stereotyped behaviors, and cognitive impairments. Curcumin has been indicated to be neuroprotective against neurological and psychological disorders. However, the role of curcumin in autistic phenotypes remains unclear. OBJECTIVES In the current study, we evaluated the effects of neonatal curcumin treatment on behavior and hippocampal neurogenesis in BTBRT+ltpr3tf/J (BTBR) mice, a model of autism. METHODS C57BL/6J (C57) and BTBR mouse pups were treated with 0.1% dimethyl sulfoxide (DMSO) or curcumin (20 mg/kg) from postnatal day 6 (P6) to P8. Neural progenitor cells (NPCs) in the hippocampal dentate gyrus (DG) were evaluated on P8, and neurogenesis was measured on P24 by immunofluorescence. A battery of behavioral tests was carried out when the mice were 8 weeks of age. RESULTS Neonatal curcumin treatment improved autism-related symptoms in BTBR mice, enhancing sociability, reducing repetitive behaviors, and ameliorating cognitive impairments. Furthermore, the suppression of hippocampal neurogenesis in BTBR mice was greatly rescued after neonatal curcumin treatment, leading to an increase in neurogenic processes and an increase in NPC proliferation concomitant with an expansion of the NPC pool on P8, and NPC differentiation towards the neuronal lineage was promoted in the DG of BTBR mice on P24. CONCLUSIONS Our findings suggest that neonatal curcumin treatment elicits a therapeutic response through the restoration of hippocampal neurogenesis in BTBR mice and thus may represent a promising novel pharmacological strategy for ASD treatment.
Collapse
Affiliation(s)
- Hongyu Zhong
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Rui Xiao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ruotong Ruan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Hui Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xin Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Yun Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Jinghui Zhao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China. .,Institute of Brain and Intelligence, Chongqing, 400038, China.
| |
Collapse
|
20
|
Zhao S, Fan Z, Hu J, Zhu Y, Lin C, Shen T, Li Z, Li K, Liu Z, Chen Y, Zhang B. The differential effects of isoflurane and sevoflurane on neonatal mice. Sci Rep 2020; 10:19345. [PMID: 33168900 PMCID: PMC7652873 DOI: 10.1038/s41598-020-76147-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Previous research has shown that exposure to volatile anesthetics can induce acute neuroinflammation and neuroapoptopsis in neonatal rodents and that these events can lead to cognitive dysfunction at later stages. Isoflurane and sevoflurane are two of the most popular anesthetics used in the field of pediatrics. However, the relative impact of these two anesthetics on the developing brain at distinct time points after the induction of anesthesia has not been compared. In the present study, we exposed 7-day-old mice to clinically equivalent doses of isoflurane (1.5%) and sevoflurane (2.5%) for 4 h and then investigated consequential changes in the brains of these mice at six different time points. We analyzed the levels of proteins that are directly related to neuroapoptosis, neuroinflammation, synaptic function, and memory, in the brains of neonatal mice. Exposure of neonatal mice to isoflurane and sevoflurane resulted in acute neuronal apoptosis. Our analysis observed significant levels of neuroinflammation and changes in the expression levels of proteins associated with both synaptic transmission and memory in mice from the isoflurane group but not the sevoflurane group. Our results therefore indicate that isoflurane and sevoflurane induce differential effects in the brains of neonatal mice.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ziqi Fan
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jing Hu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yueli Zhu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Caixiu Lin
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ting Shen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zheyu Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kaicheng Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
21
|
Yang F, Zhao H, Zhang K, Wu X, Liu H. Research progress and treatment strategies for anesthetic neurotoxicity. Brain Res Bull 2020; 164:37-44. [PMID: 32798600 DOI: 10.1016/j.brainresbull.2020.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Every year, a large number of infants and young children worldwide are administered general anesthesia. Whether general anesthesia adversely affects the intellectual development and cognitive function of children at a later date remains controversial. Many animal experiments have shown that general anesthetics can cause nerve damage during development, affect synaptic plasticity, and induce apoptosis, and finally affect learning and memory function in adulthood. The neurotoxicity of pediatric anesthetics (PAN) has received extensive attention in the field of anesthesia, which has been listed as a potential problem affecting public health by NFDA of the United States. Previous studies on rodents and non-human primates indicate that inhalation of anesthetics early after birth can induce long-term and sustained impairment of learning and memory function, as well as changes in brain function. Many anti-oxidant drugs, dexmedetomidine, as well as a rich living environment and exercise have been proven to reduce the neurotoxicity of anesthetics. In this paper, we summarize the research progress, molecular mechanisms and current intervention measures of anesthetic neurotoxicity.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Hai Zhao
- Clinical Skills Center, Shenyang Medical College, Huanghe Street 146, Shenyang, 110034, China.
