1
|
Ta-Oun P, Yoshiga T. Effects of insect odor cues and infective juvenile age on the host-seeking behavior of Steinernema siamkayai. J Invertebr Pathol 2025; 210:108280. [PMID: 39952603 DOI: 10.1016/j.jip.2025.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Entomopathogenic nematodes (EPNs) are soil-dwelling, insect-parasitic nematodes used in biological control. Infective juveniles (IJs), a third-stage free-living stage, are responsible for foraging and infecting suitable insect hosts, exhibiting cruising, ambushing, or intermediate foraging strategies. Steinernema siamkayai, an ambush forager, is a valuable biological control agent in Thailand, yet little is known about its behavioral response to host cues and insect odors. This study examines the olfactory responses of S. siamkayai IJs to insect odorants, including CO2, compared to an ambusher, S. carpocapsae, and an intermediate forager, S. monticolum. Using a chemotaxis assay on agar plates, we found S. siamkayai and S. monticolum were attracted to insect odors, but attraction diminished when CO2 was removed with soda lime, whereas S. carpocapsae showed minimal attraction. S. siamkayai and S. monticolum exhibited a stronger response to CO2 than S. carpocapsae. Additionally, in a sand column assay assessing vertical movement, all three EPNs responded to insect odors from below, with odor response declining as IJ age increased, indicating age-related changes in host-seeking behavior. These results suggest that although S. siamkayai and S. carpocapsae are ambushers within the same phylogenetic clade, their host detection mechanisms differ.
Collapse
Affiliation(s)
- Puping Ta-Oun
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-0065, Japan
| | - Toyoshi Yoshiga
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-0065, Japan; Laboratory of Nematology, Faculty of Agriculture, Saga University, Saga City, Saga 840-8502, Japan.
| |
Collapse
|
2
|
Liu Q, Yi YL, Liang XF, Wu MT, Li J, Chen X, Zhang F, Ruan QL, Liu F, Duan JA, Guo S. Antioxidant and antiaging activities of the polysaccharide ZJP-04M from Ziziphus jujuba in Caenorhabditis elegans. Int J Biol Macromol 2025; 284:138208. [PMID: 39617227 DOI: 10.1016/j.ijbiomac.2024.138208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
Aging is a social problem that people pay particular attention to. Oxidative stress is closely related to aging. Natural polysaccharides have numerous biological activities, and they show good application prospect in preventing oxidative stress and aging prospects. Herein, morphological analysis, molecular weight analysis, monosaccharide composition, methylation analysis, and NMR spectrum analysis were used to characterize the structure of ZJP-04M, an isolated homogeneous polysaccharide from the Ziziphus jujuba fruit. Results indicated that in ZJP-04M, the trunk chain was formed through the alternately connected homogalacturonan skeleton and rhamnogalacturonan-I domain and the branch chain was formed by arabinan and arabinogalactan. After feeding the polysaccharide to Caenorhabditis elegans, ZJP-04M was found to exert a certain paraquet-induced protective effect on the oxidative damage. Under normal conditions, ZJP-04M could significantly prolong the lifespan of C. elegans but exhibited no obvious effect on its reproductive capacity. We futher confirmed that ZJP-04M can play an antiaging role by regulating DAF-16. Based on these results, ZJP-04M can be used in antioxidation and antiaging applications.
Collapse
Affiliation(s)
- Qing Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yan-Ling Yi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiao-Fei Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Meng-Ting Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jie Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xin Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qin-Li Ruan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Feng Liu
- Shaanxi Institute of International Trade and Commerce, Xianyang 710061, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Weng Y, Murphy CT. Male-specific behavioral and transcriptomic changes in aging C. elegans neurons. iScience 2024; 27:109910. [PMID: 38783998 PMCID: PMC11111838 DOI: 10.1016/j.isci.2024.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Aging is a complex biological process with sexually dimorphic aspects. Although cognitive aging of Caenorhabditis elegans hermaphrodites has been studied, less is known about cognitive decline in males. We found that cognitive aging has both sex-shared and sex-dimorphic characteristics, and we identified neuron-specific age-associated sex-differential targets. In addition to sex-shared neuronal aging genes, males differentially downregulate mitochondrial metabolic genes and upregulate GPCR genes with age, while the X chromosome exhibits increased gene expression in hermaphrodites and altered dosage compensation complex expression with age, indicating possible X chromosome dysregulation that contributes to sexual dimorphism in cognitive aging. Finally, the sex-differentially expressed gene hrg-7, an aspartic-type endopeptidase, regulates male cognitive aging but does not affect hermaphrodites' behaviors. These results suggest that males and hermaphrodites exhibit different age-related neuronal changes. This study will strengthen our understanding of sex-specific vulnerability and resilience and identify pathways to target with treatments that could benefit both sexes.
Collapse
Affiliation(s)
- Yifei Weng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T. Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Randolph EC, Fieber LA. Improvements in operant memory of Aplysia are correlated with age and specific gene expression. Front Behav Neurosci 2023; 17:1221794. [PMID: 37936650 PMCID: PMC10626442 DOI: 10.3389/fnbeh.2023.1221794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
The transcription factor Aplysia CCAAT/enhancer binding protein (ApC/EBP) is expressed as an immediate early gene in the cAMP responsive element binding protein (CREB) mediated gene cascade, and it has essential functions in the synaptic consolidation of memory following a learning event. Synaptic consolidation primarily involves morphological changes at neuronal synapses, which are facilitated through the reorganization of the actin and microtubular cytoarchitecture of the cell. During early nervous system development, the transmembrane synaptic protein teneurin acts directly upon neuronal presynaptic microtubules and postsynaptic spectrin-based cytoskeletons to facilitate the creation of new synapses. It is reasonable to hypothesize that teneurin may also be linked to learning-induced synaptic changes and is a potential candidate to be a later gene expressed in the CREB-mediated gene cascade downstream of ApC/EBP. To assess the role of ApC/EBP and teneurin in learning and memory in the marine snail Aplysia californica, young (age 7-8 months) and aged (age 13-15 months; aging stage AII) siblings of Aplysia were trained in an operant conditioning paradigm-learning food is inedible (LFI)-over 2 days, during which they learned to modify the feeding reflex. Aged Aplysia had enhanced performance of the LFI task on the second day than younger siblings although far more aged animals were excluded from the analysis because of the initial failure in learning to recognize the inedible probe. After 2 days of training, ApC/EBP isoform X1 mRNA and teneurin mRNA were quantified in selected neurons of the buccal ganglia, the locus of neural circuits in LFI. Teneurin expression was elevated in aged Aplysia compared to young siblings regardless of training. ApC/EBP isoform X1 expression was significantly higher in untrained aged animals than in untrained young siblings but decreased in trained aged animals compared to untrained aged animals. Elevated levels of ApC/EBP isoform X1 and teneurin mRNA before training may have contributed to the enhancement of LFI performance in the aged animals that successfully learned.
Collapse
Affiliation(s)
| | - Lynne A. Fieber
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School, Miami, FL, United States
| |
Collapse
|
5
|
Cohen-Eliraz L, Ornoy A, Ein-Mor E, Bar-Nitsan M, Pilowsky Peleg T, Calderon-Margalit R. Prenatal exposure to phthalates and emotional/behavioral development in young children. Neurotoxicology 2023; 98:39-47. [PMID: 37536470 DOI: 10.1016/j.neuro.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Endocrine disrupting chemicals (EDCs) such as phthalates, found in our daily environment, are nowadays suggested to be associated with adverse outcomes. Prenatal exposure was found associated with neurodevelopmental complications such as behavioral difficulties in school age children. AIM To explore the association between intrauterine exposure to phthalates and emotional/behavioral development of 24 months old toddlers. METHODS Women were recruited at 11-18 weeks of gestation and provided spot urine samples, analyzed for phthalate metabolites (DEHP, DiNP, MBzBP). Offspring were examined at 24 months of age, using standard maternal report, regarding developmental and behavioral problems (CBCL, ASQ-3, HOME questionnaires) (N = 158). To explore the associations between metabolite levels and developmental outcomes, multivariate GLM analysis (General Linear Model) was used according to tertiles and developmental scores on each developmental outcome. RESULTS Associations of Di-(2-ethylhexyl) phthalate (DEHP) maternal exposure with behavioral-developmental outcomes were found only in boys. Compared with boys with lower DEHP maternal exposure, boys with high DEHP maternal exposure had lower developmental score in personal social abilities in the ASQ-3 questionnaire (50.68 + 8.06 and 44.14 + 11.02, high and low DEHP, respectively, p = 0.03), and more internalizing problems (for example, emotionally reactive score in high and low DEHP: 53.77 + 7.41 and 50.50 + 1.19, respectively, p = 0.029; anxious or depressed score: 53.38 + 5.01 and 50.75 + 1.34, respectively, p = 0.009; and somatic complaints scores 64.03 + 10.1 and 55.84 + 7.84, respectively, p = 0.003), and externalizing problems (49.28 + 8.59 and 43.33 + 9.11, respectively, p = 0.039). No differences were found in the development and behavior problems between high and low DEHP maternal exposure level in girls. CONCLUSION Maternal DEHP metabolite concentrations measured in first trimester urine was associated with children's emotional/behavioral developmental problems in 24-months old boys, supporting accumulating evidence of DEHP as a potentially harming chemical and call for environmental attention.
