1
|
Tremblay SA, Nathan Spreng R, Wearn A, Alasmar Z, Pirhadi A, Tardif CL, Chakravarty MM, Villeneuve S, Leppert IR, Carbonell F, Medina YI, Steele CJ, Gauthier CJ. Sex and APOE4-specific links between cardiometabolic risk factors and white matter alterations in individuals with a family history of Alzheimer's disease. Neurobiol Aging 2025; 150:80-96. [PMID: 40086421 DOI: 10.1016/j.neurobiolaging.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Early detection of pathological changes in Alzheimer's disease (AD) has garnered significant attention in the last few decades as interventions aiming to prevent progression will likely be most effective when initiated early. White matter (WM) alterations are among the earliest changes in AD, yet limited work has comprehensively characterized the effects of AD risk factors on WM. In older adults with a family history of AD, we investigated the sex-specific and APOE genotype-related relationships between WM microstructure and risk factors. Multiple MRI-derived metrics were integrated using a multivariate approach based on the Mahalanobis distance (D2). To uncover the specific biological underpinnings of these WM alterations, we then extracted the contribution of each MRI feature to D2 in significant clusters. Lastly, the links between WM D2 and cognition were explored. WM D2 in several regions was associated with high systolic blood pressure, BMI, and glycated hemoglobin, and low cholesterol, in both males and females. APOE4 + displayed a distinct risk pattern, with LDL-cholesterol having a detrimental effect only in carriers, and this pattern was linked to immediate memory performance. Myelination was the main mechanism underlying WM alterations. Our findings reveal that combined exposure to multiple cardiometabolic risk factors negatively impacts microstructural health, which may subsequently affect cognition. Notably, APOE4 carriers exhibited a different risk pattern, especially in the role of LDL, suggesting distinct underlying mechanisms in this group.
Collapse
Affiliation(s)
- Stefanie A Tremblay
- Physics department, Concordia University, 7141 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada; Montreal Heart Institute, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada; School of Health, Concordia University, 7200 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada.
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; Department of Psychiatry, McGill University, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; StoP-AD Centre, Douglas Mental Health Institute Research Centre, 6875 Blvd. LaSalle, Verdun, QC H4H 1R3, Canada
| | - Alfie Wearn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Zaki Alasmar
- School of Health, Concordia University, 7200 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada; Psychology department, Concordia University, 7141 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada
| | - Amir Pirhadi
- Electrical Engineering department, Concordia University, 1455 De Maisonneuve Blvd. W, Montreal, QC H3G 1M8, Canada; ViTAA Medical Solutions, 400 Rue Montfort, Montréal, QC H3C 4J9, Canada
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; Department of Biomedical Engineering, McGill University, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada
| | - Mallar M Chakravarty
- Department of Psychiatry, McGill University, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; Department of Biomedical Engineering, McGill University, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; StoP-AD Centre, Douglas Mental Health Institute Research Centre, 6875 Blvd. LaSalle, Verdun, QC H4H 1R3, Canada
| | - Sylvia Villeneuve
- Department of Psychiatry, McGill University, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; StoP-AD Centre, Douglas Mental Health Institute Research Centre, 6875 Blvd. LaSalle, Verdun, QC H4H 1R3, Canada
| | - Ilana R Leppert
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada
| | | | - Yasser Iturria Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; Ludmer Center for NeuroInformatics and Mental Health, 1010 rue Sherbrooke W, Montreal, Canada
| | - Christopher J Steele
- School of Health, Concordia University, 7200 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada; Psychology department, Concordia University, 7141 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, Leipzig 04103, Germany
| | - Claudine J Gauthier
- Physics department, Concordia University, 7141 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada; Montreal Heart Institute, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada; School of Health, Concordia University, 7200 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada.
| |
Collapse
|
2
|
Kamio S, Hagiwara A, Kamagata K, Uchida W, Nakaya M, Sekine T, Hara N, Tsukamoto Y, Akashi T, Wada A, Naito H, Tabata H, Kaga H, Tamura Y, Kawamori R, Watada H, Abe O, Aoki S. Association between cognitive function and relaxation rates of the cerebral cortex. J Neurol Sci 2025; 472:123466. [PMID: 40117967 DOI: 10.1016/j.jns.2025.123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/31/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVE We aimed to elucidate the correlation between cognitive function and relaxation rates of the cerebral cortex in the early stages of cognitive decline. METHODS Brain MRI was performed on 97 community-dwelling elderly participants aged 65-84 years. R1 (1/T1) and R2 (1/T2) maps were obtained with synthetic MRI (SyMRI). Cognitive function was evaluated using the Japanese version of the Montreal Cognitive Assessment (MoCA). Participants were categorized into mild cognitive impairment (n = 47) and healthy control (n = 50) groups. Voxel-based quantification (VBQ) and voxel-based morphometry (VBM) analyses were conducted using two-sample t-tests and multiple regression models, with age and sex as covariates. RESULTS VBQ revealed a significant negative correlation between R1 values and MoCA visuospatial/executive score in the bilateral frontal pole and left superior frontal gyrus (family-wise error-corrected p < 0.05). No significant correlations were found between R2 values and visuospatial/executive score. The multiple regression analysis for VBM showed no significant correlations, and the two-sample t-tests for both VBQ and VBM revealed no significant group differences. CONCLUSION Visuospatial/executive impairment correlated with higher R1 and R2 values in the frontal cortex, suggesting their potential as biomarkers for early cognitive decline.
Collapse
Affiliation(s)
- Satoru Kamio
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Faculty of Health Data Science, Juntendo University, Tokyo, Japan
| | - Moto Nakaya
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Towa Sekine
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Naohisa Hara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Data Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuika Tsukamoto
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Naito
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Tabata
- Juntendo Advanced Research Institute for Health Science, Tokyo, Japan
| | - Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan; Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Faculty of Health Data Science, Juntendo University, Tokyo, Japan
| |
Collapse
|
3
|
Bussy A, Patel R, Parent O, Salaciak A, Bedford SA, Farzin S, Tullo S, Picard C, Villeneuve S, Poirier J, Breitner JC, Devenyi GA, Tardif CL, Chakravarty MM. Exploring morphological and microstructural signatures across the Alzheimer's spectrum and risk factors. Neurobiol Aging 2025; 149:1-18. [PMID: 39961166 DOI: 10.1016/j.neurobiolaging.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 03/15/2025]
Abstract
Neural alterations, including myelin degeneration and inflammation-related iron burden, may accompany early Alzheimer's disease (AD) pathophysiology. This study aims to identify multi-modal signatures associated with MRI-derived atrophy and quantitative MRI (qMRI) measures of myelin and iron in a unique dataset of 158 participants across the AD spectrum, including those without cognitive impairment, at familial risk for AD, with mild cognitive impairment, and with AD dementia. Our results revealed a brain pattern with decreased cortical thickness, indicating increased neuronal death, and compromised hippocampal integrity due to reduced myelin content. This pattern was associated with lifestyle factors such as smoking, high blood pressure, high cholesterol, and anxiety, as well as older age, AD progression, and APOE-ɛ4 carrier status. These findings underscore the value of qMRI metrics as a non-invasive tool, offering sensitivity to lifestyle-related modifiable risk factors and medical history, even in preclinical stages of AD.