| | - Kaiyuan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| |
Collapse
|
22
|
Huang H, Hu C, Xu L, Zhu X, Zhao L, Min J. The Effects of Hesperidin on Neuronal Apoptosis and Cognitive Impairment in the Sevoflurane Anesthetized Rat are Mediated Through the PI3/Akt/PTEN and Nuclear Factor-κB (NF-κB) Signaling Pathways. Med Sci Monit 2020; 26:e920522. [PMID: 32296010 PMCID: PMC7180331 DOI: 10.12659/msm.920522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/01/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hesperidin (HPD) is a bioflavonoid found in citrus fruits. This study aimed to investigate the effects of HPD on cerebral morphology and cognitive behavior in sevoflurane anesthetized neonatal rats and the molecular mechanisms involved. MATERIAL AND METHODS Sixty neonatal Sprague-Dawley rats were divided into five groups, including the untreated control group, and the sevoflurane anesthesia groups untreated and treated with 25 mg/kg/day of HPD (HPD25), 50 mg/kg/day of HPD (HPD50), and 100 mg/kg/day of HPD (HPD100). The rat model was created by the administration of sevoflurane on the sixth postnatal day (P6) and for a further three days. Neonatal rats pre-treated with HPD for 19 days were given sevoflurane 30 minutes beforehand (P3 to P21). Rat hippocampal tissue specimens were investigated using the TUNEL assay for apoptosis. Hippocampal tissue homogenates underwent Western blot for the quantification of markers of neuroinflammation and oxidative stress. The neonatal rats were also investigated for behavior, learning, and memory. RESULTS HPD significantly reduced sevoflurane-induced neuronal apoptosis and protein expression of cleaved caspase-3, BAD, BAX, NF-kappaB, TNF-alpha, IL-6, and IL-1ß (p<0.05). HPD significantly increased the expression of Bcl-xL and Bcl-2 (p<0.05), and activated the PI3/Akt pathway. Learning and memory were significantly improved following HPD treatment (p<0.05). HPD treatment modulated the PI3/Akt/PTEN and NF-kappaB signaling pathways, and reduced oxidative stress (p<0.05). CONCLUSIONS In the sevoflurane anesthetized neonatal rat model, treatment with HPD reduced neuronal degeneration, hippocampal inflammation, and improvised memory, learning, and cognitive responses by modulating the PI3/Akt/PTEN and NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Haijin Huang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Cuicui Hu
- Department of Operating Room, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Lin Xu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xiaoping Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Lili Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jia Min
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
23
|
Long noncoding RNA small nucleolar RNA host gene 1 contributes to sevoflurane-induced neurotoxicity through negatively modulating microRNA-181b. Neuroreport 2020; 31:416-424. [PMID: 32150149 DOI: 10.1097/wnr.0000000000001430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sevoflurane has been reported to promote learning and memory disabilities by promoting neuroinflammation and neuroapoptosis. However, the precise mechanism by which sevoflurane mediating neurotoxicity remains to be determined. Cell viability, reactive oxygen species (ROS) generation, inflammation and apoptosis were measured by cell counting kit-8 assay, ROS kit, ELISA, flow cytometry and western blot assay. The abundance of small nucleolar RNA host gene 1 (SNHG1) and microRNA-181b (miR-181b) was measured by quantitative real-time PCR in HT22 cells. The binding sites between miR-181b and SNHG1 were predicted by Starbase, and this combination was verified by dual-luciferase reporter assay, RNA immunoprecipitation and RNA-pull down assays. Sevoflurane treatment promoted ROS generation, inflammation and apoptosis while impeded the viability of HT22 cells via upregulating long noncoding RNA (lncRNA) SNHG1. MiR-181b was a direct target of SNHG1, and it was inversely regulated by SNHG1 in HT22 cells. The overexpression of miR-181b counteracted the neurotoxicity of sevoflurane treatment in HT22 cells. MiR-181b depletion abolished the inhibitory effects of SNHG1 intervention on the ROS generation, inflammation and apoptosis and the promoting impact on the viability of HT22 cells. LncRNA SNHG1 contributed neurotoxicity in sevoflurane-stimulated HT22 cells via downregulating miR-181b. The SNHG1/miR-181b axis was a target for the prevention of sevoflurane-induced neurotoxicity.
Collapse
|
24
|
Gyasi YI, Pang YP, Li XR, Gu JX, Cheng XJ, Liu J, Xu T, Liu Y. Biological applications of near infrared fluorescence dye probes in monitoring Alzheimer’s disease. Eur J Med Chem 2020; 187:111982. [DOI: 10.1016/j.ejmech.2019.111982] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 01/10/2023]
|
25
|
General anesthetic neurotoxicity in the young: Mechanism and prevention. Neurosci Biobehav Rev 2019; 107:883-896. [PMID: 31606415 DOI: 10.1016/j.neubiorev.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022]
Abstract
General anesthesia (GA) is usually considered to safely induce a reversible unconscious state allowing surgery to be performed without pain. A growing number of studies, in particular pre-clinical studies, however, demonstrate that general anesthetics can cause neuronal death and even long-term neurological deficits. Herein, we report our literature review and meta-analysis data of the neurological outcomes after anesthesia in the young. We also review available mechanistic and epigenetic data of GA exposure related to cognitive impairment per se and the potential preventive strategies including natural herbal compounds to attenuate those side effects. In summary, anesthetic-induced neurotoxicity may be treatable and natural herbal compounds and other medications may have great potential for such use but warrants further study before clinical applications can be initiated.
