1
|
Costa-Laparra I, Juárez-Escoto E, Vicario C, Moratalla R, García-Sanz P. APOE ε4 allele, along with G206D- PSEN1 mutation, alters mitochondrial networks and their degradation in Alzheimer's disease. Front Aging Neurosci 2023; 15:1087072. [PMID: 37455931 PMCID: PMC10340123 DOI: 10.3389/fnagi.2023.1087072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Alzheimer's disease remains the most common neurodegenerative disorder, depicted mainly by memory loss and the presence in the brain of senile plaques and neurofibrillary tangles. This disease is related to several cellular alterations like the loss of synapses, neuronal death, disruption of lipid homeostasis, mitochondrial fragmentation, or raised oxidative stress. Notably, changes in the autophagic pathway have turned out to be a key factor in the early development of the disease. The aim of this research is to determine the impact of the APOE allele ε4 and G206D-PSEN1 on the underlying mechanisms of Alzheimer's disease. Methods Fibroblasts from Alzheimer's patients with APOE 3/4 + G206D-PSEN1 mutation and homozygous APOE ε4 were used to study the effects of APOE polymorphism and PSEN1 mutation on the autophagy pathway, mitochondrial network fragmentation, superoxide anion levels, lysosome clustering, and p62/SQSTM1 levels. Results We observed that the APOE allele ε4 in homozygosis induces mitochondrial network fragmentation that correlates with an increased colocalization with p62/SQSTM1, probably due to an inefficient autophagy. Moreover, G206D-PSEN1 mutation causes an impairment of the integrity of mitochondrial networks, triggering high superoxide anion levels and thus making APOE 3/4 + PSEN1 fibroblasts more vulnerable to cell death induced by oxidative stress. Of note, PSEN1 mutation induces accumulation and clustering of lysosomes that, along with an increase of global p62/SQSTM1, could compromise lysosomal function and, ultimately, its degradation. Conclusion The findings suggest that all these modifications could eventually contribute to the neuronal degeneration that underlies the pathogenesis of Alzheimer's disease. Further research in this area may help to develop targeted therapies for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Costa-Laparra
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Juárez-Escoto
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Vicario
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Stem Cells, Neurogenesis and Neurodegeneration Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Rosario Moratalla
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia García-Sanz
- Neurobiology of the Basal Ganglia Laboratory, Department of Functional Systems and Neurobiology, Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Nelson TJ, Xu Y. Sting and p53 DNA repair pathways are compromised in Alzheimer's disease. Sci Rep 2023; 13:8304. [PMID: 37221295 PMCID: PMC10206146 DOI: 10.1038/s41598-023-35533-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A common finding in AD is DNA damage. Double-strand DNA breaks (DSBs) are particularly hazardous to neurons because their post-mitotic state forces neurons to rely on error-prone and potentially mutagenic mechanisms to repair DNA breaks. However, it remains unclear whether DNA damage results from increased DNA damage or failure of DNA repair. Oligomerization of the tumor suppressor protein p53 is an essential part of DSB repair, and p53 phosphorylated on S15 is an indicator of DNA damage. We report that the monomer:dimer ratio of phosphorylated (S15) p53 is increased by 2.86-fold in temporal lobes of AD patients compared to age-matched controls, indicating that p53 oligomerization is compromised in AD. In vitro oxidation of p53 with 100 nM H2O2 produced a similar shift in the monomer:dimer ratio. A COMET test showed a higher level of DNA degradation in AD consistent with double-strand DNA damage or inhibition of repair. Protein carbonylation was also elevated (190% of control), indicating elevated oxidative stress in AD patients. Levels of the DNA repair support protein 14-3-3σ, γ-H2AX, a phosphorylated histone marking double strand DNA breaks, and phosphorylated ataxia telangiectasia mutated (ATM) protein were all increased. cGAS-STING-interferon signaling was impaired in AD and was accompanied by a depletion of STING protein from Golgi and a failure to elevate interferon despite the presence of DSBs. The results suggest that oxidation of p53 by ROS could inhibit the DDR and decrease its ability to orchestrate DSB repair by altering the oligomerization state of p53. The failure of immune-stimulated DNA repair may contribute to cell loss in AD and suggests new therapeutic targets for AD.
Collapse
Affiliation(s)
- Thomas J Nelson
- Department of Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, 25704, USA.
| | - Yunhui Xu
- Department of Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, 25704, USA
| |
Collapse
|
3
|
Clark JS, Kayed R, Abate G, Uberti D, Kinnon P, Piccirella S. Post-translational Modifications of the p53 Protein and the Impact in Alzheimer's Disease: A Review of the Literature. Front Aging Neurosci 2022; 14:835288. [PMID: 35572126 PMCID: PMC9096077 DOI: 10.3389/fnagi.2022.835288] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Our understanding of Alzheimer's disease (AD) pathogenesis has developed with several hypotheses over the last 40 years, including the Amyloid and Tau hypotheses. More recently, the p53 protein, well-known as a genome guardian, has gained attention for its potential role in the early evolution of AD. This is due to the central involvement of p53's in the control of oxidative stress and potential involvement in the Amyloid and Tau pathways. p53 is commonly regulated by post-translational modifications (PTMs), which affect its conformation, increasing its capacity to adopt multiple structural and functional states, including those that can affect brain processes, thus contributing to AD development. The following review will explore the impact of p53 PTMs on its function and consequential involvement in AD pathogenesis. The greater understanding of the role of p53 in the pathogenesis of AD could result in more targeted therapies benefiting the many patients of this debilitating disease.