Collapse
Affiliation(s)
- Aurélie Bussy
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Centre, 6875 Bd LaSalle CIC Building, Verdun, QC H4H 1R3, Canada; Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Room 302, Irving Ludmer Building, 1033 Pine Ave. W., Montreal, QC H3A 1A1, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada.
| | - Raihaan Patel
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Centre, 6875 Bd LaSalle CIC Building, Verdun, QC H4H 1R3, Canada; Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Department of Biomedical Engineering, McGill University, Duff Medical Building, 3775 Rue University Suite 316, Montreal, QC H3A 2B4, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Olivier Parent
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Centre, 6875 Bd LaSalle CIC Building, Verdun, QC H4H 1R3, Canada; Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Room 302, Irving Ludmer Building, 1033 Pine Ave. W., Montreal, QC H3A 1A1, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Alyssa Salaciak
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Centre, 6875 Bd LaSalle CIC Building, Verdun, QC H4H 1R3, Canada; Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Saashi A Bedford
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Centre, 6875 Bd LaSalle CIC Building, Verdun, QC H4H 1R3, Canada; Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Sarah Farzin
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Centre, 6875 Bd LaSalle CIC Building, Verdun, QC H4H 1R3, Canada; Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Stephanie Tullo
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Centre, 6875 Bd LaSalle CIC Building, Verdun, QC H4H 1R3, Canada; Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Room 302, Irving Ludmer Building, 1033 Pine Ave. W., Montreal, QC H3A 1A1, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Ludmer Research & Training Building, 1033 Pine Avenue West, Montreal, QC H3A 1A1, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, 3801 University St, Montreal, QC H3A2B4, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Ludmer Research & Training Building, 1033 Pine Avenue West, Montreal, QC H3A 1A1, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - John Cs Breitner
- Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Ludmer Research & Training Building, 1033 Pine Avenue West, Montreal, QC H3A 1A1, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Gabriel A Devenyi
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Centre, 6875 Bd LaSalle CIC Building, Verdun, QC H4H 1R3, Canada; Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Ludmer Research & Training Building, 1033 Pine Avenue West, Montreal, QC H3A 1A1, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Christine L Tardif
- Department of Biomedical Engineering, McGill University, Duff Medical Building, 3775 Rue University Suite 316, Montreal, QC H3A 2B4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, 3801 University St, Montreal, QC H3A2B4, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Centre, 6875 Bd LaSalle CIC Building, Verdun, QC H4H 1R3, Canada; Douglas Mental Health University Institute, 6875 Bd LaSalle, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Room 302, Irving Ludmer Building, 1033 Pine Ave. W., Montreal, QC H3A 1A1, Canada; Department of Biomedical Engineering, McGill University, Duff Medical Building, 3775 Rue University Suite 316, Montreal, QC H3A 2B4, Canada; Department of Psychiatry, McGill University, Ludmer Research & Training Building, 1033 Pine Avenue West, Montreal, QC H3A 1A1, Canada; Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
4
|
Xu MY, Yi X, Huang S, Wang QH, Lai YJ, Wang Z, Fan DY, Zeng GH, Bai YD, Shen YY, Zeng F, Mao QX, Xu ZQ, Mei F, Wang YJ, Wang J. Trajectory of changes in myelin basic protein levels in cerebrospinal fluid during ageing and its association with biomarkers of Alzheimer's disease. Transl Psychiatry 2025; 15:149. [PMID: 40240375 PMCID: PMC12003709 DOI: 10.1038/s41398-025-03369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Myelin loss has been implicated in the development of Alzheimer's disease (AD). We investigated the changes in myelin basic protein (MBP) levels in cerebrospinal fluid (CSF) in an ageing cohort comprising 116 cognitively normal and Aβ-negative controls aged 26 to 82 years, as well as in a clinical cohort. We found that CSF MBP levels was positively correlated with age in a nonlinear pattern over the lifetime of the ageing cohort and that CSF MBP continually increased until it began to decline around age of 51 years and rose again around age 62. CSF MBP levels were correlated with the Mini-Mental State Examination (MMSE) score and CSF phosphorylated tau-181 (p-tau181) and total tau (t-tau) levels but not the Aβ42/Aβ40 ratio. CSF MBP levels moderated age-related changes in cognitive function. In the clinical cohort, CSF MBP levels were higher in the CSF Aβ+ patients than in the CSF Aβ- participants, and CSF MBP levels were higher in the Aβ-PET+ patients than in the Aβ-PET- participants. CSF MBP levels were higher in apolipoprotein E ε4 allele (APOE-ε4) carriers than in APOE-ε4 noncarriers in the clinical cohort. Our study reveals the possible changes in CSF MBP levels during ageing and in AD patients, providing evidence that demyelination is involved in brain ageing and AD pathogenesis in humans.
Collapse
Affiliation(s)
- Man-Yu Xu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of ageing and Brain Diseases, Chongqing, 400042, China
| | - Xu Yi
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Shan Huang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of ageing and Brain Diseases, Chongqing, 400042, China
| | - Qing-Hua Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of ageing and Brain Diseases, Chongqing, 400042, China
| | - Yu-Jie Lai
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhen Wang
- Department of ICU, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Dong-Yu Fan
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, 857000, China
| | - Gui-Hua Zeng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of ageing and Brain Diseases, Chongqing, 400042, China
| | - Yu-Di Bai
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of ageing and Brain Diseases, Chongqing, 400042, China
| | - Ying-Ying Shen
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of ageing and Brain Diseases, Chongqing, 400042, China
| | - Fan Zeng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of ageing and Brain Diseases, Chongqing, 400042, China
| | - Qing-Xiang Mao
- Department of Anesthesiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhi-Qiang Xu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Feng Mei
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of ageing and Brain Diseases, Chongqing, 400042, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400046, China.
| | - Jun Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of ageing and Brain Diseases, Chongqing, 400042, China.
| |
Collapse
|
5
|
Morrissey ZD, Kumar P, Phan TX, Maienschein-Cline M, Leow A, Lazarov O. Neurogenesis drives hippocampal formation-wide spatial transcription alterations in health and Alzheimer's disease. FRONTIERS IN DEMENTIA 2025; 4:1546433. [PMID: 40309339 PMCID: PMC12041076 DOI: 10.3389/frdem.2025.1546433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
The mechanism by which neurogenesis regulates the profile of neurons and glia in the hippocampal formation is not known. Further, the effect of neurogenesis on neuronal vulnerability characterizing the entorhinal cortex in Alzheimer's disease (AD) is unknown. Here, we used in situ sequencing to investigate the spatial transcription profile of neurons and glia in the hippocampal circuitry in wild-type mice and in familial AD (FAD) mice expressing varying levels of neurogenesis. This approach revealed that in addition to the dentate gyrus, neurogenesis modulates the cellular profile in the entorhinal cortex and CA regions of the hippocampus. Notably, enhancing neurogenesis in FAD mice led to partial restoration of neuronal and cellular profile in these brain areas, resembling the profile of their wild-type counterparts. This approach provides a platform for the examination of the cellular dynamics in the hippocampal formation in health and in AD.
