1
|
Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Mukerjee N, Al-Hamash SMJ, Al-Maiahy TJ, Batiha GES. 5-HT/CGRP pathway and Sumatriptan role in Covid-19. Biotechnol Genet Eng Rev 2024; 40:3148-3173. [PMID: 36042570 DOI: 10.1080/02648725.2022.2108996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (Covid-19) is a pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). In Covid-19, there is uncontrolled activation of immune cells with a massive release of pro-inflammatory cytokines and the development of cytokine storm. These inflammatory changes induce impairment of different organ functions, including the central nervous system (CNS), leading to acute brain injury and substantial changes in the neurotransmitters, including serotonin (5-HT) and calcitonin gene-related peptide (CGRP), which have immunomodulatory properties through modulation of central and peripheral immune responses. In Covid-19, 5-HT neurotransmitters and CGRP could contribute to abnormal and atypical vascular reactivity. Sumatriptan is a pre-synaptic 5-HT (5-HT1D and 5-HT1B) agonist and inhibits the release of CGRP. Both 5-HT and CGRP seem to be augmented in Covid-19 due to underlying activation of inflammatory signaling pathways and hyperinflammation. In virtue of its anti-inflammatory and antioxidant properties with inhibition release of 5-HT and CGRP, Sumatriptan may reduce Covid-19 hyperinflammation. Therefore, Sumatriptan might be a novel potential therapeutic strategy in managing Covid-19. In conclusion, Sumatriptan could be an effective therapeutic strategy in managing Covid-19 through modulation of 5-HT neurotransmitters and inhibiting CGRP.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
- AFNP Med, Wien, Austria
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | | | - Thabat J Al-Maiahy
- Department of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Manavi MA, Fathian Nasab MH, Mohammad Jafari R, Dehpour AR. Mechanisms underlying dose-limiting toxicities of conventional chemotherapeutic agents. J Chemother 2024; 36:623-653. [PMID: 38179685 DOI: 10.1080/1120009x.2023.2300217] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Dose-limiting toxicities (DLTs) are severe adverse effects that define the maximum tolerated dose of a cancer drug. In addition to the specific mechanisms of each drug, common contributing factors include inflammation, apoptosis, ion imbalances, and tissue-specific enzyme deficiencies. Among various DLTs are bleomycin-induced pulmonary fibrosis, doxorubicin-induced cardiomyopathy, cisplatin-induced nephrotoxicity, methotrexate-induced hepatotoxicity, vincristine-induced neurotoxicity, paclitaxel-induced peripheral neuropathy, and irinotecan, which elicits severe diarrhea. Currently, specific treatments beyond dose reduction are lacking for most toxicities. Further research on cellular and molecular pathways is imperative to improve their management. This review synthesizes preclinical and clinical data on the pharmacological mechanisms underlying DLTs and explores possible treatment approaches. A comprehensive perspective reveals knowledge gaps and emphasizes the need for future studies to develop more targeted strategies for mitigating these dose-dependent adverse effects. This could allow the safer administration of fully efficacious doses to maximize patient survival.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Pușcașu C, Negreș S, Zbârcea CE, Chiriță C. Unlocking New Therapeutic Options for Vincristine-Induced Neuropathic Pain: The Impact of Preclinical Research. Life (Basel) 2024; 14:1500. [PMID: 39598298 PMCID: PMC11595627 DOI: 10.3390/life14111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Vincristine, a vinca alkaloid, is used in chemotherapy protocols for cancers such as acute leukemia, Hodgkin's disease, neuroblastoma, cervical carcinoma, lymphomas, breast cancer, and melanoma. Among the common adverse effects of vincristine is peripheral neuropathy, with most patients receiving a cumulative dose over 4 mg/m2 who develop varying degrees of sensory neuropathy. The onset of vincristine-induced peripheral neuropathy can greatly affect patients' quality of life, often requiring dose adjustments or the discontinuation of treatment. Moreover, managing vincristine-induced peripheral neuropathy is challenging, with few effective therapeutic strategies available. In the past decade, preclinical studies have explored diverse substances aimed at preventing or alleviating VIPN. Our review consolidates these findings, focusing on the analgesic efficacy and potential mechanisms of various agents, including pharmaceutical drugs, natural compounds, and antioxidants, that show promise in reducing neuropathic pain and protecting neural integrity in preclinical models. Key novel therapeutic options, such as metabolic agents (liraglutide), enzyme inhibitors (ulinastatin), antipsychotics (aripiprazole), interleukin-1 receptor antagonists (anakinra), hormones (oxytocin), and antioxidants (thioctic acid), are highlighted for their neuroprotective, anti-inflammatory, and antioxidant effects. Through this synthesis, we aim to enhance the current understanding of VIPN management by identifying pharmacological strategies that target critical molecular pathways, laying the groundwork for future clinical studies. By clarifying these novel pharmacological approaches and elucidating their mechanisms of action, this review provides a foundation for developing more effective VIPN treatment strategies to ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Cristina Elena Zbârcea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (C.C.)
| | | |
Collapse
|
4
|
Ala M, Mohammad Jafari R, Aghajanpour L, Sanatkar M, Aghsaei Fard M, Goudarzi S, Shadboorestan A, Dehpour AR. Protective effects of sumatriptan against optic nerve injury in rats via modulation of kynurenine pathway, oxidative stress and apoptosis. BIOIMPACTS : BI 2024; 15:30409. [PMID: 40256237 PMCID: PMC12008249 DOI: 10.34172/bi.30409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 04/22/2025]
Abstract
Introduction Traumatic optic neuropathy (TON) is an acute visual dysfunction subsequent to head and neck trauma. Despite immense efforts, there is no effective treatment to minimize the damage caused by TON. Due to its anti-inflammatory and neuroprotective properties, we aimed to measure the effect of sumatriptan on optic nerve injury in rats. Methods Bulldog forceps were used to induce optic nerve crush. Immediately after trauma, a single dose of sumatriptan was intravitreally injected and rats were just observed for 1 week. Visual evoked potential (VEP) was recorded to assess optic nerve function on days 2, 5, and 7 after optic nerve injury. Retinas were extracted seven days after trauma to assess molecular and microscopic changes. Results Crushing force reduced cell survival, decreased the amplitude of the waves, and prolonged their latency in VEP. In contrast, sumatriptan significantly increased cell survival and shortened the latency of P2 and N2 waves. Likewise, sumatriptan significantly decreased the tissue levels of toll-like receptor 4 (TLR4), phosphorylated extracellular signal-regulated kinase (p-ERK), malondialdehyde (MDA), indole-amine 2,3-dioxygenase 1 (IDO), tumor necrosis factor α (TNF-α), interferon γ (INF-γ), and kynurenine in the retinas of rats. Conclusion These findings suggest that sumatriptan can enhance retinal cell viability, improve optic nerve function, and decrease inflammation, possibly through attenuation of TLR4, ERK, and kynurenine signaling pathways. Thus, future clinical trials should assess the efficacy of low-dose intravitreal sumatriptan for patients with TON.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| | - Leila Aghajanpour
- Stem Cell Preparation Unit, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Sanatkar
- Farabi Eye Hospital BB, Eye Research Center, Tehran University of Medical Science, Tehran, Iran
- Anesthesia, Critical Care and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Aghsaei Fard
- Farabi Eye Hospital BB, Eye Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sepideh Goudarzi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| |
Collapse
|
5
|
Gholizadeh R, Eslami F, Dejban P, Ghasemi M, Rahimi N, Dehpour AR. Additive Anticonvulsive Effects of Sumatriptan and Morphine on Pentylenetetrazole-Induced Clonic Seizures in Mice. J Epilepsy Res 2024; 14:9-16. [PMID: 38978533 PMCID: PMC11227926 DOI: 10.14581/jer.24002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 07/10/2024] Open
Abstract
Background and Purpose Sumatriptan protects the brain from damage and enhance the anti-seizure effect of morphine. There is evidence that nitric oxide (NO) may mediate these effects of both drugs. In the present study, we investigated the effects of sumatriptan (0.1-20 mg/kg, intraperitoneal [i.p.]) and morphine (0.1-20 mg/kg, i.p.) alone or in combination on seizure thresholds in an in vivo model of seizure in mice. Using various NO synthase inhibitors as well as the NO precursor, we assessed possible involvement of NO signaling in these effects. Methods Clonic seizures were induced in male Naval Medical Research Institute mice by intravenous administration of pentylenetetrazol (PTZ). Results Acute sumatriptan administration exerted anti-convulsive effects at 0.5 (p<0.01) and 1 mg/kg (p<0.05), but pro-convulsive effects at 20 mg/kg (p<0.05). Morphine had anti-convulsive effects at 0.5 (p<0.05) and 1 mg/kg (p<0.001), but exerted pro-convulsive effect at 20 mg/kg (p<0.05). Combination treatment with sub-effective doses of sumatriptan (0.1 mg/kg) and morphine (0.1 mg/kg) significantly (p<0.05) exerted an anti-convulsive effect. Co-administration of the NO precursor L-arginine (60 mg/kg) with sub-effective doses of sumatriptan and morphine significantly (p<0.05) increased seizure threshold compared with sumatriptan alone, but not sumatriptan+morphine group. While concomitant administration of either the non-selective NO synthase (NOS) inhibitor L-NG-nitroarginine methyl ester (5 mg/kg) or the selective inducible NOS inhibitor aminoguanidine (50 mg/kg) with combined sub-effective doses of morphine and sumatriptan produced significant anticonvulsive effects, concomitant administration with the selective neuronal NOS inhibitor 7-nitroindazole (30 mg/kg) inhibited this effect. Conclusions Our data suggest a possible role for the NO signaling in the anticonvulsive effects of combined sumatriptan and morphine on the PTZ-induced clonic seizures in mice.