Collapse
Affiliation(s)
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Neurology, Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Giulia Abate
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | |
Collapse
|
4
|
Abate G, Frisoni GB, Bourdon JC, Piccirella S, Memo M, Uberti D. The pleiotropic role of p53 in functional/dysfunctional neurons: focus on pathogenesis and diagnosis of Alzheimer's disease. Alzheimers Res Ther 2020; 12:160. [PMID: 33272326 PMCID: PMC7712978 DOI: 10.1186/s13195-020-00732-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Understanding the earliest pathophysiological changes of Alzheimer's disease (AD) may aid in the search for timely diagnostic biomarkers and effective disease-modifying therapies. The p53 protein is mostly known for its role in tumor suppression. However, emerging evidence supports that dysregulated p53 activity may contribute to various peripheral and brain alterations during the earliest stages of AD. This review describes the mechanisms through which p53 dysregulation may exacerbate AD pathology and how this could be used as a potential peripheral biomarker for early detection of the disease. MAIN BODY: p53, known as the guardian of the genome, may underlie various compensation or defense mechanisms that prevent neurons from degeneration. These mechanisms include maintenance of redox homeostasis, regulation of inflammation, control of synaptic function, reduction of amyloid β peptides, and inhibition of neuronal cell cycle re-entry. Thereby, dysregulation of p53-dependent compensation mechanisms may contribute to neuronal dysfunction, thus leading to neurodegeneration. Interestingly, a conformational misfolded variant of p53, described in the literature as unfolded p53, which has lost its canonical structure and function, was observed in peripheral cells from mild cognitive impairment (MCI) and AD patients. In AD pathology, this peculiar conformational variant was caused by post-translational modifications rather than mutations as commonly observed in cancer. Although the presence of the conformational variant of p53 in the brain has yet to be formally demonstrated, the plethora of p53-dependent compensation mechanisms underscores that the guardian of the genome may not only be lost in the periphery during AD pathology. CONCLUSION These findings revisit the role of p53 in the early development and exacerbation of AD pathology, both in the brain and periphery. The conformational variant of p53 represents a potential peripheral biomarker that could detect AD at its earliest stages.
Collapse
Affiliation(s)
- Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, BS, Italy
| | - Giovanni B Frisoni
- Memory Clinic, University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, BS, Italy
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, BS, Italy.
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
5
|
Farmer KM, Ghag G, Puangmalai N, Montalbano M, Bhatt N, Kayed R. P53 aggregation, interactions with tau, and impaired DNA damage response in Alzheimer's disease. Acta Neuropathol Commun 2020; 8:132. [PMID: 32778161 PMCID: PMC7418370 DOI: 10.1186/s40478-020-01012-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
The transcription factor, p53, is critical for many important cellular functions involved in genome integrity, including cell cycle control, DNA damage response, and apoptosis. Disruption of p53 results in a wide range of disorders including cancer, metabolic diseases, and neurodegenerative diseases. Alzheimer's disease (AD) is a neurodegenerative disorder characterized by protein aggregates that contribute to disease pathology. Although p53 is known to aggregate, its propensity to aggregate in AD has never been assessed. Moreover, AD neuropathology includes lethal cell cycle re-entry, excessive DNA damage, and abnormal cell death which are all controlled by p53. Here, we show p53 forms oligomers and fibrils in human AD brain, but not control brain. p53 oligomers can also be detected in htau and P301L mouse models. Additionally, we demonstrate that p53 interacts with tau, specifically tau oligomers, in AD brain and can be recapitulated by in vitro exogenous tau oligomer treatment in C57BL/6 primary neurons. p53 oligomers also colocalize, potentially seeding, endogenous p53 in primary neurons. Lastly, we demonstrate that in the presence of DNA damage, phosphorylated p53 is mislocalized outside the nucleus and p53-mediated DNA damage responders are significantly decreased in AD brain. Control brain shows a healthy DNA damage response, indicating a loss of nuclear p53 function in AD may be due to p53 aggregation and/or interactions with tau oligomers. Given the critical role of p53 in cellular physiology, the disruption of this crucial transcription factor may set an irreversible course towards neurodegeneration in AD and potentially other tauopathies, warranting further investigation.
Collapse
Affiliation(s)
- Kathleen M. Farmer
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
| | - Gaurav Ghag
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
- Protein Sciences, Merck & Co Incorporated, South San Francisco, CA USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX USA
| |
Collapse
|
6
|
Sabapathy K, Lane DP. Understanding p53 functions through p53 antibodies. J Mol Cell Biol 2020; 11:317-329. [PMID: 30907951 PMCID: PMC6487784 DOI: 10.1093/jmcb/mjz010] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 01/19/2023] Open
Abstract
TP53 is the most frequently mutated gene across all cancer types. Our understanding of its functions has evolved since its discovery four decades ago. Initially thought to be an oncogene, it was later realized to be a critical tumour suppressor. A significant amount of our knowledge about p53 functions have come from the use of antibodies against its various forms. The early anti-p53 antibodies contributed to the recognition of p53 accumulation as a common feature of cancer cells and to our understanding of p53 DNA-binding and transcription activities. They led to the concept that conformational changes can facilitate p53’s activity as a growth inhibitory protein. The ensuing p53 conformational-specific antibodies further underlined p53’s conformational flexibility, collectively forming the basis for current efforts to generate therapeutic molecules capable of altering the conformation of mutant p53. A subsequent barrage of antibodies against post-translational modifications on p53 has clarified p53’s roles further, especially with respect to the mechanistic details and context-dependence of its activity. More recently, the generation of p53 mutation-specific antibodies have highlighted the possibility to go beyond the general framework of our comprehension of mutant p53—and promises to provide insights into the specific properties of individual p53 mutants. This review summarizes our current knowledge of p53 functions derived through the major classes of anti-p53 antibodies, which could be a paradigm for understanding other molecular events in health and disease.