Collapse
Affiliation(s)
- Zachery D. Morrissey
- Graduate Program in Neuroscience, University of Illinois Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Trongha X. Phan
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| | | | - Alex Leow
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Ktena N, Spyridakos D, Georgilis A, Kalafatakis I, Thomoglou E, Kolaxi A, Nikoletopoulou V, Savvaki M, Karagogeos D. Disruption of Oligodendroglial Autophagy Leads to Myelin Morphological Deficits, Neuronal Apoptosis, and Cognitive Decline in Aged Mice. Glia 2025. [PMID: 40105013 DOI: 10.1002/glia.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
The aging central nervous system (CNS) is often marked by myelin degeneration, yet the underlying mechanisms remain elusive. This study delves into the previously unexplored role of autophagy in maintaining CNS myelin during aging. We generated the transgenic mouse line plpCreERT2; atg5f/f, enabling selective deletion of the core autophagic component Atg5 in oligodendrocytes (OLs) following tamoxifen administration in adulthood, while analysis was conducted on aged mice. Our findings reveal that oligodendroglial autophagy inactivation leads to significant alterations in myelin protein levels. Moreover, the ultrastructural analysis revealed pronounced myelin deficits and increased degeneration of axons, accompanied by apoptosis, as confirmed by immunohistochemistry. Behaviorally, aged knockout (cKO) mice exhibited marked deficits in learning and memory tasks, indicative of cognitive impairment. Additionally, we observed increased activation of microglia, suggesting an inflammatory response linked to the absence of autophagic activity in OLs. These results underscore the critical role of autophagy in OLs for the preservation of CNS myelin and axonal integrity during aging. Our study highlights autophagy as a vital mechanism for neural maintenance, offering potential therapeutic avenues for combating age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Niki Ktena
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology & Biotechnology-FORTH, Heraklion, Greece
| | | | - Alexandros Georgilis
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology & Biotechnology-FORTH, Heraklion, Greece
| | - Ilias Kalafatakis
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology & Biotechnology-FORTH, Heraklion, Greece
| | | | - Angeliki Kolaxi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | | | - Maria Savvaki
- School of Medicine, University of Crete, Heraklion, Greece
| | - Domna Karagogeos
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology & Biotechnology-FORTH, Heraklion, Greece
| |
Collapse
|
7
|
Honda K, Awazu A. Potential multiple disease progression pathways in female patients with Alzheimer's disease inferred from transcriptome and epigenome data of the dorsolateral prefrontal cortex. PLoS One 2025; 20:e0313733. [PMID: 40100818 PMCID: PMC11918443 DOI: 10.1371/journal.pone.0313733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/07/2025] [Indexed: 03/20/2025] Open
Abstract
Late-onset Alzheimer's disease (AD) is a typical type of dementia for which therapeutic strategies have not yet been established. The database of the Rush Alzheimer's Disease study by the ENCODE consortium contains transcriptome and various epigenome data. Although the Rush AD database may contain a satisfactory amount of data for women, the amount of data for men remains insufficient. Here, based on an analysis of publicly available data from female patients, this study found that AD pathology appears to be nonuniform; AD patients were divided into several groups with differential gene expression patterns, including those related to cognitive function. First, cluster analysis was performed on individuals diagnosed with "No Cognitive Impairment (NCI)," "Mild Cognitive Impairment (MCI)," and "Alzheimer's Disease (AD)" stages in clinical trials using gene expression, and multiple substages were identified across AD progression. The epigenome data, in particular genome-wide H3k4me3 distribution data, also supported the existence of multiple AD substages. However, APOE gene polymorphisms of individuals seemed to not correlate with disease stage. An inference of adjacency networks among substages, evaluated via partition-based graph abstraction using the gene expression profiles of individuals, suggested the possibility of multiple typical disease progression pathways from NCI to different AD substages through various MCI substages. These findings could refine biomarker discovery or inform personalized therapeutic approaches.
Collapse
Affiliation(s)
- Kousei Honda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| |
Collapse
|
8
|
López-Muguruza E, Peiró-Moreno C, Pérez-Cerdá F, Matute C, Ruiz A. Del Río Hortega's insights into oligodendrocytes: recent advances in subtype characterization and functional roles in axonal support and disease. Front Neuroanat 2025; 19:1557214. [PMID: 40145026 PMCID: PMC11936973 DOI: 10.3389/fnana.2025.1557214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Pío Del Río Hortega (1882-1945) was a giant of modern neuroscience and perhaps the most impactful member of Cajal's School. His contributions to clarifying the structure of the nervous system were key to understanding the brain beyond neurons. He uncovered microglia and oligodendrocytes, the latter until then named mesoglia. Most importantly, the characterization of oligodendroglia subtypes he made has stood the omics revolution that added molecular details relevant to comprehend their biological properties. Astounding as it may seem on today's eyes, he postulated a century ago that oligodendrocytes provide trophic support to axons, an idea that is now beyond doubt and under scrutiny as dysfunction at the axon-myelin unit is key to neurodegeneration. Here, we revised recent key advancements in oligodendrocyte biology that shed light on Hortega's ideas a century ago.
Collapse
Affiliation(s)
- Eneritz López-Muguruza
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
| | - Carla Peiró-Moreno
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
| | - Fernando Pérez-Cerdá
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
- Department of Neurosciences, Biobizkaia, Barakaldo, Spain
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
- Department of Neurosciences, Biobizkaia, Barakaldo, Spain
| | - Asier Ruiz
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- CIBERNED-Instituto de Salud Carlos III, Leioa, Spain
- Department of Neurosciences, Biobizkaia, Barakaldo, Spain
| |
Collapse
|
9
|
Soelter TM, Howton TC, Wilk EJ, Whitlock JH, Clark AD, Birnbaum A, Patterson DC, Cortes CJ, Lasseigne BN. Evaluation of altered cell-cell communication between glia and neurons in the hippocampus of 3xTg-AD mice at two time points. J Cell Commun Signal 2025; 19:e70006. [PMID: 40026671 PMCID: PMC11870853 DOI: 10.1002/ccs3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss and cognitive decline, affecting behavior, speech, and motor abilities. The neuropathology of AD includes the formation of extracellular amyloid-β plaques and intracellular neurofibrillary tangles of phosphorylated tau, along with neuronal loss. Although neuronal loss is an AD hallmark, cell-cell communication between neuronal and non-neuronal cell populations maintains neuronal health and brain homeostasis. To study changes in cell-cell communication during disease progression, we performed snRNA-sequencing of the hippocampus from female 3xTg-AD and wild-type littermates at 6 and 12 months. We inferred differential cell-cell communication between 3xTg-AD and wild-type mice across time points and between senders (astrocytes, microglia, oligodendrocytes, and OPCs) and receivers (excitatory and inhibitory neurons) of interest. We also assessed the downstream effects of altered glia-neuron communication using pseudobulk differential gene expression, functional enrichment, and gene regulatory analyses. We found that glia-neuron communication is increasingly dysregulated in 12-month 3xTg-AD mice. We also identified 23 AD-associated ligand-receptor pairs that are upregulated in the 12-month-old 3xTg-AD hippocampus. Our results suggest increased AD association of interactions originating from microglia. Signaling mediators were not significantly differentially expressed but showed altered gene regulation and transcription factor activity. Our findings indicate that altered glia-neuron communication is increasingly dysregulated and affects the gene regulatory mechanisms in neurons of 12-month-old 3xTg-AD mice.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth J. Wilk
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jordan H. Whitlock
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Allison Birnbaum
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Molecular, Cell and Developmental BiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Dalton C. Patterson
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Constanza J. Cortes
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
10
|
Hong X, Chen T, Liu Y, Li J, Huang D, Ye K, Liao W, Wang Y, Liu M, Luan P. Design, current states, and challenges of nanomaterials in anti-neuroinflammation: A perspective on Alzheimer's disease. Ageing Res Rev 2025; 105:102669. [PMID: 39864562 DOI: 10.1016/j.arr.2025.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, brings huge damage to the society, to the whole family and even to the patient himself. However, until now, the etiological factor of AD is still unknown and there is no effective treatment for it. Massive deposition of amyloid-beta peptide(Aβ) and hyperphosphorylation of Tau proteins are acknowledged pathological features of AD. Recent studies have revealed that neuroinflammation plays a pivotal role in the pathology of AD. With the rise of nanomaterials in the biomedical field, researchers are exploring how the unique properties of these materials can be leveraged to develop effective treatments for AD. This article has summarized the influence of neuroinflammation in AD, the design of nanoplatforms, and the current research status and inadequacy of nanomaterials in improving neuroinflammation in AD.