Collapse
Affiliation(s)
- Ramtin Gholizadeh
- Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington, KY,
USA
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran,
Iran
- Department of Pharmacology, College of Veterinary Medicine, Islamic Azad University, Karaj,
Iran
| | - Faezeh Eslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran,
Iran
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL,
USA
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| | - Pegah Dejban
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran,
Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran,
Iran
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN,
USA
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital & Medical Center, Burlington, MA,
USA
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran,
Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran,
Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| |
Collapse
|
6
|
Bahramifar A, Jafari RM, Sheibani M, Manavi MA, Rashidian A, Tavangar SM, Akbariani M, Mohammadi Hamaneh A, Goudarzi R, Shadboorestan A, Dehpour AR. Sumatriptan mitigates bleomycin-induced lung fibrosis in male rats: Involvement of inflammation, oxidative stress and α-SMA. Tissue Cell 2024; 88:102349. [PMID: 38492426 DOI: 10.1016/j.tice.2024.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung condition that produces symptoms including coughing which may cause by excessive accumulation of scar tissue inflammatory and oxidative stress exacerbation. Sumatriptan, utilized for migraine treatment as a selective 5-HT1B/1D receptor agonist, has demonstrated significant anti-inflammatory and antioxidant properties in multiple preclinical investigations. Operating primarily on serotonin receptors, sumatriptan leverages the diverse physiological functions of serotonin, playing a pivotal role in regulating both inflammation and oxidative stress which is particularly relevant in the context of IPF. MATERIALS & METHODS Thirty-five male Wistar rats were divided to five group, including: Sham (without IPF induction), control (BLM 5 mg/kg, intraperitoneally), and three fibrosis group with sumatriptan (0.5, 1, and 3 mg/kg, i.p. for 2 weeks) administration. IPF was induced by injection of BLM (single dose, 5 mg/kg intratracheally). Lung tissues were separated for measurement of myeloperoxidase (MPO) as an oxidative stress hallmark, and tumor necrosis factor-α (TNF-α), interleukin-1β (IL-β), and transforming growth factor-β (TGF-β) as inflammatory markers as well as alpha smooth muscle actin (α-SMA). Also, for histological investigations, tissue damages were assessed by Hematoxylin-eosin (H&E) and Masson's trichrome staining method. RESULTS BLM-induced fibrosis could increase α-SMA, MPO, TNF-α, IL-1β, and TGF-β, while treatment with sumatriptan has reversed the α-SMA, MPO, and IL-1β levels. Moreover, the results of H&E and Masson's trichrome staining indicated that sumatriptan (1 and 3 mg/kg) reduced tissue damages, alveolar wall thickness, collagen accumulation, and pulmonary fibrosis induced by BLM. CONCLUSION According to the data achieved from this study, Sumatriptan appears to have therapeutic benefits in IPF, possibly via reducing α-SMA as well as inflammation and the toxicity caused by oxidative stress.
Collapse
Affiliation(s)
- Ayda Bahramifar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Pharmacology, School of Medicine, Indiana University, Indianapolis, USA
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Mohammadi Hamaneh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, CA, United States
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medicine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Liu X, Yang W, Zhu C, Sun S, Yang B, Wu S, Wang L, Liu Z, Ge Z. TLR2 Mediates Microglial Activation and Contributes to Central Sensitization in a Recurrent Nitroglycerin-induced Chronic Migraine Model. Mol Neurobiol 2024; 61:3697-3714. [PMID: 38008889 DOI: 10.1007/s12035-023-03781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Central sensitization is an important pathophysiological mechanism underlying chronic migraine (CM). Previous studies have shown that microglial activation and subsequent inflammation in the trigeminal nucleus caudalis (TNC) contribute to central sensitization. Toll-like receptor 2 (TLR2) is a receptor expressed on the membrane of microglia and participates in central sensitization in inflammatory and chronic pain; however, its role in CM is unclear. Therefore, this study investigated TLR2 involvement in CM in detail. Mice treated with recurrent nitroglycerin (NTG) were used as a CM model. Hyperalgesia was assessed using a 50% paw mechanical threshold and a 50% periorbital threshold on a Von Frey filament pain meter. Western blotting and immunofluorescence analyses were used to detect the expression of TLR2, microglia, c-fos and CGRP in TNC. The expression of inflammatory factors (IL-6, IL-1β、 IL-10、TNF-α and IFN-β1) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). A selective TLR2 antagonist (C29) was systematically administered to observe its effect on hyperalgesia, microglia activation and the expression of c-fos, CGRP and inflammatory factors. Recurrent administration of NTG resulted in acute and chronic hypersensitivity, accompanied by upregulation of TLR2 expression and microglial activation in TNC. C29 partially inhibited pain hypersensitivity. C29 suppressed microglial activation induced by NTG administration. Inhibition of TLR2 reduced the expression of c-fos and CGRP in TNC after NTG treatment. C29 inhibited the expression of inflammatory mediators in TNC. These data showed that microglial TLR2 plays a critical role in the pathogenesis of CM by regulating microglial activation in TNC.
Collapse
Affiliation(s)
- Xuejiao Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wenping Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chenlu Zhu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Songtang Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Bin Yang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Shouyi Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Longde Wang
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhiyan Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
8
|
Ala M, Fallahpour Khoshdel MR, Mohammad Jafari R, Sadrkhanloo M, Goudarzi S, Asl Soleimani M, Dehpour AR. Low-dose sumatriptan improves the outcome of acute mesenteric ischemia in rats via downregulating kynurenine. Pharmacol Rep 2023; 75:623-633. [PMID: 36920684 DOI: 10.1007/s43440-023-00470-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Mesenteric ischemia has remained without effective pharmacological management for many years. Sumatriptan, an abortive medication for migraine and cluster headaches, has potent anti-inflammatory properties and ameliorated organ ischemia in previous animal studies. Similarly, inhibition of the kynurenine pathway ameliorated renal and myocardial ischemia/reperfusion (I/R) in many preclinical studies. Herein, we assessed the effect of sumatriptan on experimental mesenteric I/R and investigated whether kynurenine pathway inhibition is a mechanism underlying its action. METHODS Ischemia was induced by ligating the origin of the superior mesenteric artery (SMA) and its anastomosis with the inferior mesenteric artery (IMA) with bulldog clamps for 30 min. Ischemia was followed by 1 h of reperfusion. Sumatriptan (0.1, 0.3, and 1 mg/kg ip) was injected 5 min before the reperfusion phase, 1-methyltryptophan (1-MT) (100 mg/kg iv) was used to inhibit kynurenine production. At the end of the reperfusion phase, samples were collected from the jejunum of rats for H&E staining and molecular assessments. RESULTS Sumatriptan improved the integrity of intestinal mucosa after I/R, and 0.1 mg/kg was the most effective dose of sumatriptan in this study. Sumatriptan decreased the increased levels of TNF-α, kynurenine, and p-ERK but did not change the decreased levels of NO. Furthermore, sumatriptan significantly increased the decreased ratio of Bcl2/Bax. Similarly, 1-MT significantly decreased TNF-α and kynurenine and protected against mucosal damage. CONCLUSIONS This study demonstrated that sumatriptan has protective effects against mesenteric ischemia and the kynurenine inhibition is potentially involved in this process. Therefore, it can be assumed that sumatriptan has the potential to be repurposed as a treatment for acute mesenteric ischemia.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, 1416753955, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Mohammad Reza Fallahpour Khoshdel
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, 1416753955, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, 1416753955, Iran.
| | | | - Sepideh Goudarzi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, 1416753955, Iran
| | - Meisam Asl Soleimani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, 1416753955, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran.
| |
Collapse
|
9
|
Khan A, Shal B, Ullah Khan A, Ullah Shah K, Saniya Zahra S, ul Haq I, ud Din F, Ali H, Khan S. Neuroprotective mechanism of Ajugarin-I against Vincristine-Induced neuropathic pain via regulation of Nrf2/NF-κB and Bcl2 signalling. Int Immunopharmacol 2023; 118:110046. [PMID: 36989890 DOI: 10.1016/j.intimp.2023.110046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Vincristine (VCR) is a well-known chemotherapeutic agent that frequently triggers neuropathic pain. Ajugarin-I (Aju-I) isolated from Ajuga bracteosa exerts antioxidant, anti-inflammatory, and neuroprotective properties. The present study was designed to investigate the ameliorative potential of Aju-I against VCR-induced neuropathic pain and explored the underlying mechanism involved. The neuroprotective potential of Aju-I was first confirmed against hydrogen peroxide (H2O2)-induced cytotoxicity and oxidative stress in PC12 cells. For neuropathic pain induction, vincristine was given intraperitoneally (i.p.) into adult male albino mice (BALB/c) of the same age (8-12 weeks old) for 10 days (days 1-10). Aju-I (1 and 5 mg/kg) doses were administered from day 11 to 21 intraperitoneally (i.p.) after the neuropathic induction. Initially, behavioral tests such as thermal hyperalgesia, mechanical allodynia, and cold allodynia were performed to investigate the antinociceptive potential of Ajugarin-I (1 and 5 mg/kg, b.w). The nuclear factor-erythroid factor 2-related factor 2(Nrf2), nuclear factor-κB (NF-κB), BCL2-associated × protein (Bax), and B-cell-lymphoma-2 (Bcl-2) signaling proteins were determined by immunohistochemistry and western blot. Additionally, inflammatory cytokines, antioxidant, and oxidative stress parameters were also measured in the spinal cord and sciatic nerve. The behavioral results demonstrated that Aju-I (5 mg/kg) markedly alleviated VCR-induced neuropathic pain behaviors including hyperalgesia and allodynia. It reversed the histological alterations caused by VCR in the sciatic nerve, spinal cord, and brain. It significantly alleviated oxidative stress and inflammation by regulating the immunoreactivity of Nrf2/NF-κB signaling. It suppressed apoptosis by regulating the immunoreactivity of Bcl-2/Bax and Caspase-3. The flow cytometry and comet analysis also confirmed its anti-apoptotic potential. It considerably improved the antioxidant status and mitigated VCR-induced inflammatory cytokines. High-performance liquid chromatography (HPLC) analysis indicated that Aju-I crosses the blood-brain barrier (BBB) and penetrated the brain tissue. These findings suggest that Aju-I treatment inhibited vincristine-induced neuropathy via regulation of Nrf2/NF-κB and Bcl2 signaling.