Collapse
Affiliation(s)
- Liron Cohen-Eliraz
- Psychology Department Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Asher Ornoy
- Department of Medical Neurobiology Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eliana Ein-Mor
- Hadassah-Hebrew University, Braun School of Public Health, P.O. Box 12272, Jerusalem 91120, Israel
| | - Moriah Bar-Nitsan
- Psychology Department Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tammy Pilowsky Peleg
- Psychology Department Hebrew University of Jerusalem, Jerusalem, Israel; The Neuropsychological Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Ronit Calderon-Margalit
- Hadassah-Hebrew University, Braun School of Public Health, P.O. Box 12272, Jerusalem 91120, Israel
| |
Collapse
|
6
|
Li R, Tao M, Xu T, Huang Y, Zogona D, Pan S, Wu T, Xu X. Artemisia selengensis Turcz. leaf extract promotes longevity and stress resistance in Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4532-4541. [PMID: 35122267 DOI: 10.1002/jsfa.11808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Artemisia selengensis Turcz. (AST) is a common edible and medicinal herb possessing extensive biological activities and various health-promoting functions. However, the anti-aging effects of AST have been neglected. This work evaluated the effects of AST leaf extract (ASTE) on stress tolerance and longevity in Caenorhabditis elegans. RESULTS ASTE treatment enhanced stress resistance and significantly extended the lifespan of C. elegans. Moreover, ASTE prolonged the healthspan by increasing body bending and pharyngeal pumping rates, and by reducing the intestinal lipofuscin level and accumulation of intracellular reactive oxygen species (ROS). Caffeoylquinic acids in ASTE, especially dicaffeoylquinic acids, were the major components responsible for these benefits. The mechanism underlying the anti-aging effect of ASTE occurred by activating insulin/insulin-like growth factor, SIR-2.1 signaling and mitochondrial dysfunction pathways, which in turn induced the activity of the transcription factors DAF-16/FOXO and SKN-1/Nrf2. CONCLUSION These findings provide direct evidence for the anti-aging effects of AST and reveal its potential on promoting healthy aging. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingfang Tao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuting Huang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Invited review: Unearthing the mechanisms of age-related neurodegenerative disease using Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111166. [PMID: 35176489 DOI: 10.1016/j.cbpa.2022.111166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
As human life expectancy increases, neurodegenerative diseases present a growing public health threat, for which there are currently few effective treatments. There is an urgent need to understand the molecular and genetic underpinnings of these disorders so new therapeutic targets can be identified. Here we present the argument that the simple nematode worm Caenorhabditis elegans is a powerful tool to rapidly study neurodegenerative disorders due to their short lifespan and vast array of genetic tools, which can be combined with characterization of conserved neuronal processes and behavior orthologous to those disrupted in human disease. We review how pre-existing C. elegans models provide insight into human neurological disease as well as an overview of current tools available to study neurodegenerative diseases in the worm, with an emphasis on genetics and behavior. We also discuss open questions that C. elegans may be particularly well suited for in future studies and how worms will be a valuable preclinical model to better understand these devastating neurological disorders.
Collapse
|
8
|
Kallergi E, Nikoletopoulou V. Macroautophagy and normal aging of the nervous system: Lessons from animal models. Cell Stress 2021; 5:146-166. [PMID: 34708187 PMCID: PMC8490955 DOI: 10.15698/cst2021.10.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Aging represents a cumulative form of cellular stress, which is thought to challenge many aspects of proteostasis. The non-dividing, long-lived neurons are particularly vulnerable to stress, and, not surprisingly, even normal aging is highly associated with a decline in brain function in humans, as well as in other animals. Macroautophagy is a fundamental arm of the proteostasis network, safeguarding proper protein turnover during different cellular states and against diverse cellular stressors. An intricate interplay between macroautophagy and aging is beginning to unravel, with the emergence of new tools, including those for monitoring autophagy in cultured neurons and in the nervous system of different organisms in vivo. Here, we review recent findings on the impact of aging on neuronal integrity and on neuronal macroautophagy, as they emerge from studies in invertebrate and mammalian models.
Collapse
Affiliation(s)
- Emmanouela Kallergi
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
9
|
Long NP, Kim HM. Distinct metabolic alterations in different Caenorhabditis elegans mitochondrial mutants. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122863. [PMID: 34325308 DOI: 10.1016/j.jchromb.2021.122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Mitochondria play an essential role in various biochemical processes that maintain cellular homeostasis. Minor defects in the mitochondrial genome can lead to aversive behavioral responses in an organism. Nevertheless, little is known about the impact of mitochondrial mutations on the metabolome of Caenorhabditis elegans (C. elegans). In this study, an untargeted metabolomics approach was employed to elucidate the metabolic aberrant caused by mitochondrial DNA mutations in C. elegans. Specifically, three mutant strains of C. elegans, including clk-1, mev-1, and phb-2, were adopted to study corresponding metabolic signatures. Adult worms were collected, and metabolites were extracted and analyzed by gas chromatography-mass spectrometry. Uni- and multivariate analyses were performed to elucidate perturbed metabolism between wildtype worms and mutant strains, and metabolic differences among the mutants. The tricarboxylic acid cycle intermediates, amino acids, and sugars were significantly affected in the mitochondrial mutants. Overall, each mitochondrial DNA mutation exhibited a different pattern of metabolic alterations. The shift of metabolome appeared to be associated with the lifespan of C. elegans. In particular, clk-1 and mev-1 strains, which had the opposite phenotypes of lifespan, had apparently different metabolomes. Our findings set light on the metabolic consequences of mitochondrial genetic variants, which may help better understand mitochondrial disease mechanisms.
Collapse
Affiliation(s)
- Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung Min Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
10
|
Matsumura K, Iwaya M, Nagaya N, Fujisawa R, Miyatake T. Age-dependent walking and feeding of the assassin bug Amphibolus venator. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Animal behaviours often dependent on age. In many insect species, walking shows an age-dependent decline, and food intake may also be dependent on age. However, few studies have investigated the relationship between age and walking or food intake. In the present study, we compared walking traits and food intake among individuals of different ages in the assassin bug Amphibolus venator (Hemiptera, Reduviidae). The present results showed an age-dependent decline in walking, similar to findings in many animal species. On the other hand, food intake showed a positive correlation with age. Therefore, the decline in walking did not lead to a decline in feeding. The positive relationship between food intake and age may be related to the type of predation, sit-and-wait, used by A. venator via alterations in investment in reproductive traits with age.
Collapse
Affiliation(s)
- Kentarou Matsumura
- aGraduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Mana Iwaya
- bFaculty of Agriculture, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Naohisa Nagaya
- cKyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Ryusuke Fujisawa
- dKyushu Institute of Technology, 680-4, Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Takahisa Miyatake
- aGraduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
11
|
Chen Y, Onken B, Chen H, Zhang X, Driscoll M, Cao Y, Huang Q. Healthy lifespan extension mediated by oenothein B isolated from Eucalyptus grandis × Eucalyptus urophylla GL9 in Caenorhabditis elegans. Food Funct 2021; 11:2439-2450. [PMID: 32129349 DOI: 10.1039/c9fo02472g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oenothein B (OEB) exhibits extensive biological activities, but few investigations have been carried out on the pharmacologic influence of OEB on longevity in any organism. To explore the potential pharmacological ability of OEB to postpone the progression of age-related degenerative processes and diseases, we monitored the effects of OEB isolated from Eucalyptus leaves on the lifespan of Caenorhabditis elegans (C. elegans) at four different concentrations. We found that OEB increased the median lifespan of worms by up to 22% in a dose-dependent manner. Further studies demonstrated that OEB significantly enhanced youthfulness (healthy lifespan) by increasing the whole adult life's locomotory mobility, reducing age pigment and reactive oxygen species (ROS) accumulation, and enhancing thermal stress resistance. Furthermore, the genes daf-16, age-1, eat-2, sir-2.1, and isp-1 were required for the healthy longevity benefits induced by OEB, but not the genes mev-1 and clk-1. Taken together, OEB might modulate multiple genetic pathways involved in insulin/IGF-1 signaling (IIS) via age-1 and daf-16, the dietary restriction (DR) pathway via eat-2 and sir-2.1, and the mitochondrial electron transport chain via isp-1 to promote healthy lifespan including the reduction of age pigment and ROS accumulation and the enhancement of locomotory mobility, thermal stress tolerance and lifespan. These findings indicated that OEB has the potential to be developed into the next generation of multi-target drugs for prolonging healthy lifespan and intervening in age-related diseases.