Collapse
Affiliation(s)
- Xinyang Hong
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yunyun Liu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Kaiyu Ye
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Mengling Liu
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
11
|
Gutierre RC, Rocha PR, Graciani AL, Coppi AA, Arida RM. Tau, amyloid, iron, oligodendrocytes ferroptosis, and inflammaging in the hippocampal formation of aged rats submitted to an aerobic exercise program. Brain Res 2025; 1850:149419. [PMID: 39725376 DOI: 10.1016/j.brainres.2024.149419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease is a progressive neurodegenerative disease affecting memory, language, and thinking with no curative treatment. Symptoms appear gradually, and pathological brain changes may occur twenty years before the physical and psychological signs, pointing to the urgent development of preventive interventions. Physical activity has been investigated as a preventive tool to defeat the main biological features of AD: pathological amyloid protein plaques, tau tangles, myelin degeneration, and iron deposits in the brain. This work quantifies tau tangles, amyloid, iron, and ferroptosis in oligodendrocytes in the aged rat hippocampal formation and statistically correlates neuron-neuron, neuron-glia, and glia-glia crosstalk and the effect of physical exercise on it. Our results indicate that iron overload in the oligodendrocytes is an inducer of ferroptosis; physical exercise reduces inflammaging, and improves axon-myelin volume relations; tau, amyloid, iron, and hippocampal formation cells present statistical correlations. Our data suggest the beneficial effects of physical exercise in AD and a mathematical relationship between the hippocampal formation cells in sedentary and active individuals, which should be considered in human and animal studies as a guide to a better understanding of crosstalk physiology.
Collapse
Affiliation(s)
- R C Gutierre
- Almeria Institute of Integrative Science, São Paulo, Brazil.
| | - P R Rocha
- Federal University of São Paulo, Paulista School of Medicine, Department of Physiology, Laboratory of Neurophysiology, São Paulo, Brazil
| | - A L Graciani
- Federal University of São Paulo, Paulista School of Medicine, Department of Physiology, Laboratory of Neurophysiology, São Paulo, Brazil
| | - A A Coppi
- University of Bristol, Faculty of Health and Life Sciences, Bristol, United Kingdom
| | - R M Arida
- Federal University of São Paulo, Paulista School of Medicine, Department of Physiology, Laboratory of Neurophysiology, São Paulo, Brazil
| |
Collapse
|
12
|
Moseholm KF, Meineche JT, Jensen MK. The potential of circulating nonesterified fatty acids and sphingolipids in the biological understanding of cognitive decline and dementia. Curr Opin Lipidol 2025; 36:27-37. [PMID: 39641159 DOI: 10.1097/mol.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Cognitive decline and late-onset dementia pose significant challenges in aging societies, and many dementia cases could be prevented or delayed through modification of associated risk factors, many of which are tied to cardiovascular and metabolic dysfunction. As individuals age, the blood-brain barrier becomes more permeable, easing the exchange of molecules between the bloodstream and the brain. Consequently, blood-based biological markers (so-called biomarkers) provide a minimally invasive and accessible means of accessing molecular changes associated with aging and neurodegeneration. RECENT FINDINGS Circulating free fatty acids, also called nonesterified fatty acids (NEFAs), and sphingolipids are associated with cardiovascular disease, insulin resistance, and diabetes; thus, could be promising candidates as biomarkers for cognitive decline and dementia. SUMMARY The opportunity to study such minimally invasive biomarkers further opens up potential new avenues for improved understanding of the underlying biology of diseases of the brain.
Collapse
Affiliation(s)
- Kristine F Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Josefine T Meineche
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Majken K Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Liu X, Lv Z, Huang Q, Lei Y, Liu H, Xu P. The Role of Oligodendrocyte Lineage Cells in the Pathogenesis of Alzheimer's Disease. Neurochem Res 2025; 50:72. [PMID: 39751972 DOI: 10.1007/s11064-024-04325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/06/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD. OLGs function mainly by myelinating axons, transmitting electrical signals, and regulating neural development. In addition to myelin, OPCs and OLGs can also participate in AD pathogenesis in other ways. This review summarizes the mechanisms by which OPCs and OLGs affect myelin formation, oxidative stress, neuroinflammation, the blood-brain barrier, synaptic function, and amyloid-beta protein and further elucidates the mechanisms by which oligodendrocyte lineage cells participate in AD pathogenesis and treatment, which is highly important for clarifying the pathogenesis of AD, clinical treatment, and prevention.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Neurology, China Guihang Group 302 Hospital, Anshun, China
| | - Zhengxiang Lv
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Neurology, China Guihang Group 302 Hospital, Anshun, China
| | - Qin Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihui Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
14
|
Lim D, Matute C, Cavaliere F, Verkhratsky A. Neuroglia in neurodegeneration: Alzheimer, Parkinson, and Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:9-44. [PMID: 40148060 DOI: 10.1016/b978-0-443-19102-2.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The conspicuous rise of chronic neurodegenerative diseases, including Alzheimer (AD), Parkinson (PD), and Huntington (HD) diseases, is currently without disease-modifying therapies and accompanied by an excessive rate of unsuccessful clinical trials. This reflects a profound lack of understanding of the pathogenesis of these diseases, indicating that the current paradigms guiding disease modeling and drug development are in need of reconsideration. The role of neuroglia, namely astrocytes, microglial cells, and oligodendrocytes, in the pathogenesis of neurodegenerative diseases emerged during the last decades. This chapter provides the state-of-the-art update on the changes of astrocytes, microglial cells, and oligodendrocytes in AD, PD, and HD. A growing body of evidence suggests that homeostatic and defensive functions of glial cells are compromised at different disease stages, leading to increased susceptibility of neurons to noxious stimuli, eventually resulting in their malfunction and degeneration. Investments are needed in the generation of novel preclinical models suitable for studying glial pathology, in "humanizing" research, and in-depth investigation of glial cell alterations to slow down and, possibly, halt and prevent the rise of neurodegenerative disease. Targeting glial cells opens new therapeutic avenues to treat AD, PD, and HD.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain
| | - Fabio Cavaliere
- The Basque Biomodels Platform for Human Research (BBioH), Achucarro Basque Center for Neuroscience & Fundación Biofisica Bizkaia, Leioa, Spain
| | - Alexei Verkhratsky
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
15
|
Shwab EK, Man Z, Gingerich DC, Gamache J, Garrett ME, Serrano GE, Beach TG, Crawford GE, Ashley-Koch AE, Chiba-Falek O. Comparative mapping of single-cell transcriptomic landscapes in neurodegenerative diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628436. [PMID: 39764045 PMCID: PMC11702568 DOI: 10.1101/2024.12.13.628436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD), Dementia with Lewy bodies (DLB), and Parkinson's disease (PD) represent a spectrum of neurodegenerative disorders (NDDs). Here, we performed the first direct comparison of their transcriptomic landscapes. METHODS We profiled the whole transcriptomes of NDD cortical tissue by snRNA-seq. We used computational analyses to identify common and distinct differentially expressed genes (DEGs), biological pathways, vulnerable and disease-driver cell subtypes, and alteration in cell-to-cell interactions. RESULTS The same vulnerable inhibitory neuron subtype was depleted in both AD and DLB. Potentially disease-driving neuronal cell subtypes were present in both PD and DLB. Cell-cell communication was predicted to be increased in AD but decreased in DLB and PD. DEGs were most commonly shared across NDDs within inhibitory neuron subtypes. Overall, we observed the greatest transcriptomic divergence between AD and PD, while DLB exhibited an intermediate transcriptomic signature. DISCUSSION These results help explain the clinicopathological spectrum of this group of NDDs and provide unique insights into the shared and distinct molecular mechanisms underlying the pathogenesis of NDDs.