Collapse
|
26
|
|
27
|
Yang F, Shan Y, Tang Z, Wu X, Bi C, Zhang Y, Gao Y, Liu H. The Neuroprotective Effect of Hemin and the Related Mechanism in Sevoflurane Exposed Neonatal Rats. Front Neurosci 2019; 13:537. [PMID: 31191229 PMCID: PMC6546893 DOI: 10.3389/fnins.2019.00537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/08/2019] [Indexed: 01/05/2023] Open
Abstract
Background Many studies have reported that sevoflurane can increase neuronal apoptosis and result in cognitive deficits in rodents. Although neurotoxicity may be associated with mitochondrial dysfunction and oxidative stress, the exact mechanism remains unclear. In order to evaluate potential treatment therapies, we studied the effects of hemin on neurotoxicity of neonatal rat sevoflurane exposure. Methods Postnatal day (P) seven rats were assigned randomly to four groups; (1) group C: non-anesthesia, (2) group H: intraperitoneal hemin (50 mg kg-1) treatment on days 5 and 6, (3) group S: 3% sevoflurane exposure for 4 h, and (4) group SH: hemin treatment + sevoflurane exposure. The expression of neuroglobin in neonatal hippocampus was determined by western blot and immunohistochemistry. Neuroglobin was localized by immunofluorescence. Western blot for the expression of cleaved caspase-3 and TUNEL were used to detect neonatal hippocampal apoptosis, and cytochrome c was used to evaluate mitochondrial function. Drp-1 and Mfn-2 immunoblotting were used to assess mitochondrial dynamics. The Morris water maze test was performed to detect cognitive function in the rats on P30. Results Exposure to sevoflurane increased the expression of cleaved caspase-3, cytochrome c, and Drp1 in the neonatal hippocampus and resulted in cognitive deficiency but decreased expression of Mfn2. Hemin reduced apoptosis, improved mitochondrial dynamics and ameliorated the cognitive impairment caused by sevoflurane exposure. Conclusion Hemin reduced neuronal apoptosis, improved mitochondrial dynamics and protected against cognitive deficits induced by sevoflurane in neonatal rats. This neuroprotective effect may be achieved by increasing the expression of neuroglobin.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yangyang Shan
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhiyin Tang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Congjie Bi
- Department of Anesthesiology, Dalian Central Hospital, Dalian, China
| | - Yongfang Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China.,Department of Anesthesiology, Dalian Central Hospital, Dalian, China.,Department of Anesthesiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
28
|
Sevoflurane induces cognitive impairment in young mice via autophagy. PLoS One 2019; 14:e0216372. [PMID: 31107909 PMCID: PMC6527218 DOI: 10.1371/journal.pone.0216372] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/18/2019] [Indexed: 11/19/2022] Open
Abstract
Background Anesthesia may induce neurotoxicity and neurocognitive impairment in young mice. However, the underlying mechanism remains largely to be determined. Meanwhile, autophagy is involved in brain development and contributes to neurodegenerative diseases. We, therefore, set out to determine the effects of sevoflurane on autophagy in the hippocampus of young mice and on cognitive function in the mice. Methods Six day-old mice received 3% sevoflurane, for two hours daily, on postnatal days (P) 6, 7 and 8. We then decapitated the mice and harvested the hippocampus of the young mice at P8. The level of LC3, the ratio of LC3-II to LC3-I, and SQSTM1/p62 level associated with the autophagy in the hippocampus of the mice were assessed by using Western blotting. We used different groups of mice for behavioral testing via the Morris Water Maze from P31 to P37. Results The anesthetic sevoflurane increased the level of LC3-II and ratio of LC3-II/LC3-I, decreased the p62 level in the hippocampus of the young mice, and induced cognitive impairment in the mice. 3-Methyladenine, the inhibitor of autophagy, attenuated the activation of autophagy and ameliorated the cognitive impairment induced by sevoflurane in the young mice. Conclusion These data showed that sevoflurane anesthesia might induce cognitive impairment in the young mice via activation of autophagy in the hippocampus of the young mice. These findings from the proof of concept studies have established a system and suggest the role of autophagy in anesthesia neurotoxicity and cognitive impairment in the young mice, pending further investigation.
Collapse
|
29
|
Wang Y, Wang C, Zhang Y, Wang G, Yang H. Pre-administration of luteoline attenuates neonatal sevoflurane-induced neurotoxicity in mice. Acta Histochem 2019; 121:500-507. [PMID: 31006528 DOI: 10.1016/j.acthis.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
Sevoflurane is a widely used inhaled anesthetic, which triggers neuroapoptosis and oxidative damage in the developing central nervous system and cognitive dysfunction later in life. However, no effective therapeutic strategy for sevoflurane-induced deleterious effects is well developed. The purpose of the present study was to explore whether luteoline could attenuate neonatal sevoflurane exposure-triggered neurotoxicity. In this study, six-day-old C57BL/6 mice were pretreated with luteoline (30, 60 mg/kg) intraperitoneally for 30 min before exposed to 3% sevoflurane 6 h consecutively. We first examined the effects of luteoline on hippocampal neuron apoptosis, inflammation and oxidative stress 18 h post anesthesia. The spatial learning and memory performance was measured using Morris water maze test from postnatal day 31 to 38. The results showed that luteoline ameliorated neuronal apoptosis as evidenced by decrease of apoptotic cells, downregulation of the cleavage levels of caspase-3 and PRAP, and inactivation of caspase-3. Moreover, luteoline significantly decreased protein expressions of inflammatory cytokines (IL-1β, IL-18 and TNF-α), inhibited NF-кB/NLRP3 pathway (NF-кB, NLRP3, ASC and caspase-1) and suppressed NF-кB activity. Our analyses indicated that luteoline had a significant effect on decreasing the contents of ROS and MDA, elevating the activity of SOD, and ultimately improving spatial learning and memory deficits of mice. In summary, our findings confirm that the attenuation of luteoline on sevoflurane-induced spatial learning and memory impairment later is associated with inhibition of hippocampal neuron apoptosis, inflammation and oxidative stress early. Luteoline might be a potential therapeutic for sevoflurane anesthesia-induced neurobehavioral dysfunction.
