1
|
Zoccali C, Capasso G. Genetic biomarkers of cognitive impairment and dementia of potential interest in CKD patients. J Nephrol 2024; 37:2473-2479. [PMID: 38970746 DOI: 10.1007/s40620-024-02006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review discusses genetic variants associated with cognitive dysfunction in chronic kidney disease (CKD) patients, emphasising the limited research in this area. Four studies have explored genetic markers of cognitive dysfunction in CKD, with findings suggesting shared genetic biomarkers between Alzheimer's Disease and CKD.Because of the limited specific research on genetic markers of cognitive dysfunction and dementia in CKD, we extracted data from the current literature studies on genetic markers in the general population that may be relevant to the CKD population. These markers include Apolipoprotein E (APOE), Complement Receptor 1 (CR1), Clusterin (CLU), Sortilin-related receptor 1 (SORL1), Catechol-O-methyltransferase (COMT), and Brain-derived neurotrophic factor (BDNF), all of which are known to be associated with cognitive dysfunction and dementia in other populations. These genes play various roles in lipid metabolism, inflammation, Aβ clearance, and neuronal function, making them potential candidates for studying cognitive decline in CKD patients.CKD-specific research is needed to understand the role of these genetic markers in CKD-related cognitive dysfunction. Investigating how these genes influence cognitive decline in CKD patients could provide valuable insights into early detection, targeted interventions, and personalised treatment strategies. Overall, genetic studies to enhance our understanding and management of cognitive dysfunction in CKD represent a clinical research priority in this population.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute, New York, USA.
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy.
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy.
| | - Giovambattista Capasso
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
2
|
Fan J, Zhu Z, Chen Y, Yang C, Li X, Chen K, Chen X, Zhang Z. SORL1 rs1699102 Moderates the Effect of Sex on Language Network. J Alzheimers Dis 2023:JAD221133. [PMID: 37212098 DOI: 10.3233/jad-221133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Language ability differs between the sexes. However, it is unclear how this sex difference is moderated by genetic factors and how the brain interacts with genetics to support this specific language capacity. Previous studies have demonstrated that the sorting protein-related receptor (SORL1) polymorphism influences cognitive function and brain structure differently in males and females and is associated with Alzheimer's disease risk. OBJECTIVE The aim of this study was to investigate the effects of sex and the SORL1 rs1699102 (CC versus T carriers) genotype on language. METHODS 103 non-demented Chinese older adults from Beijing Aging Brain Rejuvenation Initiative (BABRI) database were included in this study. Participants completed language tests, T1-weighted structural magnetic resonance imaging (MRI) and resting-state functional MRI. Language test performance, gray matter volume, and network connections were compared between genotype and sex groups. RESULTS The rs1699102 polymorphism moderated the effects of sex on language performance, with the female having reversed language advantages in T carriers. The T allele carriers had lower gray matter volume in the left precentral gyrus. The effect of sex on language network connections was moderated by rs1699102; male CC homozygotes and female T carriers had higher internetwork connections, which were negatively correlated with language performance. CONCLUSION These results suggest that SORL1 moderates the effects of sex on language, with T being a risk allele, especially in females. Our findings underscore the importance of considering the influence of genetic factors when examining sex effects.
Collapse
Affiliation(s)
- Jialing Fan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| | - Zhibao Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| | - Kewei Chen
- BABRI Centre, Beijing Normal University, Beijing, China
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Hung C, Tuck E, Stubbs V, van der Lee SJ, Aalfs C, van Spaendonk R, Scheltens P, Hardy J, Holstege H, Livesey FJ. SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network. Cell Rep 2021; 35:109259. [PMID: 34133918 PMCID: PMC8220253 DOI: 10.1016/j.celrep.2021.109259] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/19/2020] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Dysfunction of the endolysosomal-autophagy network is emerging as an important pathogenic process in Alzheimer's disease. Mutations in the sorting receptor-encoding gene SORL1 cause autosomal-dominant Alzheimer's disease, and SORL1 variants increase risk for late-onset AD. To understand the contribution of SORL1 mutations to AD pathogenesis, we analyze the effects of a SORL1 truncating mutation on SORL1 protein levels and endolysosome function in human neurons. We find that truncating mutation results in SORL1 haploinsufficiency and enlarged endosomes in human neurons. Analysis of isogenic SORL1 wild-type, heterozygous, and homozygous null neurons demonstrates that, whereas SORL1 haploinsufficiency results in endosome dysfunction, complete loss of SORL1 leads to additional defects in lysosome function and autophagy. Neuronal endolysosomal dysfunction caused by loss of SORL1 is relieved by extracellular antisense oligonucleotide-mediated reduction of APP protein, demonstrating that PSEN1, APP, and SORL1 act in a common pathway regulating the endolysosome system, which becomes dysfunctional in AD.
Collapse
Affiliation(s)
- Christy Hung
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, 20 Guilford Street, London WC1N 1DZ, UK
| | - Eleanor Tuck
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, 20 Guilford Street, London WC1N 1DZ, UK
| | - Victoria Stubbs
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam UMC, Amsterdam, the Netherlands; Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
| | - Cora Aalfs
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - John Hardy
- UK Dementia Research Institute and Department of Neurodegenerative Disease and Reta Lila Weston Institute, UCL Queen Square Institute of Neurology and UCL Movement Disorders Centre, University College London, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam UMC, Amsterdam, the Netherlands; Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
| | - Frederick J Livesey
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, 20 Guilford Street, London WC1N 1DZ, UK.
| |
Collapse
|
4
|
Qiu G, Zhu FQ, Xu C. Identification of two pathogenic mutations in SORL1 in early-onset Alzheimer's disease. J Clin Neurosci 2021; 89:243-248. [PMID: 34119275 DOI: 10.1016/j.jocn.2021.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
The sortilin-related receptor 1 (SORL1) gene has been the subject of many studies focusing on frequent polymorphisms, which is associated with increased risk for Alzheimer's Disease (AD). By whole-exome sequencing (WES), we identified two pathogenic missense mutations c.579C > G (p.F193L) and c.1397A > G (p.N466S) in SORL1. The two mutations were located in the same protein domain, and the two unrelated probands both had an onset of memory problems at less than 65 years of age, but their clinical manifestations and cranial imaging are different. The protein structure and function affected by these mutations were predicted using bioinformatics analysis, which suggested they were pathogenic. 3D protein structural analysis revealed that these amino acid substitutions might result in instability of protein structure and adverse intramolecular interactions. These findings suggest that both F193L and N466S should be thought as potential causative mutations in early-onset Alzheimer's disease (EOAD) patients. Further functional studies are warranted to evaluate their roles in the pathogenesis of AD.
Collapse
Affiliation(s)
- Guozhen Qiu
- The Third Affiliated Hospital of Shenzhen University, Cognitive Impairment Ward of Neurology Department, Shenzhen, Guangdong Province, China.
| | - Fei-Qi Zhu
- The Third Affiliated Hospital of Shenzhen University, Cognitive Impairment Ward of Neurology Department, Shenzhen, Guangdong Province, China
| | - Chunyan Xu
- The Third Affiliated Hospital of Shenzhen University, Cognitive Impairment Ward of Neurology Department, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
Huang MF, Lee WJ, Yeh YC, Liao YC, Wang SJ, Yang YH, Chen CS, Fuh JL. Genetics of neuropsychiatric symptoms in patients with Alzheimer's disease: A 1-year follow-up study. Psychiatry Clin Neurosci 2020; 74:645-651. [PMID: 32909371 DOI: 10.1111/pcn.13150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
AIM The aim of this study was to investigate the associations between candidate gene variants and domains of neuropsychiatric symptoms (NPS) and the changes in these associations over a 1-year period. METHODS Seven hundred and ninety-three Taiwanese participants (47.8% female) with Alzheimer's disease (AD) were enrolled. Genes associated with a risk of developing AD were selected as candidate genes. NPS were assessed using the Neuropsychiatric Inventory Questionnaire (NPI-Q), and the NPI-Q total score and sub-scores for the Psychosis, Mood, and Frontal Syndrome domains were calculated. RESULTS Patients with AD and the APOE ε4 allele exhibited more obvious symptoms of psychosis. Mood symptoms were associated with CD33 rs3865444 and EPHA1 rs11767557, and frontal symptoms were associated with SORL1 rs3824968. A 1-year Time × Alleles interaction effect of CD33 rs3865444 on mood symptoms was discerned. CONCLUSION Risk genes of AD, which are also associated with NPS, are APOE ε4 for psychosis, CD33 and EPHA1 for mood symptoms, and SORL1 for frontal symptoms. The association between CD33 and mood symptoms is dynamic and could change over 1 year; however, the results should be interpreted with caution because corrections for multiple comparisons were not performed.
Collapse
Affiliation(s)
- Mei-Feng Huang
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ju Lee
- Neurological Institute, Dementia and Parkinson's Disease Integrated Center, and Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, Institute of Clinical Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan
| | - Yi-Chun Yeh
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chu Liao
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsin Yang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Ling Fuh
- Faculty of Medicine, National Yang-Ming University Schools of Medicine, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
El Bitar F, Qadi N, Al Rajeh S, Majrashi A, Abdulaziz S, Majrashi N, Al Inizi M, Taher A, Al Tassan N. Genetic Study of Alzheimer's Disease in Saudi Population. J Alzheimers Dis 2020; 67:231-242. [PMID: 30636737 DOI: 10.3233/jad-180415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurological disorder associated with mental decline and dementia. Several studies focused on investigating the molecular basis of the disease that led to the identification of several causative genes and risk associated alleles. Replication of these studies and findings from different populations is very important. OBJECTIVE Molecular assessment of a cohort of 117 familial and sporadic AD cases from Saudi Arabia. METHODS Comprehensive screening for point mutations was carried out by direct sequencing of coding regions in the three known AD causative genes: PSEN1, PSEN2, APP, as well as the AD associated gene SORL1. All patients were also genotyped for APOE alleles. In silico 3D protein structure analysis was performed for two novel SORL1 variants. RESULTS We identified a total of eight potential pathogenic missense variants in all studied genes. Five of these variants were not previously reported including four in SORL1 (p.Val297Met, p.Arg1084Cys, p.Asp1100Asn, and p.Pro1213Ser) and one in APP (p.Glu380Lys). The frequency of APOE-ɛ4 allele was 21.37% of total investigated cases. In silico 3D protein structure analysis of two SORL1 novel missense variants (p.Pro1213Ser and p.Arg1084Cys) suggested that these variants may affect the folding of the proteins and disturb their structure. CONCLUSIONS Our comprehensive analysis of the open reading frame of the known genes have identified potential pathogenic rare variants in 18/117 cases. We found that point mutations in AD main genes (PSEN1, PSEN2, and APP) were underrepresented in our cohort of patients. Our results confirm involvement of SORL1 in familial and sporadic AD cases.