Collapse
Affiliation(s)
- Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China. and Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Brian Onken
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | - Xiaoying Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
12
|
Liu D, Zeng X, Li L, Ou ZL. Carnitine promotes recovery from oxidative stress and extends lifespan in C. elegans. Aging (Albany NY) 2020; 13:813-830. [PMID: 33290254 PMCID: PMC7835055 DOI: 10.18632/aging.202187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
Carnitine is required for transporting fatty acids into the mitochondria for β-oxidation. Carnitine has been used as an energy supplement but the roles in improving health and delaying aging remain unclear. Here we show in C. elegans that L-carnitine improves recovery from oxidative stress and extends lifespan. L-carnitine promotes recovery from oxidative stress induced by paraquat or juglone and improves mobility and survival in response to H2O2 and human amyloid (Aβ) toxicity. L-carnitine also alleviates the oxidative stress during aging, resulting in moderate but significant lifespan extension, which was dependent on SKN-1 and DAF-16. Long-lived worms with germline loss (glp-1) or reduced insulin receptor activity (daf-2) recover from aging-associated oxidative stress faster than wild-type controls and their long lifespans were not further increased by L-carnitine. A new gene, T08B1.1, aligned to a known carnitine transporter OCTN1 in humans, is required for L-carnitine uptake in C. elegans. T08B1.1 expression is elevated in daf-2 and glp-1 mutants and its knockdown prevents L-carnitine from improving oxidative stress recovery and prolonging lifespan. Together, our study suggests an important role of L-carnitine in oxidative stress recovery that might be important for healthy aging in humans.
Collapse
Affiliation(s)
- Dongliang Liu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaofang Zeng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Le Li
- Hunan Yuantai Biotechnology Co., Ltd, Changsha 410000, Hunan, China
| | - Zheng-Lin Ou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
13
|
Lin C, Chen Y, Lin Y, Wang X, Hu L, Cao Y, Chen Y. Antistress and anti-aging activities of Caenorhabditis elegans were enhanced by Momordica saponin extract. Eur J Nutr 2020; 60:1819-1832. [PMID: 32860532 DOI: 10.1007/s00394-020-02338-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Momordica saponin extract (MSE) was found to not only improve longevity and neuroprotection but also alleviate fat accumulation in Caenorhabditis elegans in our previous study. However, the lipid-lowering activity of MSE alone could not fully explain its ability to improve health, so the antistress effects of MSE were further studied. METHODS Using C. elegans as an in vivo animal, the lifespan of MSE-treated C. elegans under various stressors (H2O2, paraquat and heat) and normal conditions was studied. Furthermore, the antioxidant activities of MSE were discussed. To study the underlying mechanisms, the expression of stress resistance genes and the resistance of related mutants to H2O2 stress were tested. RESULTS MSE significantly improved the lifespan of C. elegans under stress and normal conditions. Meanwhile, the mobility of C. elegans was also improved. Moreover, the activities of SOD and CAT and the ratio of GSH/GSSG were elevated. Consistently, the levels of ROS and lipid oxidation (the NEFA and MDA content) were reduced. Furthermore, MSE treatment upregulated the expression of the sod-3, sod-5, clt-1, clt-2, hsp-16.1 and hsp-16.2 genes. All biomarkers indicated that the antistress and anti-aging activities of MSE were due to its strong antioxidant activities. Finally, MSE induced nuclear DAF-16::GFP localization. Studies with mutants revealed that skn-1 and hsf-1 were involved in the activity of MSE, which might upregulate the expression of downstream stress-responsive genes. CONCLUSIONS Therefore, in addition to its lipid-lowering property, the ability of MSE to improve healthspan was also attributed to the stress resistance effect. Together, MSE might serve as a lead nutraceutical in geriatric research.
Collapse
Affiliation(s)
- Chunxiu Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Yue Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Yizi Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Xuebei Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Lanyun Hu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
14
|
Souto C, Göethel G, Peruzzi CP, Cestonaro LV, Garcia I, Ávila DS, Eifler‐Lima V, Carmo H, Bastos MDL, Garcia SC, Arbo MD. Piperazine designer drugs elicit toxicity in the alternative in vivo model
Caenorhabditis elegans. J Appl Toxicol 2019; 40:363-372. [DOI: 10.1002/jat.3909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Caroline Souto
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Caroline Portela Peruzzi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Larissa Vivan Cestonaro
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Ingrid Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Daiana Silva Ávila
- Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCE)Universidade Federal do Pampa (UNIPAMPA) Uruguaiana RS Brazil
| | - Vera Eifler‐Lima
- Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Departamento de Produção de Matéria Prima, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Helena Carmo
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do Porto Porto Portugal
| | - Maria de Lurdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do Porto Porto Portugal
| | - Solange C. Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| |
Collapse
|
15
|
Son HG, Altintas O, Kim EJE, Kwon S, Lee SV. Age-dependent changes and biomarkers of aging in Caenorhabditis elegans. Aging Cell 2019; 18:e12853. [PMID: 30734981 PMCID: PMC6413654 DOI: 10.1111/acel.12853] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
Caenorhabditis elegans is an exceptionally valuable model for aging research because of many advantages, including its genetic tractability, short lifespan, and clear age‐dependent physiological changes. Aged C. elegans display a decline in their anatomical and functional features, including tissue integrity, motility, learning and memory, and immunity. Caenorhabditis elegans also exhibit many age‐associated changes in the expression of microRNAs and stress‐responsive genes and in RNA and protein quality control systems. Many of these age‐associated changes provide information on the health of the animals and serve as valuable biomarkers for aging research. Here, we review the age‐dependent changes in C. elegans and their utility as aging biomarkers indicative of the physiological status of aging.
Collapse
Affiliation(s)
- Heehwa G. Son
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang South Korea
| | - Eun Ji E. Kim
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Sujeong Kwon
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Seung‐Jae V. Lee
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang South Korea
| |
Collapse
|
16
|
Gamir-Morralla A, Sacristán S, Medina M, Iglesias T. Effects of Thioflavin T and GSK-3 Inhibition on Lifespan and Motility in a Caenorhabditis elegans Model of Tauopathy. J Alzheimers Dis Rep 2019; 3:47-57. [PMID: 30842997 PMCID: PMC6400111 DOI: 10.3233/adr-180087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a powerful model organism to study lifespan and aging, protein aggregation, and neurodegeneration, as well as to carry out drug screenings. The C. elegans strain aex-3/T337 expresses human pathogenic V337M mutant tau under a pan-neuronal promoter and presents uncoordinated locomotion, accumulation of phosphorylated insoluble tau, and shortened lifespan. Herein we have used this strain to assay two compounds that could affect tau aggregation and/or phosphorylation, and looked for phenotypic changes in their lifespan and motility. The first compound is Thioflavin T (ThT), a member of the tetracycline family with protein antiaggregant properties, yet to be tested in a tauopathy model. The second is a novel small molecule, NP103, a highly selective inhibitor of glycogen synthase kinase-3 (GSK-3), the main kinase contributing to pathogenic tau hyperphosphorylation. Importantly, we find that ThT extends lifespan of aex-3/T337 worms as it does with control N2 animals, showing both strains similar locomotion features under this treatment. By contrast, NP103 improves the paralysis phenotype of aex-3/T337 mutants but not their lifespan. Our results show that both treatments present beneficial effects for this model of tauopathy and encourage pursuing further investigations on their therapeutic potential for AD and other tauopathies.
Collapse
Affiliation(s)
- Andrea Gamir-Morralla
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Sacristán
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Miguel Medina
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Barakat R, Lin PC, Park CJ, Best-Popescu C, Bakry HH, Abosalem ME, Abdelaleem NM, Flaws JA, Ko C. Prenatal Exposure to DEHP Induces Neuronal Degeneration and Neurobehavioral Abnormalities in Adult Male Mice. Toxicol Sci 2018; 164:439-452. [PMID: 29688563 PMCID: PMC6061835 DOI: 10.1093/toxsci/kfy103] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phthalates are a family of synthetic chemicals that are used in producing a variety of consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is an widely used phthalate and poses a public health concern. Prenatal exposure to DEHP has been shown to induce premature reproductive senescence in animal studies. In this study, we tested the hypothesis that prenatal exposure to DEHP impairs neurobehavior and recognition memory in her male offspring and we investigated one possible mechanism-oxidative damage in the hippocampus. Pregnant CD-1 female mice were orally administered 200 μg, 500 mg, or 750 mg/kg/day DEHP or vehicle from gestational day 11 until birth. The neurobehavioral impact of the prenatal DEHP exposure was assessed at the ages of 16-22 months. Elevated plus maze and open field tests were used to measure anxiety levels. Y-maze and novel object recognition tests were employed to measure memory function. The oxidative damage in the hippocampus was measured by the levels of oxidative DNA damage and by Spatial light interference microscopic counting of hippocampal neurons. Adult male mice that were prenatally exposed to DEHP exhibited anxious behaviors and impaired spatial and short-term recognition memory. The number of hippocampal pyramidal neurons was significantly decreased in the DEHP mice. Furthermore, DEHP mice expressed remarkably high levels of cyclooxygenase-2, 8-hydroxyguanine, and thymidine glycol in their hippocampal neurons. DEHP mice also had lower circulating testosterone concentrations and displayed a weaker immunoreactivity than the control mice to androgen receptor expression in the brain. This study found that prenatal exposure to DEHP caused elevated anxiety behavior and impaired recognition memory. These behavioral changes may originate from neurodegeneration caused by oxidative damage and inflammation in the hippocampus. Decreased circulating testosterone concentrations and decreased expression of androgen receptor in the brain also may be factors contributing to the impaired neurobehavior in the DEHP mice.