Collapse
|
10
|
El-Husseiny HM, Kaneda M, Mady EA, Yoshida T, Doghish AS, Tanaka R. Impact of Adipose Tissue Depot Harvesting Site on the Multilineage Induction Capacity of Male Rat Adipose-Derived Mesenchymal Stem Cells: An In Vitro Study. Int J Mol Sci 2023; 24:7513. [PMID: 37108673 PMCID: PMC10138771 DOI: 10.3390/ijms24087513] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Recently, substantial attention has been paid toward adipose-derived mesenchymal stem cells (AdMSCs) as a potential therapy in tissue engineering and regenerative medicine applications. Rat AdMSCs (r-AdMSCs) are frequently utilized. However, the influence of the adipose depot site on the multilineage differentiation potential of the r-AdMSCs is still ambiguous. Hence, the main objective of this study was to explore the influence of the adipose tissue harvesting location on the ability of r-AdMSCs to express the stem-cell-related markers and pluripotency genes, as well as their differentiation capacity, for the first time. Herein, we have isolated r-AdMSCs from the inguinal, epididymal, peri-renal, and back subcutaneous fats. Cells were compared in terms of their phenotype, immunophenotype, and expression of pluripotency genes using RT-PCR. Additionally, we investigated their potential for multilineage (adipogenic, osteogenic, and chondrogenic) induction using special stains confirmed by the expression of the related genes using RT-qPCR. All cells could positively express stem cell marker CD 90 and CD 105 with no significant in-between differences. However, they did not express the hematopoietic markers as CD 34 and CD 45. All cells could be induced successfully. However, epididymal and inguinal cells presented the highest capacity for adipogenic and osteogenic differentiation (21.36-fold and 11.63-fold for OPN, 29.69-fold and 26.68-fold for BMP2, and 37.67-fold and 22.35-fold for BSP, respectively, in epididymal and inguinal cells (p < 0.0001)). On the contrary, the subcutaneous cells exhibited a superior potential for chondrogenesis over the other sites (8.9-fold for CHM1 and 5.93-fold for ACAN, (p < 0.0001)). In conclusion, the adipose tissue harvesting site could influence the differentiation capacity of the isolated AdMSCs. To enhance the results of their employment in various regenerative cell-based therapies, it is thus vital to take the collection site selection into consideration.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Sciences, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Tadashi Yoshida
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11651, Cairo, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan
| |
Collapse
|
11
|
Yang CC, Wang MH, Soung HS, Tseng HC, Lin FH, Chang KC, Tsai CC. Through Its Powerful Antioxidative Properties, L-Theanine Ameliorates Vincristine-Induced Neuropathy in Rats. Antioxidants (Basel) 2023; 12:antiox12040803. [PMID: 37107178 PMCID: PMC10135327 DOI: 10.3390/antiox12040803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
L-theanine (LT), which is a major amino acid found in green tea, was shown to alleviate Vincristine (VCR)-induced peripheral neuropathy and associated neuronal functional changes in rats. To induce peripheral neuropathy, rats were administered VCR at a dose of 100 mg/kg/day intraperitoneally on days 1–5 and 8–12, while control rats received LT at doses of 30, 100, and 300 mg/kg/day intraperitoneally for 21 days or saline solution. Electrophysiological measurements were taken to evaluate the nerve functional loss and recovery through motor and sensory nerve conduction velocities. The sciatic nerve was examined for several biomarkers, including nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), total calcium, IL-6, IL-10, MPO, and caspase-3. The results showed that VCR caused significant hyperalgesia and allodynia in rats; decreased nerve conduction velocity; increased NO and MDA levels; and decreased GSH, SOD, CAT, and IL-10 levels. LT was found to significantly reduce VCR-induced nociceptive pain thresholds, decrease oxidative stress levels (NO, MDA), increase antioxidative strength (GSH, SOD, CAT), and reduce neuroinflammatory activity and apoptosis markers (caspase-3). LT’s antioxidant, calcium homeostasis, anti-inflammatory, anti-apoptotic, and neuroprotective properties make it a potential adjuvant to conventional treatment in VCR-induced neuropathy in rats.
Collapse
Affiliation(s)
- Chih-Chuan Yang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
| | - Mao-Hsien Wang
- Department of Anesthesia, En Chu Kon Hospital, Sanshia District, New Taipei City 23702, Taiwan
| | - Hung-Sheng Soung
- Department of Psychiatry, Yuan-Shan Br. of Taipei Veteran General Hospital, Yilan County 26604, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsiang-Chien Tseng
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei 10051, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research, Zhunan Town, Miaoli County 35053, Taiwan
| | - Kuo-Chi Chang
- Institute of Taiwan Instrument Research, National Applied Research Laboratories, Hsinchu 300092, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Cheng-Chia Tsai
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
- Correspondence: ; Tel.: +886-928260400
| |
Collapse
|
12
|
Çomaklı S, Özdemir S, Küçükler S, Kandemir FM. Beneficial effects of quercetin on vincristine-induced liver injury in rats: Modulating the levels of Nrf2/HO-1, NF-kB/STAT3, and SIRT1/PGC-1α. J Biochem Mol Toxicol 2023; 37:e23326. [PMID: 36808657 DOI: 10.1002/jbt.23326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
Our experimental objective was to investigate the hepatotoxic effect of vincristine (VCR) administration in rats and determined whether combined therapy with Quercetin (Quer) ensured protection. Five groups with seven rats each were used for this purpose, and experimental groups were formulated as follows: Control group; Quer group; VCR group; VCR plus Quer 25 group; VCR plus Quer 50 group. The results showed that VCR significantly increased the activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) enzymes. Besides, VCR caused considerable increases in the malondialdehyde (MDA) contents, along with significant decreases in reduced glutathione levels, superoxide dismutase, catalase, and glutathione peroxidase enzyme activities in the rat livers. Quer treatment in VCR toxicity markedly decreased the activity of ALT, AST, ALP enzymes, and MDA contents and enhanced the activities of antioxidant enzymes. The results also showed that VCR significantly increased the levels of NF-kB, STAT3, and the expression of caspase 3, Bax, and MAP LC3 and decreased the expression of Bcl2 and levels of Nrf2, HO-1, SIRT1, and PGC-1α. Compared to the VCR group, Quer treatment exhibited significantly lower levels of NF-kB, STAT3, and the expression of caspase 3, Bax, and MAP LC3, and higher levels of Nrf2, HO-1, SIRT1, and PGC-1α. In conclusion, our study demonstrated that Quer could alleviate the harmful effects of VCR via activation of NRf2/HO-1 and SIRT1/PGC-1α pathways, and via attenuation of oxidative stress, apoptosis, autophagy, and NF-kB/STAT3 pathways.
Collapse
Affiliation(s)
- Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih M Kandemir
- Department of Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
13
|
Lv X, Mao Y, Cao S, Feng Y. Animal models of chemotherapy-induced peripheral neuropathy for hematological malignancies: A review. IBRAIN 2022; 9:72-89. [PMID: 37786517 PMCID: PMC10529012 DOI: 10.1002/ibra.12086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 10/04/2023]
Abstract
Chemotherapy is one of the main treatments for hematologic malignancies. However, chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common long-term toxic reactions in chemotherapy, and the occurrence of CIPN affects patients' quality of life and can cause interruption of chemotherapy in severe cases, thus reducing the efficacy of chemotherapy. We currently summarize the existing CIPN animal models, including the characteristics of several common animal models such as bortezomib-induced peripheral neuropathy, vincristine-induced peripheral neuropathy, and oxaliplatin-induced peripheral neuropathy. It was found that CIPN may lead to behavioral, histopathological, and neurophysiological changes inducing peripheral neuropathy. However, the mechanism of CIPN has not been fully elucidated, especially the prevention and treatment protocols need to be improved. Therefore, this review article summarizes the progress of research on CIPN animal models and the possible mechanisms and treatment of CIPN.