Collapse
Affiliation(s)
- Fadia El Bitar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Najeeb Qadi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Saad Al Rajeh
- Al Habib Medical Center, Riyadh, Kingdom of Saudi Arabia
| | - Amna Majrashi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Sara Abdulaziz
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Nada Majrashi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Maznah Al Inizi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Asma Taher
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Downregulation of SNX27 expression does not exacerbate amyloidogenesis in the APP/PS1 Alzheimer's disease mouse model. Neurobiol Aging 2019; 77:144-153. [DOI: 10.1016/j.neurobiolaging.2019.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/01/2019] [Accepted: 01/13/2019] [Indexed: 12/20/2022]
|
8
|
Sun Q, Xie N, Tang B, Li R, Shen Y. Alzheimer's Disease: From Genetic Variants to the Distinct Pathological Mechanisms. Front Mol Neurosci 2017; 10:319. [PMID: 29056900 PMCID: PMC5635057 DOI: 10.3389/fnmol.2017.00319] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Being the most common cause of dementia, AD is a polygenic and neurodegenerative disease. Complex and multiple factors have been shown to be involved in its pathogenesis, of which the genetics play an indispensable role. It is widely accepted that discovery of potential genes related to the pathogenesis of AD would be of great help for the understanding of neurodegeneration and thus further promote molecular diagnosis in clinic settings. Generally, AD could be clarified into two types according to the onset age, the early-onset AD (EOAD) and the late-onset AD (LOAD). Progresses made by genetic studies on both EOAD and LOAD are believed to be essential not only for the revolution of conventional ideas but also for the revelation of new pathological mechanisms underlying AD pathogenesis. Currently, albeit the genetics of LOAD is much less well-understood compared to EOAD due to its complicated and multifactorial essence, Genome-wide association studies (GWASs) and next generation sequencing (NGS) approaches have identified dozens of novel genes that may provide insight mechanism of LOAD. In this review, we analyze functions of the genes and summarize the distinct pathological mechanisms of how these genes would be involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Advanced Therapeutic Strategies for Brain Disorders and Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL, United States
| | - Nina Xie
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Rena Li
- Center for Advanced Therapeutic Strategies for Brain Disorders and Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL, United States.,National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yong Shen
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Advanced Therapeutic Strategies for Brain Disorders and Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL, United States.,Neurodegenerative Disorder Research Center, University of Science and Technology of China School of Life Sciences, Hefei, China.,Hefei Material Science at Microscale National Laboratory, Hefei, China
| |
Collapse
|
9
|
Characterization of pathogenic SORL1 genetic variants for association with Alzheimer's disease: a clinical interpretation strategy. Eur J Hum Genet 2017; 25:973-981. [PMID: 28537274 PMCID: PMC5567154 DOI: 10.1038/ejhg.2017.87] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence suggests that genetic variants in the SORL1 gene are associated with Alzheimer disease (AD), but a strategy to identify which variants are pathogenic is lacking. In a discovery sample of 115 SORL1 variants detected in 1908 Dutch AD cases and controls, we identified the variant characteristics associated with SORL1 variant pathogenicity. Findings were replicated in an independent sample of 103 SORL1 variants detected in 3193 AD cases and controls. In a combined sample of the discovery and replication samples, comprising 181 unique SORL1 variants, we developed a strategy to classify SORL1 variants into five subtypes ranging from pathogenic to benign. We tested this pathogenicity screen in SORL1 variants reported in two independent published studies. SORL1 variant pathogenicity is defined by the Combined Annotation Dependent Depletion (CADD) score and the minor allele frequency (MAF) reported by the Exome Aggregation Consortium (ExAC) database. Variants predicted strongly damaging (CADD score >30), which are extremely rare (ExAC-MAF <1 × 10-5) increased AD risk by 12-fold (95% CI 4.2-34.3; P=5 × 10-9). Protein-truncating SORL1 mutations were all unknown to ExAC and occurred exclusively in AD cases. More common SORL1 variants (ExAC-MAF≥1 × 10-5) were not associated with increased AD risk, even when predicted strongly damaging. Findings were independent of gender and the APOE-ɛ4 allele. High-risk SORL1 variants were observed in a substantial proportion of the AD cases analyzed (2%). Based on their effect size, we propose to consider high-risk SORL1 variants next to variants in APOE, PSEN1, PSEN2 and APP for personalized risk assessments in clinical practice.
Collapse
|
10
|
Chou CT, Liao YC, Lee WJ, Wang SJ, Fuh JL. SORL1 gene, plasma biomarkers, and the risk of Alzheimer's disease for the Han Chinese population in Taiwan. ALZHEIMERS RESEARCH & THERAPY 2016; 8:53. [PMID: 28034305 PMCID: PMC5200969 DOI: 10.1186/s13195-016-0222-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022]
Abstract
Background The sortilin-related receptor 1 (SORL1) gene, regulating the trafficking and recycling of amyloid precursor protein, has been related to Alzheimer’s disease (AD) and mild cognitive impairment (MCI). The aim of the present study was to investigate the relationship between SORL1 polymorphisms, plasma concentrations of amyloid-beta (Aβ) isoforms, and AD and MCI susceptibility for a Han Chinese population in Taiwan. Methods Eight single-nucleotide polymorphisms (SNPs) in SORL1 and the apolipoprotein E gene (APOE) ε4 alleles were genotyped in 798 patients with AD, 157 patients with MCI, and 401 control subjects. Plasma concentrations of Aβ42, Aβ40, and neuropsychiatric tests for six different cognitive domains were examined. Results Among the eight tested SNPs, SORL1 rs1784933 was most significantly associated with AD and MCI in our population. The G allele of rs1784933 exerted a protective effect and was associated with a reduced risk of AD (odds ratio [OR] = 0.75, p = 0.004) and MCI (OR = 0.69, p = 0.013). The significance remained after we adjusted for age, sex, and APOE ε4 alleles. For the overall participants, the plasma concentrations of Aβ42 were nominally significant for subjects carrying the rs1784933 G allele having a lower level than those without the G allele (p = 0.046). There was a similar trend for the G allele carriers to have a lower plasma Aβ40 level than noncarriers, but this was not significant. The nonsynonymous SNP rs2298813 was also related to a lower disease risk when AD and MCI were combined as a group (OR = 0.76, p = 0.035). However, there was no association between SORL1 genotypes and any of the six cognitive tests. Conclusions Findings from our study provide support for the effect of SORL1 gene on the disease risks and pathognomonic surrogates of AD/MCI. The interaction between SORL1 polymorphisms and Aβ formation requires further study.
Collapse
Affiliation(s)
- Cheng-Ta Chou
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Section 4, Taichung, 40705, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Beitou District, Taipei City, 11217, Taiwan.,Department of Neurology, Faculty of Medicine, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei, 11217, Taiwan
| | - Wei-Ju Lee
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Section 4, Taichung, 40705, Taiwan.,Department of Neurology, Faculty of Medicine, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei, 11217, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei, 11217, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Beitou District, Taipei City, 11217, Taiwan. .,Department of Neurology, Faculty of Medicine, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei, 11217, Taiwan. .,Brain Research Center, School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, 11217, Taiwan.
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Beitou District, Taipei City, 11217, Taiwan. .,Department of Neurology, Faculty of Medicine, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei, 11217, Taiwan. .,Brain Research Center, School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, 11217, Taiwan.
| |
Collapse
|
11
|
Li H, Lv C, Yang C, Wei D, Chen K, Li S, Zhang Z. SORL1 rs1699102 polymorphism modulates age-related cognitive decline and gray matter volume reduction in non-demented individuals. Eur J Neurol 2016; 24:187-194. [PMID: 27779372 DOI: 10.1111/ene.13182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/16/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE SORL1 rs1699102 is associated with the risk of late-onset Alzheimer's disease. However, the effects of this single nucleotide polymorphism on cognition and brain structure during normal aging are unclear. This study aimed to examine the effects of the rs1699102 polymorphism on age-related cognitive decline and cortical gray matter reduction in the Chinese Han population. METHODS A total of 780 non-demented adults completed a battery of neuropsychological tests. High-resolution T1-weighted structural magnetic resonance imaging data from 89 of these subjects were also collected using a Siemens Trio 3.0 Tesla scanner. RESULTS The T allele carriers displayed an accelerated age-related change in episodic memory and processing speed tests relative to the CC genotype. A similar pattern was observed in the age-related gray matter volume (GMV) reduction of the right middle temporal pole. The GMV in this region was significantly positively correlated with the episodic memory scores. CONCLUSIONS The SORL1 gene rs1699102 polymorphism has been found to be associated with age-related cognitive decline and GMV reduction of the right middle temporal pole in older adults. These findings elucidate how the SORL1 variants shape the neural system to modulate age-related cognitive decline and support the hypothesis that SORL1 may represent a candidate gene for late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- He Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, P.R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Chenlong Lv
- Consulting Center of Biomedical Statistics, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, P.R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| | - Kewei Chen
- Computational Image Analysis Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Shaowu Li
- Dept of Functional Neuroimaging, Beijing Neurosurgical Institute, Beijing, P. R. China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China.,BABRI Centre, Beijing Normal University, Beijing, P. R. China
| |
Collapse
|
12
|
SORL1 variants across Alzheimer's disease European American cohorts. Eur J Hum Genet 2016; 24:1828-1830. [PMID: 27650968 DOI: 10.1038/ejhg.2016.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/27/2016] [Accepted: 08/05/2016] [Indexed: 11/08/2022] Open
Abstract
The accumulation of the toxic Aβ peptide in Alzheimer's disease (AD) largely relies upon an efficient recycling of amyloid precursor protein (APP). Recent genetic association studies have described rare variants in SORL1 with putative pathogenic consequences in the recycling of APP. In this work, we examine the presence of rare coding variants in SORL1 in three different European American cohorts: early-onset, late-onset AD (LOAD) and familial LOAD.