Collapse
Affiliation(s)
- Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Po-Ching Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
| | - Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
| | - Catherine Best-Popescu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Illinois 61801
| | - Hatem H Bakry
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Mohamed E Abosalem
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Nabila M Abdelaleem
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois 61802
| |
Collapse
|
18
|
Kotlar I, Colonnello A, Aguilera-González MF, Avila DS, de Lima ME, García-Contreras R, Ortíz-Plata A, Soares FAA, Aschner M, Santamaría A. Comparison of the Toxic Effects of Quinolinic Acid and 3-Nitropropionic Acid in C. elegans: Involvement of the SKN-1 Pathway. Neurotox Res 2018; 33:259-267. [PMID: 28822104 DOI: 10.1007/s12640-017-9794-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
The tryptophan metabolite, quinolinic acid (QUIN), and the mitochondrial toxin 3-nitropropionic acid (3-NP) are two important tools for toxicological research commonly used in neurotoxic models of excitotoxicity, oxidative stress, energy depletion, and neuronal cell death in mammals. However, their toxic properties have yet to be explored in the nematode Caenorhabditis elegans (C. elegans) for the establishment of novel, simpler, complementary, alternative, and predictive neurotoxic model of mammalian neurotoxicity. In this work, the effects of QUIN (1-100 mM) and 3-NP (1-10 mM) were evaluated on various physiological parameters (survival, locomotion, and longevity) in a wild-type (WT) strand of C. elegans (N2). Their effects were also tested in the VC1772 strain (knock out for the antioxidant SKN-1 pathway) and the VP596 strain (worms with a reporter gene for glutathione S-transferase (GST) transcription) in order to establish the role of the SKN-1 pathway in the mode of action of QUIN and 3-NP. In N2, the higher doses of both toxins decreased survival, though only QUIN altered motor activity. Both toxins also reduced longevity in the VC1772 strain (as compared to N2 strain) and augmented GST transcription in the VP596 strain at the highest doses. The changes induced by both toxins require high doses, and therefore appear moderate when compared with other toxic agents. Nevertheless, the alterations produced by QUIN and 3-NP in C. elegans are relevant to mammalian neurotoxicity as they provide novel mechanistic approaches to the assessment of neurotoxic events comprising oxidative stress and excitotoxicity, in the nematode model.
Collapse
Affiliation(s)
- Ilan Kotlar
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aline Colonnello
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - María Fernanda Aguilera-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | | | - María Eduarda de Lima
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico
- Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alma Ortíz-Plata
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | | | - Michael Aschner
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico.
| |
Collapse
|
19
|
Influence of aging on brain and web characteristics of an orb web spider. J ETHOL 2017; 36:85-91. [PMID: 30679883 PMCID: PMC6323080 DOI: 10.1007/s10164-017-0530-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 11/02/2017] [Indexed: 11/27/2022]
Abstract
In animals, it is known that age affects the abilities of the brain. In spiders, we showed that aging affects web characteristics due to behavioral alterations during web building. In this study, we investigated the effects of age on the associations between morphological changes to the spider brain and changes in web characteristics. The orb web spider Zygiella x-notata (Araneae, Araneidae) was used to test these relationships. Experiments were conducted on young (19 ± 2 days after adult molt, N = 13) and old (146 ± 32 days, N = 20) virgin females. The brain volume decreased with age (by 10%). Age also had an impact on the number of anomalies in the capture area generated during web building. The statistical relationships between the volume of the brain and web characteristics showed that there was an effect of age on both. Our results showed that in spiders, aging affects the brain volume and correlates with characteristics (anomalies) of the web. As web building is the result of complex behavioral processes, we suggest that aging affects spider behavior by causing some brain alterations.
Collapse
|
20
|
Pannakal ST, Jäger S, Duranton A, Tewari A, Saha S, Radhakrishnan A, Roy N, Kuntz JF, Fermas S, James D, Mellor J, Misra N, Breton L. Longevity effect of a polysaccharide from Chlorophytum borivilianum on Caenorhabditis elegans and Saccharomyces cerevisiae. PLoS One 2017; 12:e0179813. [PMID: 28727758 PMCID: PMC5519035 DOI: 10.1371/journal.pone.0179813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 06/05/2017] [Indexed: 12/23/2022] Open
Abstract
The traditional Indian medicine, Ayurveda, provides insights and practical solutions towards a healthy life style. Rasayana is a branch of Ayurveda known for preserving and promoting health, enhancing the quality of life and delaying the aging process. In the traditional knowledge, the Rasayana herb, Chlorophytum borivilianum (C. borivilanum) is regarded as a general health promoting tonic that delays aging and increases lifespan, cognitive function and physical strength. Aging is a complex and multifactorial physiological phenomenon that manifests itself over a wide range of biological systems, tissues, and functions. Longevity is an obvious marker of physiological aging. Simple model systems such as the single-cell budding yeast Saccharomyces cerevisiae (S. cerevisiae) and the nematode, Caenorhabditis elegans (C. elegans) are widely used to study the aging process and longevity. Here, we show that a polysaccharide fraction obtained from C. borivilianum increases the lifespan of S. cerevisiae and C. elegans, using an automated screening platform (ChronoscreenTM). Chemical analysis of this extract revealed a low molecular weight polysaccharide of 1000 Da, predominantly comprising Glu1→6Glu linkage. This polysaccharide showed significant dose-dependent extension of the median lifespan of S. cerevisiae by up to 41% and of the median lifespan of C. elegans by up to 10%. Taking cue from these results and the traditionally described benefits of Rasayanas on skin rejuvenation, we tested in vitro the polysaccharide for potential skin benefits. In a keratinocyte culture, we observed that this polysaccharide increased cell proliferation significantly, and induced synthesis of hyaluronic acid (HA), a well-known extracellular matrix component. Furthermore, when added to culture medium of human reconstructed epidermis, we observed an enhanced production of epidermal markers, e.g. CD44 and HA that are otherwise diminished in aged skin. Together, these results suggest that in addition to life-span extension of S. cerevisiae and C. elegans, a polysaccharide from the Rasayana herb, C. borivilianum may have beneficial effects on skin aging parameters.
Collapse
Affiliation(s)
| | - Sibylle Jäger
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | - Amit Tewari
- L’Oreal Research & Innovation, Bangalore, India
| | | | | | - Nita Roy
- L’Oreal Research & Innovation, Bangalore, India
| | | | - Soraya Fermas
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | - Jane Mellor
- Biochemistry Department, University of Oxford, Oxford, United Kingdom
- Sibelius Limited, Oxford, United Kingdom
| | - Namita Misra
- L’Oreal Research & Innovation, Bangalore, India
- * E-mail: (STP); (NM)
| | - Lionel Breton
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| |
Collapse
|
21
|
Gourgou E, Chronis N. Chemically induced oxidative stress affects ASH neuronal function and behavior in C. elegans. Sci Rep 2016; 6:38147. [PMID: 27922032 PMCID: PMC5138595 DOI: 10.1038/srep38147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/27/2016] [Indexed: 11/08/2022] Open
Abstract
Oxidative stress (OS) impact on a single neuron's function in vivo remains obscure. Using C. elegans as a model organism, we report the effect of paraquat (PQ)-induced OS on wild type worms on the function of the ASH polymodal neuron. By calcium (Ca2+) imaging, we quantified ASH activation upon stimulus delivery. PQ-treated worms displayed higher maximum depolarization (peak of the Ca2+ transients) compared to untreated animals. PQ had a similar effect on the ASH neuron response time (rising slope of the Ca2+ transients), except in very young worms. OS effect on ASH was partially abolished in vitamin C-treated worms. We performed octanol and osmotic avoidance tests, to investigate the OS effect on ASH-dependent behaviors. PQ-treated worms have enhanced avoidance behavior compared to untreated ones, suggesting that elevated ASH Ca2+ transients result in enhanced ASH-mediated behavior. The above findings suggest a possible hormetic effect of PQ, as a factor inducing mild oxidative stress. We also quantified locomotion parameters (velocity, bending amplitude), which are not mediated by ASH activation. Bending amplitude did not differ significantly between treated and untreated worms; velocity in older adults decreased. The differential effect of OS on behavioral patterns may mirror a selective impact on the organism's neurons.