Collapse
|
30
|
Euxanthone Ameliorates Sevoflurane-Induced Neurotoxicity in Neonatal Mice. J Mol Neurosci 2019; 68:275-286. [PMID: 30927203 DOI: 10.1007/s12031-019-01303-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/15/2019] [Indexed: 01/05/2023]
|
31
|
Johnson SC, Pan A, Sun GX, Freed A, Stokes JC, Bornstein R, Witkowski M, Li L, Ford JM, Howard CRA, Sedensky MM, Morgan PG. Relevance of experimental paradigms of anesthesia induced neurotoxicity in the mouse. PLoS One 2019; 14:e0213543. [PMID: 30897103 PMCID: PMC6428290 DOI: 10.1371/journal.pone.0213543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/24/2019] [Indexed: 11/30/2022] Open
Abstract
Routine general anesthesia is considered to be safe in healthy individuals. However, pre-clinical studies in mice, rats, and monkeys have repeatedly demonstrated that exposure to anesthetic agents during early post-natal periods can lead to acute neurotoxicity. More concerning, later-life defects in cognition, assessed by behavioral assays for learning and memory, have been reported. Although the potential for anesthetics to damage the neonatal brain is well-documented, the clinical significance of the pre-clinical models in which damage is induced remains quite unclear. Here, we systematically evaluate critical physiological parameters in post-natal day 7 neonatal mice exposed to 1.5% isoflurane for 2–4 hours, the most common anesthesia induced neurotoxicity paradigm in this animal model. We find that 2 or more hours of anesthesia exposure results in dramatic respiratory and metabolic changes that may limit interpretation of this paradigm to the clinical situation. Our data indicate that neonatal mouse models of AIN are not necessarily appropriate representations of human exposures.
Collapse
Affiliation(s)
- Simon C. Johnson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Neurology, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Amanda Pan
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Grace X. Sun
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Arielle Freed
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- University of Washington School of Dentistry, Seattle, WA, United States of America
| | - Julia C. Stokes
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Rebecca Bornstein
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Michael Witkowski
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Li Li
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Jeremy M. Ford
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Seattle Children's Imagination Lab, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Christopher R. A. Howard
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Seattle Children's Imagination Lab, Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Margaret M. Sedensky
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States of America
| | - Philip G. Morgan
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
32
|
Johnson SC, Pan A, Li L, Sedensky M, Morgan P. Neurotoxicity of anesthetics: Mechanisms and meaning from mouse intervention studies. Neurotoxicol Teratol 2018; 71:22-31. [PMID: 30472095 DOI: 10.1016/j.ntt.2018.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Volatile anesthetics are widely used in human medicine and generally considered to be safe in healthy individuals. In recent years, the safety of volatile anesthesia in pediatric patients has been questioned following reports of anesthetic induced neurotoxicity in pre-clinical studies. These studies in mice, rats, and primates have demonstrated that exposure to anesthetic agents during early post-natal periods can cause acute neurotoxicity, as well as later-life cognitive defects including deficits in learning and memory. In recent years, the focus of many pre-clinical studies has been on identifying candidate pathways or potential therapeutic targets through intervention trials. These reports have shed light on the mechanisms underlying anesthesia induced neurotoxicity as well as highlighting the challenges of pre-clinical modeling of anesthesia induced neurotoxicity in mice. Here, we summarize the data derived from intervention studies in neonatal mouse models of anesthetic exposure and provide an overview of mechanisms proposed to mediate anesthesia induced neurotoxicity in mice based on these reports. The majority of these studies implicate one of three mechanisms: reactive oxygen species (ROS) mediated stress and signaling, growth/nutrient signaling, or direct neuronal modulation.
Collapse
Affiliation(s)
- Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America.
| | - Amanda Pan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
| | - Li Li
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| | - Philip Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
33
|
Bi C, Cai Q, Shan Y, Yang F, Sun S, Wu X, Liu H. Sevoflurane induces neurotoxicity in the developing rat hippocampus by upregulating connexin 43 via the JNK/c-Jun/AP-1 pathway. Biomed Pharmacother 2018; 108:1469-1476. [PMID: 30372849 DOI: 10.1016/j.biopha.2018.09.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
As one of the most popular anesthetics, sevoflurane is widely used in pediatric anesthesia. Unfortunately, an increasing number of studies have demonstrated that sevoflurane has potential neurotoxic effects on the developing brain and cognition, even in adolescence. Connexin 43 (Cx43) has been documented to contribute to cognitive dysfunction. The present study hypothesized that Cx43 may participate in sevoflurane-induced neuroinjury and investigated the underlying mechanisms in young Sprague Dawley (SD) rats. Seven-day-old SD rats (P7) were exposed to 3% sevoflurane for 4 h. The levels of Cx43,mitogen-activated protein kinase (MAPK) signaling pathway components(including total and phosphorylated p38, extracellular signal-regulated kinase (ERK), and c-Jun n-terminal kinase (JNK) and activator protein 1(AP-1) transcription factors (including total and phosphorylated c-Fos, and c-Jun) were assessed by Western blot analysis. Neuronal apoptosis was detected using immunohistochemistry (IHC). The Morris water maze (MWM) was performed to evaluate cognitive function from P28 to P33. The results showed that anesthesia with 3% sevoflurane for 4 h increased Cx43 levels in the rat hippocampus from 6 h to 3 d, and compared with sevoflurane exposure in the control group rats, exposure in P7 SD rats also increased the ratios of phosphorylated JNK to JNK and, phosphorylated c-Jun to c-Jun in the hippocampus from 6 h to 3 d. All these effects could be alleviated by pretreatment with the JNK inhibitor SP600125 (10 mg/kg). Neuroapoptosis was similarly increased from 6 h to 1 d after inhaled sevoflurane exposure. Finally, the MWM indicated that sevoflurane could increase the escape latency and, decrease the number of platform crossings from P28 to P33. Overall, our findings suggested that sevoflurane increased Cx43 expression and induced to apoptosis by activating the JNK/c-Jun signaling pathway in the hippocampus of P7 rats. This finding may reveal a new strategy for preventing sevoflurane-induced neuronal dysfunction.