Collapse
|
13
|
Sassi C, Ridge PG, Nalls MA, Gibbs R, Ding J, Lupton MK, Troakes C, Lunnon K, Al-Sarraj S, Brown KS, Medway C, Lord J, Turton J, Morgan K, Powell JF, Kauwe JS, Cruchaga C, Bras J, Goate AM, Singleton AB, Guerreiro R, Hardy J. Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer's Disease. PLoS One 2016; 11:e0150079. [PMID: 27249223 PMCID: PMC4889076 DOI: 10.1371/journal.pone.0150079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/09/2016] [Indexed: 01/20/2023] Open
Abstract
The cerebral deposition of Aβ42, a neurotoxic proteolytic derivate of amyloid precursor protein (APP), is a central event in Alzheimer's disease (AD)(Amyloid hypothesis). Given the key role of APP-Aβ metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aβ degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, none of which statistically significant after multiple testing correction (1.9e-4
Collapse
Affiliation(s)
- Celeste Sassi
- Reta Lila, Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charite’ Universitätmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin site, Germany
| | - Perry G. Ridge
- Departments of Biology, Neuroscience, Brigham Young University, Provo, UT, United States of America
| | - Michael A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Michelle K. Lupton
- King's College London Institute of Psychiatry, London, United Kingdom
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Claire Troakes
- King's College London Institute of Psychiatry, London, United Kingdom
| | - Katie Lunnon
- King's College London Institute of Psychiatry, London, United Kingdom
| | - Safa Al-Sarraj
- King's College London Institute of Psychiatry, London, United Kingdom
| | - Kristelle S. Brown
- Translation Cell Sciences-Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Christopher Medway
- Translation Cell Sciences-Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jenny Lord
- Translation Cell Sciences-Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - James Turton
- Translation Cell Sciences-Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | - Kevin Morgan
- Translation Cell Sciences-Human Genetics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - John F. Powell
- King's College London Institute of Psychiatry, London, United Kingdom
| | - John S. Kauwe
- Departments of Biology, Neuroscience, Brigham Young University, Provo, UT, United States of America
| | - Carlos Cruchaga
- Washington University, Division of Biology and Biomedical Sciences St. Louis, MO, United States of America
| | - Jose Bras
- Reta Lila, Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Alison M. Goate
- Icahn School of Medicine at Mount Sinai, Icahn Medical Institute, New York, NY, United States of America
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States of America
| | - Rita Guerreiro
- Reta Lila, Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - John Hardy
- Reta Lila, Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
14
|
Yin RH, Li J, Tan L, Wang HF, Tan MS, Yu WJ, Tan CC, Yu JT, Tan L. Impact of SORL1 genetic variations on MRI markers in non-demented elders. Oncotarget 2016; 7:31689-98. [PMID: 27177090 PMCID: PMC5077969 DOI: 10.18632/oncotarget.9300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/16/2016] [Indexed: 12/11/2022] Open
Abstract
The sorting protein-related receptor 1 (SORL1 or LR11) gene has been verified to play an important role in the pathologic process of β-amyloid (Aβ) formation and trafficking in Alzheimer's Disease (AD) by plenty of cytological and molecular biological studies. But there were few studies investigated the association of SORL1 gene and neurodegeneration features from a rather macroscopic perspective. In the present study, we explored the effect of SORL1 genotypes on AD-related brain atrophy. We recruited 812 individuals with both baseline and two-year follow-up information from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database and applied multiple linear regression models to examine the association between eight single nucleotide polymorphisms (SNPs) and neuroimaging phenotypes. Finally, four SNPs (rs11219350, rs2298813, rs3781836, rs3824968) showed trend of association with the volume of hippocampus and parahippocampal gyrus but failed to survive the false discovery rate (FDR) correction. Only rs1784933 and rs753780 showed significant association with right parahippocampal gyrus. According to our findings, SORL1 variations influence the atrophy of specific AD-related brain structures, which suggested the potential role of SORL1 in the neurodegeneration of cognitive related regions.
Collapse
Affiliation(s)
- Rui-Hua Yin
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Jun Li
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Lin Tan
- Department of Radiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Wan-Jiang Yu
- Department of Radiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | | |
Collapse
|
15
|
|
16
|
Huang CC, Liu ME, Kao HW, Chou KH, Yang AC, Wang YH, Chen TR, Tsai SJ, Lin CP. Effect of Alzheimer's Disease Risk Variant rs3824968 at SORL1 on Regional Gray Matter Volume and Age-Related Interaction in Adult Lifespan. Sci Rep 2016; 6:23362. [PMID: 26996954 PMCID: PMC4800313 DOI: 10.1038/srep23362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/01/2016] [Indexed: 11/09/2022] Open
Abstract
Sortilin receptor 1 (SORL1) is involved in cellular trafficking of amyloid precursor protein and plays an essential role in amyloid-beta peptide generation in Alzheimer disease (AD). The major A allele in a SORL1 single nucleotide polymorphism (SNP), rs3824968, is associated with an increased AD risk. However, the role of SORL1 rs3824968 in the normal ageing process has rarely been examined in relation to brain structural morphology. This study investigated the association between SORL1 rs3824968 and grey matter (GM) volume in a nondemented Chinese population of 318 adults within a wide age range (21-92 years). Through voxel-based morphometry, we found that participants carrying SORL1 allele A exhibited significantly smaller GM volumes in the right posterior cingulate, left middle occipital, medial frontal, and superior temporal gyri. Considerable interaction between age and SORL1 suggested a detrimental and accelerated ageing effect of allele A on putamen. These findings provide evidence that SORL1 rs3824968 modulates regional GM volume and is associated with brain trajectory during the adult lifespan.
Collapse
Affiliation(s)
- Chu-Chung Huang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Mu-En Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Wen Kao
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Hsien Chou
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli, Taiwan
| | - Ying-Hsiu Wang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tong-Ru Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
17
|
Modulation effect of the SORL1 gene on functional connectivity density in healthy young adults. Brain Struct Funct 2015; 221:4103-4110. [DOI: 10.1007/s00429-015-1149-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022]
|
18
|
Joly P, Restier L, Bouchecareilh M, Lacan P, Cabet F, Chapuis-Cellier C, Francina A, Lachaux A. Cohorte DEFI-ALPHA et projet hospitalier de recherche clinique POLYGEN DEFI-ALPHA. Étude des facteurs cliniques, biologiques et génétiques associés à l’apparition et à l’évolution de complications hépatiques chez les enfants présentant un déficit en alpha-1 antitrypsine. Rev Mal Respir 2015; 32:759-67. [DOI: 10.1016/j.rmr.2015.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/02/2014] [Indexed: 10/23/2022]
|
19
|
Liang Y, Li H, Lv C, Shu N, Chen K, Li X, Zhang J, Hu L, Zhang Z. Sex moderates the effects of the Sorl1 gene rs2070045 polymorphism on cognitive impairment and disruption of the cingulum integrity in healthy elderly. Neuropsychopharmacology 2015; 40:1519-27. [PMID: 25598427 PMCID: PMC4397410 DOI: 10.1038/npp.2015.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/13/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
The SORL1 rs2070045 polymorphism was reported to be associated with SorLA expression in the brain and the risk of late-onset Alzheimer's disease (AD). However, the influence of this polymorphism on cognitive functioning is likely to be moderated by sex. This study aimed to examine the sex moderation on the effects of rs2070045 on neuropsychological performance and the cingulum integrity in Chinese Han population. In this study, 780 non-demented older adults completed a battery of neuropsychological scales. Diffusion tensor images (DTI) of 126 subjects were acquired. We adopted the atlas-based segmentation strategy for calculating the DTI indices of the bilateral cingulum and cingulum hippocampal part for each subject. We used a multivariate analysis of variance (MANOVA) to compare the cognitive performance and DTI differences between the rs2070045 genotype. Controlling for age, education, and the APOE ɛ4 status, the influence of sex on the effects of the rs2070045 polymorphism on executive function was observed. We also found an interaction between sex and the rs2070045 polymorphism on the white matter (WM) microstructure of the left cingulum hippocampal part. Furthermore, the mean diffusivity and axial diffusivity of the tract were associated with Trail Making Test performance in T/T men. These results hint that sex moderates the association between the rs2070045 polymorphism and executive function, as well as the WM integrity of the left cingulum hippocampal part. Our findings underscore the importance of considering the influence of sex when examining the candidate genes for cognitive abilities and AD.
Collapse
Affiliation(s)
- Ying Liang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,BABRI Centre, Beijing Normal University, Beijing, China
| | - He Li
- BABRI Centre, Beijing Normal University, Beijing, China,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenlong Lv
- BABRI Centre, Beijing Normal University, Beijing, China,Consulting Center of Biomedical Statistics, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,BABRI Centre, Beijing Normal University, Beijing, China
| | - Kewei Chen
- Computational Image Analysis Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,BABRI Centre, Beijing Normal University, Beijing, China
| | - Junying Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,BABRI Centre, Beijing Normal University, Beijing, China
| | - Liangping Hu
- Consulting Center of Biomedical Statistics, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,BABRI Centre, Beijing Normal University, Beijing, China,BABRI Centre, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China, Tel: +86 1058802005, Fax: +86 1058802005, E-mail:
| |
Collapse
|
20
|
Amyloid-β-related genes SORL1 and ACE are genetically associated with risk for late-onset Alzheimer disease in the Chinese population. Alzheimer Dis Assoc Disord 2015; 24:390-6. [PMID: 20625269 DOI: 10.1097/wad.0b013e3181e6a575] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Late-onset Alzheimer Disease (LOAD) is a common neurodegenerative disease, and one of its major pathologic characteristics is senile plaques. Proteins encoded by SORL1 and ACE have been shown to be related to the processing, trafficking, and degradation of Amyloid-β, the principal component of senile plaques. In this paper, we investigated whether SORL1 and ACE are associated with LOAD. We recruited 144 LOAD patients and 476 controls from Shanghai, China and conducted a case-control study on 9 single-nucleotide polymorphisms (SNPs): 6 in SORL1 (rs2070045, rs661057, rs668387, rs689021, rs3824968, rs2282649) and 3 in ACE (rs1800764, rs4343, rs1799752). Despite the small case sample size (144), we observed that rs1800764, rs4343, rs1799752 in ACE, and rs2070045, rs3824968, rs2282649 in SORL1 showed significantly different allele frequencies between patients and controls (P=4.57×10, 5.24×10, 1.95×10, 1.77×10, 6.44×10, and 3.11×10, respectively). Moreover, haplotypes on ACE and on SORL1 were significantly associated with LOAD (all P-value<0.009 in ACE and all P-value <0.003 in SORL1). In ACE, we found the most significant protective haplotype encompasses SNPs rs2070045, rs3824968, and rs2282649 (C-G-D: OR=0.20, P=8.96×10). In SORL1, we detected a "complementary" haplotype (G-A-T: OR=1.54, P=2.67×10; T-T-C: OR=0.63, P=2.36×10) composed of SNPs rs2070045, rs3824968, and rs2282649. In addition, we carried out meta-analysis with 3 other Asian populations on 3 SNPs in SORL1 (rs2070045, rs3824968, and rs2282649). Results supported our initial finding that these 3 SNPs were associated with LOAD. Our data suggested that SORL1 and ACE might play a role in LOAD susceptibility among Han Chinese.