Collapse
Affiliation(s)
- E. Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Zhaohui Man
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel C. Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E. Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, 85351, USA
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, 85351, USA
| | - Gregory E. Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA
| | - Allison E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| |
Collapse
|
16
|
Giannakis A, Vartholomatos E, Astrakas L, Anyfantis E, Tatsioni A, Argyropoulou M, Konitsiotis S. An SBM and TBSS Analysis in Early-stage Patients With Alzheimer's Disease, Lewy Body Dementias, and Corticobasal Syndrome. J Geriatr Psychiatry Neurol 2024:8919887241302110. [PMID: 39541987 DOI: 10.1177/08919887241302110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To compare gray matter (GM) and white matter (WM) changes in patients with Alzheimer's disease (AD), Lewy body dementias (LBD), corticobasal syndrome (CBS), and healthy controls (HC). METHODS Surface-based morphometry (SBM) was assessed on 3D T1-weighted images using FreeSurfer image analysis and WM microstructure was studied using Tract-Based Spatial Statistics (TBSS) in 12 AD, 15 LBD, 10 CBS patients, and 10 HC. RESULTS Patients with AD, compared with HC, exhibited reduced cortical surface area and volume in the superior frontal, middle frontal, and medial orbitofrontal cortex. In TBSS, AD patients, compared with HC and LBD, displayed decreased fractional anisotropy, axial diffusivity, and increased radial diffusivity in all major WM tracts. Other comparisons between the groups yielded no differences, either in the SBM or the TBSS analysis. CONCLUSIONS The results indicate significant early structural changes in the GM of the frontal lobe, along with WM alterations early in AD patients.
Collapse
Affiliation(s)
- Alexandros Giannakis
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Evrysthenis Vartholomatos
- Department of Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Loukas Astrakas
- Department of Medical Physics, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Emmanouil Anyfantis
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Athina Tatsioni
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Maria Argyropoulou
- Department of Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Spiridon Konitsiotis
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
17
|
Faulkner ME, Gong Z, Guo A, Laporte JP, Bae J, Bouhrara M. Harnessing myelin water fraction as an imaging biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination: A review. J Neurochem 2024; 168:2243-2263. [PMID: 38973579 PMCID: PMC11951035 DOI: 10.1111/jnc.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Myelin water fraction (MWF) imaging has emerged as a promising magnetic resonance imaging (MRI) biomarker for investigating brain function and composition. This comprehensive review synthesizes the current state of knowledge on MWF as a biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination. The databases used include Web of Science, Scopus, Science Direct, and PubMed. We begin with a brief discussion of the theoretical foundations of MWF imaging, including its basis in MR physics and the mathematical modeling underlying its calculation, with an overview of the most adopted MRI methods of MWF imaging. Next, we delve into the clinical and research applications that have been explored to date, highlighting its advantages and limitations. Finally, we explore the potential of MWF to serve as a predictive biomarker for neurological disorders and identify future research directions for optimizing MWF imaging protocols and interpreting MWF in various contexts. By harnessing the power of MWF imaging, we may gain new insights into brain health and disease across the human lifespan, ultimately informing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Mendez Colmenares A, Thomas ML, Anderson C, Arciniegas DB, Calhoun V, Choi IY, Kramer AF, Li K, Lee J, Lee P, Burzynska AZ. Testing the structural disconnection hypothesis: Myelin content correlates with memory in healthy aging. Neurobiol Aging 2024; 141:21-33. [PMID: 38810596 PMCID: PMC11290458 DOI: 10.1016/j.neurobiolaging.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION The "structural disconnection" hypothesis of cognitive aging suggests that deterioration of white matter (WM), especially myelin, results in cognitive decline, yet in vivo evidence is inconclusive. METHODS We examined age differences in WM microstructure using Myelin Water Imaging and Diffusion Tensor Imaging in 141 healthy participants (age 20-79). We used the Virginia Cognitive Aging Project and the NIH Toolbox® to generate composites for memory, processing speed, and executive function. RESULTS Voxel-wise analyses showed that lower myelin water fraction (MWF), predominantly in prefrontal WM, genu of the corpus callosum, and posterior limb of the internal capsule was associated with reduced memory performance after controlling for age, sex, and education. In structural equation modeling, MWF in the prefrontal white matter and genu of the corpus callosum significantly mediated the effect of age on memory, whereas fractional anisotropy (FA) did not. DISCUSSION Our findings support the disconnection hypothesis, showing that myelin decline contributes to age-related memory loss and opens avenues for interventions targeting myelin health.
Collapse
Affiliation(s)
- Andrea Mendez Colmenares
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Behavioral Sciences Building, 303, 410 W Pitkin St, Fort Collins, CO 80523, USA
| | - Michael L Thomas
- Department of Psychology, Colorado State University, Behavioral Sciences Building, 303, 410 W Pitkin, St, Fort Collins, CO 80523, USA
| | - Charles Anderson
- Department of Computer Science, Colorado State University, 456 University Ave #444, Fort Collins, CO 80521, USA
| | - David B Arciniegas
- Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, 12348 E Montview Blvd, Aurora, CO 80045, USA
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, 55 Park Pl NE, Atlanta, GA 30303, USA
| | - In-Young Choi
- Department of Neurology, Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, 3805 Eaton St, Kansas City, KS 66103, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology at the University of Illinois, 405 N Mathews Ave, Urbana, IL 61801, USA; Center for Cognitive & Brain Health, Northeastern University, Address: 360 Huntington Ave, Boston, MA 02115, USA
| | - Kaigang Li
- Department of Health and Exercise Science, Colorado State University, 951 W Plum St, Fort Collins, CO 80521, USA
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, 232 Gongneung-ro, Nowon-gu, Seoul 01811, South Korea
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, 3805 Eaton St, Kansas City, KS 66103, USA
| | - Agnieszka Z Burzynska
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Behavioral Sciences Building, 303, 410 W Pitkin St, Fort Collins, CO 80523, USA.