Collapse
Affiliation(s)
- Congjie Bi
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China; Department of Anesthesiology, Dalian Central Hospital, Dalian, China
| | - Qiuping Cai
- Department of Anesthesiology, Dalian Central Hospital, Dalian, China
| | - Yangyang Shan
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Shiwei Sun
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
34
|
Naserzadeh P, Hafez AA, Abdorahim M, Abdollahifar MA, Shabani R, Peirovi H, Simchi A, Ashtari K. Curcumin loading potentiates the neuroprotective efficacy of Fe 3O 4 magnetic nanoparticles in cerebellum cells of schizophrenic rats. Biomed Pharmacother 2018; 108:1244-1252. [PMID: 30453447 DOI: 10.1016/j.biopha.2018.09.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the neurotoxic effects of Fe3O4 magnetic- CurNPs on isolated schizophrenia mitochondria of rats as an in vivo model. METHODS We designed CMN loaded superparamagnetic iron oxide nanoparticles (SPIONs) (Fe3O4 magnetic- CurNPs) to achieve an enhanced therapeutic effect. The physicochemical properties of Fe3O4 magnetic- CurNPs were characterized using X-ray diffraction (XRD), and dynamic laser light scattering (DLS) and zeta potential. Further, to prove Fe3O4 magnetic- CurNPs results in superior therapeutic effects, and also, the mitochondrial membrane potential collapse, mitochondrial complex II activity, reactive oxygen species generation, ATP level, cytochrome c release and histopathology of cerebellums were determined in brains of schizophrenic rats. RESULTS We showed that effective treatment with CMN reduced or prevented Fe3O4 magnetic-induced oxidative stress and mitochondrial dysfunction in the rat brain probably, as well as mitochondrial complex II activity, MMP, and ATP level were remarkably reduced in the cerebellum mitochondria of treated group toward control (p < 0.05). Therewith, ROS generation, and cytochrome c release were notably (p < 0.05) increased in the cerebellum mitochondria of treated group compared with control group. CONCLUSION Taken together, Fe3O4 magnetic- CurNPs exhibits potent antineurotoxicity activity in cerebellums of schizophrenic rats. This approach can be extended to preclinical and clinical use and may have importance in schizophernia treatment in the future. To our knowledge this is the first report that provides the Fe3O4 magnetic- CurNPs could enhance the neuroprotective effects of CMN in the Schizophrenia.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ashrafi Hafez
- Cancer Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Abdorahim
- Faculté de science, Université Paris-Sud 11, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Mohammad Amin Abdollahifar
- Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Habiballah Peirovi
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Simchi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box, 11365-11155, Tehran, Iran.
| | - Khadijeh Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Srivastava P, Dhuriya YK, Kumar V, Srivastava A, Gupta R, Shukla RK, Yadav RS, Dwivedi HN, Pant AB, Khanna VK. PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin. Neurotoxicology 2018; 67:190-205. [PMID: 29723552 DOI: 10.1016/j.neuro.2018.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 12/20/2022]
Abstract
Protective efficacy of curcumin in arsenic induced NMDA receptor dysfunctions and PI3K/Akt/ GSK3β signalling in hippocampus has been investigated in vivo and in vitro. Exposure to sodium arsenite (in vivo - 20 mg/kg, body weight p.o. for 28 days; in vitro - 10 μM for 24 h) and curcumin (in vivo - 100 mg/kg body weight p.o. for 28 days; in vitro - 20 μM for 24 h) was carried out alone or simultaneously. Treatment with curcumin ameliorated sodium arsenite induced alterations in the levels of NMDA receptors, its receptor subunits and synaptic proteins - pCaMKIIα, PSD-95 and SynGAP both in vivo and in vitro. Decreased levels of BDNF, pAkt, pERK1/2, pGSK3β and pCREB on sodium arsenite exposure were also protected by curcumin. Curcumin was found to decrease sodium arsenite induced changes in hippocampus by modulating PI3K/Akt/GSK3β neuronal survival pathway, known to regulate various cellular events. Treatment of hippocampal cultures with pharmacological inhibitors for ERK1/2, GSK3β and Akt individually inhibited levels of CREB and proteins associated with PI3K/Akt/GSK3β pathway. Simultaneous treatment with curcumin was found to improve sodium arsenite induced learning and memory deficits in rats assessed by water maze and Y-maze. The results provide evidence that curcumin exercises its neuroprotective effect involving PI3K/Akt pathway which may affect NMDA receptors and downstream signalling through TrKβ and BDNF in arsenic induced cognitive deficits in hippocampus.
Collapse
Affiliation(s)
- Pranay Srivastava
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India; School of Pharmacy, Babu Banarsi Das University, Faizabad Road, Lucknow, 226 028, UP, India
| | - Yogesh K Dhuriya
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India
| | - Vivek Kumar
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, Brazil
| | - Akriti Srivastava
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India
| | - Richa Gupta
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India; School of Pharmacy, Babu Banarsi Das University, Faizabad Road, Lucknow, 226 028, UP, India
| | - Rajendra K Shukla
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India
| | - Rajesh S Yadav
- Department of Criminology and Forensic Science, Dr. Harisingh Gour Central University, Sagar, 470003, MP, India
| | - Hari N Dwivedi
- School of Pharmacy, Babu Banarsi Das University, Faizabad Road, Lucknow, 226 028, UP, India
| | - Aditya B Pant
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India.
| | - Vinay K Khanna
- Developmental Toxicology and NeuroToxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, UP, India.