Collapse
Affiliation(s)
- Xiaoli Lv
- Department of HematologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yingwei Mao
- Department of BiologyPenn State UniversityUniversity ParkPennsylvaniaUSA
| | - Song Cao
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yonghuai Feng
- Department of HematologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
14
|
Shayesteh S, Khalilzadeh M, Takzaree N, Dehpour AR. Dapsone improves the vincristine-induced neuropathic nociception by modulating neuroinflammation and oxidative stress. Daru 2022; 30:303-310. [PMID: 36104653 PMCID: PMC9715892 DOI: 10.1007/s40199-022-00448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/10/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Peripheral neuropathy is a dose-limiting adverse effect of vincristine (VCR) in cancer chemotherapies. Dapsone is commonly used for the prevention of opportunistic infections following cancer therapies. Therefore, a high rate of VCR and dapsone co-administration has occurred in leukemias. Recently neuroprotective effects of dapsone have been reported in various diseases. OBJECTIVES Regarding the physiopathology of VCR-induced peripheral neuropathy (VIPN) and dapsone neuroprotection, this study evaluated the effect of dapsone on VIPN. METHODS VIPN was induced by VCR injection (0.5 mg/kg IP, every other day, 1 week) in male Wistar rats. In the treatment group, dapsone(12.5 mg/kg IP, 1 week) was injected 30 min before VCR. Hot plate, Von Frey, motor neuron conduction velocity (MNCV), and histopathological tests were applied. The levels of TNF-α and NF-kB in the sciatic nerve and caspase-3 activity in dorsal root ganglion were measured by the ELISA method. The levels of malondialdehyde (MDA) and Glutathione (GSH) in the sciatic nerve were measured by spectrophotometry and colorimetric assays. RESULTS VIPN was observed as araised thermal and mechanical threshold, reduced MNCV, and sciatic nerve demyelination. However, dapsone reduced the mechanical and thermal threshold and improved the MNCV. Also, dapsone reduced TNF-α, NF-kB, MDA, and Caspase-3 activity, and increased the GSH level in the sciatic nerve. Moreover, dapsone prevented VCR-induced demyelination in the sciatic nerve. CONCLUSION This research demonstrated that dapsone could be used as a protective drug against VIPN. It improves the impaired thermal and mechanical sensations by reducing inflammatory, oxidant, and apoptosis factors and preventing demyelination in the sciatic nerve.
Collapse
Affiliation(s)
- Sevda Shayesteh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Takzaree
- Department of Anatomy and Medicinal Plants Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
15
|
Neuroprotective effects of Lasmiditan and Sumatriptan in an experimental model of post-stroke seizure in mice: Higher effects with concurrent opioid receptors or K ATP channels inhibitors. Toxicol Appl Pharmacol 2022; 454:116254. [PMID: 36155770 DOI: 10.1016/j.taap.2022.116254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/29/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Early post-stroke seizure frequently occurs in stroke survivors within the first few days and is associated with poor functional outcomes. Therefore, efficient treatments of such complications with less adverse effects are pivotal. In this study, we investigated the possible beneficial effects of lasmiditan and sumatriptan against post-stroke seizures in mice and explored underlying mechanisms in their effects. METHODS Stroke was induced by double ligation of the right common carotid artery in mice. Immediately after the ligation, lasmiditan (0.1 mg/kg, intraperitoneally [i.p.]) or sumatriptan (0.03 mg/kg, i.p.) were administered. Twenty-four hours after the stroke induction, seizure susceptibility was evaluated using the pentylenetetrazole (PTZ)-induced clonic seizure model. In separate experiments, naltrexone (a non-specific opioid receptor antagonist) and glibenclamide (a KATP channel blocker) were administered 15 min before lasmiditan or sumatriptan injection. To evaluate the underlying signaling pathways, ELISA analysis of inflammatory cytokines (TNF-α and IL-1β) and western blot analysis of anti- and pro-apoptotic markers (Bcl-2 and Bax) were performed on mice isolated brain tissues. RESULTS Lasmiditan (0.1 mg/kg, i.p.) and sumatriptan (0.03 mg/kg, i.p.) remarkably decreased seizure susceptibility in stroke animals by reducing inflammatory cytokines and neuronal apoptosis. Concurrent administration of naltrexone (10 mg/kg, i.p.) or glibenclamide (0.3 mg/kg, i.p.) with lasmiditan or sumatriptan resulted in a higher neuroprotection against clonic seizures and efficiently reduced the inflammatory and apoptotic markers. CONCLUSION Lasmiditan and sumatriptan significantly increased post-stroke seizure thresholds in mice by suppressing inflammatory cytokines and neuronal apoptosis. Lasmiditan and sumatriptan seem to exert higher effects on seizure threshold with concurrent administration of the opioid receptors or KATP channels modulators.
Collapse
|
16
|
Semis HS, Kandemir FM, Caglayan C, Kaynar O, Genc A, Arıkan SM. Protective effect of naringin against oxaliplatin-induced peripheral neuropathy in rats: A behavioral and molecular study. J Biochem Mol Toxicol 2022; 36:e23121. [PMID: 35670529 DOI: 10.1002/jbt.23121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/07/2022] [Accepted: 05/29/2022] [Indexed: 11/11/2022]
Abstract
Oxaliplatin (OXL) is a chemotherapeutic drug used for metastatic and other types of cancer, but it causes peripheral neuropathy as a dose-limiting side effect. Herein, we used the rat model of OXL-induced peripheral neuropathy to demonstrate the protective effects of naringin (NRG) in this neuropathy. In this study, rats were injected with OXL (4 mg/kg, body weight, i.p.) in 5% glucose solution 30 min after oral administration of NRG (50 and 100 mg/kg, body weight) on the 1st, 2nd, 5th, and 6th days. OXL caused sensory and motor neuropathy (as revealed by the hot plate, tail flick, rota-rod, and cold hyperalgesia tests) in the sciatic nerve of rats. Coadministration of oral NRG alleviated OXL-induced sensory and motor neuropathy. Levels of superoxide dismutase, catalase, glutathione peroxidase, nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, nuclear factor-κ B, tumor necrosis factor-α, interleukin-1β, Bax, Bcl-2, caspase-3, paraoxonase, mitogen-activated protein kinase 14, neuronal nitric oxide synthase (nNOS), acetylcholinesterase, and arginase 2 in the sciatic nerve tissues were assessed by real-time polymerase chain reaction. Moreover, the protein levels of caspase-3, Bax, Bcl-2, intercellular adhesion molecules-1, glial fibrillary acidic protein, and nNOS were examined by Western blot analysis. NRG treatment significantly improved all the above-mentioned parameters and reduced OXL-induced oxidative stress, inflammation, and apoptosis in the sciatic nerve tissue. In conclusion, this study demonstrated that NRG significantly attenuated OXL-induced peripheral neuropathy and might be considered as a new protective agent to prevent the OXL-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Halil S Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih M Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Aydın Genc
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Sefik M Arıkan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
17
|
Khodaei M, Mehri S, Pour SR, Mahdavi S, Yarmohammadi F, Hayes AW, Karimi G. The protective effect of chemical and natural compounds against vincristine-induced peripheral neuropathy (VIPN). Naunyn Schmiedebergs Arch Pharmacol 2022; 395:907-919. [PMID: 35562512 DOI: 10.1007/s00210-022-02254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
Vincristine, an alkaloid extracted from Catharanthus rosea, is a class of chemotherapy drugs that act by altering the function of the microtubules and by inhibiting mitosis. Despite its widespread application, a major adverse effect of vincristine that limits treatment duration is the occurrence of peripheral neuropathy (PN). PN presents with several symptoms including numbness, painful sensation, tingling, and muscle weakness. Vincristine-induced PN involves impaired calcium homeostasis, an increase of reactive oxygen species (ROS), and the upregulation of tumor necrosis factor-alpha (TNF-α), and interleukin 1 beta (IL-1β) expression. Several potential approaches to attenuate the vincristine-induced PN including the concomitant administration of chemicals with vincristine have been reported. These chemicals have a variety of pharmaceutical properties including anti-inflammation, antioxidant, and inhibition of calcium channels and calcineurin signaling pathways and increased expression of nerve growth factor (NGF). This review summarized several of these compounds and the mechanisms of action that could lead to effective options in improving vincristine-induced peripheral neuropathy (VIPN).
Collapse
Affiliation(s)
- Mitra Khodaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Soroush Rashid Pour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Mahdavi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Effect of sumatriptan on acetic acid-induced experimental colitis in rats: a possible role for the 5-HT 1B/1D receptors. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:563-577. [PMID: 35171300 DOI: 10.1007/s00210-022-02215-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Mucosal inflammation in colitis is associated with changes in the intestinal serotonin (5-HT) level. Sumatriptan, a 5-HT1B/1D receptor agonist, has demonstrated anti-inflammatory characteristics. The purpose of this study was to determine the effects of sumatriptan in a rat model of acute experimental colitis and to elucidate the probable participation of presynaptic 5-HT1B/1D receptors. To induce colitis, acetic acid (4%) was injected intrarectally. Treatments were given intraperitoneally (IP) once daily over 3 consecutive days starting 1-h post-induction. Sumatriptan was given at 0.5, 1, 2, and 5 mg/kg. GR-127935, a 5-HT1B/1D receptor antagonist, was injected (0.1 and 0.3 mg/kg) 30 min prior to the most effective dose of sumatriptan (1 mg/kg). On day 4, the colon samples were isolated. Significant enhancements of the tissue tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), microscopic and macroscopic damages, body weight losses, and also reductions in tissue superoxide dismutase (SOD) and 5-HT were observed in colitis rats. On the other hand, sumatriptan at doses 0.5, 1, and 2 mg/kg could diminish pathologic changes in the measured biomarkers, histopathologic damages, and body weight losses. Although GR-127935 at dose 0.3 mg/kg could markedly improve the pathologic indexes, its sub-effective dose (0.1 mg/kg) reversed the protective effect of sumatriptan (1 mg/kg). Moreover, sumatriptan (1 and 5 mg/kg) and GR-127935 (0.3 mg/kg) increased the serotonin level. Post-treatment with low-dose sumatriptan demonstrated a protective impact on this peripheral inflammatory condition. Notably, this protective effect may be mediated, at least in part, through 5-HT1B/1D receptors, as well as anti-inflammatory and anti-oxidative characteristics.