Collapse
Affiliation(s)
- Kanaga Sabapathy
- Laboratory of Molecular Carcinogenesis, Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), 8 Medical Drive, Singapore, Singapore.,Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore, Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
7
|
Wang W, Qin JJ, Rajaei M, Li X, Yu X, Hunt C, Zhang R. Targeting MDM2 for novel molecular therapy: Beyond oncology. Med Res Rev 2019; 40:856-880. [PMID: 31587329 DOI: 10.1002/med.21637] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
The murine double minute 2 (MDM2) oncogene exerts major oncogenic activities in human cancers; it is not only the best-documented negative regulator of the p53 tumor suppressor, but also exerts p53-independent activities. There is an increasing interest in developing MDM2-based targeted therapies. Several classes of MDM2 inhibitors have been evaluated in preclinical models, with a few entering clinical trials, mainly for cancer therapy. However, noncarcinogenic roles for MDM2 have also been identified, demonstrating that MDM2 is involved in many chronic diseases and conditions such as inflammation and autoimmune diseases, dementia and neurodegenerative diseases, heart failure and cardiovascular diseases, nephropathy, diabetes, obesity, and sterility. MDM2 inhibitors have been shown to have promising therapeutic efficacy for treating inflammation and other nonmalignant diseases in preclinical evaluations. Therefore, targeting MDM2 may represent a promising approach for treating and preventing these nonmalignant diseases. In addition, a better understanding of how MDM2 works in nonmalignant diseases may provide new biomarkers for their diagnosis, prognostic prediction, and monitoring of therapeutic outcome. In this review article, we pay special attention to the recent findings related to the roles of MDM2 in the pathogenesis of several nonmalignant diseases, the therapeutic potential of its downregulation or inhibition, and its use as a biomarker.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas.,Drug Discovery Institute, University of Houston, Houston, Texas
| | - Jiang-Jiang Qin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Mehrdad Rajaei
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xin Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xiaoyi Yu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Courtney Hunt
- Drug Discovery Institute, University of Houston, Houston, Texas
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas.,Drug Discovery Institute, University of Houston, Houston, Texas
| |
Collapse
|
8
|
Amor-Gutiérrez O, Costa-Rama E, Arce-Varas N, Martínez-Rodríguez C, Novelli A, Fernández-Sánchez MT, Costa-García A. Competitive electrochemical immunosensor for the detection of unfolded p53 protein in blood as biomarker for Alzheimer's disease. Anal Chim Acta 2019; 1093:28-34. [PMID: 31735212 DOI: 10.1016/j.aca.2019.09.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is one of the most common causes of dementia nowadays, and its prevalence increases over time. Because of this and the difficulty of its diagnosis, accurate methods for the analysis of specific biomarkers for an early diagnosis of this disease are much needed. Recently, the levels of unfolded isoform of the multifunctional protein p53 in plasma have been proved to increase selectively in Alzheimer's Disease patients in comparison with healthy subjects, thus entering the list of biomarkers that can be used for the diagnosis of this illness. We present here the development of an electrochemical immunosensor based on nanostructured screen-printed carbon electrodes for the quantification of unfolded p53 in plasma samples. The sensor shows a suitable linear range (from 2 to 50 nM) for its application in real blood samples and a very low limit of detection (0.05 nM). The concentration of unfolded p53 has been accurately detected in plasma of elderly people in healthy conditions, subjects with mild cognitive impairment (MCI) and Alzheimer's Disease (AD) subjects, obtaining results with no significant differences to those provided by an ELISA assay. These results support the possibility of measuring unfolded p53 levels with a cheap, simple and miniaturized device with a promising future for point-of-care applications in the early diagnosis of Alzheimer's dementia.
Collapse
Affiliation(s)
- Olaya Amor-Gutiérrez
- Nanobioanalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Estefanía Costa-Rama
- Nanobioanalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain; REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | | | | | - Antonello Novelli
- Department of Psychology, University of Oviedo, Oviedo, Spain; University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain; Institute for Sanitary Research of the Princedom of Asturias (ISPA), Oviedo, Spain
| | - María Teresa Fernández-Sánchez
- Department of Biochemistry and Molecular Biology, University of Oviedo, Oviedo, Spain; University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Agustín Costa-García
- Nanobioanalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain.
| |
Collapse
|
9
|
Jazvinšćak Jembrek M, Slade N, Hof PR, Šimić G. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer’s disease. Prog Neurobiol 2018; 168:104-127. [DOI: 10.1016/j.pneurobio.2018.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/04/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022]
|
10
|
Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1871-82. [PMID: 27425034 DOI: 10.1016/j.bbadis.2016.07.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 12/31/2022]
Abstract
Protein phosphorylation of serine, threonine, and tyrosine residues is one of the most prevalent post-translational modifications fundamental in mediating diverse cellular functions in living cells. Aberrant protein phosphorylation is currently recognized as a critical step in the pathogenesis and progression of Alzheimer disease (AD). Changes in the pattern of protein phosphorylation of different brain regions are suggested to promote AD transition from a presymptomatic to a symptomatic state in response to accumulating amyloid β-peptide (Aβ). Several experimental approaches have been utilized to profile alteration of protein phosphorylation in the brain, including proteomics. Among central pathways regulated by kinases/phosphatases those involved in the activation/inhibition of both pro survival and cell death pathways play a central role in AD pathology. We discuss in detail how aberrant phosphorylation could contribute to dysregulate p53 activity and insulin-mediated signaling. Taken together these results highlight that targeted therapeutic intervention, which can restore phosphorylation homeostasis, either acting on kinases and phosphatases, conceivably may prove to be beneficial to prevent or slow the development and progression of AD.
Collapse
|
11
|
Simoni E, Serafini MM, Bartolini M, Caporaso R, Pinto A, Necchi D, Fiori J, Andrisano V, Minarini A, Lanni C, Rosini M. Nature-Inspired Multifunctional Ligands: Focusing on Amyloid-Based Molecular Mechanisms of Alzheimer's Disease. ChemMedChem 2015; 11:1309-17. [DOI: 10.1002/cmdc.201500422] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Simoni
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Melania M. Serafini
- Department of Drug Sciences (Pharmacology Section); University of Pavia; V.le Taramelli 14 27100 Pavia Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Roberta Caporaso
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Antonella Pinto
- Department of Drug Sciences (Pharmacology Section); University of Pavia; V.le Taramelli 14 27100 Pavia Italy
| | - Daniela Necchi
- Department of Drug Sciences (Pharmacology Section); University of Pavia; V.le Taramelli 14 27100 Pavia Italy
| | - Jessica Fiori
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies; Alma Mater Studiorum, University of Bologna; Corso d'Augusto 237 47921 Rimini Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology Section); University of Pavia; V.le Taramelli 14 27100 Pavia Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum, University of Bologna; Via Belmeloro 6 40126 Bologna Italy
| |
Collapse
|
12
|
Singh AK, Pati U. CHIP stabilizes amyloid precursor protein via proteasomal degradation and p53-mediated trans-repression of β-secretase. Aging Cell 2015; 14:595-604. [PMID: 25773675 PMCID: PMC4531073 DOI: 10.1111/acel.12335] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
In patient with Alzheimer’s disease (AD), deposition of amyloid-beta Aβ, a proteolytic cleavage of amyloid precursor protein (APP) by β-secretase/BACE1, forms senile plaque in the brain. BACE1 activation is caused due to oxidative stresses and dysfunction of ubiquitin–proteasome system (UPS), which is linked to p53 inactivation. As partial suppression of BACE1 attenuates Aβ generation and AD-related pathology, it might be an ideal target for AD treatment. We have shown that both in neurons and in HEK-APP cells, BACE1 is a new substrate of E3-ligase CHIP and an inverse relation exists between CHIP and BACE1 level. CHIP inhibits ectopic BACE1 level by promoting its ubiquitination and proteasomal degradation, thus reducing APP processing; it stabilizes APP in neurons, thus reducing Aβ. CHIPUbox domain physically interacts with BACE1; however, both U-box and TPR domain are essential for ubiquitination and degradation of BACE1. Further, BACE1 is a downstream target of p53 and overexpression of p53 decreases BACE1 level. In HEK-APP cells, CHIP is shown to negatively regulate BACE1 promoter through stabilization of p53’s DNA-binding conformation and its binding upon 5′ UTR element (+127 to +150). We have thus discovered that CHIP regulates p53-mediated trans-repression of BACE1 at both transcriptional and post-translational level. We propose that a CHIP–BACE1–p53 feedback loop might control APP stabilization, which could further be utilized for new therapeutic intervention in AD.