Collapse
|
21
|
Vardarajan BN, Zhang Y, Lee JH, Cheng R, Bohm C, Ghani M, Reitz C, Reyes-Dumeyer D, Shen Y, Rogaeva E, St George-Hyslop P, Mayeux R. Coding mutations in SORL1 and Alzheimer disease. Ann Neurol 2015; 77:215-27. [PMID: 25382023 PMCID: PMC4367199 DOI: 10.1002/ana.24305] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/10/2014] [Accepted: 10/17/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Common single nucleotide polymorphisms in the SORL1 gene have been associated with late onset Alzheimer disease (LOAD), but causal variants have not been fully characterized nor has the mechanism been established. The study was undertaken to identify functional SORL1 mutations in patients with LOAD. METHODS This was a family- and cohort-based genetic association study. Caribbean Hispanics with familial and sporadic LOAD and similarly aged controls were recruited from the United States and the Dominican Republic, and patients with sporadic disease of Northern European origin were recruited from Canada. Prioritized coding variants in SORL1 were detected by targeted resequencing and validated by genotyping in additional family members and unrelated healthy controls. Variants transfected into human embryonic kidney 293 cell lines were tested for Aβ40 and Aβ42 secretion, and the amount of the amyloid precursor protein (APP) secreted at the cell surface was determined. RESULTS Seventeen coding exonic variants were significantly associated with disease. Two rare variants (rs117260922-E270K and rs143571823-T947M) with minor allele frequency (MAF) < 1% and 1 common variant (rs2298813-A528T) with MAF = 14.9% segregated within families and were deemed deleterious to the coding protein. Transfected cell lines showed increased Aβ40 and Aβ42 secretion for the rare variants (E270K and T947M) and increased Aβ42 secretion for the common variant (A528T). All mutants increased the amount of APP at the cell surface, although in slightly different ways, thereby failing to direct full-length APP into the retromer-recycling endosome pathway. INTERPRETATION Common and rare variants in SORL1 elevate the risk of LOAD by directly affecting APP processing, which in turn can result in increased Aβ40 and Aβ42 secretion.
Collapse
Affiliation(s)
- Badri N. Vardarajan
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yalun Zhang
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, Canada, M5T 2S8
| | - Joseph H. Lee
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK, CB2 0XY
| | - Rong Cheng
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Christopher Bohm
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, Canada, M5T 2S8
| | - Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, Canada, M5T 2S8
| | - Christiane Reitz
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dolly Reyes-Dumeyer
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yufeng Shen
- The Department Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, Canada, M5T 2S8
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, Canada, M5T 2S8
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK, CB2 0XY
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Department Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Department of Epidemiology, School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Zhang F, Liu X, Wang B, Cheng Z, Zhao X, Zhu J, Wang D, Wang Y, Dong A, Li P, Jin C. An exploratory study of the association between SORL1 polymorphisms and sporadic Alzheimer's disease in the Han Chinese population. Neuropsychiatr Dis Treat 2015; 11:1443-8. [PMID: 26109858 PMCID: PMC4472075 DOI: 10.2147/ndt.s85370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In previous studies, we reported that the sortilin-related receptor, L (DLR class) A repeats containing (SORL1) gene single nucleotide polymorphisms (SNPs) are associated with the risk of sporadic Alzheimer's disease (SAD) in the Han Chinese population. To further explore the relationships between SORL1 genetic variants and SAD, we conducted a two-step study. Sequencing analysis in 50 case samples identified 14 SNPs within the promoter and untranslated region of the SORL1 gene. Subsequent genotyping analysis in 106 patients with SAD and 179 healthy controls detected a significant association between the "G" allele of SNP rs1133174 in the 3' untranslated region of the SORL1 gene and SAD risk (odds ratio =1.92, 95% confidence interval [95% CI] =1.28-2.90, adjusted P=0.028). In addition, "G" allele carriers of rs1133174 (GA + GG) have a 2.15-fold increased risk of SAD compared to noncarriers (AA) (adjusted P=0.042). However, no significant positive associations were observed in the other 13 SNPs within the SORL1 gene. These preliminary findings suggest that the SORL1 SNP rs1133174 may be a potential risk locus for SAD in the Han Chinese population.
Collapse
Affiliation(s)
- Feng Zhang
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China ; Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Xiaowei Liu
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Bailing Wang
- Qingdao Mental Health Center, Qingdao, Shandong Province, People's Republic of China
| | - Zaohuo Cheng
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Xingfu Zhao
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Jianzhong Zhu
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Degang Wang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Ying Wang
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Aiguo Dong
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Pengpeng Li
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Chunhui Jin
- Wuxi Mental Health Center of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| |
Collapse
|
23
|
Influence of genetic variants in SORL1 gene on the manifestation of Alzheimer's disease. Neurobiol Aging 2014; 36:1605.e13-20. [PMID: 25659857 DOI: 10.1016/j.neurobiolaging.2014.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/12/2014] [Accepted: 12/05/2014] [Indexed: 11/21/2022]
Abstract
We studied the association of SORL1 single-nucleotide polymorphisms genotypes with measures of pathology in patients with probable Alzheimer's disease (AD) using an endophenotype approach. We included (1) 133 patients from the German Dementia Competence Network (71 ± 8 years; 50% females; Mini Mental State Examination [MMSE], 24 ± 3); (2) 83 patients from the Alzheimer's Disease Neuroimaging Initiative (75 ± 8 years; 45% females; MMSE, 24 ± 2); and (3) 452 patients from the Amsterdam Dementia Cohort 66 ± 8 years; 47% females; MMSE, 20 ± 5). As endophenotype markers we used cognitive tests, cerebrospinal fluid (CSF) biomarkers amyloid-beta, total tau (tau), tau phosphorylated at threonine 181, and hippocampal atrophy. We measured 19 SORL1 SNP alleles. Genotype-endophenotype associations were determined by linear regression analyses. There was an association between rs2070045-G allele and increased CSF-tau and more hippocampal atrophy. Additionally, haplotype-based analyses revealed an association between haplotype rs11218340-A/rs3824966-G/rs3824968-A and higher CSF-tau and CSF-tau phosphorylated at threonine 181. In conclusion, we found that SORL1 SNP rs2070045-G allele was related to CSF-tau and hippocampal atrophy, 2 endophenotype markers of AD, suggesting that SORL1 may be implicated in the downstream pathology in AD.
Collapse
|
24
|
The role of the retromer complex in aging-related neurodegeneration: a molecular and genomic review. Mol Genet Genomics 2014; 290:413-27. [PMID: 25332075 DOI: 10.1007/s00438-014-0939-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
The retromer coat complex is a vital component of the intracellular trafficking mechanism sorting cargo from the endosomes to the trans-Golgi network or to the cell surface. In recent years, genes encoding components of the retromer coat complex and members of the vacuolar protein sorting 10 (Vps10) family of receptors, which play pleiotropic functions in protein trafficking and intracellular/intercellular signaling in neuronal and non-neuronal cells and are primary cargos of the retromer complex, have been implicated as genetic risk factors for sporadic and autosomal dominant forms of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and frontotemporal lobar degeneration. In addition to their functions in protein trafficking, the members of the Vps10 receptor family (sortilin, SorL1, SorCS1, SorCS2, and SorCS3) modulate neurotrophic signaling pathways. Both sortilin and SorCS2 act as cell surface receptors to mediate acute responses to proneurotrophins. In addition, sortilin can modulate the intracellular response to brain-derived neurotrophic factor (BDNF) by direct control of BDNF levels and regulating anterograde trafficking of Trk receptors to the synapse. This review article summarizes the emerging data from this rapidly growing field of intracellular trafficking signaling in the pathogenesis of neurodegeneration.
Collapse
|
25
|
The SORL1 gene and convergent neural risk for Alzheimer's disease across the human lifespan. Mol Psychiatry 2014; 19:1125-32. [PMID: 24166411 PMCID: PMC4004725 DOI: 10.1038/mp.2013.142] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/12/2013] [Accepted: 09/09/2013] [Indexed: 01/07/2023]
Abstract
Prior to intervention trials in individuals genetically at-risk for late-onset Alzheimer's disease, critical first steps are identifying where (neuroanatomic effects), when (timepoint in the lifespan) and how (gene expression and neuropathology) Alzheimer's risk genes impact the brain. We hypothesized that variants in the sortilin-like receptor (SORL1) gene would affect multiple Alzheimer's phenotypes before the clinical onset of symptoms. Four independent samples were analyzed to determine effects of SORL1 genetic risk variants across the lifespan at multiple phenotypic levels: (1) microstructural integrity of white matter using diffusion tensor imaging in two healthy control samples (n=118, age 18-86; n=68, age 8-40); (2) gene expression using the Braincloud postmortem healthy control sample (n=269, age 0-92) and (3) Alzheimer's neuropathology (amyloid plaques and tau tangles) using a postmortem sample of healthy, mild cognitive impairment (MCI) and Alzheimer's individuals (n=710, age 66-108). SORL1 risk variants predicted lower white matter fractional anisotropy in an age-independent manner in fronto-temporal white matter tracts in both samples at 5% family-wise error-corrected thresholds. SORL1 risk variants also predicted decreased SORL1 mRNA expression, most prominently during childhood and adolescence, and significantly predicted increases in amyloid pathology in postmortem brain. Importantly, the effects of SORL1 variation on both white matter microstructure and gene expression were observed during neurodevelopmental phases of the human lifespan. Further, the neuropathological mechanism of risk appears to primarily involve amyloidogenic pathways. Interventions targeted toward the SORL1 amyloid risk pathway may be of greatest value during early phases of the lifespan.