| |
Collapse
|
36
|
Hosseini A, Hosseinzadeh H. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review. Biomed Pharmacother 2018; 99:411-421. [DOI: 10.1016/j.biopha.2018.01.072] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/19/2022] Open
|
37
|
Hydrogen gas attenuates sevoflurane neurotoxicity through inhibiting nuclear factor κ-light-chain-enhancer of activated B cells signaling and proinflammatory cytokine release in neonatal rats. Neuroreport 2017; 28:1170-1175. [DOI: 10.1097/wnr.0000000000000899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Malhotra A, Yosh E, Xiong M. Propofol's Effects on the Fetal Brain for Non-Obstetric Surgery. Brain Sci 2017; 7:brainsci7080107. [PMID: 28820429 PMCID: PMC5575627 DOI: 10.3390/brainsci7080107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022] Open
Abstract
While the use of Propofol has been increasing in usage for general surgical procedures since its release to market, there has been little work done on its potential link to neurotoxicity in humans. Only recently, following the release of a warning label from the United States Food and Drug Administration (USFDA) regarding a potential link to "neurotoxicity" in the neonate, did the surgical and anesthesiology communities become more aware of its potential for harm. Given the widespread use of this drug in clinical practice, the warning label naturally raised controversy regarding intrapartum Propofol usage. While intended to generate further studies, the lack of a viable anesthetic alternative raises issues regarding its current usage for surgical procedures in pregnant women. To answer the question whether current evidence is supportive of Propofol usage at its current levels in pregnant women, this review summarizes available evidence of fetal Propofol exposure in animal studies.
Collapse
Affiliation(s)
- Ajay Malhotra
- Department of Anesthesiology, New Jersey Medical School, Rutgers University, Newark, NJ 07107, USA.
| | - Emily Yosh
- Department of Anesthesiology, New Jersey Medical School, Rutgers University, Newark, NJ 07107, USA.
| | - Ming Xiong
- Department of Anesthesiology, New Jersey Medical School, Rutgers University, Newark, NJ 07107, USA.
| |
Collapse
|
39
|
Abstract
BACKGROUND Sevoflurane is the most widely used inhalational anesthetic in pediatric medicine. Despite this, sevoflurane has been reported to exert potentially neurotoxic effects on the developing brain. Clinical interventions and treatments for these effects are limited. Tanshinone IIA (Tan IIA), extracted from Salvia miltiorrhiza (Danshen), has been documented to alleviate cognitive decline in traditional applications. Therefore, we hypothesized that preadministration of Tan IIA may attenuate sevoflurane-induced neurotoxicity, suggesting that Tan IIA is a new and promising drug capable of counteracting the effects of cognitive dysfunction produced by general anesthetics. METHODS To test this hypothesis, neonatal C57 mice (P6) were exposed to 3% sevoflurane for 2 hours with or without Tan IIA pretreatment at a dose of 10 mg/kg or 20 mg/kg for 3 consecutive days. Cognitive behavior tests such as open field tests and fear conditioning were performed to evaluate locomotor and cognitive function at P31 and P32. At P8, other separate tests, including TdT mediated dUTP Nick End Labeling (TUNEL) assay, immunohistochemistry, Western blotting, enzyme-linked immunosorbent assay, and electron microscopy, were performed. The mean differences among groups were compared using 1-way analysis of variance followed by Bonferroni post hoc multiple comparison tests. RESULTS Repeated exposure to sevoflurane leads to significant cognitive impairment in mice, which may be explained by increased apoptosis, overexpression of neuroinflammatory markers, and changes in synaptic ultrastructure. Interestingly, preadministration of Tan IIA ameliorated these neurocognitive deficits, as shown by increased freezing percentages on the fear conditioning test (sevoflurane+Tan IIA [20 mg/kg] versus sevoflurane, mean difference, 19, 99% confidence interval for difference, 6.4-31, P < .0001, n = 6). The treatment also reduced the percentage of TUNEL-positive nuclei (sevoflurane versus sevoflurane+Tan IIA [20 mg/kg], 2.6, 0.73-4.5, P = .0004, n = 6) and the normalized expression of cleaved caspase-3 (sevoflurane versus sevoflurane+Tan IIA [20 mg/kg], 0.27, 0.02-0.51, P = .0046, n = 5). Moreover, it attenuated the production of the neuroinflammatory mediators interleukin (IL)-1β and IL-6 (normalized sevoflurane versus sevoflurane+Tan IIA [20 mg/kg]: IL-1β: 0.75, 0.47-1.0; P < .0001; IL-6: 0.66, 0.35-0.97; P < .0001; n = 10 per group). Finally, based on measurements of postsynaptic density, the treatment preserved synaptic ultrastructure (sevoflurane+Tan IIA [20 mg/kg] versus sevoflurane, 42, 20-66; P < .0001; n = 12 per group). CONCLUSIONS These results indicate that Tan IIA can alleviate sevoflurane-induced neurobehavioral abnormalities and may decrease neuroapoptosis and neuroinflammation.