Collapse
Affiliation(s)
- Eleni Gourgou
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Str., Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Geriatric Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Nikos Chronis
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Str., Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI, 48109, USA
| |
Collapse
|
22
|
Matsumoto Y, Matsumoto CS, Takahashi T, Mizunami M. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets. Front Behav Neurosci 2016; 10:166. [PMID: 27616985 PMCID: PMC4999442 DOI: 10.3389/fnbeh.2016.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/15/2016] [Indexed: 12/02/2022] Open
Abstract
Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- College of Liberal Arts and Science, Tokyo Medical and Dental UniversityIchikawa, Japan; Graduate School of Life Science, Hokkaido UniversitySapporo, Japan
| | | | | | - Makoto Mizunami
- Graduate School of Life Science, Hokkaido University Sapporo, Japan
| |
Collapse
|
23
|
Arey RN, Murphy CT. Conserved regulators of cognitive aging: From worms to humans. Behav Brain Res 2016; 322:299-310. [PMID: 27329151 DOI: 10.1016/j.bbr.2016.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/27/2016] [Accepted: 06/17/2016] [Indexed: 01/25/2023]
Abstract
Cognitive decline is a major deficit that arises with age in humans. While some research on the underlying causes of these problems can be done in humans, harnessing the strengths of small model systems, particularly those with well-studied longevity mutants, such as the nematode C. elegans, will accelerate progress. Here we review the approaches being used to study cognitive decline in model organisms and show how simple model systems allow the rapid discovery of conserved molecular mechanisms, which will eventually enable the development of therapeutics to slow cognitive aging.
Collapse
Affiliation(s)
- Rachel N Arey
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
24
|
Lee JH, Dillman AR, Hallem EA. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biol 2016; 14:36. [PMID: 27154502 PMCID: PMC4858831 DOI: 10.1186/s12915-016-0259-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/22/2016] [Indexed: 01/08/2023] Open
Abstract
Background Entomopathogenic nematodes (EPNs) are lethal parasites of insects that are of interest as biocontrol agents for insect pests and disease vectors. Although EPNs have been successfully commercialized for pest control, their efficacy in the field is often inconsistent for reasons that remain elusive. EPN infective juveniles (IJs) actively search for hosts to infect using a diverse array of host-emitted odorants. Here we investigate whether their host-seeking behavior is subject to context-dependent modulation. Results We find that EPN IJs exhibit extreme plasticity of olfactory behavior as a function of cultivation temperature. Many odorants that are attractive for IJs grown at lower temperatures are repulsive for IJs grown at higher temperatures and vice versa. Temperature-induced changes in olfactory preferences occur gradually over the course of days to weeks and are reversible. Similar changes in olfactory behavior occur in some EPNs as a function of IJ age. EPNs also show temperature-dependent changes in their host-seeking strategy: IJs cultured at lower temperatures appear to more actively cruise for hosts than IJs cultured at higher temperatures. Furthermore, we find that the skin-penetrating rat parasite Strongyloides ratti also shows temperature-dependent changes in olfactory behavior, demonstrating that such changes occur in mammalian-parasitic nematodes. Conclusions IJs are developmentally arrested and long-lived, often surviving in the environment through multiple seasonal temperature changes. Temperature-dependent modulation of behavior may enable IJs to optimize host seeking in response to changing environmental conditions, and may play a previously unrecognized role in shaping the interactions of both beneficial and harmful parasitic nematodes with their hosts. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0259-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joon Ha Lee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, 90095, USA
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, California, 92521, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, 90095, USA.
| |
Collapse
|
25
|
Rathor L, Akhoon BA, Pandey S, Srivastava S, Pandey R. Folic acid supplementation at lower doses increases oxidative stress resistance and longevity in Caenorhabditis elegans. AGE (DORDRECHT, NETHERLANDS) 2015; 37:113. [PMID: 26546011 PMCID: PMC5005867 DOI: 10.1007/s11357-015-9850-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/23/2015] [Indexed: 05/12/2023]
Abstract
Folic acid (FA) is an essential nutrient that the human body needs but cannot be synthesized on its own. Fortified foods and plant food sources such as green leafy vegetables, beans, fruits, and juices are good sources of FA to meet the daily requirements of the body. The aim was to evaluate the effect of dietary FA levels on the longevity of well-known experimental aging model Caenorhabditis elegans. Here, we show for first time that FA extends organism life span and causes a delay in aging. We observed that FA inhibits mechanistic target of rapamycin (mTOR) and insulin/insulin growth factor 1 (IGF-1) signaling pathways to control both oxidative stress levels and life span. The expression levels of stress- and life span-relevant gerontogenes, viz. daf-16, skn-1, and sir. 2.1, and oxidative enzymes, such as glutathione S-transferase 4 (GST-4) and superoxide dismutase 3 (SOD-3), were also found to be highly enhanced to attenuate the intracellular reactive oxygen species (ROS) damage and to delay the aging process. Our study promotes the use of FA to mitigate abiotic stresses and other aging-related ailments.
Collapse
Affiliation(s)
- Laxmi Rathor
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Bashir Akhlaq Akhoon
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Swapnil Pandey
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Swati Srivastava
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Rakesh Pandey
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
| |
Collapse
|
26
|
Extension of the established period of diacetyl adaptation by oxygen intermediates in the nematode Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:156-62. [PMID: 25759262 DOI: 10.1016/j.cbpa.2015.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 11/20/2022]
Abstract
After pre-exposure to the odorant diacetyl, the nematode Caenorhabditis elegans showed a decline in chemotactic responses to diacetyl, a phenomenon known as diacetyl adaptation. In the present study, we found that the established period of diacetyl adaptation in nematodes increased with the breeding temperature. When wild-type (N2) nematodes were bred at 15°C, adaptation was observed from the young adult (YA) to the 3-day-old adult that is reached 3 days after the YA stage. On breeding nematodes at 20°C and 25°C, adaptation was observed between the YA and 5-day-old adult and between the YA and the 7-day-old adult, respectively. Breeding temperature has been shown to correlate with the rate of aging in nematodes, which is related to the level of oxygen consumption. Accordingly, long-lived isp-1 and clk-1 mutants that demonstrate decreased levels of oxygen consumption showed a shorter established period of adaptation than N2 nematodes, whereas short-lived gas-1 and mev-1 mutants that have a hypersensitive response to oxygen showed a longer period of adaptation than the N2. Moreover, the established period of diacetyl adaptation in N2 nematodes was shortened by the antioxidant α-lipoic acid. These results suggest that oxygen intermediates, which are produced by oxygen consumption, play a significant role in diacetyl adaptation. Although this is only one of many factors that regulate diacetyl adaptation, such as the release of neurotransmitters and changes in intracellular conditions, the acquisition of this adaptation requires an increase in the intensity of moderate oxygen signals.
Collapse
|
27
|
Asghari MH, Saeidnia S, Abdollahi M. A Review on the Biochemical and Molecular Mechanisms of Phthalate-Induced Toxicity in Various Organs with a Focus on the Reproductive System. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.95.105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Tang J, Yuan Y, Wei C, Liao X, Yuan J, Nanberg E, Zhang Y, Bornehag CG, Yang X. Neurobehavioral changes induced by di(2-ethylhexyl) phthalate and the protective effects of vitamin E in Kunming mice. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00250d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer commonly used in PVC that may leach into the environment, and has been shown to adversely affect the health of humans and animals.
Collapse
Affiliation(s)
- Jiaqi Tang
- Section of Environmental Biomedicine
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology
- College of Life Science
- Central China Normal University
- Wuhan
| | - Ye Yuan
- Section of Environmental Biomedicine
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology
- College of Life Science
- Central China Normal University
- Wuhan
| | - Chenxi Wei
- Section of Environmental Biomedicine
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology
- College of Life Science
- Central China Normal University
- Wuhan
| | - Xiaomei Liao
- Section of Environmental Biomedicine
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology
- College of Life Science
- Central China Normal University
- Wuhan
| | - Junlin Yuan
- Section of Environmental Biomedicine
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology
- College of Life Science
- Central China Normal University
- Wuhan
| | - Eewa Nanberg
- Department of Health Sciences
- Karlstad University
- SE-651 88 Karlstad
- Sweden
| | - Yinping Zhang
- Department of Building Science
- Tsinghua University
- Beijing
- China
| | | | - Xu Yang
- Section of Environmental Biomedicine
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology
- College of Life Science
- Central China Normal University
- Wuhan
| |
Collapse
|
29
|
Fagundez DDA, Câmara DF, Salgueiro WG, Noremberg S, Luiz Puntel R, Piccoli JE, Garcia SC, da Rocha JBT, Aschner M, Ávila DS. Behavioral and dopaminergic damage induced by acute iron toxicity in Caenorhabditis elegans. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00120f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron (Fe) exposure, results in multiple biological defects in C. elegans, including reproductive and motor impairment, which may be related to oxidative stress and neuronal damage.