Collapse
|
19
|
Basit A, Ahmad S, Khan KUR, Naeem A, Usman M, Ahmed I, Shahzad MN. Chemical profiling of Justicia vahlii Roth. (Acanthaceae) using UPLC-QTOF-MS and GC-MS analysis and evaluation of acute oral toxicity, antineuropathic and antioxidant activities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114942. [PMID: 34968664 DOI: 10.1016/j.jep.2021.114942] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia vahlii Roth. (Acanthaceae), also called as kodasoori and bhekkar is an annual therophyte erect or decumbent herb used traditionally in toothache, skin diseases (itching, topical inflammation) and for the treatment of various respiratory disorders. AIM OF THE STUDY The current study aimed at exploring pain cessation potential of J. vahlii Roth. via murine model of neuropathic pain and its phytochemical, toxicological and antioxidant profiles. MATERIALS AND METHODS The hydro-alcoholic extract of J. vahlii (HAEJv) prepared by maceration technique was subjected to preliminary phytochemical screening, total bioactive content determination, UPLC-QTOF-MS and GC-MS analysis. Toxicity assessment was carried out by using brine shrimp lethality assay and acute oral toxicity test. Murine model of neuropathic pain was applied to assess the antineuropathic potential of the species. Furthermore effect of the extract on catalase, superoxide oxide dismutase (SOD), Glutathione (GSH), interleukin-1beta (IL-1β) and total necrosis factor-alpha (TNF-α) was also studied. In vitro antioxidant profile was explored by using four methods; 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis(3-ethylbenothiazoline)-6-sulfonic acid (ABTS), CUPric reducing antioxidant capacity (CUPRAC) and Ferric reducing antioxidant power (FRAP) assay. RESULTS The phytochemical screening revealed the presence of phenols, flavonoids, coumarins, alkaloids and lignans as the major classes of secondary metabolites. The extract was found rich in total phenolics content (TPC) and total flavonoids content (TFC) with identification of total 59 bioactives in UPLC-QTOF-MS and 40 compounds in GC-MS analysis. The extract was found nontoxic up to 4000 mg/kg (p.o.) in mice and no mortality observed in brine shrimp lethality assay. The HAEJv significantly reduced number of acetic acid induced abdominal constrictions at 100 mg/kg (p < 0.01) and 200 mg/kg (p < 0.001) and increased paw withdrawal threshold p < 0.05 at 100 mg/kg and p < 0.001 at 200 mg/kg, and an increase in tail withdrawal latency time p < 0.001 at 200 mg/kg was observed. The extract significantly increased levels of catalase, SOD and GSH while decreased IL-1β and TNF-α levels in sciatic nerve tissue of mice. HAEJv showed highest antioxidant activity through CUPRAC method 121.32 ± 1.22 mg trolox equivalent per gram of dry extract (mg TE/g DE) followed by DPPH 81.334 ± 4.35 mg TE/g DE, FRAP 69.89 ± 3.05 mg TE/g DE and ABTS 38.17 ± 2.12 mg TE/g DE. CONCLUSION The current study back the traditional use of J. vahlii in pain cessation through antioxidant based antineuropathic pain activity and revealed the extract non-toxic with number of functional phytoconstituents and warrants further research on isolation of the compounds and sub-acute toxicity studies.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Muhammad Usman
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Imtiaz Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
20
|
Harnessing Intranasal Delivery Systems of Sumatriptan for the Treatment of Migraine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3692065. [PMID: 35075426 PMCID: PMC8783720 DOI: 10.1155/2022/3692065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Sumatriptan (ST) is a commonly prescribed drug for treating migraine. The efficiency of several routes of ST administration has been investigated. Recently, the intranasal route with different delivery systems has gained interest owing to its fast-acting and effectiveness. The present study is aimed at reviewing the available studies on novel delivery systems for intranasal ST administration. The oral route of ST administration is common but complicated with some problems. Gastroparesis in patients with migraine may reduce the absorption and effectiveness of ST upon oral use. Furthermore, the gastrointestinal (GI) system and hepatic metabolism can alter the pharmacokinetics and clinical effects of ST. The bioavailability of conventional nasal liquids is low due to the deposition of a large fraction of the delivered dose of a drug in the nasal cavity. Several delivery systems have been utilized in a wide range of preclinical and clinical studies to enhance the bioavailability of ST. The beneficial effects of the dry nasal powder of ST (AVP-825) have been proven in clinical studies. Moreover, other delivery systems based on microemulsions, microspheres, and nanoparticles have been introduced, and their higher bioavailability and efficacy were demonstrated in preclinical studies. Based on the extant findings, harnessing novel delivery systems can improve the bioavailability of ST and enhance its effectiveness against migraine attacks. However, further clinical studies are needed to approve the safety and efficacy of employing such systems in humans.
Collapse
|
21
|
Elshamy AM, Salem OM, Safa MAE, Barhoma RAE, Eltabaa EF, Shalaby AM, Alabiad MA, Arakeeb HM, Mohamed HA. Possible protective effects of CO Q10 against vincristine‐induced peripheral neuropathy: Targeting oxidative stress, inflammation, and sarmoptosis. J Biochem Mol Toxicol 2021; 36:e22976. [DOI: 10.1002/jbt.22976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/02/2021] [Accepted: 12/10/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Amira M. Elshamy
- Department of Medical Biochemistry, Faculty of Medicine Tanta University Tanta Egypt
| | - Ola M. Salem
- Department of Phramacology, Faculty of Medicine Tanta University Tanta Egypt
| | - Mohamed A. E. Safa
- Department of Internal Medicine, Faculty of Medicine Tanta University Tanta Egypt
| | | | - Eman F. Eltabaa
- Department of Physiology, Faculty of Medicine Tanta University Tanta Egypt
| | | | | | - Heba M. Arakeeb
- Department of Anatomy, Faculty of Medicine Tanta University Tanta Egypt
| | - Hoda A. Mohamed
- Department of Medical Biochemistry, Faculty of Medicine Tanta University Tanta Egypt
| |
Collapse
|
22
|
Semis HS, Kandemir FM, Kaynar O, Dogan T, Arikan SM. The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sci 2021; 287:120104. [PMID: 34743946 DOI: 10.1016/j.lfs.2021.120104] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/15/2023]
Abstract
Paclitaxel (PTX), which is widely used in the treatment of solid tumors, leads to dose limitation because it causes peripheral neuropathy. This study was conducted to evaluate the potential effects of hesperidin (HES), which has various biological and pharmacological properties, against PTX-induced sciatic nerve damage. For this purpose, Sprague Dawley rats were given PTX 2 mg/kg/b.w for 5 days, then 100 or 200 mg/kg/b.w HES for 10 days, and behavioral tests were conducted at the end of the experiment. The data obtained show that PTX-induced MDA, NF-κB, IL-1β, TNF-α, COX-2, nNOS, JAK2, STAT3, and GFAP levels decreased with HES administration. Moreover, it was observed that SOD, CAT, and GPx activities inhibited by PTX increased with HES administration. It was determined that PTX caused apoptosis in the sciatic nerve by increasing Caspase-3 and Bax levels and suppressing Bcl-2 levels. HES, on the other hand, showed an anti-apoptotic effect, increasing Bcl-2 levels and decreasing Caspase-3 and Bax levels. Also, it was observed that PTX could cause endoplasmic reticulum stress (ERS) by increasing PERK, IRE1, ATF-6, GRP78 and CHOP mRNA transcript levels, while HES could alleviate ERS by suppressing them. The results indicate that neuropathic pain associated with PTX-induced peripheral neuropathy can be alleviated by HES administration and that it is a promising compound for cancer patients. In addition, it is thought that the results of the present study contain information that will shed light for researchers regarding further studies to be conducted with HES.
Collapse
Affiliation(s)
- Halil Sezgin Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Tuba Dogan
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefik Murat Arikan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
23
|
Yousefi-Manesh H, Shirooie S, Noori T, Tavangar SM, Sheibani M, Chaboki A, Mohammadi S, Dehpour AR. Assessment of Sumatriptan on Sepsis-Induced Kidney injury in the Cecal Ligation and Puncture Mice Model. Drug Res (Stuttg) 2021; 72:156-162. [PMID: 34852366 DOI: 10.1055/a-1685-0482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sepsis is a severe systemic inflammatory response with high mortality rate resulting from different microorganisms. Cytokines activation is essential for the immune response, but in painful conditions like sepsis, cytokines act as a double-edged sword and dysregulate immune response which is life-threatening owing to multiple organ dysfunction. The abnormality in 5-HT function is involved in pathological conditions like irritable bowel syndrome, inflammation, myocardial ischemia, itch and renal injury. Sumatriptan, a 5-HT1B/1D agonist, has anti-inflammatory and anti-oxidative stress effects on animal models. This study was aimed to assess the effects of sumatriptan on kidney injury, the levels of pro-inflammatory cytokines and the percentage of survival in (CLP)-induced sepsis were examined.Cecal ligation and puncture (CLP) model was done on adult C57BL/6 male mice to induce Polymicrobial sepsis. Sumatriptan was injected intraperitoneally 1 h after the sepsis induction by CLP at doses of 0.1, 0.3, and 1 mg/kg in 3 treatment groups. To study the effect of sumatriptan on short-term survival, septic animals were detected 72 h after CLP. Serum levels of TNF-α, IL-1β, IL-6 and IL-10 were evaluated. To study sepsis-induced acute renal failure, kidney functional biomarkers and histopathological alterations were evaluated.Sumatriptan (0.3 mg/kg) administration significantly enhanced survival rate (P<0.01) compared to the CLP group. The beneficial effects of sumatriptan were related to a significant decrease in the pro-inflammatory cytokines and elevated level of IL-10. Sumatriptan presented protective effects on kidney biomarkers and histopathology assay.Anti-inflammatory effects of sumatriptan lead to decrease mortality rate and inflammatory cytokines in CLP induction sepsis in C57BL/6 mice.