| |
Collapse
|
19
|
Olveda GE, Barasa MN, Hill RA. Microglial phagocytosis of single dying oligodendrocytes is mediated by CX3CR1 but not MERTK. Cell Rep 2024; 43:114385. [PMID: 38935500 PMCID: PMC11304498 DOI: 10.1016/j.celrep.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/10/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Oligodendrocyte death is common in aging and neurodegenerative disease. In these conditions, dying oligodendrocytes must be efficiently removed to allow remyelination and to prevent a feedforward degenerative cascade. Removal of this cellular debris is thought to primarily be carried out by resident microglia. To investigate the cellular dynamics underlying how microglia do this, we use a single-cell cortical demyelination model combined with longitudinal intravital imaging of dual-labeled transgenic mice. Following phagocytosis, single microglia clear the targeted oligodendrocyte and its myelin sheaths in one day via a precise, rapid, and stereotyped sequence. Deletion of the fractalkine receptor, CX3CR1, delays the microglial phagocytosis of the cell soma but has no effect on clearance of myelin sheaths. Unexpectedly, deletion of the phosphatidylserine receptor, MERTK, has no effect on oligodendrocyte or myelin sheath clearance. Thus, separate molecular signals are used to detect, engage, and clear distinct sub-compartments of dying oligodendrocytes to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Genaro E Olveda
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Maryanne N Barasa
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
20
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Kim HH, Kwon MJ, Jo S, Park JE, Kim JW, Kim JH, Kim SE, Kim KW, Han JW. Exploration of neuroanatomical characteristics to differentiate prodromal Alzheimer's disease from cognitively unimpaired amyloid-positive individuals. Sci Rep 2024; 14:10083. [PMID: 38698190 PMCID: PMC11066072 DOI: 10.1038/s41598-024-60843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/28/2024] [Indexed: 05/05/2024] Open
Abstract
Differentiating clinical stages based solely on positive findings from amyloid PET is challenging. We aimed to investigate the neuroanatomical characteristics at the whole-brain level that differentiate prodromal Alzheimer's disease (AD) from cognitively unimpaired amyloid-positive individuals (CU A+) in relation to amyloid deposition and regional atrophy. We included 45 CU A+ participants and 135 participants with amyloid-positive prodromal AD matched 1:3 by age, sex, and education. All participants underwent 18F-florbetaben positron emission tomography and 3D structural T1-weighted magnetic resonance imaging. We compared the standardized uptake value ratios (SUVRs) and volumes in 80 regions of interest (ROIs) between CU A+ and prodromal AD groups using independent t-tests, and employed the least absolute selection and shrinkage operator (LASSO) logistic regression model to identify ROIs associated with prodromal AD in relation to amyloid deposition, regional atrophy, and their interaction. After applying False Discovery Rate correction at < 0.1, there were no differences in global and regional SUVR between CU A+ and prodromal AD groups. Regional volume differences between the two groups were observed in the amygdala, hippocampus, entorhinal cortex, insula, parahippocampal gyrus, and inferior temporal and parietal cortices. LASSO logistic regression model showed significant associations between prodromal AD and atrophy in the entorhinal cortex, inferior parietal cortex, both amygdalae, and left hippocampus. The mean SUVR in the right superior parietal cortex (beta coefficient = 0.0172) and its interaction with the regional volume (0.0672) were also selected in the LASSO model. The mean SUVR in the right superior parietal cortex was associated with an increased likelihood of prodromal AD (Odds ratio [OR] 1.602, p = 0.014), particularly in participants with lower regional volume (OR 3.389, p < 0.001). Only regional volume differences, not amyloid deposition, were observed between CU A+ and prodromal AD. The reduced volume in the superior parietal cortex may play a significant role in the progression to prodromal AD through its interaction with amyloid deposition in that region.
Collapse
Affiliation(s)
- Hak Hyeon Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, South Korea
| | - Min Jeong Kwon
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Sungman Jo
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Ji Eun Park
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Ji Won Kim
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, College of Medicine, Seoul National University, Seongnam-si, Gyeonggi-do, South Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, College of Medicine, Seoul National University, Seongnam-si, Gyeonggi-do, Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea.
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
22
|
LeVine SM. Exploring Potential Mechanisms Accounting for Iron Accumulation in the Central Nervous System of Patients with Alzheimer's Disease. Cells 2024; 13:689. [PMID: 38667304 PMCID: PMC11049304 DOI: 10.3390/cells13080689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Elevated levels of iron occur in both cortical and subcortical regions of the CNS in patients with Alzheimer's disease. This accumulation is present early in the disease process as well as in more advanced stages. The factors potentially accounting for this increase are numerous, including: (1) Cells increase their uptake of iron and reduce their export of iron, as iron becomes sequestered (trapped within the lysosome, bound to amyloid β or tau, etc.); (2) metabolic disturbances, such as insulin resistance and mitochondrial dysfunction, disrupt cellular iron homeostasis; (3) inflammation, glutamate excitotoxicity, or other pathological disturbances (loss of neuronal interconnections, soluble amyloid β, etc.) trigger cells to acquire iron; and (4) following neurodegeneration, iron becomes trapped within microglia. Some of these mechanisms are also present in other neurological disorders and can also begin early in the disease course, indicating that iron accumulation is a relatively common event in neurological conditions. In response to pathogenic processes, the directed cellular efforts that contribute to iron buildup reflect the importance of correcting a functional iron deficiency to support essential biochemical processes. In other words, cells prioritize correcting an insufficiency of available iron while tolerating deposited iron. An analysis of the mechanisms accounting for iron accumulation in Alzheimer's disease, and in other relevant neurological conditions, is put forward.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop 3043, Kansas City, KS 66160, USA
| |
Collapse
|
23
|
Zhang DY, Wang J, Huang G, Langberg S, Ding F, Dokholyan NV. APOE regulates the transport of GM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587789. [PMID: 38617316 PMCID: PMC11014540 DOI: 10.1101/2024.04.02.587789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Apolipoprotein E (APOE) is responsible for lipid transport, including cholesterol transport and clearance. While the ε4 allele of APOE (APOE4) is associated with a significant genetic risk factor for late-onset Alzheimer's disease (AD), no mechanistic understanding of its contribution to AD etiology has been established yet. In addition to cholesterol, monosialotetrahexosylganglioside (GM1) is a crucial lipid component in cell membranes and has been implicated in promoting the aggregation of amyloid beta protein (Aβ), a key protein associated with AD. Here, we ask whether there are direct interactions between APOE and GM1 that further impact AD pathology. We find that both APOE3 and APOE4 exhibit superior binding affinity to GM1 compared to cholesterol and have an enhanced cellular uptake to GM1 lipid structures than cholesterol lipid structures. APOE regulates the transport process of GM1 depending on the cell type, which is influenced by the expression of APOE receptors in different cell lines and alters GM1 contents in cell membranes. We also find that the presence of GM1 alters the secondary structure of APOE3 and APOE4 and enhances the binding affinity between APOE and its receptor low-density lipoprotein receptor (LDLR), consequently promoting the cellular uptake of lipid structures in the presence of APOE. To understand the enhanced cellular uptake observed in lipid structures containing 20% GM1, we determined the distribution of GM1 on the membrane and found that GM1 clustering in lipid rafts, thereby supporting the physiological interaction between APOE and GM1. Overall, we find that APOE plays a regulatory role in GM1 transport, and the presence of GM1 on the lipid structures influences this transport process. Our studies introduce a plausible direct link between APOE and AD etiology, wherein APOE regulates GM1, which, in turn, promotes Aβ oligomerization and aggregation.