Collapse
|
30
|
Chen N, Li J, Li D, Yang Y, He D. Chronic exposure to perfluorooctane sulfonate induces behavior defects and neurotoxicity through oxidative damages, in vivo and in vitro. PLoS One 2014; 9:e113453. [PMID: 25412474 PMCID: PMC4239059 DOI: 10.1371/journal.pone.0113453] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022] Open
Abstract
Perfluorooctane sulfonate (PFOS) is an emerging persistent pollutant which shows multiple adverse health effects. However, the neurotoxicity of PFOS and its mechanisms have not been fully elucidated. Using a combination of in vivo and in vitro methods, the present study provides a detailed description of PFOS-induced neurotoxicity. Results showed that the median lethal concentration of PFOS was 2.03 mM in Caenorhabditis elegans for 48 h exposure. 20 µM PFOS caused decrease of locomotor behaviors including forward movement, body bend and head thrash. Additionally, PFOS exposure reduced chemotaxis index of C. elegans, which indicates the decline of chemotaxis learning ability. Using green fluorescent protein (GFP) labelled transgenic strains, we found that PFOS caused down-regulated expression of a chemoreceptor gene, gcy-5, in ASE chemosensory neurons, but did not affect cholinergic neurons and dopaminergic neurons. In SH-SY5Y cells, 48 h exposure to 25 µM and 50 µM PFOS induced cell damage, apoptosis and the reactive oxygen species (ROS) generation. PFOS caused significant increases of lipid peroxidation and superoxide dismutase activity, but an actual decrease of glutathione peroxidase activity. Furthermore, antioxidant N-acetylcysteine rescued cells from PFOS-induced apoptosis via blocking ROS. Our results demonstrate that chronic exposure to PFOS can cause obvious neurotoxicity and behavior defects. Oxidative damage and anti-oxidative deficit are crucial mechanisms in neurotoxicity of PFOS.
Collapse
Affiliation(s)
- Na Chen
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jia Li
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Dan Li
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yongsheng Yang
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Defu He
- Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, China
| |
Collapse
|
31
|
|
32
|
Chen Y, Onken B, Chen H, Xiao S, Liu X, Driscoll M, Cao Y, Huang Q. Mechanism of longevity extension of Caenorhabditis elegans induced by pentagalloyl glucose isolated from eucalyptus leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3422-3431. [PMID: 24701969 DOI: 10.1021/jf500210p] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The multicellular model organism Caenorhabditis elegans (C. elegans) was used to identify the anti-aging effect of pentagalloyl glucose (PGG) isolated from Eucalyptus leaves at four different concentrations. For 160 μM PGG, the median lifespan of C. elegans was found to increase by 18%, and the thermal stress resistance was also increased. The anti-aging effect of PGG did not cause side effects on the physiological functions including the reproduction, pharyngeal pumping rate, age pigments accumulation, and locomotion ability. The life extension induced by PGG was found to rely on genes daf-16, age-1, eat-2, sir-2.1, and isp-1 but did not rely on genes mev-1 and clk-1. These findings suggested that the insulin/IGF-1 signaling pathway, dietary restriction, Sir-2.1 signaling, and mitochondrial electron transport chain became partly involved with the mechanism of lifespan extension mediated by PGG. Our results provided an insight into the mechanism of longevity extension mediated by PGG in C. elegans, which might be developed into a new generation of multitarget drug to prolong lifespan.
Collapse
Affiliation(s)
- Yunjiao Chen
- Department of Food Science, College of Food Science, South China Agricultural University , Guangzhou 510642, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Saikia SK, Gupta R, Pant A, Pandey R. Genetic revelation of hexavalent chromium toxicity using Caenorhabditis elegans as a biosensor. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:180-184. [PMID: 24149972 DOI: 10.1038/jes.2013.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/23/2013] [Indexed: 06/02/2023]
Abstract
The interaction of heavy metals such as hexavalent chromium, Cr (VI) with the environment drastically influences living organisms leading to an ecological imbalance. Caenorhabditis elegans, a saprophytic nematode having 60-80% homology with human genes offers a distinct advantage to be used as a biosensor for the appraisal of heavy metal-induced environmental toxicity and risk monitoring. The present study examines the toxicity effects of K2Cr2O7 as Cr (VI) on stress-related gene expression and morphometric parameters of C. elegans under in vitro conditions to identify genetic markers for environmental pollution. Alterations in growth and modified gene expression were observed in Cr (VI)-exposed N2 worms. The 24-h median lethal concentration for Cr (VI) was observed as 158.5 mgl(-1). Use of the responses of stress-related gene expression suggests that C. elegans can be used as an efficient biosensor for figuring out the precise route of Cr (VI)-induced environmental toxicity in a quick, simple, and inexpensive manner.
Collapse
Affiliation(s)
- Shilpi Khare Saikia
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh,India
| | - Rupali Gupta
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh,India
| | - Aakanksha Pant
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh,India
| | - Rakesh Pandey
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh,India
| |
Collapse
|
34
|
Tseng IL, Yang YF, Yu CW, Li WH, Liao VHC. Phthalates induce neurotoxicity affecting locomotor and thermotactic behaviors and AFD neurons through oxidative stress in Caenorhabditis elegans. PLoS One 2013; 8:e82657. [PMID: 24349328 PMCID: PMC3861438 DOI: 10.1371/journal.pone.0082657] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/25/2013] [Indexed: 01/05/2023] Open
Abstract
Background Phthalate esters are ubiquitous environmental contaminants and numerous organisms are thus exposed to various levels of phthalates in their natural habitat. Considering the critical, but limited, research on human neurobehavioral outcomes in association with phthalates exposure, we used the nematode Caenorhabditis elegans as an in vivo model to evaluate phthalates-induced neurotoxicity and the possible associated mechanisms. Principal Findings Exposure to phthalates (DEHP, DBP, and DIBP) at the examined concentrations induced behavioral defects, including changes in body bending, head thrashing, reversal frequency, and thermotaxis in C. elegans. Moreover, phthalates (DEHP, DBP, and DIBP) exposure caused toxicity, affecting the relative sizes of cell body fluorescent puncta, and relative intensities of cell bodies in AFD neurons. The mRNA levels of the majority of the genes (TTX-1, TAX-2, TAX-4, and CEH-14) that are required for the differentiation and function of AFD neurons were decreased upon DEHP exposure. Furthermore, phthalates (DEHP, DBP, and DIBP) exposure at the examined concentrations produced elevated intracellular reactive oxygen species (ROS) in C. elegans. Finally, pretreatment with the antioxidant ascorbic acid significantly lowered the intracellular ROS level, ameliorated the locomotor and thermotactic behavior defects, and protected the damage of AFD neurons by DEHP exposure. Conclusions Our study suggests that oxidative stress plays a critical role in the phthalate esters-induced neurotoxic effects in C. elegans.
Collapse
Affiliation(s)
- I-Ling Tseng
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsuan Li
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Chatterjee I, Ibanez-Ventoso C, Vijay P, Singaravelu G, Baldi C, Bair J, Ng S, Smolyanskaya A, Driscoll M, Singson A. Dramatic fertility decline in aging C. elegans males is associated with mating execution deficits rather than diminished sperm quality. Exp Gerontol 2013; 48:1156-66. [PMID: 23916839 PMCID: PMC4169024 DOI: 10.1016/j.exger.2013.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/25/2013] [Indexed: 01/03/2023]
Abstract
Although much is known about female reproductive aging, fairly little is known about the causes of male reproductive senescence. We developed a method that facilitates culture maintenance of Caenorhabditis elegans adult males, which enabled us to measure male fertility as populations age, without profound loss of males from the growth plate. We find that the ability of males to sire progeny declines rapidly in the first half of adult lifespan and we examined potential factors that contribute towards reproductive success, including physical vigor, sperm quality, mating apparatus morphology, and mating ability. Of these, we find little evidence of general physical decline in males or changes in sperm number, morphology, or capacity for activation, at time points when reproductive senescence is markedly evident. Rather, it is the loss of efficient mating ability that correlates most strongly with reproductive senescence. Low insulin signaling can extend male ability to sire progeny later in life, although insulin impact on individual facets of mating behavior is complex. Overall, we suggest that combined modest deficits, predominantly affecting the complex mating behavior rather than sperm quality, sum up to block effective C. elegans male reproduction in middle adult life.