Collapse
Affiliation(s)
- Hasan Yousefi-Manesh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Chaboki
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mohammadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Cui C, Shen D, Zuo D, Ye X. Neuroprotective effects of sonochemical- synthesized SiO2 nanoparticles in vivo models of ischemic/reperfusion injury in stroke. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
25
|
Yang Y, Zhang L, Yu J, Ma Z, Li M, Wang J, Hu P, Zou J, Liu X, Liu Y, An S, Xiang C, Guo X, Hao Q, Xu TR. A Novel 5-HT 1B Receptor Agonist of Herbal Compounds and One of the Therapeutic Uses for Alzheimer's Disease. Front Pharmacol 2021; 12:735876. [PMID: 34552493 PMCID: PMC8450432 DOI: 10.3389/fphar.2021.735876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
The serotonin receptor 5-HT1B is widely expressed in the central nervous system and has been considered a drug target in a variety of cognitive and psychiatric disorders. The anti-inflammatory effects of 5-HT1B agonists may present a promising approach for Alzheimer's disease (AD) treatment. Herbal antidepressants used in the treatment of AD have shown functional overlap between the active compounds and 5-HT1B receptor stimulation. Therefore, compounds in these medicinal plants that target and stimulate 5-HT1B deserve careful study. Molecular docking, drug affinity responsive target stability, cellular thermal shift assay, fluorescence resonance energy transfer (FRET), and extracellular regulated protein kinases (ERK) 1/2 phosphorylation tests were used to identify emodin-8-O-β-d-glucopyranoside (EG), a compound from Chinese medicinal plants with cognitive deficit attenuating and antidepressant effects, as an agonist of 5-HT1B. EG selectively targeted 5-HT1B and activated the 5-HT1B-induced signaling pathway. The activated 5-HT1B pathway suppressed tumor necrosis factor (TNF)-α levels, thereby protecting neural cells against beta-amyloid (Aβ)-induced death. Moreover, the agonist activity of EG towards 5-HT1B receptor, in FRET and ERK1/2 phosphorylation, was antagonized by SB 224289, a 5-HT1B antagonist. In addition, EG relieved AD symptoms in transgenic worm models. These results suggested that 5-HT1B receptor activation by EG positively affected Aβ-related inflammatory process regulation and neural death resistance, which were reversed by antagonist SB 224289. The active compounds such as EG might act as potential therapeutic agents through targeting and stimulating 5-HT1B receptor for AD and other serotonin-related disorders. This study describes methods for identification of 5-HT1B agonists from herbal compounds and for evaluating agonists with biological functions, providing preliminary information on medicinal herbal pharmacology.
Collapse
Affiliation(s)
- Yang Yang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lijing Zhang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jiaojiao Yu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhaobin Ma
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Moxiang Li
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jin Wang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Pengcheng Hu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jia Zou
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueying Liu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ying Liu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Su An
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Cheng Xiang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaoxi Guo
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qian Hao
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tian-Rui Xu
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
26
|
A Comparative Study of the Effect of Anatomical Site on Multiple Differentiation of Adipose-Derived Stem Cells in Rats. Cells 2021; 10:cells10092469. [PMID: 34572123 PMCID: PMC8465004 DOI: 10.3390/cells10092469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from adipose tissue are evolved into various cell-based regenerative approaches. Adipose-derived stem cells (ASCs) isolated from rats are commonly used in tissue engineering studies. Still, there is a gap in knowledge about how the harvest locations influence and guide cell differentiation. This study aims to investigate how the harvesting site affects stem-cell-specific surface markers expression, pluripotency, and differentiation potential of ASCs in female Sprague Dawley rats. ASCs were extracted from the adipose tissue of the peri-ovarian, peri-renal, and mesenteric depots and were compared in terms of cell morphology. MSCs phenotype was validated by cell surfaces markers using flow cytometry. Moreover, pluripotent gene expression of Oct4, Nanog, Sox2, Rex-1, and Tert was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR). ASCs multipotency was evaluated by specific histological stains, and the results were confirmed by quantitative polymerase chain reaction (RT-qPCR) expression analysis of specific genes. There was a non-significant difference detected in the cell morphology and immunophenotype between different harvesting sites. ASCs from multiple locations were significantly varied in their capacity to differentiate into adipocytes, osteoblastic cells, and chondrocytes. To conclude, depot selection is a critical element that should be considered when using ASCs in tissue-specific cell-based regenerative therapies research.
Collapse
|
27
|
Khan A, Shal B, Khan AU, Ullah R, Baig MW, ul Haq I, Seo EK, Khan S. Suppression of TRPV1/TRPM8/P2Y Nociceptors by Withametelin via Downregulating MAPK Signaling in Mouse Model of Vincristine-Induced Neuropathic Pain. Int J Mol Sci 2021; 22:ijms22116084. [PMID: 34199936 PMCID: PMC8200233 DOI: 10.3390/ijms22116084] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023] Open
Abstract
Vincristine (VCR) is a widely used chemotherapy drug that induced peripheral painful neuropathy. Yet, it still lacks an ideal therapeutic strategy. The transient receptor potential (TRP) channels, purinergic receptor (P2Y), and mitogen-activated protein kinase (MAPK) signaling play a crucial role in the pathogenesis of neuropathic pain. Withametelin (WMT), a potential Phytosteroid isolated from datura innoxa, exhibits remarkable neuroprotective properties. The present investigation was designed to explore the effect of withametelin on VCR-induced neuropathic pain and its underlying molecular mechanism. Initially, the neuroprotective potential of WMT was confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. To develop potential candidates for neuropathic pain treatment, a VCR-induced neuropathic pain model was established. Vincristine (75 μg/kg) was administered intraperitoneally (i.p.) for 10 consecutive days (day 1-10) for the induction of neuropathic pain. Gabapentin (GBP) (60 mg/kg, i.p.) and withametelin (0.1 and 1 mg/kg i.p.) treatments were given after the completion of VCR injection on the 11th day up to 21 days. The results revealed that WMT significantly reduced VCR-induced pain hypersensitivity, including mechanical allodynia, cold allodynia, and thermal hyperalgesia. It reversed the VCR-induced histopathological changes in the brain, spinal cord, and sciatic nerve. It inhibited VCR-induced changes in the biochemical composition of the myelin sheath of the sciatic nerve. It markedly downregulated the expression levels of TRPV1 (transient receptor potential vanilloid 1); TRPM8 (Transient receptor potential melastatin 8); and P2Y nociceptors and MAPKs signaling, including ERK (Extracellular Signal-Regulated Kinase), JNK (c-Jun N-terminal kinase), and p-38 in the spinal cord. It suppressed apoptosis by regulating Bax (Bcl2-associated X-protein), Bcl-2 (B-cell-lymphoma-2), and Caspase-3 expression. It considerably attenuated inflammatory cytokines, oxidative stress, and genotoxicity. This study suggests that WMT treatment suppressed vincristine-induced neuropathic pain by targeting the TRPV1/TRPM8/P2Y nociceptors and MAPK signaling.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan;
| | - Muhammad Waleed Baig
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Ihsan ul Haq
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
- Correspondence: (E.K.S.); (S.K.); Tel.: +82-2-3277-3047 (E.K.S.); +92-51-9064-4056 (S.K.)
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
- Correspondence: (E.K.S.); (S.K.); Tel.: +82-2-3277-3047 (E.K.S.); +92-51-9064-4056 (S.K.)
| |
Collapse
|
28
|
Ala M, Ghasemi M, Mohammad Jafari R, Dehpour AR. Beyond its anti-migraine properties, sumatriptan is an anti-inflammatory agent: A systematic review. Drug Dev Res 2021; 82:896-906. [PMID: 33792938 DOI: 10.1002/ddr.21819] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Sumatriptan is the first available medication from triptans family that was approved by the U.S. Food and Drug Administration for migraine attacks and cluster headaches in 1991. Most of its action is mediated by selective 5-HT1B/1D receptor agonism. Recent investigations raised the possibility of repositioning of this drug to other indications beyond migraine, as increasing evidence suggests for an anti-inflammatory property of sumatriptan. We performed a literature search using PubMed, Web of Science, Scopus, and Google Scholar using "inflammation AND sumatriptan" or "inflammation AND 5HT1B/D" as the keywords. Then, articles were screened for their relevance and those directly discussing the correlation between inflammation and sumatriptan or 5HT1B/D were included. Total references reviewed or inclusion/exclusion were 340 retrieved full-text articles (n = 340), then based on critical assessment 66 of them were included in this systematic review. Our literature review indicates that at low doses, sumatriptan can reduce inflammatory markers (e.g., interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB), affects caspases and changes cells lifespan. Additionally, nitric oxide synthase and nitric oxide signaling seem to be regulated by this drug. It also inhibits the release of calcitonin gene-related peptide. Sumatriptan protects against many inflammatory conditions including cardiac and mesenteric ischemia/reperfusion, skin flap, pruritus, peripheral, and central nervous system injuries such as spinal cord injury, testicular torsion-detorsion, oral mucositis, and other experimental models. Considering the safety and potency of low dose sumatriptan compared to corticosteroids and other immunosuppressive medications, it is worth to take advantage of sumatriptan in inflammatory conditions.
Collapse
Affiliation(s)
- Moein Ala
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 11:626687. [PMID: 33613570 PMCID: PMC7890072 DOI: 10.3389/fimmu.2020.626687] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.