Collapse
|
26
|
Yin RH, Yu JT, Tan L. The Role of SORL1 in Alzheimer's Disease. Mol Neurobiol 2014; 51:909-18. [PMID: 24833601 DOI: 10.1007/s12035-014-8742-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/05/2014] [Indexed: 11/29/2022]
Abstract
Genetic variation in SORL1 gene, also known as LR11, has been identified to associate with Alzheimer's disease (AD) through replicated genetic studies. As a type I transmembrane protein, SORL1 is composed of several distinct domains and belongs to both the low-density lipoprotein receptor (LDLR) family and the vacuolar protein sorting 10 (VPS10) domain receptor family. The level of SORL1 was found to be decreased in the AD brain which positively correlated with β-amyloid (Aβ) accumulation. Emerging data suggests that SORL1 contributes to AD through various pathways, including emerging as a central regulator of the trafficking and processing of amyloid precursor protein (APP), involvement in Aβ destruction, and interaction with ApoE and tau protein. Primarily, SORL1 interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network (TGN) and early endosomes, thereby restricting the delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. In this article, we review recent epidemiological and genetical findings of SORL1 that related with AD and speculate the possible roles of SORL1 in the progression of this disease. Finally, given the potential contributions of SORL1 to AD pathogenesis, targeting SORL1 might present novel opportunities for AD therapy.
Collapse
Affiliation(s)
- Rui-Hua Yin
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | | | | |
Collapse
|
27
|
Xue X, Zhang M, Lin Y, Xu E, Jia J. Association between the SORL1 rs2070045 polymorphism and late-onset Alzheimer's disease: interaction with the ApoE genotype in the Chinese Han population. Neurosci Lett 2013; 559:94-8. [PMID: 24309291 DOI: 10.1016/j.neulet.2013.11.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/08/2013] [Accepted: 11/23/2013] [Indexed: 12/30/2022]
Abstract
Late-onset Alzheimer's Disease (LOAD) is a common neurodegenerative disease [1], and the two well identified pathological hallmarks of LOAD are senile plaques formed from amyloid β peptides (Aβ) and neurofibrillary tangles (NFTs) consisting of hyperphorylated tau protein [2]. The neuronal Sortilin-related receptor (SORL1) is involved in the processing and trafficking of amyloid precursor protein (APP) into recycling pathways, thus influencing Aβ generation and by this AD pathology [3]. To explore the relationship between the single nucleotide polymorphism (SNP) of the SORL1 SNP 19 rs2070045 and LOAD, a case-control study was conducted in a Chinese Han cohort including 77 LOAD patients and 100 control participants. This SNP 19 rs2070045 was genotyped with a polymerase chain reaction-restriction fragment length polymorphism, (PCR-RFLP) method. The association was revealed between the polymorphism of SNP 19 rs2070045 (T/T, T/G, G/G) and the risk of LOAD. The results of this study indicated that the T allele (T/G+T/T) of SNP 19 rs2070045 was successful in exerting obvious influence in LOAD patients (χ(2)=4.884, P=0.027<0.05). However, there is no sufficient evidence to prove that the T allele of SNP 19 rs2070045 is associated with ɛ4 allele of ApoE gene in LOAD patients (χ(2)=0.771, P=0.380>0.05).
Collapse
Affiliation(s)
- Xiaofan Xue
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun street, Xicheng District, Beijing 100053, China
| | - Milan Zhang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun street, Xicheng District, Beijing 100053, China
| | - Yicong Lin
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun street, Xicheng District, Beijing 100053, China
| | - Erhe Xu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun street, Xicheng District, Beijing 100053, China.
| | - Jianping Jia
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, 45 Changchun street, Xicheng District, Beijing 100053, China
| |
Collapse
|
28
|
Gao X, Liu M, Sun L, Qin B, Yu H, Yang Z, Qi R, Gao F. SORL1 genetic variants modulate risk of amnestic mild cognitive impairment in northern Han Chinese. Int J Neurosci 2013; 124:296-301. [PMID: 24083537 DOI: 10.3109/00207454.2013.850429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The neuronal sortilin-related receptor (SORL1) has been reported to modulate the risk of Alzheimer's disease (AD) in a variety of populations, but replication studies have been inconsistent. Amnestic mild cognitive impairment (aMCI) is characterized by episodic memory impairment and represents the prodromal stage of AD. However, the relationship between SORL1 and aMCI remains unclear. This study aimed to investigate the relationship between SORL1 genetic variation and aMCI in the Han Chinese population. We conducted a case-control study using a single-nucleotide polymorphism (SNP), rs668387 (SNP8), in the 5' region of SORL1, and three SNPs [rs2070045 (SNP19), rs3824968 (SNP23), rs2282649 (SNP24)] in the 3' region of SORL1, along with a haplotype analysis, in 139 aMCI patients and 213 cognitively-healthy controls from a northern Han Chinese population. We observed that SNP19 had a significantly different allele frequency between aMCI patients and controls (p = 0.006). Moreover, the GAT haplotype at SNPs 19-23-24 was associated with an increased risk of aMCI [odds ratio (OR) 1.377], while the TTC haplotype at SNPs 19-23-24 was associated with a decreased risk (OR 0.708). These results indicated that the SNPs in the 3' region of SORL1 are associated with aMCI in northern Han Chinese.
Collapse
Affiliation(s)
- Xin Gao
- 1Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health , Beijing , China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Whether cholesterol is implicated in the pathogenesis of Alzheimer's disease (AD) is still controversial. Several studies that explored the association between lipids and/or lipid-lowering treatment and AD indicate a harmful effect of dyslipidemia on AD risk. The findings are supported by genetic linkage and association studies that have clearly identified several genes involved in cholesterol metabolism or transport as AD susceptibility genes, including apolipoprotein E (APOE), apolipoprotein J (APOJ, CLU), ATP-binding cassette subfamily A member 7(ABCA7), and sortilin-related receptor (SORL1). Functional cell biology studies further support a critical involvement of lipid raft cholesterol in the modulation of Aβ precursor protein processing by β-secretase and γ-secretase resulting in altered Aβ production. However, conflicting evidence comes from epidemiological studies showing no or controversial association between dyslipidemia and AD risk, randomized clinical trials observing no beneficial effect of statin therapy, and cell biology studies suggesting that there is little exchange between circulating and brain cholesterol, that increased membrane cholesterol level is protective by inhibiting loss of membrane integrity through amyloid cytotoxicity, and that cellular cholesterol inhibits colocalization of β-secretase 1 and Aβ precursor protein in nonraft membrane domains, thereby increasing generation of plasmin, an Aβ-degrading enzyme. The aim of this article is to provide a comprehensive review of the findings of epidemiological, genetic, and cell biology studies aiming to elucidate the role of cholesterol in the pathogenesis of AD.
Collapse
|
30
|
Sortilin receptor 1 predicts longitudinal cognitive change. Neurobiol Aging 2013; 34:1710.e11-8. [PMID: 23318115 DOI: 10.1016/j.neurobiolaging.2012.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/04/2012] [Accepted: 12/09/2012] [Indexed: 11/22/2022]
Abstract
The gene encoding sortilin receptor 1 (SORL1) has been associated with Alzheimer's disease risk. We examined 15 SORL1 variants and single nucleotide polymorphism (SNP) set risk scores in relation to longitudinal verbal, spatial, memory, and perceptual speed performance, testing for age trends and sex-specific effects. Altogether, 1609 individuals from 3 population-based Swedish twin studies were assessed up to 5 times across 16 years. Controlling for apolipoprotein E genotype (APOE), multiple simple and sex-moderated associations were observed for spatial, episodic memory, and verbal trajectories (p = 1.25E-03 to p = 4.83E-02). Five variants (rs11600875, rs753780, rs7105365, rs11820794, rs2070045) were associated across domains. Notably, in those homozygous for the rs2070045 risk allele, men demonstrated initially favorable performance but accelerating declines, and women showed overall lower performance. SNP set risk scores predicted spatial (Card Rotations, p = 5.92E-03) and episodic memory trajectories (Thurstone Picture Memory, p = 3.34E-02), where higher risk scores benefited men's versus women's performance up to age 75 but with accelerating declines. SORL1 is associated with cognitive aging, and might contribute differentially to change in men and women.
Collapse
|
31
|
Reitz C. Dyslipidemia and dementia: current epidemiology, genetic evidence, and mechanisms behind the associations. J Alzheimers Dis 2012; 30 Suppl 2:S127-45. [PMID: 21965313 DOI: 10.3233/jad-2011-110599] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of cholesterol in the etiology of Alzheimer's disease (AD) is still controversial. Some studies exploring the association between lipids and/or lipid lowering treatment and AD indicate a harmful effect of dyslipidemia and a beneficial effect of statin therapy on AD risk. The findings are supported by genetic linkage and association studies that have clearly identified several genes involved in cholesterol metabolism or transport as AD susceptibility genes, including apolipoprotein E, apolipoprotein J, and the sortilin-related receptor. Functional cell biology studies support a critical involvement of lipid raft cholesterol in the modulation of amyloid-β protein precursor (AβPP) processing by β- and γ-secretase resulting in altered amyloid-β production. Contradictory evidence comes from epidemiological studies showing no or controversial association between dyslipidemia and AD risk. Additionally, cell biology studies suggest that there is little exchange between circulating and brain cholesterol, that increased membrane cholesterol is protective by inhibiting loss of membrane integrity through amyloid cytotoxicity, and that cellular cholesterol inhibits co-localization of BACE1 and AβPP in non-raft membrane domains, thereby increasing generation of plasmin, an amyloid-β-degrading enzyme. The aim of this review is to summarize the findings of epidemiological and cell biological studies to elucidate the role of cholesterol in AD etiology.