Collapse
|
36
|
Nishino A, Kanno R, Matsuura T. The Role of Oxygen Intermediates in the Retention Time of Diacetyl Adaptation in the NematodeCaenorhabditis elegans. ACTA ACUST UNITED AC 2013; 319:431-9. [DOI: 10.1002/jez.1806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/21/2013] [Accepted: 04/29/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | - Ryo Kanno
- Laboratory of Behavioral Physiology, Faculty of Engineering; Iwate University; Morioka; Japan
| | | |
Collapse
|
37
|
Timbers TA, Giles AC, Ardiel EL, Kerr RA, Rankin CH. Intensity discrimination deficits cause habituation changes in middle-aged Caenorhabditis elegans. Neurobiol Aging 2013; 34:621-31. [DOI: 10.1016/j.neurobiolaging.2012.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/31/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
|
38
|
Stein GM, Murphy CT. The Intersection of Aging, Longevity Pathways, and Learning and Memory in C. elegans. Front Genet 2012; 3:259. [PMID: 23226155 PMCID: PMC3509946 DOI: 10.3389/fgene.2012.00259] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/05/2012] [Indexed: 11/18/2022] Open
Abstract
Our understanding of the molecular and genetic regulation of aging and longevity has been greatly augmented through studies using the small model system, C. elegans. It is important to test whether mutations that result in a longer life span also extend the health span of the organism, rather than simply prolonging an aged state. C. elegans can learn and remember both associated and non-associated stimuli, and many of these learning and memory paradigms are subject to regulation by longevity pathways. One of the more distressing results of aging is cognitive decline, and while no gross physical defects in C. elegans sensory neurons have been identified, the organism does lose the ability to perform both simple and complex learned behaviors with age. Here we review what is known about the effects of longevity pathways and the decline of these complex learned behaviors with age, and we highlight outstanding questions in the field.
Collapse
Affiliation(s)
- Geneva M. Stein
- Glenn Laboratories for Aging Research, Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrinceton, NJ, USA
| | - Coleen T. Murphy
- Glenn Laboratories for Aging Research, Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrinceton, NJ, USA
| |
Collapse
|
39
|
Shukla V, Yadav D, Phulara SC, Gupta MM, Saikia SK, Pandey R. Longevity-promoting effects of 4-hydroxy-E-globularinin in Caenorhabditis elegans. Free Radic Biol Med 2012; 53:1848-56. [PMID: 23000058 DOI: 10.1016/j.freeradbiomed.2012.08.594] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/17/2012] [Accepted: 08/24/2012] [Indexed: 01/30/2023]
Abstract
In modern times, there has been a major increase in the use of plants or herbal constituents for the prevention of age-related disorders. 4-Hydroxy-E-globularinin (4-HEG) is an iridoid and a major component of Premna integrifolia. This investigation represents a breakthrough in geriatrics by showing the longevity-promoting activity of 4-HEG in the animal model Caenorhabditis elegans. 4-HEG (20μM) enhanced the mean life span of worms by over 18.8% under normal culture conditions and also enhanced their survival under oxidative stress. The longevity-promoting activity was associated with reduced reactive oxygen species (ROS) levels and fat accumulation in the worms. Gene-specific mutant studies verified the role of ROS detoxification pathways and simultaneous nuclear translocation of DAF-16 in the 4-HEG-mediated effects. Quantitative real-time PCR estimations and observations of transcriptional reporters indicated that 4-HEG was able to upregulate stress-inducible genes, viz., hsp-16.2 and sod-3. Thus, 4-HEG may serve as a lead compound of plant origin for the development of important nutraceuticals superseding the aging process.
Collapse
Affiliation(s)
- Virendra Shukla
- Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | | | | | | | | | | |
Collapse
|
40
|
Yeoman M, Scutt G, Faragher R. Insights into CNS ageing from animal models of senescence. Nat Rev Neurosci 2012; 13:435-45. [PMID: 22595787 DOI: 10.1038/nrn3230] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In recent years, novel model systems have made significant contributions to our understanding of the processes that control the ageing of whole organisms. However, there are limited data to show that the mechanisms that gerontologists have identified as having a role in organismal ageing contribute significantly to the ageing of the central nervous system. Two recent discoveries illustrate this particularly well. The first is the consistent failure of researchers to demonstrate a simple relationship between organismal ageing and oxidative stress--a mechanism often assumed to have a primary role in brain ageing. The second is the demonstration that senescent cells play a causal part in organismal ageing but remain essentially unstudied in a CNS context. We argue that the animal models now available (including rodents, flies, molluscs and worms), if properly applied, will allow a paradigm shift in our current understanding of the normal processes of brain ageing.
Collapse
Affiliation(s)
- Mark Yeoman
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton, East Sussex BN2 4GJ, UK
| | | | | |
Collapse
|
41
|
Liu P, He K, Li Y, Wu Q, Yang P, Wang D. Exposure to mercury causes formation of male-specific structural deficits by inducing oxidative damage in nematodes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 79:90-100. [PMID: 22209111 DOI: 10.1016/j.ecoenv.2011.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 05/31/2023]
Abstract
Metal exposure causes reproductive damage in hermaphrodite nematodes, but effects of metals on male development are unclear. We here investigated the effects of mercury chloride exposure on development of males. Hg exposure severely increased the percentage of abnormal males, disrupted the development of male-specific structures, and caused high reactive oxygen species (ROS) production in male tails. Pre-treatment with antioxidant (vitamin E) protected the nematodes against toxicity from Hg exposure on development of male-specific structures. The ROS production in tails was closely correlated with formation of abnormal male-specific structures in males induced by Hg exposure. Moreover, mutations of clk-1, encoding ortholog of COQ7/CAT5, and daf-2, encoding an insulin/IGF receptor, functioned in two different pathways to suppress the formation of deficits in development of male-specific structures. Thus, three different lines of evidence support our conclusion that HgCl(2) causes male structure-specific teratogenesis via production of oxidative stress.
Collapse
Affiliation(s)
- Peidang Liu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China; Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China; Institute of Neuroscience, Medical School of Southeast University, Nanjing 210009, China
| | - Kewen He
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China; Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Yinxia Li
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China; Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China; Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Peng Yang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China; Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China; Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China.
| |
Collapse
|
42
|
Sakashita T, Suzuki M, Hamada N, Shimozawa Y, Shirai-Fukamoto K, Yokota Y, Hamada-Sora S, Kakizaki T, Wada S, Funayama T, Kobayashi Y. Behavioral Resistance of Caenorhabditis elegans Against High-LET Radiation Exposure. ACTA ACUST UNITED AC 2012. [DOI: 10.2187/bss.26.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Role of CB1 cannabinoid receptors on GABAergic neurons in brain aging. Proc Natl Acad Sci U S A 2011; 108:11256-61. [PMID: 21690345 DOI: 10.1073/pnas.1016442108] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Brain aging is associated with cognitive decline that is accompanied by progressive neuroinflammatory changes. The endocannabinoid system (ECS) is involved in the regulation of glial activity and influences the progression of age-related learning and memory deficits. Mice lacking the Cnr1 gene (Cnr1(-/-)), which encodes the cannabinoid receptor 1 (CB1), showed an accelerated age-dependent deficit in spatial learning accompanied by a loss of principal neurons in the hippocampus. The age-dependent decrease in neuronal numbers in Cnr1(-/-) mice was not related to decreased neurogenesis or to epileptic seizures. However, enhanced neuroinflammation characterized by an increased density of astrocytes and activated microglia as well as an enhanced expression of the inflammatory cytokine IL-6 during aging was present in the hippocampus of Cnr1(-/-) mice. The ongoing process of pyramidal cell degeneration and neuroinflammation can exacerbate each other and both contribute to the cognitive deficits. Deletion of CB1 receptors from the forebrain GABAergic, but not from the glutamatergic neurons, led to a similar neuronal loss and increased neuroinflammation in the hippocampus as observed in animals lacking CB1 receptors in all cells. Our results suggest that CB1 receptor activity on hippocampal GABAergic neurons protects against age-dependent cognitive decline by reducing pyramidal cell degeneration and neuroinflammation.
Collapse
|
44
|
Van Raamsdonk JM, Hekimi S. Reactive Oxygen Species and Aging in Caenorhabditis elegans: Causal or Casual Relationship? Antioxid Redox Signal 2010; 13:1911-53. [PMID: 20568954 DOI: 10.1089/ars.2010.3215] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The free radical theory of aging proposes a causal relationship between reactive oxygen species (ROS) and aging. While it is clear that oxidative damage increases with age, its role in the aging process is uncertain. Testing the free radical theory of aging requires experimentally manipulating ROS production or detoxification and examining the resulting effects on lifespan. In this review, we examine the relationship between ROS and aging in the genetic model organism Caenorhabditis elegans, summarizing experiments using long-lived mutants, mutants with altered mitochondrial function, mutants with decreased antioxidant defenses, worms treated with antioxidant compounds, and worms exposed to different environmental conditions. While there is frequently a negative correlation between oxidative damage and lifespan, there are many examples in which they are uncoupled. Neither is resistance to oxidative stress sufficient for a long life nor are all long-lived mutants more resistant to oxidative stress. Similarly, sensitivity to oxidative stress does not necessarily shorten lifespan and is in fact compatible with long life. Overall, the data in C. elegans indicate that oxidative damage can be dissociated from aging in experimental situations.