Collapse
Affiliation(s)
- Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
30
|
Afshari K, Dehdashtian A, Haddad NS, Jazaeri SZ, Ursu DC, Khalilzadeh M, Haj-Mirzaian A, Shakiba S, Burns TC, Tavangar SM, Ghasemi M, Dehpour AR. Sumatriptan improves the locomotor activity and neuropathic pain by modulating neuroinflammation in rat model of spinal cord injury. Neurol Res 2021; 43:29-39. [PMID: 32935647 DOI: 10.1080/01616412.2020.1819090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To investigate the therapeutic effects of sumatriptan in a rat model of spinal cord injury (SCI) and possible anti-inflammatory and analgesic mechanisms underlying this effect. METHODS Using an aneurysm mini-clip model of contusive SCI, T9-10 laminectomies were performed for 60 male rats. Animals were divided into six experimental groups (n = 10 per group) as follows: a minocycline administered positive control group, a saline-vehicle negative control group, a sham-operated group, and three experimental groups which received separate doses of sumatriptan (0.1, 0.3 and 1 mg/kg). Behavioural assessments were used to evaluate locomotor activity and neuropathic pain for 28 days. At the end of the study, spinal cord tissues were collected from sacrificed animals for histopathological analysis. Levels of calcitonin gene-related peptide (CGRP) and two pro-inflammatory cytokines (tumor necrosis factor [TNF]-α and interleukin [IL]-1β) were assessed by the enzyme-linked immunosorbent assay (ELISA). RESULTS Sumatriptan significantly (P < 0.001) improved the locomotor activity in SCI group. Sumatriptan was also more effective than the positive control, i.e. minocycline (0.3 mg/kg). Additionally, sumatriptan and minocycline similarly attenuated the mechanical and thermal allodynia in SCI (P < 0.001). TNF-α, IL-1β and CGRP levels in sumatriptan- and minocycline-treated groups significantly (P < 0.001) decreased compared to controls. Histopathological analysis also revealed a markedly improvement in hemorrhage followed by inflammatory cell invasion, neuronal vacuolation, and cyst formation in both sumatriptan- and minocycline-treated groups compared to control animals. CONCLUSIONS Sumatriptan improves functional recovery from SCI through its anti-inflammatory effects and reducing pro-inflammatory and pain mediators.
Collapse
Affiliation(s)
- Khashayar Afshari
- Experimental Medicine Research Center, Tehran University of Medical Sciences , Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
| | - Amir Dehdashtian
- Experimental Medicine Research Center, Tehran University of Medical Sciences , Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
| | - Nazgol-Sadat Haddad
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
| | | | - Daniel C Ursu
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan , USA
| | - Mina Khalilzadeh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences , Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
| | - Saeed Shakiba
- Experimental Medicine Research Center, Tehran University of Medical Sciences , Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic Rochester , USA
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences , Tehran, Iran
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine , Worcester, MA
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences , Tehran, Iran
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
31
|
Pozzi E, Fumagalli G, Chiorazzi A, Canta A, Cavaletti G. Genetic factors influencing the development of vincristine-induced neurotoxicity. Expert Opin Drug Metab Toxicol 2020; 17:215-226. [PMID: 33283553 DOI: 10.1080/17425255.2021.1855141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: One of the most common side effects during vincristine (VCR) use is the establishment of VCR-induced peripheral neuropathy (VIPN). Among several risk factors that can influence the development of VIPN, such as cumulative dose and patient's age, sex, ethnicity, and genetic variants, this review is focused on the genetic variability. Areas covered: A literature research was performed firstly using the following PubMed search string ((((CIPN OR (vincristine AND neurotoxicity OR (vincristine AND neuropathy))) AND (polymorphisms OR (genetic variants OR (genetic factors OR (genetic profile OR (pharmacogenetics OR (genome-wide OR (genetic risk OR (expression genotype))))))))))) but also other relevant papers cited by the selected articles were included. Based on the obtained results, we identified two main categories of genes: genes involved in pharmacokinetics (genes related to metabolism and transport) or pharmacodynamics (genes related to mechanism of action) of VCR. Expert opinion: Despite several clinical retrospective studies investigating the possible correlations between patient genotype and VIPN onset, contrasting and inconsistent results are reported. In conclusion, given the clinical relevance of VIPN, further and more focused research would be fundamental in order to identify genetic variants able to predict its development and to allow a safer management of treated patients.
Collapse
Affiliation(s)
- Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| |
Collapse
|
32
|
Li GZ, Hu YH, Li DY, Zhang Y, Guo HL, Li YM, Chen F, Xu J. Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology 2020; 81:161-171. [DOI: 10.1016/j.neuro.2020.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
|
33
|
Yardim A, Kandemir FM, Ozdemir S, Kucukler S, Comakli S, Gur C, Celik H. Quercetin provides protection against the peripheral nerve damage caused by vincristine in rats by suppressing caspase 3, NF-κB, ATF-6 pathways and activating Nrf2, Akt pathways. Neurotoxicology 2020; 81:137-146. [PMID: 33038355 DOI: 10.1016/j.neuro.2020.10.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
In the present study, the protective effects of quercetin on peripheral neurotoxicity caused by vincristine, which is used effectively in the treatment of various types of cancers, were investigated by using different techniques. In the study, for 12 days, male Sprague Dawley rats were given 25 and 50 mg/kg doses of quercetin orally and were administered a 0.1 mg/kg dose of vincristine (a total cumulative dose of 1.2 mg/kg) intraperitoneally 30 min later. The protein levels of nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase-1 (NQO1), glial fibrillary acidic protein (GFAP), and nuclear factor kappa B (NF-κB) were measured with ELISA; the immunopositivity of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and caspase 3 were determined with immunohistochemistry; the mRNA transcript levels of double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), inositol-requiring enzyme-1 (IRE1), activating transcription factor-6 (ATF-6), glucose-regulated protein 78 (GRP78), Bcl-2-associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), caspase 3, protein kinase B1/2 (Akt-1/2), and forkhead box transcription factor, class O1 (FOXO1) were determined with RT-PCR. The reduction of Nrf2 levels and HO-1 and NQO1 activities in the sciatic nerve tissue, the increase in the levels of 8-OHdG, and the increase in the levels of GFAP and NF-κB caused by vincristine was observed to cause oxidative stress, oxidative DNA damage, neuronal cell damage, and inflammation, respectively. Additionally, vincristine was determined to cause ER stress and apoptosis by increasing PERK, IRE1, ATF-6, and GRP78 and caspase 3 and Bax expressions and by decreasing Bcl-2 expressions. Vincristine causing Akt inhibition also shows that it prevents neuronal survival. However, quercetin was determined to relieve oxidative stress, oxidative DNA damage, neuronal cell damage, inflammation, ER stress, and apoptosis caused by vincristine and enable Akt activation. These results show that in rats, quercetin may have a protective effect against peripheral neurotoxicity caused by vincristine.
Collapse
Affiliation(s)
- Ahmet Yardim
- Department of Neurosurgery, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selcuk Ozdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Comakli
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Hamit Celik
- Department of Neurology, Private Buhara Hospital, Erzurum, Turkey
| |
Collapse
|
34
|
Effect of ropivacaine on peripheral neuropathy in streptozocin diabetes-induced rats through TRPV1-CGRP pathway. Biosci Rep 2020; 39:220953. [PMID: 31661547 PMCID: PMC6851513 DOI: 10.1042/bsr20190817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Objective To determine the effect of ropivacaine on peripheral neuropathy in diabetic rats and its possible mechanism. Methods Forty-eight Sprague–Dawley rats were randomly divided into six groups: nondiabetic control group, nondiabetic group A (0.25% ropivacaine), nondiabetic group B (0.75% ropivacaine), diabetic control group (diabetic peripheral neuropathy (DPN) +artificial cerebrospinal fluid), diabetic group A (DPN+0.25% ropivacaine), and diabetic group B (DPN + 0.75% ropivacaine), with eight rats in each group. Within an hour of the last administration, the sciatic motor nerve conduction velocity (MNCV) of each group was measured, and the morphological changes of rat sciatic nerve were observed by HE, Weil’s staining and electron microscopy. The expression of transient receptor potential vanilloid (TRPV1) in the spinal cord dorsal horn of rats was analyzed by immunohistochemistry, and the expression of Calcitonin gene-related peptide (CGRP) protein in the spinal cord was analyzed by Western blot. Results Compared with the nondiabetic control group, elevated blood glucose, decreased weight and reduced average mechanical withdrawal threshold (MWT), additionally, the sciatic nerves showed significantly slowed conduction velocity (both P<0.001) and damaged pathological structure, the expression of TRPV1 and CGRP were decreased (both P<0.001) in the diabetic groups. Compared with the diabetic control group, down-regulation of TRPV1 and CGRP in spinal cord was significant for the diabetic groups A and B treated with 0.25 and 0.75% ropivacaine, the higher concentration of ropivacaine correlated with a greater change. Conclusion Ropivacaine can significantly block sciatic nerve conduction velocity in DPN rats in a concentration-dependent manner, which may be related to the expression of the TRPV1-CGRP pathway.
Collapse
|
35
|
Sumatriptan alleviates radiation-induced oral mucositis in rats by inhibition of NF-kB and ERK activation, prevention of TNF-α and ROS release. Arch Oral Biol 2020; 119:104919. [PMID: 32977152 DOI: 10.1016/j.archoralbio.2020.104919] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Oral mucositis caused by radiation therapy is a common problem in cancer patients, especially those with head and neck cancer. Numerous experimental and clinical studies have attempted to find a drug to alleviate oral mucositis. Sumatriptan, is conventionally used to treat migraine attack and cluster headache. Recently, low doses have been shown to have anti-inflammatory properties. In this study we aimed to measure the effect of sumatriptan on experimental radiotherapy-induced oral mucositis. MATERIAL AND METHODS This study evaluates the use of sumatriptan 0.3 and 1 mg/kg in radiation-induced oral mucositis. In order to induce oral mucositis, six rats from each group received 8-Gy of X-ray in a single session. Likewise, three rats from each group received 26-Gy of X-ray. The latter dose of X-ray was used for inducing severe mucositis and apoptosis evaluation by TUNEL assay, while the first dose was used for histopathological and molecular assessments. On 8th day after irradiation, specimens were collected from their tongues for histology, TUNEL and molecular assessments. RESULTS Radiation caused mucosal atrophy, derangement of the tissue and vasodilation. Sumatriptan significantly decreased histopathological score and alleviated mucosal atrophy. As well, there was no evidence of vasodilation in the sumatriptan group. Likewise, sumatriptan decreased the increased level of NF-kB and prevented its activation as well as ERK phosphorylation. In addition, Sumatriptan-treated rats had lower tissue level of TNF-α, reactive oxygen species and fewer apoptotic cells in TUNEL assay. CONCLUSION Based on study results, sumatriptan mitigate radiation-induced oral mucositis by inhibiting NF-kB, ERK and limiting the release of TNF-α, oxidative stress factor and apoptosis.