Collapse
Affiliation(s)
- Amir Kumar Singh
- School of Biotechnology Jawaharlal Nehru University New Delhi 110067 India
| | - Uttam Pati
- School of Biotechnology Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
13
|
The amyloid precursor protein (APP) intracellular domain regulates translation of p44, a short isoform of p53, through an IRES-dependent mechanism. Neurobiol Aging 2015; 36:2725-36. [PMID: 26174856 DOI: 10.1016/j.neurobiolaging.2015.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023]
Abstract
p44 is a short isoform of the tumor suppressor protein p53 that is regulated in an age-dependent manner. When overexpressed in the mouse, it causes a progeroid phenotype that includes premature cognitive decline, synaptic defects, and hyperphosphorylation of tau. The hyperphosphorylation of tau has recently been linked to the ability of p44 to regulate transcription of relevant tau kinases. Here, we report that the amyloid precursor protein (APP) intracellular domain (AICD), which results from the processing of the APP, regulates translation of p44 through a cap-independent mechanism that requires direct binding to the second internal ribosome entry site (IRES) of the p53 mRNA. We also report that AICD associates with nucleolin, an already known IRES-specific trans-acting factor that binds with p53 IRES elements and regulates translation of p53 isoforms. The potential biological impact of our findings was assessed in a mouse model of Alzheimer's disease. In conclusion, our study reveals a novel aspect of AICD and p53/p44 biology and provides a possible molecular link between APP, p44, and tau.
Collapse
|
14
|
Dorszewska J, Różycka A, Oczkowska A, Florczak-Wyspiańska J, Prendecki M, Dezor M, Postrach I, Jagodzinski PP, Kozubski W. Mutations of TP53 Gene and Oxidative Stress in Alzheimer’s Disease Patients. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aad.2014.31004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 2013; 142:99-113. [PMID: 24287312 DOI: 10.1016/j.pharmthera.2013.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
Abstract
More than thirty years elapsed since a protein, not yet called p53 at the time, was detected to bind SV40 during viral infection. Thousands of papers later, p53 evolved as the main tumor suppressor involved in growth arrest and apoptosis. A lot has been done but the protein has not yet revealed all its secrets. Particularly important is the observation that in totally distinct pathologies where apoptosis is either exacerbated or impaired, p53 appears to play a central role. This is exemplified for Alzheimer's and Parkinson's diseases that represent the two main causes of age-related neurodegenerative affections, where cell death enhancement appears as one of the main etiological paradigms. Conversely, in cancers, about half of the cases are linked to mutations in p53 leading to the impairment of p53-dependent apoptosis. The involvement of p53 in these pathologies has driven a huge amount of studies aimed at designing chemical tools or biological approaches to rescue p53 defects or over-activity. Here, we describe the data linking p53 to neurodegenerative diseases and brain cancers, and we document the various strategies to interfere with p53 dysfunctions in these disorders.
Collapse
|
16
|
Lanni C, Necchi D, Pinto A, Buoso E, Buizza L, Memo M, Uberti D, Govoni S, Racchi M. Zyxin is a novel target for β-amyloid peptide: characterization of its role in Alzheimer's pathogenesis. J Neurochem 2013; 125:790-9. [PMID: 23330981 DOI: 10.1111/jnc.12154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 11/26/2022]
Abstract
Zyxin is an adaptor protein recently identified as a novel regulator of the homeodomain-interacting protein kinase 2 (HIPK2)-p53 signaling in response to DNA damage. We recently reported an altered conformational state of p53 in tissues from patients with Alzheimer 's disease (AD), because of a deregulation of HIPK2 activity, leading to an impaired and dysfunctional response to stressors. Here, we examined the molecular mechanisms underlying the deregulation of HIPK2 activity in two cellular models, HEK-293 cells and SH-SY5Y neuroblastoma cells differentiated with retinoic acid over-expressing the amyloid precursor protein, focusing on the evidence that zyxin expression is important to maintain HIPK2 protein stability. We demonstrated that both beta-amyloid (Aβ) 1-40 and 1-42 induce zyxin deregulation, thus affecting the transcriptional repressor activity of HIPK2 onto its target promoter, metallothionein 2A, which is in turn responsible for the induction of an altered conformational state of p53. We demonstrate for the first time that zyxin is a novel target of Aβ activities in AD. These results may help the studies on the pathogenesis of AD, through the fine dissection of events related to beta-amyloid activities.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Conformational altered p53 affects neuronal function: relevance for the response to toxic insult and growth-associated protein 43 expression. Cell Death Dis 2013; 4:e484. [PMID: 23392172 PMCID: PMC3734841 DOI: 10.1038/cddis.2013.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of p53 in neurodegenerative diseases is essentially associated with neuronal death. Recently an alternative point of view is emerging, as altered p53 conformation and impaired protein function have been found in fibroblasts and blood cells derived from Alzheimer's disease patients. Here, using stable transfected SH-SY5Y cells overexpressing APP751wt (SY5Y-APP) we demonstrated that the expression of an unfolded p53 conformation compromised neuronal functionality. In particular, these cells showed (i) augmented expression of amyloid precursor protein (APP) and its metabolites, including the C-terminal fragments C99 and C83 and β-amyloid peptide (ii) high levels of oxidative markers, such as 4-hydroxy-2-nonenal Michael-adducts and 3-nitro-tyrosine and (iii) altered p53 conformation, mainly due to nitration of its tyrosine residues. The consequences of high-unfolded p53 expression resulted in loss of p53 pro-apoptotic activity, and reduction of growth-associated protein 43 (GAP-43) mRNA and protein levels. The role of unfolded p53 in cell death resistance and lack of GAP-43 transcription was demonstrated by ZnCl2 treatment. Zinc supplementation reverted p53 wild-type tertiary structure, increased cells sensitivity to acute cytotoxic injury and GAP-43 levels in SY5Y-APP clone.