Collapse
|
45
|
The lin-4 gene controls fat accumulation and longevity in Caenorhabditis elegans. Int J Mol Sci 2010; 11:4814-25. [PMID: 21614175 PMCID: PMC3100830 DOI: 10.3390/ijms11124814] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 11/05/2010] [Accepted: 11/18/2010] [Indexed: 11/17/2022] Open
Abstract
Previous studies have determined that lin-4, which was the first miRNA to be discovered, controls the timing of cell fate determination and life span in Caenorhabditis elegans. However, the mechanism of lin-4 involvement in these processes remains poorly understood. Fat storage is an essential aspect of the life cycle of organisms, and the function of lin-4 in fat accumulation is not clear. In this study, we showed that the fat content is reduced remarkably in C. elegans lin-4 mutants. Quantitative RT-PCR analysis revealed a considerable decrease in the levels of SBP-1 and OGA-1 mRNA in lin-4 mutants. We also showed that lin-4 mutants have a significantly shorter life span than wild-type worms. DCF assay experiments showed that the reactive oxygen species (ROS) levels increased and mitochondrial DNA (mtDNA) copy number decreased in loss-of-function lin-4 mutants. These mutants also showed attenuation of locomotion. Taken together, our findings suggest that lin-4 may play an important role in regulating fat accumulation and locomotion and that lin-4 may control the life span of C. elegans by mediating ROS production.
Collapse
|
46
|
Zhang Y, Ye B, Wang D. Effects of metal exposure on associative learning behavior in nematode Caenorhabditis elegans. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 59:129-136. [PMID: 20044747 DOI: 10.1007/s00244-009-9456-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 12/13/2009] [Indexed: 05/28/2023]
Abstract
In the present study, the thermotaxis model was used to evaluate the effects of metal exposure at different concentrations on associative learning behavior in nematodes. The examined nematodes were cultured at 25 or 17 degrees C, and then shifted to 20 degrees C condition. Based on the ability of nematodes to trace the temperature of 20 degrees C, exposure to 10 microM of all examined metals and 2.5 microM Pb and Hg caused significant decrease of associative learning behavior at time intervals of 5 and 18 h; however, exposure to 2.5 microM Cu, Zn, and Ag did not influence associative learning behavior. Moreover, exposure to 2.5 and 10 microM of examined metals did not influence body bend and thermotaxis to cultivation temperature, whereas exposure to 50 microM of examined metals caused significant reduction of body bend and thermotaxis to cultivation temperature. Furthermore, Pb and Hg were the more toxic among the examined metals, with severe toxicity on associative learning behavior, thermotaxis, and locomotion behavior in nematodes.
Collapse
Affiliation(s)
- Yanfen Zhang
- Department of Genetics and Developmental Biology, Southeast University Medical School, Nanjing, China
| | | | | |
Collapse
|
47
|
Behrends A, Scheiner R. Learning at old age: a study on winter bees. Front Behav Neurosci 2010; 4:15. [PMID: 20428511 PMCID: PMC2859878 DOI: 10.3389/fnbeh.2010.00015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/24/2010] [Indexed: 11/24/2022] Open
Abstract
Ageing is often accompanied by a decline in learning and memory abilities across the animal kingdom. Understanding age-related changes in cognitive abilities is therefore a major goal of current research. The honey bee is emerging as a novel model organism for age-related changes in brain function, because learning and memory can easily be studied in bees under controlled laboratory conditions. In addition, genetically similar workers naturally display life expectancies from 6 weeks (summer bees) to 6 months (winter bees). We studied whether in honey bees, extreme longevity leads to a decline in cognitive functions. Six-month-old winter bees were conditioned either to odours or to tactile stimuli. Afterwards, long-term memory and discrimination abilities were analysed. Winter bees were kept under different conditions (flight/no flight opportunity) to test for effects of foraging activity on learning performance. Despite their extreme age, winter bees did not display an age-related decline in learning or discrimination abilities, but had a slightly impaired olfactory long-term memory. The opportunity to forage indoors led to a slight decrease in learning performance. This suggests that in honey bees, unlike in most other animals, age per se does not impair associative learning. Future research will show which mechanisms protect winter bees from age-related deficits in learning.
Collapse
Affiliation(s)
- Andreas Behrends
- Institut für Okologie, Technische Universität Berlin Berlin, Germany
| | | |
Collapse
|
48
|
Kaletsky R, Murphy CT. The role of insulin/IGF-like signaling in C. elegans longevity and aging. Dis Model Mech 2010; 3:415-9. [PMID: 20354111 DOI: 10.1242/dmm.001040] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aging is characterized by general physiological decline over time. A hallmark of human senescence is the onset of various age-related afflictions including neurodegeneration, cardiovascular disease and cancer. Although environmental and stochastic factors undoubtedly contribute to the increased incidence of disease with age, recent studies suggest that intrinsic genetic determinants govern both life span and overall health. Current aging research aims at achieving the 'longevity dividend', in which life span extension in humans is accomplished with a concomitant increase in the quality of life (Olshansky et al., 2007). Significant progress has been made using model organisms, especially the nematode worm Caenorhabditis elegans, to delineate the genetic and biochemical pathways involved in aging to identify strategies for therapeutic intervention in humans. In this review, we discuss how C. elegans has contributed to our understanding of insulin signaling and aging.
Collapse
Affiliation(s)
- Rachel Kaletsky
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
49
|
Sakashita T, Takanami T, Yanase S, Hamada N, Suzuki M, Kimura T, Kobayashi Y, Ishii N, Higashitani A. Radiation biology of Caenorhabditis elegans: germ cell response, aging and behavior. JOURNAL OF RADIATION RESEARCH 2010; 51:107-121. [PMID: 20208402 DOI: 10.1269/jrr.09100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The study of radiation effect in Caenorhabditis (C.) elegans has been carried out over three decades and now allow for understanding at the molecular, cellular and individual levels. This review describes the current knowledge of the biological effects of ionizing irradiation with a scope of the germ line, aging and behavior. In germ cells, ionizing radiation induces apoptosis, cell cycle arrest and DNA repair. Lots of molecules involved in these responses and functions have been identified in C. elegans, which are highly conserved throughout eukaryotes. Radiosensitivity and the effect of heavy-ion microbeam irradiation on germ cells with relationship between initiation of meiotic recombination and DNA lesions are discussed. In addition to DNA damage, ionizing radiation produces free radicals, and the free radical theory is the most popular aging theory. A first signal transduction pathway of aging has been discovered in C. elegans, and radiation-induced metabolic oxidative stress is recently noted for an inducible factor of hormetic response and genetic instability. The hormetic response in C. elegans exposed to oxidative stress is discussed with genetic pathways of aging. Moreover, C. elegans is well known as a model organism for behavior. The recent work reported the radiation effects via specific neurons on learning behavior, and radiation and hydrogen peroxide affect the locomotory rate similarly. These findings are discussed in relation to the evidence obtained with other organisms. Altogether, C. elegans may be a good "in vivo" model system in the field of radiation biology.
Collapse
|
50
|
Matsuura T, Suzuki S, Musashino A, Kanno R, Ichinose M. Retention time of attenuated response to diacetyl after pre-exposure to diacetyl in Caenorhabditis elegans. ACTA ACUST UNITED AC 2009; 311:483-95. [PMID: 19415716 DOI: 10.1002/jez.545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The retention time of attenuated chemotactic response to continuous presentation of odorant diacetyl was investigated in the nematode Caenorhabditis elegans. The level of chemotactic response of nematodes pre-exposed to diacetyl for 90 min was significantly smaller than that of nonexposed control nematodes. In this study, wild-type (N2) nematodes were maintained at 15, 20 and 25 degrees C after pre-exposure to diacetyl. At 20 degrees C, there was a decrease in response to diacetyl continuing for up to 6 hr after pre-exposure to the chemical, but not up to 12 hr. Interestingly, the decrease in response to diacetyl did not continue up to 2 hr in nematodes bred at 15 degrees C, although it continued beyond 12 hr in nematodes bred at 25 degrees C. These results indicate that the retention time of attenuated chemotactic response to diacetyl is dependent on the environmental breeding temperature of nematodes. The breeding temperature correlated with aging speed of nematodes, suggesting that a short life span (higher aging speed) prolongs the retention time of attenuated chemotactic response to diacetyl after pre-exposure to diacetyl. In the long-lived daf-2, age-1, clk-1 and isp-1 mutants, the effect of diacetyl did not continue up to 2 hr. The short-lived daf-16, daf-18, mev-1 and gas-1 mutants showed a longer duration of decrease in response to diacetyl, that is, the retention time of attenuated chemotactic response to diacetyl continued beyond 12 hr. There is a possibility that the duration of decrease in response to diacetyl after pre-exposure to diacetyl was inversely related to the length of nematodes' life span.
Collapse
Affiliation(s)
- Tetsuya Matsuura
- Department of Welfare Engineering, Faculty of Engineering, Iwate University, Ueda, Morioka, Japan.
| | | | | | | | | |
Collapse
|