Collapse
|
40
|
Xu G, Huang YL, Li PL, Guo HM, Han XP. Neuroprotective effects of artemisinin against isoflurane-induced cognitive impairments and neuronal cell death involve JNK/ERK1/2 signalling and improved hippocampal histone acetylation in neonatal rats. ACTA ACUST UNITED AC 2017; 69:684-697. [PMID: 28294340 DOI: 10.1111/jphp.12704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study was performed to assess the effect of artemisinin against isoflurane-induced neuronal apoptosis and cognitive impairment in neonatal rats. METHODS Artemisinin (50, 100 or 200 mg/kg b.wt/day; oral gavage) was administered to separate groups of neonatal rats starting from postnatal day 3 (P3) to postnatal day 21 (P21). On postnatal day 7 (P7), animals were exposed to inhalation anaesthetic isoflurane (0.75%) for 6 h. KEY FINDINGS Neuronal apoptosis following anaesthetic exposure was significantly reduced by artemisinin. Isoflurane-induced upregulated cleaved caspase-3, Bax and Bad expression were downregulated. Western blotting analysis revealed that treatment with artemisinin significantly enhanced the expression of anti-apoptotic proteins (Bcl-2, Bcl-xL, c-IAP-1, c-IAP-2, xIAP and survivin). Artemisinin increased the acetylation of H3K9 and H4K12 while reducing the expression of histone deacetlyases (HDACs) - HDAC-2 and HDAC-3. Isoflurane-induced activation of JNK signalling and downregulated ERK1/2 expression was effectively modulated by artemisinin. General behaviour of the animals in open-field and T-maze test were improved. Morris water maze test and object recognition test revealed better learning, working memory and also better memory retention on artemisinin treatment. CONCLUSIONS Artemisinin effectively inhibited neuronal apoptosis and improved cognition and memory via regulating histone acetylation and JNK/ERK1/2 signalling.
Collapse
Affiliation(s)
- Guang Xu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun-Li Huang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ping-le Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Ming Guo
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue-Ping Han
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Zhang DX, Zhang LM, Zhao XC, Sun W. Neuroprotective effects of erythropoietin against sevoflurane-induced neuronal apoptosis in primary rat cortical neurons involving the EPOR-Erk1/2-Nrf2/Bach1 signal pathway. Biomed Pharmacother 2017; 87:332-341. [DOI: 10.1016/j.biopha.2016.12.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/15/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022] Open
|
42
|
Walters JL, Paule MG. Review of preclinical studies on pediatric general anesthesia-induced developmental neurotoxicity. Neurotoxicol Teratol 2017; 60:2-23. [DOI: 10.1016/j.ntt.2016.11.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022]
|
43
|
Antidotal effects of curcumin against neurotoxic agents: An updated review. ASIAN PAC J TROP MED 2016; 9:947-953. [DOI: 10.1016/j.apjtm.2016.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/16/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022] Open
|
44
|
Motaghinejad M, Seyedjavadein Z, Motevalian M, Asadi M. The neuroprotective effect of lithium against high dose methylphenidate: Possible role of BDNF. Neurotoxicology 2016; 56:40-54. [DOI: 10.1016/j.neuro.2016.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/12/2016] [Accepted: 06/19/2016] [Indexed: 01/18/2023]
|
45
|
Zhang H, Sun XR, Wang J, Zhang ZZ, Zhao HT, Li HH, Ji MH, Li KY, Yang JJ. Reactive Oxygen Species-mediated Loss of Phenotype of Parvalbumin Interneurons Contributes to Long-term Cognitive Impairments After Repeated Neonatal Ketamine Exposures. Neurotox Res 2016; 30:593-605. [DOI: 10.1007/s12640-016-9653-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 01/29/2023]
|
46
|
Ling YZ, Ma W, Yu L, Zhang Y, Liang QS. Decreased PSD95 expression in medial prefrontal cortex (mPFC) was associated with cognitive impairment induced by sevoflurane anesthesia. J Zhejiang Univ Sci B 2016; 16:763-71. [PMID: 26365118 DOI: 10.1631/jzus.b1500006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Though sevoflurane has been widely used as an anesthetic in surgery, recent studies have shown that exposure to sevoflurane alone could lead to postoperative cognitive dysfunction (POCD), of which the mechanisms still remain largely unknown. The medial prefrontal cortex (mPFC) is known to be implicated in various cognitive impairments, including working memory and attentional processes. In the present study, we tried to identify dysregulated gene expression in mPFC and investigate the underlying mechanisms involved in POCD. METHODS Behavioral tests, including elevated plus-maze, O-maze, and Y-maze tests, were performed on Wistar rats exposed to sevoflurane. Whole-genome mRNA profiling of mPFC from Wistar rats after exposure to sevoflurane was carried out. Real-time polymerase chain reaction (PCR) was done to verify the differentially expressed genes. RESULTS Significant impairment of working memory of rats after exposure to sevoflurane was observed. A total of 119 of 7319 detected mRNAs showed significantly different expression between rats with and without sevoflurane exposure (fold change (FC)>2.0, P<0.05, and false discovery rate (FDR)<0.05), among which 74 mRNAs were down-regulated and 45 mRNAs were up-regulated. Postsynaptic density-95 (PSD95, also named DLG4) showed the most significantly decreased expression in mPFC and further investigation indicated that PSD95 expression level was correlated with spatial working memory performance. CONCLUSIONS Our study revealed that PSD95 might be involved in the mechanism of POCD, which could provide clues for preventing POCD in clinical operations.