Collapse
|
18
|
Alquezar C, Esteras N, Alzualde A, Moreno F, Ayuso MS, López de Munain A, Martín-Requero Á. Inactivation of CDK/pRb pathway normalizes survival pattern of lymphoblasts expressing the FTLD-progranulin mutation c.709-1G>A. PLoS One 2012; 7:e37057. [PMID: 22623979 PMCID: PMC3356399 DOI: 10.1371/journal.pone.0037057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/12/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mutations in the progranulin (PGRN) gene, leading to haploinsufficiency, cause familial frontotemporal lobar degeneration (FTLD-TDP), although the pathogenic mechanism of PGRN deficit is largely unknown. Allelic loss of PGRN was previously shown to increase the activity of cyclin-dependent kinase (CDK) CDK6/pRb pathway in lymphoblasts expressing the c.709-1G>A PGRN mutation. Since members of the CDK family appear to play a role in neurodegenerative disorders and in apoptotic death of neurons subjected to various insults, we investigated the role of CDK6/pRb in cell survival/death mechanisms following serum deprivation. METHODOLOGY/PRINCIPAL FINDINGS We performed a comparative study of cell viability after serum withdrawal of established lymphoblastoid cell lines from control and carriers of c.709-1G>A PGRN mutation, asymptomatic and FTLD-TDP diagnosed individuals. Our results suggest that the CDK6/pRb pathway is enhanced in the c.709-1G>A bearing lymphoblasts. Apparently, this feature allows PGRN-deficient cells to escape from serum withdrawal-induced apoptosis by decreasing the activity of executive caspases and lowering the dissipation of mitochondrial membrane potential and the release of cytochrome c from the mitochondria. Inhibitors of CDK6 expression levels like sodium butyrate or the CDK6 activity such as PD332991 were able to restore the vulnerability of lymphoblasts from FTLD-TDP patients to trophic factor withdrawal. CONCLUSION/SIGNIFICANCE The use of PGRN-deficient lymphoblasts from FTLD-TDP patients may be a useful model to investigate cell biochemical aspects of this disease. It is suggested that CDK6 could be potentially a therapeutic target for the treatment of the FTLD-TDP.
Collapse
Affiliation(s)
- Carolina Alquezar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Noemí Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ainhoa Alzualde
- Neuroscience Area-Institute Biodonostia, San Sebastian, Spain
| | - Fermín Moreno
- Department of Neurology, Hospital Donostia, San Sebastian, Spain
| | - Matilde S. Ayuso
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Adolfo López de Munain
- Neuroscience Area-Institute Biodonostia, San Sebastian, Spain
- Department of Neurology, Hospital Donostia, San Sebastian, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- * E-mail:
| |
Collapse
|
19
|
Lanni C, Racchi M, Memo M, Govoni S, Uberti D. p53 at the crossroads between cancer and neurodegeneration. Free Radic Biol Med 2012; 52:1727-33. [PMID: 22387179 DOI: 10.1016/j.freeradbiomed.2012.02.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 12/20/2022]
Abstract
Aging, dementia, and cancer share a critical set of altered cellular functions in response to DNA damage, genotoxic stress, and other insults. Recent data suggest that the molecular machinery involved in maintaining neural function in neurodegenerative disease may be shared with oncogenic pathways. Cancer and neurodegenerative diseases may be influenced by common signaling pathways regulating the balance of cell survival versus death, a decision often governed by checkpoint proteins. This paper focuses on one such protein, p53, which represents one of the most extensively studied proteins because of its role in cancer prevention and which, furthermore, has been recently shown to be involved in aging and Alzheimer disease (AD). The contribution of a conformational change in p53 to aging and neurodegenerative processes has yet to be elucidated. In this review we discuss the multiple functions of p53 and how these correlate between cancer and neurodegeneration, focusing on various factors that may have a role in regulating p53 activity. The observation that aging and AD interfere with proteins controlling duplication and cell cycle may lead to the speculation that, in senescent neurons, aberrations in proteins generally dealing with cell cycle control and apoptosis could affect neuronal plasticity and functioning rather than cell duplication.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, 27100 Pavia, Italy.