Collapse
Affiliation(s)
- Christiane Reitz
- The Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer's Disease and The Aging Brain New York, NY, USA.
| |
Collapse
|
32
|
|
33
|
Vardarajan BN, Bruesegem SY, Harbour ME, St. George-Hyslop P, Seaman MN, Farrer LA. Identification of Alzheimer disease-associated variants in genes that regulate retromer function. Neurobiol Aging 2012; 33:2231.e15-2231.e30. [PMID: 22673115 PMCID: PMC3391348 DOI: 10.1016/j.neurobiolaging.2012.04.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/13/2012] [Accepted: 04/30/2012] [Indexed: 12/18/2022]
Abstract
The proteolytic processing of amyloid precursor protein (APP) to generate the neurotoxic amyloid β (Aβ) peptide is central to the pathogenesis of Alzheimer disease (AD). The endocytic system mediates the processing of APP by controlling its access to secretases that cleave APP. A key mediator of APP localization is SorL1-a membrane protein that has been genetically linked to AD. The retromer complex is a conserved protein complex required for endosome-to-Golgi retrieval of a number of physiologically important membrane proteins including SorL1. Based on the prior suggestion that endocytosis and retromer sorting pathways might be involved, we hypothesized that variants in other genes in this pathway might also modulate AD risk. Genetic association of AD with 451 polymorphisms in 15 genes encoding retromer or retromer-associated proteins was tested in a Caucasian sample of 8309 AD cases and 7366 cognitively normal elders using individual single nucleotide polymorphism (SNP)- and gene-based tests. We obtained significant evidence of association with KIAA1033 (VEGAS p = 0.025), SNX1 (VEGAS p = 0.035), SNX3 (p = 0.0057), and RAB7A (VEGAS p = 0.018). Ten KIAA1033 SNPs were also significantly associated with AD in a group of African Americans (513 AD cases, 504 control subjects). Findings with four significant SNX3 SNPs in the discovery sample were replicated in a community-based sample of Israeli-Arabs (124 AD cases, 142 control subjects). We show that Snx3 and Rab7A proteins interact with the cargo-selective retromer complex through independent mechanisms to regulate the membrane association of retromer and thereby are key mediators of retromer function. These data implicate additional AD risk genes in the retromer pathway and formally demonstrate a direct link between the activity of the retromer complex and the pathogenesis of AD.
Collapse
Affiliation(s)
- Badri N. Vardarajan
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118
| | - Sophia Y. Bruesegem
- University of Cambridge, Departments of Clinical Biochemistry and Clinical Neurosciences, Cambridge Institute for Medical Research, Addenbrookes Hospital, Cambridge, CB2 0XY, UK
| | - Michael E. Harbour
- University of Cambridge, Departments of Clinical Biochemistry and Clinical Neurosciences, Cambridge Institute for Medical Research, Addenbrookes Hospital, Cambridge, CB2 0XY, UK
| | - Peter St. George-Hyslop
- University of Cambridge, Departments of Clinical Biochemistry and Clinical Neurosciences, Cambridge Institute for Medical Research, Addenbrookes Hospital, Cambridge, CB2 0XY, UK
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Medicine, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Matthew N.J. Seaman
- University of Cambridge, Departments of Clinical Biochemistry and Clinical Neurosciences, Cambridge Institute for Medical Research, Addenbrookes Hospital, Cambridge, CB2 0XY, UK
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118
- Departments of Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, 72 East Concord Street, Boston, MA 02118
| |
Collapse
|
34
|
Schellenberg GD, Montine TJ. The genetics and neuropathology of Alzheimer's disease. Acta Neuropathol 2012; 124:305-23. [PMID: 22618995 DOI: 10.1007/s00401-012-0996-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 02/07/2023]
Abstract
Here we review the genetic causes and risks for Alzheimer's disease (AD). Early work identified mutations in three genes that cause AD: APP, PSEN1 and PSEN2. Although mutations in these genes are rare causes of AD, their discovery had a major impact on our understanding of molecular mechanisms of AD. Early work also revealed the ε4 allele of the APOE as a strong risk factor for AD. Subsequently, SORL1 also was identified as an AD risk gene. More recently, advances in our knowledge of the human genome, made possible by technological advances and methods to analyze genomic data, permit systematic identification of genes that contribute to AD risk. This work, so far accomplished through single nucleotide polymorphism arrays, has revealed nine new genes implicated in AD risk (ABCA7, BIN1, CD33, CD2AP, CLU, CR1, EPHA1, MS4A4E/MS4A6A, and PICALM). We review the relationship between these mutations and genetic variants and the neuropathologic features of AD and related disorders. Together, these discoveries point toward a new era in neurodegenerative disease research that impacts not only AD but also related illnesses that produce cognitive and behavioral deficits.
Collapse
Affiliation(s)
- Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6100, USA.
| | | |
Collapse
|
35
|
McCarthy JJ, Saith S, Linnertz C, Burke JR, Hulette CM, Welsh-Bohmer KA, Chiba-Falek O. The Alzheimer's associated 5' region of the SORL1 gene cis regulates SORL1 transcripts expression. Neurobiol Aging 2012; 33:1485.e1-8. [PMID: 21185108 PMCID: PMC3117021 DOI: 10.1016/j.neurobiolaging.2010.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/14/2010] [Accepted: 10/03/2010] [Indexed: 11/18/2022]
Abstract
SORL1 has been identified as a major contributor to late onset Alzheimer's disease (LOAD). We test whether genetic variability in the 5' of SORL1 gene modulates the risk to develop LOAD via regulation of SORL1-messenger ribonucleic acid (mRNA) expression and splicing. Two brain structures, differentially vulnerable to LOAD pathology, were examined in 144 brain samples from 92 neurologically normal individuals. The temporal cortex, which is more susceptible to Alzheimer's pathology, demonstrated ∼2-fold increase in SORL1-mRNA levels in carriers of the minor alleles at single nucleotide polymorphisms (SNPs), rs7945931 and rs2298525, compared with noncarriers. No genetic effect on total-SORL1-mRNA levels was detected in the frontal cortex. However, rs11600875 minor allele was associated with significantly increased levels of exon-2 skipping, but only in frontal cortex. No correlation of SORL1-mRNAs expression was found between frontal and temporal cortexes. Collectively, these indicate the brain region specificity of the genetic regulation of SORL1 expression. Our results suggest that genetic regulation of SORL1 expression plays a role in disease risk and may be responsible for the reported LOAD associations. Further studies to detect the actual pathogenic variant/s are necessary.
Collapse
Affiliation(s)
| | - Sunita Saith
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
| | - Colton Linnertz
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
| | - James R. Burke
- Division of Neurology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Joseph and Kathleen Bryan Alzheimer’s Disease Research Center, Duke University, Durham, NC 27705, USA
| | - Christine M. Hulette
- Joseph and Kathleen Bryan Alzheimer’s Disease Research Center, Duke University, Durham, NC 27705, USA
| | - Kathleen A. Welsh-Bohmer
- Joseph and Kathleen Bryan Alzheimer’s Disease Research Center, Duke University, Durham, NC 27705, USA
| | - Ornit Chiba-Falek
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
- Division of Neurology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Joseph and Kathleen Bryan Alzheimer’s Disease Research Center, Duke University, Durham, NC 27705, USA
| |
Collapse
|
36
|
Olgiati P, Politis AM, Papadimitriou GN, De Ronchi D, Serretti A. Genetics of late-onset Alzheimer's disease: update from the alzgene database and analysis of shared pathways. Int J Alzheimers Dis 2011; 2011:832379. [PMID: 22191060 PMCID: PMC3235576 DOI: 10.4061/2011/832379] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 09/21/2011] [Indexed: 12/13/2022] Open
Abstract
The genetics of late-onset Alzheimer's disease (LOAD) has taken impressive steps forwards in the last few years. To date, more than six-hundred genes have been linked to the disorder. However, only a minority of them are supported by a sufficient level of evidence. This review focused on such genes and analyzed shared biological pathways. Genetic markers were selected from a web-based collection (Alzgene). For each SNP in the database, it was possible to perform a meta-analysis. The quality of studies was assessed using criteria such as size of research samples, heterogeneity across studies, and protection from publication bias. This produced a list of 15 top-rated genes: APOE, CLU, PICALM, EXOC3L2, BIN1, CR1, SORL1, TNK1, IL8, LDLR, CST3, CHRNB2, SORCS1, TNF, and CCR2. A systematic analysis of gene ontology terms associated with each marker showed that most genes were implicated in cholesterol metabolism, intracellular transport of beta-amyloid precursor, and autophagy of damaged organelles. Moreover, the impact of these genes on complement cascade and cytokine production highlights the role of inflammatory response in AD pathogenesis. Gene-gene and gene-environment interactions are prominent issues in AD genetics, but they are not specifically featured in the Alzgene database.
Collapse
Affiliation(s)
- Paolo Olgiati
- Institute of Psychiatry, University of Bologna, Viale Carlo Pepoli 5, 40123 Bologna, Italy
| | | | | | | | | |
Collapse
|
37
|
Alexopoulos P, Guo LH, Kratzer M, Westerteicher C, Kurz A, Perneczky R. Impact of SORL1 single nucleotide polymorphisms on Alzheimer's disease cerebrospinal fluid markers. Dement Geriatr Cogn Disord 2011; 32:164-70. [PMID: 21997402 PMCID: PMC3696367 DOI: 10.1159/000332017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2011] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Recently, genetic variants of the neuronal sortilin-related receptor with A-type repeats (SORL1, also called LR11 or sorLA) have emerged as risk factors for the development of Alzheimer's disease (AD). METHODS In this study, SORL1 gene polymorphisms, which have been shown to be related to AD, were analyzed for associations with cerebrospinal fluid (CSF) amyloid beta1-42 (Aβ(1-42)), phosphorylated tau181, and total tau levels in a non-Hispanic Caucasian sample, which encompassed 100 cognitively healthy elderly individuals, 166 patients with mild cognitive impairment, and 87 patients with probable AD. The data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). Moreover, the impact of gene-gene interactions between SORL1 single nucleotide polymorphisms (SNPs) and the apolipoprotein E (APOE) ε4 allele, the major genetic risk factor for sporadic AD, on Aβ(1-42) concentrations was investigated. RESULTS Significant associations between CSF Aβ(1-42) levels and the SORL1 SNPs 23 (rs3824968) and 24 (rs2282649) were detected in the AD group. The latter association became marginally statistically insignificant after Bonferroni correction for multiple comparisons. Carriers of the SORL1 SNP24 T allele and the SNP23 A allele both had lower CSF Aβ(1-42) concentrations than non-carriers of these alleles. The analysis of the impact of interactions between APOE ε4 allele and SORL1 SNPs on CSF Aβ(1-42) levels unraveled significant influences of APOE. CONCLUSIONS Our findings provide further support for the notion that SORL1 genetic variants are related to AD pathology, probably by regulating the amyloid cascade.