Collapse
|
24
|
Mao X, Han D, Guo W, Zhang W, Wang H, Zhang G, Zhang N, Jin L, Nie B, Li H, Song Y, Wu Y, Chang L. Lateralized brunt of sleep deprivation on white matter injury in a rat model of Alzheimer's disease. GeroScience 2024; 46:2295-2315. [PMID: 37940789 PMCID: PMC10828179 DOI: 10.1007/s11357-023-01000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
Sleep disturbance is a recognized risk factor for Alzheimer's disease (AD), but the underlying micro-pathological evidence remains limited. To bridge this gap, we established an amyloid-β oligomers (AβO)-induced rat model of AD and subjected it to intermittent sleep deprivation (SD). Diffusion tensor imaging (DTI) and transmission electron microscopy were employed to assess white matter (WM) integrity and ultrastructural changes in myelin sheaths. Our findings demonstrated that SD exacerbated AβO-induced cognitive decline. Furthermore, we found SD aggravated AβO-induced asymmetrical impairments in WM, presenting with reductions in tract integrity observed in commissural fibers and association fasciculi, particularly the right anterior commissure, right corpus callosum, and left cingulum. Ultrastructural changes in myelin sheaths within the hippocampus and corpus callosum further confirmed a lateralized effect. Moreover, SD worsened AβO-induced lateralized disruption of the brain structural network, with impairments in critical nodes of the left hemisphere strongly correlated with cognitive dysfunction. This work represents the first identification of a lateralized impact of SD on the mesoscopic network and cognitive deficits in an AD rat model. These findings could deepen our understanding of the complex interplay between sleep disturbance and AD pathology, providing valuable insights into the early progression of the disease, as well as the development of neuroimaging biomarkers for screening early AD patients with self-reported sleep disturbances. Enhanced understanding of these mechanisms may pave the way for targeted interventions to alleviate cognitive decline and improve the quality of life for individuals at risk of or affected by AD.
Collapse
Affiliation(s)
- Xin Mao
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ding Han
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wensheng Guo
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wanning Zhang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Guitao Zhang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liangyun Jin
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing, 100069, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Ho K, Bodi NE, Sharma TP. Normal-Tension Glaucoma and Potential Clinical Links to Alzheimer's Disease. J Clin Med 2024; 13:1948. [PMID: 38610712 PMCID: PMC11012506 DOI: 10.3390/jcm13071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Glaucoma is a group of optic neuropathies and the world's leading cause of irreversible blindness. Normal-tension glaucoma (NTG) is a subtype of glaucoma that is characterized by a typical pattern of peripheral retinal loss, in which the patient's intraocular pressure (IOP) is considered within the normal range (<21 mmHg). Currently, the only targetable risk factor for glaucoma is lowering IOP, and patients with NTG continue to experience visual field loss after IOP-lowering treatments. This demonstrates the need for a better understanding of the pathogenesis of NTG and underlying mechanisms leading to neurodegeneration. Recent studies have found significant connections between NTG and cerebral manifestations, suggesting NTG as a neurodegenerative disease beyond the eye. Gaining a better understanding of NTG can potentially provide new Alzheimer's Disease diagnostics capabilities. This review identifies the epidemiology, current biomarkers, altered fluid dynamics, and cerebral and ocular manifestations to examine connections and discrepancies between the mechanisms of NTG and Alzheimer's Disease.
Collapse
Affiliation(s)
- Kathleen Ho
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Nicole E. Bodi
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tasneem P. Sharma
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Tato-Fernández C, Ekblad LL, Pietilä E, Saunavaara V, Helin S, Parkkola R, Zetterberg H, Blennow K, Rinne JO, Snellman A. Cognitively healthy APOE4/4 carriers show white matter impairment associated with serum NfL and amyloid-PET. Neurobiol Dis 2024; 192:106439. [PMID: 38365046 DOI: 10.1016/j.nbd.2024.106439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Except for aging, carrying the APOE ε4 allele (APOE4) is the most important risk factor for sporadic Alzheimer's disease. APOE4 carriers may have reduced capacity to recycle lipids, resulting in white matter microstructural abnormalities. In this study, we evaluated whether white matter impairment measured by diffusion tensor imaging (DTI) differs between healthy individuals with a different number of APOE4 alleles, and whether white matter impairment associates with brain beta-amyloid (Aβ) load and serum levels of neurofilament light chain (NfL). We studied 96 participants (APOE3/3, N = 37; APOE3/4, N = 39; APOE4/4, N = 20; mean age 70.7 (SD 5.22) years, 63% females) with a brain MRI including a DTI sequence (N = 96), Aβ-PET (N = 89) and a venous blood sample for the serum NfL concentration measurement (N = 88). Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AxD) in six a priori-selected white matter regions-of-interest (ROIs) were compared between the groups using ANCOVA, with sex and age as covariates. A voxel-weighted average of FA, MD, RD and AxD was calculated for each subject, and correlations with Aβ-PET and NfL levels were evaluated. APOE4/4 carriers exhibited a higher MD and a higher RD in the body of corpus callosum than APOE3/4 (p = 0.0053 and p = 0.0049, respectively) and APOE3/3 (p = 0.026 and p = 0.042). APOE4/4 carriers had a higher AxD than APOE3/4 (p = 0.012) and APOE3/3 (p = 0.040) in the right cingulum adjacent to cingulate cortex. In the total sample, composite MD, RD and AxD positively correlated with the cortical Aβ load (r = 0.26 to 0.33, p < 0.013 for all) and with serum NfL concentrations (r = 0.31 to 0.36, p < 0.0028 for all). In conclusion, increased local diffusivity was detected in cognitively unimpaired APOE4/4 homozygotes compared to APOE3/4 and APOE3/3 carriers, and increased diffusivity correlated with biomarkers of Alzheimer's disease and neurodegeneration. White matter impairment seems to be an early phenomenon in the Alzheimer's disease pathologic process in APOE4/4 homozygotes.
Collapse
Affiliation(s)
- Claudia Tato-Fernández
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland.
| | - Laura L Ekblad
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Geriatric Medicine, Turku University Hospital, Turku, Finland
| | - Elina Pietilä
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Medical Physics, Division of Medical Imaging, Turku University Hospital, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, Turku, Finland; Department of Radiology, University of Turku, Turku, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Juha O Rinne
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Anniina Snellman
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Ifediora N, Canoll P, Hargus G. Human stem cell transplantation models of Alzheimer's disease. Front Aging Neurosci 2024; 16:1354164. [PMID: 38450383 PMCID: PMC10915253 DOI: 10.3389/fnagi.2024.1354164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Alzheimer's disease (AD) is the most frequent form of dementia. It is characterized by pronounced neuronal degeneration with formation of neurofibrillary tangles and deposition of amyloid β throughout the central nervous system. Animal models have provided important insights into the pathogenesis of AD and they have shown that different brain cell types including neurons, astrocytes and microglia have important functions in the pathogenesis of AD. However, there are difficulties in translating promising therapeutic observations in mice into clinical application in patients. Alternative models using human cells such as human induced pluripotent stem cells (iPSCs) may provide significant advantages, since they have successfully been used to model disease mechanisms in neurons and in glial cells in neurodegenerative diseases in vitro and in vivo. In this review, we summarize recent studies that describe the transplantation of human iPSC-derived neurons, astrocytes and microglial cells into the forebrain of mice to generate chimeric transplantation models of AD. We also discuss opportunities, challenges and limitations in using differentiated human iPSCs for in vivo disease modeling and their application for biomedical research.