| | | | | | | | | |
Collapse
|
20
|
Buizza L, Cenini G, Lanni C, Ferrari-Toninelli G, Prandelli C, Govoni S, Buoso E, Racchi M, Barcikowska M, Styczynska M, Szybinska A, Butterfield DA, Memo M, Uberti D. Conformational altered p53 as an early marker of oxidative stress in Alzheimer's disease. PLoS One 2012; 7:e29789. [PMID: 22242180 PMCID: PMC3252333 DOI: 10.1371/journal.pone.0029789] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/05/2011] [Indexed: 11/18/2022] Open
Abstract
In order to study oxidative stress in peripheral cells of Alzheimer's disease (AD) patients, immortalized lymphocytes derived from two peculiar cohorts of patients, referring to early onset AD (EOSAD) and subjects harboured AD related mutation (ADmut), were used. Oxidative stress was evaluated measuring i) the typical oxidative markers, such as HNE Michel adducts, 3 Nitro-Tyrosine residues and protein carbonyl on protein extracts, ii) and the antioxidant capacity, following the enzymatic kinetic of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRD). We found that the signs of oxidative stress, measured as oxidative marker levels, were evident only in ADmut but not in EOSAD patients. However, oxidative imbalance in EOSAD as well as ADmut lymphocytes was underlined by a reduced SOD activity and GRD activity in both pathological groups in comparison with cells derived from healthy subjects. Furthermore, a redox modulated p53 protein was found conformational altered in both EOSAD and ADmut B lymphocytes in comparison with control cells. This conformational altered p53 isoform, named “unfolded p53”, was recognized by the use of two specific conformational anti-p53 antibodies. Immunoprecipitation experiments, performed with the monoclonal antibodies PAb1620 (that recognizes p53wt) and PAb240 (that is direct towards unfolded p53), and followed by the immunoblotting with anti-4-hydroxynonenal (HNE) and anti- 3-nitrotyrosine (3NT) antibodies, showed a preferential increase of nitrated tyrosine residues in unfolded p53 isoform comparing to p53 wt protein, in both ADmut and EOSAD. In addition, a correlation between unfolded p53 and SOD activity was further found. Thus this study suggests that ROS/RNS contributed to change of p53 tertiary structure and that unfolded p53 can be considered as an early marker of oxidative imbalance in these patients.
Collapse
Affiliation(s)
- Laura Buizza
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Giovanna Cenini
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
- Sanders-Brown Centre on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Cristina Lanni
- Department of Experimental and Applied Pharmacology, University of Pavia, Pavia, Italy
| | | | - Chiara Prandelli
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Stefano Govoni
- Department of Experimental and Applied Pharmacology, University of Pavia, Pavia, Italy
| | - Erica Buoso
- Department of Experimental and Applied Pharmacology, University of Pavia, Pavia, Italy
| | - Marco Racchi
- Department of Experimental and Applied Pharmacology, University of Pavia, Pavia, Italy
| | | | - Maria Styczynska
- Medical Research Centre Polish Academy of Science, Warszawa, Poland
| | - Aleksandra Szybinska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warszawa, Poland
| | - David Allan Butterfield
- Sanders-Brown Centre on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Maurizio Memo
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
21
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia in elderly individuals and is associated with progressive neurodegeneration of the human neocortex. Thiamine levels and the activity of thiamine-dependent enzymes are reduced in the brains and peripheral tissues of patients with AD. Genetic studies have provided the opportunity to determine what proteins link thiamine to AD pathology (ie, transketolase, apolipoprotein E, α-1-antitrypsin, pyruvate dehydrogenase complex, p53, glycogen synthetase kinase-3β, c-Fos gene, the Sp1 promoter gene, and the poly(ADP-ribosyl) polymerase-1 gene). We reviewed the association between histopathogenesis and neurotransmitters to understand the relationship between thiamine and AD pathology. Oral thiamine trials have been shown to improve the cognitive function of patients with AD; however, absorption of thiamine is poor in elderly individuals. In the early stage of thiamine-deficient encephalopathy (Wernicke's encephalopathy), however, parental thiamine has been used successfully. Therefore, further studies are needed to determine the benefits of using parental thiamine as a treatment for AD.
Collapse
|
22
|
Mossello E, Ballini E, Mello AM, Tarantini F, Simoni D, Baldasseroni S, Marchionni N. Biomarkers of Alzheimer's disease: from central nervous system to periphery? Int J Alzheimers Dis 2010; 2011:342980. [PMID: 21197431 PMCID: PMC3010633 DOI: 10.4061/2011/342980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/15/2010] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's Disease (AD) is the most frequent form of dementia and represents one of the main causes of disability among older subjects. Up to now, the diagnosis of AD has been made according to clinical criteria. However, the use of such criteria does not allow an early diagnosis, as pathological alterations may be apparent many years before the clear-cut clinical picture. An early diagnosis is even more valuable to develop new treatments, potentially interfering with the pathogenetic process. During the last decade, several neuroimaging and cerebrospinal fluid (CSF) parameters have been introduced to allow an early and accurate detection of AD patients, and, recently, they have been included among research criteria for AD diagnosis. However, their use in clinical practice suffers from limitations both in accuracy and availability. The increasing amount of knowledge about peripheral biomarkers will possibly allow the future identification of reliable and easily available diagnostic tests.
Collapse
Affiliation(s)
- Enrico Mossello
- Unit of Gerontology and Geriatric Medicine, Department of Critical Care Medcine and Surgery, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Skin and brain age together: The role of hormones in the ageing process. Exp Gerontol 2010; 45:801-13. [DOI: 10.1016/j.exger.2010.08.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 01/10/2023]
|
24
|
Lanni C, Nardinocchi L, Puca R, Stanga S, Uberti D, Memo M, Govoni S, D'Orazi G, Racchi M. Homeodomain interacting protein kinase 2: a target for Alzheimer's beta amyloid leading to misfolded p53 and inappropriate cell survival. PLoS One 2010; 5:e10171. [PMID: 20418953 PMCID: PMC2854690 DOI: 10.1371/journal.pone.0010171] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/24/2010] [Indexed: 11/18/2022] Open
Abstract
Background Homeodomain interacting protein kinase 2 (HIPK2) is an evolutionary conserved serine/threonine kinase whose activity is fundamental in maintaining wild-type p53 function, thereby controlling the destiny of cells when exposed to DNA damaging agents. We recently reported an altered conformational state of p53 in tissues from patients with Alzheimer's Disease (AD) that led to an impaired and dysfunctional response to stressors. Methodology/Principal Findings Here we examined the molecular mechanisms underlying the impairment of p53 activity in two cellular models, HEK-293 cells overexpressing the amyloid precursor protein and fibroblasts from AD patients, starting from recent findings showing that p53 conformation may be regulated by HIPK2. We demonstrated that beta-amyloid 1–40 induces HIPK2 degradation and alters HIPK2 binding activity to DNA, in turn regulating the p53 conformational state and vulnerability to a noxious stimulus. Expression of HIPK2 was analysed by western blot experiments, whereas HIPK2 DNA binding was examined by chromatin immunoprecipitation analysis. In particular, we evaluated the recruitment of HIPK2 onto some target promoters, including hypoxia inducible factor-1α and metallothionein 2A. Conclusions/Significance These results support the existence of a novel amyloid-based pathogenetic mechanism in AD potentially leading to the survival of injured dysfunctional cells.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Salvioli S, Capri M, Bucci L, Lanni C, Racchi M, Uberti D, Memo M, Mari D, Govoni S, Franceschi C. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother 2009; 58:1909-17. [PMID: 19139887 PMCID: PMC11030834 DOI: 10.1007/s00262-008-0639-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 12/02/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Centenarians are exceptionally long living individuals who escaped the most common age-related diseases. In particular they appear to be effectively protected from cancers. The mechanisms that underlie this protection are quite complex and still largely unclear. AIM To critically analyse the literature in order to propose a unifying hypothesis that can account for this cancer protection in centenarians. METHODS Review of the scientific literature regarding three main players in tumourigenesis such as IGF-1, inflammation and p53, and centenarians. RESULTS Centenarians appear to be characterised by low IGF-1-mediated responses and high levels of anti-inflammatory cytokines such as IL-10 and TGF-beta, a condition that results in protection from cancer. Both inflammation and IGF-1 pathway converge on the tumour suppressor p53. Accordingly, some studies indicate that genetic variants of p53 are associated with human longevity by providing protection from cancer mortality. CONCLUSIONS The available data let us to hypothesise that among other possible mechanisms, well-preserved p53-mediated responses are likely a key factor contributing to protection from cancer in centenarians.