Collapse
Affiliation(s)
- Panagiotis Alexopoulos
- *Dr. Panagiotis Alexopoulos, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Technische Universität München, Ismaninger Strasse 22, DE–81675 München (Germany), Tel. +49 89 4140 4214, E-Mail
| | - Liang-Hao Guo
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martina Kratzer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christine Westerteicher
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Kurz
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | |
Collapse
|
38
|
Ma SL, Lam LCW. Panel of Genetic Variations as a Potential Non-invasive Biomarker for Early Diagnosis of Alzheimer's Disease. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2011; 9:54-66. [PMID: 23429712 PMCID: PMC3569084 DOI: 10.9758/cpn.2011.9.2.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/06/2011] [Accepted: 05/23/2011] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Biomarkers such as levels of amyloid beta (Aβ) in cerebrospinal fluid and ApoE genotyping were suggested for the diagnosis of AD, however, the result is either non-conclusive or with invasive procedure. Genome-wide association studies (GWASs) for AD suggested single nucleotide polymorphisms (SNPs) in many genes are associated with the risk of AD, but each only contributed with small effect to the disease. By incorporating a panel of established genetic susceptibility factors, the risk of an individual in getting AD could be better estimated. Further research will be required to reveal if adding to the current well-developed clinical diagnosis protocol, the accuracy and specificity of diagnosis of AD would be greatly improved and if this might also be beneficial in identifying pre-symptomatic AD patients for early diagnosis and intervention of the disease.
Collapse
Affiliation(s)
- Suk Ling Ma
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA. ; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | | |
Collapse
|
39
|
Reitz C, Tokuhiro S, Clark LN, Conrad C, Vonsattel JP, Hazrati LN, Palotás A, Lantigua R, Medrano M, Z Jiménez-Velázquez I, Vardarajan B, Simkin I, Haines JL, Pericak-Vance MA, Farrer LA, Lee JH, Rogaeva E, George-Hyslop PS, Mayeux R. SORCS1 alters amyloid precursor protein processing and variants may increase Alzheimer's disease risk. Ann Neurol 2011; 69:47-64. [PMID: 21280075 DOI: 10.1002/ana.22308] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Sorting mechanisms that cause the amyloid precursor protein (APP) and the β-secretases and γ-secretases to colocalize in the same compartment play an important role in the regulation of Aβ production in Alzheimer's disease (AD). We and others have reported that genetic variants in the Sortilin-related receptor (SORL1) increased the risk of AD, that SORL1 is involved in trafficking of APP, and that underexpression of SORL1 leads to overproduction of Aβ. Here we explored the role of one of its homologs, the sortilin-related VPS10 domain containing receptor 1 (SORCS1), in AD. METHODS We analyzed the genetic associations between AD and 16 SORCS1-single nucleotide polymorphisms (SNPs) in 6 independent data sets (2,809 cases and 3,482 controls). In addition, we compared SorCS1 expression levels of affected and unaffected brain regions in AD and control brains in microarray gene expression and real-time polymerase chain reaction (RT-PCR) sets, explored the effects of significant SORCS1-SNPs on SorCS1 brain expression levels, and explored the effect of suppression and overexpression of the common SorCS1 isoforms on APP processing and Aβ generation. RESULTS Inherited variants in SORCS1 were associated with AD in all datasets (0.001 < p < 0.049). In addition, SorCS1 influenced APP processing. While overexpression of SorCS1 reduced γ-secretase activity and Aβ levels, the suppression of SorCS1 increased γ-secretase processing of APP and the levels of Aβ. INTERPRETATIONS These data suggest that inherited or acquired changes in SORCS1 expression or function may play a role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kauwe JSK, Cruchaga C, Bertelsen S, Mayo K, Latu W, Nowotny P, Hinrichs AL, Fagan AM, Holtzman DM, Goate AM. Validating predicted biological effects of Alzheimer's disease associated SNPs using CSF biomarker levels. J Alzheimers Dis 2011; 21:833-42. [PMID: 20634593 DOI: 10.3233/jad-2010-091711] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent large-scale genetic studies of late-onset Alzheimer's disease have identified risk variants in CALHM1, GAB2, and SORL1. The mechanisms by which these genes might modulate risk are not definitively known. CALHM1 and SORL1 may alter amyloid-β (Aβ) levels and GAB2 may influence phosphorylation of the tau protein. In this study we have analyzed disease associated genetic variants in each of these genes for association with cerebrospinal fluid (CSF) Aβ or tau levels in 602 samples from two independent CSF series. We failed to detect association between CSF Aβ42 levels and single nucleotide polymorphisms in SORL1 despite substantial statistical power to detect association. While we also failed to detect association between variants in GAB2 and CSF tau levels, power to detect this association was limited. Finally, our data suggest that the minor allele of rs2986017, in CALHM1, is marginally associated with CSF Aβ42 levels. This association is consistent with previous reports that this non-synonymous coding substitution results in increased Aβ levels in vitro and provides support for an Aβ-related mechanism for modulating risk for Alzheimer's disease.
Collapse
Affiliation(s)
- John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Reitz C, Cheng R, Rogaeva E, Lee JH, Tokuhiro S, Zou F, Bettens K, Sleegers K, Tan EK, Kimura R, Shibata N, Arai H, Kamboh MI, Prince JA, Maier W, Riemenschneider M, Owen M, Harold D, Hollingworth P, Cellini E, Sorbi S, Nacmias B, Takeda M, Pericak-Vance MA, Haines JL, Younkin S, Williams J, van Broeckhoven C, Farrer LA, St George-Hyslop PH, Mayeux R. Meta-analysis of the association between variants in SORL1 and Alzheimer disease. ARCHIVES OF NEUROLOGY 2011; 68:99-106. [PMID: 21220680 PMCID: PMC3086666 DOI: 10.1001/archneurol.2010.346] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To reexamine the association between the neuronal sortilin-related receptor gene (SORL1) and Alzheimer disease (AD). DESIGN Comprehensive and unbiased meta-analysis of all published and unpublished data from case-control studies for the SORL1 single-nucleotide polymorphisms (SNPs) that had been repeatedly assessed across studies. SETTING Academic research institutions in the United States, the Netherlands, Canada, Belgium, the United Kingdom, Singapore, Japan, Sweden, Germany, France, and Italy. PARTICIPANTS All published white and Asian case-control data sets, which included a total of 12,464 cases and 17,929 controls. MAIN OUTCOME MEASURES Alzheimer disease according to the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) and the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association (now known as the Alzheimer's Association). RESULTS In the white data sets, several markers were associated with AD after correction for multiple testing, including previously reported SNPs 8, 9, and 10 (P < .001). In addition, the C-G-C haplotype at SNPs 8 through 10 was associated with AD risk (P < .001). In the combined Asian data sets, SNPs 19 and 23 through 25 were associated with AD risk (P < .001). The disease-associated alleles at SNPs 8, 9, and 10 (120,873,131-120,886,175 base pairs [bp]; C-G-C alleles), at SNP 19 (120,953,300 bp; G allele), and at SNPs 24 through 25 (120,988,611 bp; T and C alleles) were the same previously reported alleles. The SNPs 4 through 5, 8 through 10, 12, and 19 through 25 belong to distinct linkage disequilibrium blocks. The same alleles at SNPs 8 through 10 (C-G-C), 19 (G), and 24 and 25 (T and C) have also been associated with AD endophenotypes, including white matter hyperintensities and hippocampal atrophy on magnetic resonance imaging, cerebrospinal fluid measures of amyloid β-peptide 42, and full-length SORL1 expression in the human brain. CONCLUSION This comprehensive meta-analysis provides confirmatory evidence that multiple SORL1 variants in distinct linkage disequilibrium blocks are associated with AD.
Collapse
Affiliation(s)
- Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
DeMichele-Sweet MAA, Klei L, Devlin B, Ferrell RE, Weamer EA, Emanuel JE, Lopez OL, Sweet RA. No association of psychosis in Alzheimer disease with neurodegenerative pathway genes. Neurobiol Aging 2010; 32:555.e9-11. [PMID: 21093110 DOI: 10.1016/j.neurobiolaging.2010.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/24/2010] [Accepted: 10/03/2010] [Indexed: 01/21/2023]
Abstract
Psychotic symptoms occur in approximately 40% of subjects with Alzheimer disease (AD with psychosis; AD + P) and identify a subgroup with more rapid cognitive decline. We evaluated in 867 AD subjects the association of AD + P with genes which may modify the pathological process via effects on the accumulation of amyloid beta (Aβ) protein and/or hyperphosphorylated microtubule-associated protein tau (MAPT): amyloid precursor protein (APP), beta-site amyloid precursor protein cleaving enzyme (BACE1), sortilin-related receptor (SORL1), and MAPT. Each gene was thoroughly interrogated with tag single-nucleotide polymorphisms (SNPs), and gene-based tests were used to enhance power. We found no association of these genes with AD + P.
Collapse
|
43
|
Sweet RA, Bennett DA, Graff-Radford NR, Mayeux R. Assessment and familial aggregation of psychosis in Alzheimer's disease from the National Institute on Aging Late Onset Alzheimer's Disease Family Study. Brain 2010; 133:1155-62. [PMID: 20147454 PMCID: PMC2912688 DOI: 10.1093/brain/awq001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/23/2009] [Accepted: 12/16/2009] [Indexed: 01/28/2023] Open
Abstract
Determining the genetic architecture of late onset Alzheimer's disease remains an important research objective. One approach to the identification of novel genetic variants contributing to the disease is the classification of biologically meaningful subgroups within the larger late-onset Alzheimer's disease phenotype. The occurrence of psychotic symptoms in patients with late-onset Alzheimer's disease may identify one such group. We attempted to establish methods for the reliable assessment of psychotic symptoms in a large, geographically dispersed collection of families, multiply affected with late onset Alzheimer's disease, who were participants in the larger National Institute on Aging Late Onset Alzheimer's Disease Family Study; and to characterize the correlates and familial aggregation of psychosis within this cohort. We found that reliable assessments of psychotic symptoms during in-person or phone interviews were readily implemented. The presence of psychosis in late onset Alzheimer's disease was significantly associated with degree of cognitive impairment, and significantly, albeit modestly, correlated with the severity of other behavioural symptoms. Psychosis significantly aggregated within late onset Alzheimer's disease families suggesting that it may identify a genetically determined subgroup. Future studies should examine the linkage and association of psychosis with genetic variation within these families.