Collapse
|
36
|
Neurotoxicity of antineoplastic drugs: Mechanisms, susceptibility, and neuroprotective strategies. Adv Med Sci 2020; 65:265-285. [PMID: 32361484 DOI: 10.1016/j.advms.2020.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
This review summarizes the adverse effects on the central and/or peripheral nervous systems that may occur in response to antineoplastic drugs. In particular, we describe the neurotoxic side effects of the most commonly used drugs, such as platinum compounds, doxorubicin, ifosfamide, 5-fluorouracil, vinca alkaloids, taxanes, methotrexate, bortezomib and thalidomide. Neurotoxicity may result from direct action of compounds on the nervous system or from metabolic alterations produced indirectly by these drugs, and either the central nervous system or the peripheral nervous system, or both, may be affected. The incidence and severity of neurotoxicity are principally related to the dose, to the duration of treatment, and to the dose intensity, though other factors, such as age, concurrent pathologies, and genetic predisposition may enhance the occurrence of side effects. To avoid or reduce the onset and severity of these neurotoxic effects, the use of neuroprotective compounds and/or strategies may be helpful, thereby enhancing the therapeutic effectiveness of antineoplastic drug.
Collapse
|
37
|
Khalilzadeh M, Hassanzadeh F, Aghamiri H, Dehpour AR, Shafaroodi H. Aripiprazole prevents from development of vincristine-induced neuropathic nociception by limiting neural NOS overexpression and NF-kB hyperactivation. Cancer Chemother Pharmacol 2020; 86:393-404. [PMID: 32803467 DOI: 10.1007/s00280-020-04127-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Increased nitric oxide (NO) synthesis and NF-kB activation have been shown as critical players in the pathophysiology of vincristine-induced peripheral neuropathy. Consistently, neural nitric oxide synthase (nNOS) inhibitors alleviated the neuropathic pain. Previous studies demonstrated that aripiprazole is capable of modulating NO synthesis and also has been reported its modulatory effect on NF-kB activity. METHODS Aripiprazole was administered daily to the male Wistar rats at the same time with establishing neuropathic model by I.P. injection of vincristine every 2 days, over 2 weeks. Efficacy of aripiprazole in suppressing the development of neuropathy was evaluated by assessing changes in body weight, mechanical threshold, withdrawal latency, sciatic nerve conduction velocity (SNCV), and compound motor action potential (CMAP) characteristics. Expression of nNOS and NF-kB activation were evaluated by western blotting RESULTS: Rats receiving aripiprazole during neuropathy establishment period demonstrated a normal weight gain pattern, a significantly higher mechanical withdrawal threshold, and SNCV compared to vincristine-treated group. Furthermore, the amplitude and area of CMAP were significantly higher in aripiprazole group. Western blotting demonstrated a significantly reduced expression of nNOS and NF-kB activation in dorsal root ganglia of aripiprazole co-treated rats. CONCLUSION In conclusion, aripiprazole effectively prevents from vincristine-induced neuropathy by limiting nNOS overexpression and NF-kB hyperactivation.
Collapse
Affiliation(s)
- Mina Khalilzadeh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Hassanzadeh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
38
|
Eslami F, Rahimi N, Ostovaneh A, Ghasemi M, Dejban P, Abbasi A, Dehpour AR. Sumatriptan reduces severity of status epilepticus induced by lithium-pilocarpine through nitrergic transmission and 5-HT 1B/D receptors in rats: A pharmacological-based evidence. Fundam Clin Pharmacol 2020; 35:131-140. [PMID: 32662118 DOI: 10.1111/fcp.12590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/22/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Status epilepticus (SE) is a life-threatening neurologic disorder that can be as both cause and consequence of neuroinflammation. In addition to previous reports on anti-inflammatory property of the anti-migraine medication sumatriptan, we have recently shown its anticonvulsive effects on pentylenetetrazole-induced seizure in mice. In the present study, we investigated further (i) the effects of sumatriptan in the lithium-pilocarpine SE model in rats, and (ii) the possible involvement of nitric oxide (NO), 5-hydroxytryptamin 1B/1D (5-HT1B/1D ) receptor, and inflammatory pathways in such effects of sumatriptan. Status epilepticus was induced by lithium chloride (127 mg/kg, i.p) and pilocarpine (60 mg/kg, i.p.) in Wistar rats. While SE induction increased SE scores and mortality rate, sumatriptan (0.001-1 mg/kg, i.p.) improved it (P < 0.001). Administration of the selective 5-HT1B/1D antagonist GR-127935 (0.01 mg/kg, i.p.) reversed the anticonvulsive effects of sumatriptan (0.01 mg/kg, i.p.). Although both tumor necrosis factor-α (TNF-α) and NO levels were markedly elevated in the rats' brain tissues post-SE induction, pre-treatment with sumatriptan significantly reduced both TNF-α (P < 0.05) and NO (P < 0.001) levels. Combined GR-127935 and sumatriptan treatment inhibited these anti-inflammatory effects of sumatriptan, whereas combined non-specific NOS (L-NAME) or selective neuronal NOS (7-nitroindazole) inhibitors and sumatriptan further reduced NO levels. In conclusion, sumatriptan exerted a protective effect against the clinical manifestations and mortality rate of SE in rats which is possibly through targeting 5-HT1B/1D receptors, neuroinflammation, and nitrergic transmission.
Collapse
Affiliation(s)
- Faezeh Eslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 14155-6559, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, 14155-6559, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 14155-6559, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, 14155-6559, Iran
| | - Aysa Ostovaneh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 14155-6559, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, 14155-6559, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts, 01655, USA
| | - Pegah Dejban
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 14155-6559, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, 14155-6559, Iran
| | - Ata Abbasi
- Department of Pathology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 5715799313, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 14155-6559, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, 14155-6559, Iran
| |
Collapse
|
39
|
A Pre-Existing Myogenic Temporomandibular Disorder Increases Trigeminal Calcitonin Gene-Related Peptide and Enhances Nitroglycerin-Induced Hypersensitivity in Mice. Int J Mol Sci 2020; 21:ijms21114049. [PMID: 32516986 PMCID: PMC7313473 DOI: 10.3390/ijms21114049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Migraine is commonly reported among patients with temporomandibular disorders (TMDs), especially myogenic TMD. The pathophysiologic mechanisms related to the comorbidity of the two conditions remain elusive. In the present study, we combined masseter muscle tendon ligation (MMTL)-produced myogenic TMD with systemic injection of nitroglycerin (NTG)-induced migraine-like hypersensitivity in mice. Facial mechanical allodynia, functional allodynia, and light-aversive behavior were evaluated. Sumatriptan, an FDA-approved medication for migraine, was used to validate migraine-like hypersensitivity. Additionally, we examined the protein level of calcitonin gene-related peptide (CGRP) in the spinal trigeminal nucleus caudalis using immunohistochemistry. We observed that mice with MMTL pretreatment have a prolonged NTG-induced migraine-like hypersensitivity, and MMTL also enabled a non-sensitizing dose of NTG to trigger migraine-like hypersensitivity. Systemic injection of sumatriptan inhibited the MMTL-enhanced migraine-like hypersensitivity. MMTL pretreatment significantly upregulated the protein level of CGRP in the spinal trigeminal nucleus caudalis after NTG injection. Our results indicate that a pre-existing myogenic TMD can upregulate NTG-induced trigeminal CGRP and enhance migraine-like hypersensitivity.
Collapse
|
40
|
Chiba T, Kambe T, Yamamoto K, Kawakami K, Taguchi K, Abe K. Vincristine increased spinal cord substance P levels in a peripheral neuropathy rat model. Drug Chem Toxicol 2020; 45:393-397. [DOI: 10.1080/01480545.2019.1706547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Terumasa Chiba
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, Ina-machi, Japan
| | - Toshie Kambe
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Japan
| | - Ken Yamamoto
- Department of Education, Research Center for Clinical Pharmacy, Showa Pharmaceutical University, Machida, Japan
| | | | - Kyoji Taguchi
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Japan
| | - Kenji Abe
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, Ina-machi, Japan
| |
Collapse
|
41
|
Dejban P, Rahimi N, Takzare N, Jahansouz M, Dehpour AR. Protective effects of sumatriptan on ischaemia/reperfusion injury following torsion/detorsion in ipsilateral and contralateral testes of rat. Andrologia 2019; 51:e13358. [DOI: 10.1111/and.13358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Pegah Dejban
- Experimental Medicine Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Nasrin Takzare
- Department of Anatomy, School of Medicine Tehran University of Medical Science Tehran Iran
| | | | - Ahmad Reza Dehpour
- Experimental Medicine Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Pharmacology, School of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
42
|
Sumatriptan protects against myocardial ischaemia–reperfusion injury by inhibition of inflammation in rat model. Inflammopharmacology 2019; 27:1071-1080. [DOI: 10.1007/s10787-019-00586-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022]
|