Collapse
Affiliation(s)
- Stefano Salvioli
- Department of Experimental Pathology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Morel M, Couturier J, Pontcharraud R, Gil R, Fauconneau B, Paccalin M, Page G. Evidence of molecular links between PKR and mTOR signalling pathways in Abeta neurotoxicity: role of p53, Redd1 and TSC2. Neurobiol Dis 2009; 36:151-61. [PMID: 19631745 DOI: 10.1016/j.nbd.2009.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/03/2009] [Accepted: 07/13/2009] [Indexed: 01/13/2023] Open
Abstract
The control of translation is disturbed in Alzheimer's disease (AD). This study analysed the crosslink between the up regulation of double-stranded RNA-dependent-protein kinase (PKR) and the down regulation of mammalian target of rapamycin (mTOR) signalling pathways via p53, the protein Regulated in the Development and DNA damage response 1 (Redd1) and the tuberous sclerosis complex (TSC2) factors in two beta-amyloid peptide (Abeta) neurotoxicity models. In SH-SY5Y cells, Abeta42 induced an increase of P(T451)-PKR and of the ratio p66/(p66+p53) in nuclei and a physical interaction between these proteins. Redd1 gene levels increased and P(T1462)-TSC2 decreased. These disturbances were earlier in rat primary neurons with nuclear co-localization of Redd1 and PKR. The PKR gene silencing in SH-SY5Y cells prevented these alterations. p53, Redd1 and TSC2 could represent the molecular links between PKR and mTOR in Abeta neurotoxicity. PKR could be a critical target in a therapeutic program of AD.
Collapse
Affiliation(s)
- Milena Morel
- Research Group on Brain Aging, GReViC EA 3808, University of Poitiers, 6 rue de la Milétrie BP 199, 86034 Poitiers Cedex, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Morel M, Couturier J, Lafay-Chebassier C, Paccalin M, Page G. PKR, the double stranded RNA-dependent protein kinase as a critical target in Alzheimer's disease. J Cell Mol Med 2009; 13:1476-88. [PMID: 19602051 PMCID: PMC3828860 DOI: 10.1111/j.1582-4934.2009.00849.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Amyloid β-peptide (Aβ) deposits and neurofibrillary tangles are key hallmarks in Alzheimer's disease (AD). Aβ stimulates many signal transducers involved in the neuronal death. However, many mechanisms remain to be elucidated because no definitive therapy of AD exists. Some studies have focused on the control of translation which involves eIF2 and eIF4E, main eukaryotic factors of initiation. The availability of these factors depends on the activation of the double-stranded RNA-dependent protein kinase (PKR) and the mammalian target of rapamycin (mTOR), respectively. mTOR positively regulates the translation while PKR results in a protein synthesis shutdown. Many studies demonstrated that the PKR signalling pathway is up-regulated in cellular and animal models of AD and in the brain of AD patients. Interestingly, our results showed that phosphorylated PKR and eIF2α levels were significantly increased in lymphocytes of AD patients. These modifications were significantly correlated with cognitive and memory test scores performed in AD patients. On the contrary, the mTOR signalling pathway is down-regulated in cellular and animal models of AD. Recently, we showed that p53, regulated protein in development and DNA damage response 1 and tuberous sclerosis complex 2 could represent molecular links between PKR and mTOR signalling pathways. PKR could be an early biomarker of the neuronal death and a critical target for a therapeutic programme in AD.
Collapse
Affiliation(s)
- Milena Morel
- Research Group on Brain Aging (EA 3808) University of Poitiers, Poitiers Cedex, France
| | | | | | | | | |
Collapse
|
28
|
Damjanac M, Page G, Ragot S, Laborie G, Gil R, Hugon J, Paccalin M. PKR, a cognitive decline biomarker, can regulate translation via two consecutive molecular targets p53 and Redd1 in lymphocytes of AD patients. J Cell Mol Med 2009; 13:1823-1832. [PMID: 19210572 DOI: 10.1111/j.1582-4934.2009.00688.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In Alzheimer's disease (AD), the control of translation is dysregulated, precisely, two opposite pathways: double-stranded RNA-dependent protein kinase (PKR) is up-regulated and mammalian target of rapamycin (mTOR) is down-regulated. These biochemical alterations were found at the periphery in lymphocytes of AD patients and were significantly correlated with cognitive and memory test scores. However, the molecular crosslink between these two opposite signalling pathways remains unknown. The tumour suppressor p53 and Redd1 (regulated in development and DNA damage response) could be two downstream targets of active PKR to explain the breakdown of translation in AD patients. In this study, the protein and gene levels of p53 and Redd1 were assayed in lymphocytes of AD patients and in age-matched controls by Western blotting and RT-PCR. Furthermore, correlations were analysed with both the level of active PKR and the Mini Mental State Examination score (MMSE). The results show that the gene and protein levels of p53 and Redd1 were significantly increased about 1.5-fold for both gene and Redd1 protein and 2.3-fold for active p53 in AD lymphocytes compared to age-matched controls. Furthermore, statistical correlations between proteins and genes suggest that active PKR could phosphorylate p53 which could induce the transcription of Redd1 gene. No correlations were found between MMSE scores and levels of p53 or Redd1, contrary to active PKR levels. PKR represents a cognitive decline biomarker able to dysregulate translation via two consecutive targets p53 and Redd1 in AD lymphocytes.