Collapse
Affiliation(s)
- Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Biomedical Science Tower, Rm W-1645, 3811 O'Hara Street, Pittsburgh, PA 15213-2593, USA.
| | | | | | | |
Collapse
|
44
|
Reitz C, Mayeux R. Use of genetic variation as biomarkers for mild cognitive impairment and progression of mild cognitive impairment to dementia. J Alzheimers Dis 2010; 19:229-51. [PMID: 20061642 PMCID: PMC2908485 DOI: 10.3233/jad-2010-1255] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cognitive impairment is prevalent in the elderly. The high estimates of conversion to dementia have spurred the interest in identification of genetic risk factors associated with development of cognitive impairment and or its progression. However, despite notable achievements in human genetics over the years, in particular technological advances in gene mapping and in statistical methods that relate genetic variants to disease, to date only a small proportion of the genetic contribution to late-life cognitive impairment can be explained. A likely explanation for the difficulty in gene identification is that it is a multifactorial disorder with both genetic and environmental components, in which several genes with small effects each are likely to contribute to the quantitative traits associated with the disease. The motivation for identifying the underlying genetic risk factors elderly is clear. Not only could it shed light on disease pathogenesis, but it may also provide potential targets for effective treatment, screening, and prevention. In this article we review the current knowledge on underlying genetic variants and the usefulness of genetic variation as diagnostic tools and biomarkers. In addition, we discuss the potentials and difficulties researchers face in designing appropriate studies for gene discovery.
Collapse
Affiliation(s)
- Christiane Reitz
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
45
|
Reitz C, Mayeux R. Endophenotypes in normal brain morphology and Alzheimer's disease: a review. Neuroscience 2009; 164:174-90. [PMID: 19362127 PMCID: PMC2812814 DOI: 10.1016/j.neuroscience.2009.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 01/27/2023]
Abstract
Late-onset Alzheimer's disease is a common complex disorder of old age. Though these types of disorders can be highly heritable, they differ from single-gene (Mendelian) diseases in that their causes are often multifactorial with both genetic and environmental components. Genetic risk factors that have been firmly implicated in the cause are mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes, which are found in large multi-generational families with an autosomal dominant pattern of disease inheritance, the apolipoprotein E (APOE)epsilon4 allele and the sortilin-related receptor (SORL1) gene. Environmental factors that have been associated with late-onset Alzheimer's disease include depressive illness, various vascular risk factors, level of education, head trauma and estrogen replacement therapy. This complexity may help explain their high prevalence from an evolutionary perspective, but the etiologic complexity makes identification of disease-related genes much more difficult. The "endophenotype" approach is an alternative method for measuring phenotypic variation that may facilitate the identification of susceptibility genes for complexly inherited traits. The usefulness of endophenotypes in genetic analyses of normal brain morphology and, in particular for Alzheimer's disease will be reviewed as will the implications of these findings for models of disease causation. Given that the pathways from genotypes to end-stage phenotypes are circuitous at best, identifying endophenotypes more proximal to the effects of genetic variation may expedite the attempts to link genetic variants to disorders.
Collapse
Affiliation(s)
- C. Reitz
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, 630 West 168th Street, Columbia University, New York, NY 10032, USA
| | - R. Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, 630 West 168th Street, Columbia University, New York, NY 10032, USA
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
46
|
Grear KE, Ling IF, Simpson JF, Furman JL, Simmons CR, Peterson SL, Schmitt FA, Markesbery WR, Liu Q, Crook JE, Younkin SG, Bu G, Estus S. Expression of SORL1 and a novel SORL1 splice variant in normal and Alzheimers disease brain. Mol Neurodegener 2009; 4:46. [PMID: 19889229 PMCID: PMC2776013 DOI: 10.1186/1750-1326-4-46] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 11/04/2009] [Indexed: 11/19/2022] Open
Abstract
Background Variations in sortilin-related receptor (SORL1) expression and function have been implicated in Alzheimers Disease (AD). Here, to gain insights into SORL1, we evaluated SORL1 expression and splicing as a function of AD and AD neuropathology, neural gene expression and a candidate single nucleotide polymorphism (SNP). Results To identify SORL1 splice variants, we scanned each of the 46 internal SORL1 exons in human brain RNA samples and readily found SORL1 isoforms that lack exon 2 or exon 19. Quantification in a case-control series of the more abundant isoform lacking exon 2 (delta-2-SORL1), as well as the "full-length" SORL1 (FL-SORL1) isoform containing exon 2 showed that expression of FL-SORL1 was reduced in AD individuals. Moreover, FL-SORL1 was reduced in cognitively intact individuals with significant AD-like neuropathology. In contrast, the expression of the delta-2-SORL1 isoform was similar in AD and non-AD brains. The expression of FL-SORL1 was significantly associated with synaptophysin expression while delta-2-SORL1 was modestly enriched in white matter. Lastly, FL-SORL1 expression was associated with rs661057, a SORL1 intron one SNP that has been associated with AD risk. A linear regression analysis found that rs661057, synaptophysin expression and AD neuropathology were each associated with FL-SORL1 expression. Conclusion These results confirm that FL-SORL1 expression declines in AD and with AD-associated neuropathology, suggest that FL-SORL1 declines in cognitively-intact individuals with AD-associated neuropathology, identify a novel SORL1 splice variant that is expressed similarly in AD and non-AD individuals, and provide evidence that an AD-associated SNP is associated with SORL1 expression. Overall, these results contribute to our understanding of SORL1 expression in the human brain.
Collapse
Affiliation(s)
- Karrie E Grear
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common cause of late-onset dementia in western societies. Despite remarkable achievements in human genetics throughout the years, in particular technological advances in gene mapping and in statistical methods that relate genetic variants to disease, to date only a small proportion of the genetic contribution to LOAD can be explained leaving several remaining genetic risk factors to be identified. A possible explanation for the difficulty in gene identification is that LOAD is a multifactorial complex disorder with both genetic and environmental components. Multiple genes with small effects each ("quantitative trait loci"[QTLs]) are likely to contribute to the quantitative traits associated with the disease, such as memory performance, amyloid/tau pathology, or hippocampal atrophy. The motivation for identifying the genetics of LOAD is clear. Not only could it shed light on disease pathogenesis, but it may also provide potential targets for effective treatment, screening, and prevention. Here, we review the usefulness of genetic variation as diagnostic tools and biomarkers in LOAD and discuss the potentials and difficulties researchers face in designing appropriate studies for gene discovery.
Collapse
Affiliation(s)
- Christiane Reitz
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, New York
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
48
|
Rajah M, Bastianetto S, Bromley-Brits K, Cools R, D’Esposito M, Grady C, Poirier J, Quirion R, Raz N, Rogaeva E, Song W, Pruessner J. Biological changes associated with healthy versus pathological aging: a symposium review. Ageing Res Rev 2009; 8:140-6. [PMID: 19274854 DOI: 10.1016/j.arr.2009.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Douglas Mental Health University Institute, in collaboration with the McGill Centre for Studies in Aging, organized a 2-day symposium entitled "Biological Changes Associated with Healthy Versus Pathological Aging" that was held in 13 and 14 December 2007 on the Douglas campus. The symposium involved presentations on current trends in aging and dementia research across several sub-disciplines: genetics, neurochemistry, structural and functional neuroimaging and clinical treatment and rehabilitation. The goal of this symposium was to provide a forum for knowledge-transfer between scientists and clinicians with different specializations in order to promote cross-fertilization of research ideas that would lead to future collaborative neuroscience research in aging and dementia. In this review article, we summarize the presentations made by the 13 international scientists at the symposium and highlight: (i) past research, and future research trends in neuroscience of aging and dementia and (ii) links across levels of analysis that can lead to fruitful transdisciplinary research programs that will advance knowledge about the neurobiological changes associated with healthy aging and dementia.
Collapse
|
49
|
Chipping away at diagnostics for neurodegenerative diseases. Neurobiol Dis 2009; 35:148-56. [PMID: 19285134 DOI: 10.1016/j.nbd.2009.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 02/16/2009] [Accepted: 02/19/2009] [Indexed: 12/15/2022] Open
Abstract
Biomarkers are needed to overcome critical roadblocks in the development of disease-modifying therapeutics for neurodegenerative diseases. Evolving genome-wide expression technologies can comprehensively search for molecular biomarkers and allow fascinating insights into the expanding complexity of the human transcriptome. The technology has matured to the point where some applications are deemed reliable enough for use in patient care. In the neurosciences, it has led to the discoveries of osteopontin in multiple sclerosis and SORL1/LR11 in Alzheimer's, and recent studies indicate its potential for identifying neurogenomic biomarkers. Advances in pre-analytical and analytical methods are improving search efficiency and reproducibility and may lead to a pipeline of biomarker candidates suitable for development into future neurologic diagnostics.
Collapse
|
50
|
Loss of LR11/SORLA enhances early pathology in a mouse model of amyloidosis: evidence for a proximal role in Alzheimer's disease. J Neurosci 2009; 28:12877-86. [PMID: 19036982 DOI: 10.1523/jneurosci.4582-08.2008] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, resulting in progressive neuronal death and debilitating damage to brain loci that mediate memory and higher cognitive function. While pathogenic genetic mutations have been implicated in approximately 2% of AD cases, the proximal events that underlie the common, sporadic form of the disease are incompletely understood. Converging lines of evidence from human neuropathology, basic biology, and genetics have implicated loss of the multifunctional receptor LR11 (also known as SORLA and SORL1) in AD pathogenesis. Cell-based studies suggest that LR11 reduces the formation of beta-amyloid (Abeta), the molecule believed to be a primary toxic species in AD. Recently, mutant mice deficient in LR11 were shown to upregulate murine Abeta in mouse brain. In the current study, LR11-deficient mice were crossed with transgenic mice expressing autosomal-dominant human AD genes, presenilin-1 (PS1DeltaE9) and amyloid precursor protein (APPswe). Here, we show that LR11 deficiency in this AD mouse model significantly increases Abeta levels and exacerbates early amyloid pathology in brain, causing a forward shift in disease onset that is LR11 gene dose-dependent. Loss of LR11 increases the processing of the APP holo-molecule into alpha-, beta-, and gamma-secretase derived metabolites. We propose that LR11 regulates APP processing and Abeta accumulation in vivo and is of proximal importance to the cascade of pathological amyloidosis. The results of the current study support the hypothesis that control of LR11 expression may exert critical effects on Alzheimer's disease susceptibility in humans.
Collapse
|