Collapse
Affiliation(s)
- Yun-zhi Ling
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China.,Department of Anesthesiology, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, China
| | - Wei Ma
- Department of Preventive Treatment of Disease, Yulin City Hospital of Traditional Chinese Medicine, Shanxi 719000, China
| | - Li Yu
- Department of Laboratory Medicine, Bengbu Medical College, Anhui 233003, China
| | - Ye Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China
| | - Qi-sheng Liang
- Department of Anesthesiology, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, China
| |
Collapse
|
47
|
Ji MH, Wang ZY, Sun XR, Tang H, Zhang H, Jia M, Qiu LL, Zhang GF, Peng YG, Yang JJ. Repeated Neonatal Sevoflurane Exposure-Induced Developmental Delays of Parvalbumin Interneurons and Cognitive Impairments Are Reversed by Environmental Enrichment. Mol Neurobiol 2016; 54:3759-3770. [DOI: 10.1007/s12035-016-9943-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/26/2016] [Indexed: 01/13/2023]
|
48
|
Propofol-Induced Neurotoxicity in the Fetal Animal Brain and Developments in Modifying These Effects-An Updated Review of Propofol Fetal Exposure in Laboratory Animal Studies. Brain Sci 2016; 6:brainsci6020011. [PMID: 27043637 PMCID: PMC4931488 DOI: 10.3390/brainsci6020011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/17/2022] Open
Abstract
In the past twenty years, evidence of neurotoxicity in the developing brain in animal studies from exposure to several general anesthetics has been accumulating. Propofol, a commonly used general anesthetic medication, administered during synaptogenesis, may trigger widespread apoptotic neurodegeneration in the developing brain and long-term neurobehavioral disturbances in both rodents and non-human primates. Despite the growing evidence of the potential neurotoxicity of different anesthetic agents in animal studies, there is no concrete evidence that humans may be similarly affected. However, given the growing evidence of the neurotoxic effects of anesthetics in laboratory studies, it is prudent to further investigate the mechanisms causing these effects and potential ways to mitigate them. Here, we review multiple studies that investigate the effects of in utero propofol exposure and the developmental agents that may modify these deleterious effects.
Collapse
|
49
|
Hypermethylation of Hippocampal Synaptic Plasticity-Related genes is Involved in Neonatal Sevoflurane Exposure-Induced Cognitive Impairments in Rats. Neurotox Res 2015; 29:243-55. [PMID: 26678494 DOI: 10.1007/s12640-015-9585-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 10/24/2022]
Abstract
General anesthetics given to immature rodents cause delayed neurobehavioral abnormalities via incompletely understood mechanisms. DNA methylation, one of the epigenetic modifications, is essential for the modulation of hippocampal synaptic plasticity through regulating the related genes. Therefore, we investigated whether abnormalities in the hippocampal DNA methylation of synaptic plasticity-related genes are involved in neonatal sevoflurane exposure-induced cognitive impairments in rats. Male Sprague-Dawley rats were exposed to 3 % sevoflurane or 30 % oxygen/air for 2 h daily from postnatal day 7 (P7) to P9 and were treated with DNA methyltransferases (DNMTs) inhibitor 5-aza-2-deoxycytidine (5-AZA) or vehicle 1 h before the first sevoflurane exposure on P7. The rats were euthanized 1, 6, 24 h, and 30 days after the last sevoflurane exposure, and the brain tissues were harvested for biochemical analysis. Cognitive functions were evaluated by the open field, fear conditioning, and Morris water maze (MWM) tests on P39, P41-43, and P50-57, respectively. In the present study, repeated neonatal sevoflurane exposure resulted in hippocampus-dependent cognitive impairments as assessed by fear conditioning and MWM tests. The cognitive impairments were associated with the increased DNMTs and hypermethylation of brain-derived neurotrophic factor (BDNF) and Reelin genes, and subsequent down-regulation of BDNF and Reelin genes, which finally led to the decrease of dendritic spines in the hippocampal pyramidal neurons in adolescent rats. Notably, pretreatment with 5-AZA reversed these sevoflurane-induced abnormalities. In conclusion, our results suggest that hypermethylation of hippocampal BDNF and Reelin is involved in neonatal sevoflurane exposure-induced cognitive impairments.
Collapse
|
50
|
Ji MH, Wang XM, Sun XR, Zhang H, Ju LS, Qiu LL, Yang JJ, Jia M, Wu J, Yang J. Environmental Enrichment Ameliorates Neonatal Sevoflurane Exposure-Induced Cognitive and Synaptic Plasticity Impairments. J Mol Neurosci 2015; 57:358-365. [PMID: 26227794 DOI: 10.1007/s12031-015-0627-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/16/2015] [Indexed: 01/01/2023]
Abstract
Early exposure to sevoflurane, an inhalation anesthetic, induces neurodegeneration in the developing brain and subsequent long-term neurobehavioral abnormalities. Here, we investigated whether an enriched environment could mitigate neonatal sevoflurane exposure-induced long-term cognitive and synaptic plasticity impairments. Male C57BL/6 mice were exposed to 3 % sevoflurane 2 h daily for 3 days from postnatal day 6 (P6) to P8. The exposed mice were randomly allocated to an enriched environment for 2 h daily between P8 and P42 or to a standard environment. Their behavior and cognition were assessed using open field (P35) and fear conditioning tests (P41-P42). Hematoxylin-eosin staining was used to study morphological changes in pyramidal neurons of hippocampal CA1 and CA3 regions. Synaptic plasticity alternations were assessed using western blotting, Golgi staining, and electrophysiological recording. We found that sevoflurane-exposed mice housed in a standard environment exhibited a reduced freezing response in the contextual test, decreased number of dendritic spines on pyramidal neurons and synaptic plasticity-related proteins in the hippocampus, and impaired long-term potentiation. However, in an enriched environment, some of these abnormities induced by repeated sevoflurane exposure. In conclusion, neonatal sevoflurane exposure-induced cognitive and synaptic plasticity impairments are ameliorated by an enriched environment.
Collapse
Affiliation(s)
- Mu-huo Ji
- Department of Anesthesiology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xing-ming Wang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Xiao-ru Sun
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Hui Zhang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Ling-sha Ju
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Li-li Qiu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Jiao-jiao Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Min Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Jing Wu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Jianjun Yang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|