Collapse
Affiliation(s)
- Milena Damjanac
- Research Group on Brain Aging, University of Poitiers, France
| | - Guylène Page
- Research Group on Brain Aging, University of Poitiers, France
| | - Stéphanie Ragot
- Clinical Investigation Center, Poitiers University Hospital, France
| | | | - Roger Gil
- Research Group on Brain Aging, University of Poitiers, France.,Department of Neurology, Poitiers University Hospital, France
| | - Jacques Hugon
- Departments of Histology and Pathology, Lariboisière Hospital, University of Paris, France
| | - Marc Paccalin
- Research Group on Brain Aging, University of Poitiers, France.,Department of Geriatrics, Poitiers University Hospital, France
| |
Collapse
|
29
|
Racchi M, Uberti D, Govoni S, Memo M, Lanni C, Vasto S, Candore G, Caruso C, Romeo L, Scapagnini G. Alzheimer's disease: new diagnostic and therapeutic tools. IMMUNITY & AGEING 2008; 5:7. [PMID: 18700965 PMCID: PMC2531076 DOI: 10.1186/1742-4933-5-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 08/13/2008] [Indexed: 12/25/2022]
Abstract
On March 19, 2008 a Symposium on Pathophysiology of Ageing and Age-Related diseases was held in Palermo, Italy. Here, the lectures of M. Racchi on History and future perspectives of Alzheimer Biomarkers and of G. Scapagnini on Cellular Stress Response and Brain Ageing are summarized. Alzheimer's disease (AD) is a heterogeneous and progressive neurodegenerative disease, which in Western society mainly accounts for clinica dementia. AD prevention is an important goal of ongoing research. Two objectives must be accomplished to make prevention feasible: i) individuals at high risk of AD need to be identified before the earliest symptoms become evident, by which time extensive neurodegeneration has already occurred and intervention to prevent the disease is likely to be less successful and ii) safe and effective interventions need to be developed that lead to a decrease in expression of this pathology. On the whole, data here reviewed strongly suggest that the measurement of conformationally altered p53 in blood cells has a high ability to discriminate AD cases from normal ageing, Parkinson's disease and other dementias. On the other hand, available data on the involvement of curcumin in restoring cellular homeostasis and rebalancing redox equilibrium, suggest that curcumin might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation, such as AD.
Collapse
Affiliation(s)
- Marco Racchi
- Department of Experimental and Applied Pharmacology, University of Pavia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang X, Su B, Fujioka H, Zhu X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer's disease patients. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:470-82. [PMID: 18599615 DOI: 10.2353/ajpath.2008.071208] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondrial function relies heavily on its morphology and distribution, alterations of which have been increasingly implicated in neurodegenerative diseases, such as Alzheimer's disease (AD). In this study, we found abnormal mitochondrial distribution characterized by elongated mitochondria that accumulated in perinuclear areas in 19.3% of sporadic AD (sAD) fibroblasts, which was in marked contrast to their normally even cytoplasmic distribution in the majority of human fibroblasts from normal subjects (>95%). Interestingly, levels of dynamin-like protein 1 (DLP1), a regulator of mitochondrial fission and distribution, were decreased significantly in sAD fibroblasts. To explore the potential role of DLP1 in mediating mitochondrial abnormalities in sAD fibroblasts, both the overexpression of a dominant negative DLP1 mutant and the reduced expression of DLP1 by miR RNAi in human fibroblasts from normal subjects significantly increased mitochondrial abnormalities. Moreover, overexpression of wild-type DLP1 in sAD fibroblasts rescued these mitochondrial abnormalities. Based on these data, we conclude that DLP1 reduction causes mitochondrial abnormalities in sAD fibroblasts. We further demonstrate that elevated oxidative stress and increased amyloid beta production are likely the potential pathogenic factors that cause DLP1 reduction and abnormal mitochondrial distribution in AD cells.
Collapse
Affiliation(s)
- Xinglong Wang
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
31
|
Lanni C, Racchi M, Mazzini G, Ranzenigo A, Polotti R, Sinforiani E, Olivari L, Barcikowska M, Styczynska M, Kuznicki J, Szybinska A, Govoni S, Memo M, Uberti D. Conformationally altered p53: a novel Alzheimer's disease marker? Mol Psychiatry 2008; 13:641-7. [PMID: 17684496 DOI: 10.1038/sj.mp.4002060] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The identification of biological markers of Alzheimer's disease (AD) can be extremely useful to improve diagnostic accuracy and/or to monitor the efficacy of putative therapies. In this regard, peripheral cells may be of great importance, because of their easy accessibility. After subjects were grouped according to diagnosis, the expression of conformationally mutant p53 in blood cells was compared by immunoprecipitation or by a cytofluorimetric assay. In total, 104 patients with AD, 92 age-matched controls, 15 patients with Parkinson's disease and 9 with other types of dementia were analyzed. Two independent methods to evaluate the differential expression of a conformational mutant p53 were developed. Mononuclear cells were analyzed by immunoprecipitation or by flow-cytometric analysis, following incubation with a conformation-specific p53 antibody, which discriminates unfolded p53 tertiary structure. Mononuclear cells from AD patients express a higher amount of mutant-like p53 compared to non-AD subjects, thus supporting the study of conformational mutant p53 as a new putative marker to discriminate AD from non-AD patients. We also observed a strong positive correlation between the expression of p53 and the age of patients. The expression of p53 was independent from the length of illness and from the Mini Mental State Examination value.
Collapse
Affiliation(s)
- C Lanni
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Uberti D, Lanni C, Racchi M, Govoni S, Memo M. Conformationally Altered p53: A Putative Peripheral Marker for Alzheimer’s Disease. NEURODEGENER DIS 2008; 5:209-11. [DOI: 10.1159/000113704] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|