Collapse
Affiliation(s)
- Nkechime Ifediora
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
| |
Collapse
|
28
|
Paul S, Bhardwaj J, Binukumar BK. Cdk5-mediated oligodendrocyte myelin breakdown and neuroinflammation: Implications for the link between Type 2 Diabetes and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166986. [PMID: 38092158 DOI: 10.1016/j.bbadis.2023.166986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Oligodendrocytes, crucial myelinating glia in the central nervous system, play a vital role in maintaining axonal integrity and facilitating efficient nerve impulse conduction. The degradation of myelin in oligodendrocytes has been implicated in Alzheimer's disease (AD) and cognitive dysfunction. Interestingly, individuals with Type 2 Diabetes (T2D) have a significantly higher likelihood of developing cognitive impairment, possibly due to insulin resistance and glucose toxicity within the central nervous system (CNS). However, the precise relationship between these two disorders remains elusive. Our study proposes a potential link between T2D and AD, involving Cdk5-mediated breakdown of oligodendrocyte myelin and neuroinflammation. In the context of T2D, glucose toxicity in oligodendrocytes leads to heightened Cdk5 kinase activity and cPLA2 hyperactivation, resulting in chronic inflammation and myelin deterioration. This myelin breakdown in oligodendrocytes is thought to contribute to the development of AD and cognitive dysfunction. Notably, the administration of a Cdk5 inhibitor (TFP5) effectively alleviates neuroinflammation and myelin degradation. Moreover, our findings demonstrate heightened activity of Cdk5, cPLA2, and phospho-cPLA2 levels in the brain of a mouse model with Type 2 Diabetes (T2D). Hence, our findings suggest that targeting Cdk5 could be a promising therapeutic strategy to counteract AD pathogenesis in T2D-related conditions.
Collapse
Affiliation(s)
- Sangita Paul
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Juhi Bhardwaj
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - B K Binukumar
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
29
|
Morrissey ZD, Gao J, Shetti A, Li W, Zhan L, Li W, Fortel I, Saido T, Saito T, Ajilore O, Cologna SM, Lazarov O, Leow AD. Temporal Alterations in White Matter in An App Knock-In Mouse Model of Alzheimer's Disease. eNeuro 2024; 11:ENEURO.0496-23.2024. [PMID: 38290851 PMCID: PMC10897532 DOI: 10.1523/eneuro.0496-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and results in neurodegeneration and cognitive impairment. White matter (WM) is affected in AD and has implications for neural circuitry and cognitive function. The trajectory of these changes across age, however, is still not well understood, especially at earlier stages in life. To address this, we used the AppNL-G-F/NL-G-F knock-in (APPKI) mouse model that harbors a single copy knock-in of the human amyloid precursor protein (APP) gene with three familial AD mutations. We performed in vivo diffusion tensor imaging (DTI) to study how the structural properties of the brain change across age in the context of AD. In late age APPKI mice, we observed reduced fractional anisotropy (FA), a proxy of WM integrity, in multiple brain regions, including the hippocampus, anterior commissure (AC), neocortex, and hypothalamus. At the cellular level, we observed greater numbers of oligodendrocytes in middle age (prior to observations in DTI) in both the AC, a major interhemispheric WM tract, and the hippocampus, which is involved in memory and heavily affected in AD, prior to observations in DTI. Proteomics analysis of the hippocampus also revealed altered expression of oligodendrocyte-related proteins with age and in APPKI mice. Together, these results help to improve our understanding of the development of AD pathology with age, and imply that middle age may be an important temporal window for potential therapeutic intervention.
Collapse
Affiliation(s)
- Zachery D Morrissey
- Graduate Program in Neuroscience, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Anatomy & Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612
| | - Jin Gao
- Department of Electrical & Computer Engineering, University of Illinois Chicago, Chicago, Illinois 60607
- Preclinical Imaging Core, University of Illinois Chicago, Chicago, Illinois 60612
| | - Aashutosh Shetti
- Department of Anatomy & Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607
| | - Liang Zhan
- Department of Electrical & Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Weiguo Li
- Preclinical Imaging Core, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Bioengineering, University of Illinois Chicago, Chicago, Illinois 60607
- Department of Radiology, Northwestern University, Chicago, Illinois 60611
| | - Igor Fortel
- Department of Bioengineering, University of Illinois Chicago, Chicago, Illinois 60607
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya 467-8601, Japan
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois 60612
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607
| | - Orly Lazarov
- Department of Anatomy & Cell Biology, University of Illinois Chicago, Chicago, Illinois 60612
| | - Alex D Leow
- Department of Psychiatry, University of Illinois Chicago, Chicago, Illinois 60612
- Department of Bioengineering, University of Illinois Chicago, Chicago, Illinois 60607
- Department of Computer Science, University of Illinois Chicago, Chicago, Illinois 60607
| |
Collapse
|
30
|
Bermejo-Pareja F, del Ser T. Controversial Past, Splendid Present, Unpredictable Future: A Brief Review of Alzheimer Disease History. J Clin Med 2024; 13:536. [PMID: 38256670 PMCID: PMC10816332 DOI: 10.3390/jcm13020536] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Background: The concept of Alzheimer disease (AD)-since its histological discovery by Alzheimer to the present day-has undergone substantial modifications. Methods: We conducted a classical narrative review of this field with a bibliography selection (giving preference to Medline best match). Results: The following subjects are reviewed and discussed: Alzheimer's discovery, Kraepelin's creation of a new disease that was a rare condition until the 1970's, the growing interest and investment in AD as a major killer in a society with a large elderly population in the second half of the 20th century, the consolidation of the AD clinicopathological model, and the modern AD nosology based on the dominant amyloid hypothesis among many others. In the 21st century, the development of AD biomarkers has supported a novel biological definition of AD, although the proposed therapies have failed to cure this disease. The incidence of dementia/AD has shown a decrease in affluent countries (possibly due to control of risk factors), and mixed dementia has been established as the most frequent etiology in the oldest old. Conclusions: The current concept of AD lacks unanimity. Many hypotheses attempt to explain its complex physiopathology entwined with aging, and the dominant amyloid cascade has yielded poor therapeutic results. The reduction in the incidence of dementia/AD appears promising but it should be confirmed in the future. A reevaluation of the AD concept is also necessary.
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- CIBERNED, Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research i+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| |
Collapse
|
31
|
Burzynska AZ, Anderson C, Arciniegas DB, Calhoun V, Choi IY, Mendez Colmenares A, Kramer AF, Li K, Lee J, Lee P, Thomas ML. Correlates of axonal content in healthy adult span: Age, sex, myelin, and metabolic health. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100203. [PMID: 38292016 PMCID: PMC10827486 DOI: 10.1016/j.cccb.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
As the emerging treatments that target grey matter pathology in Alzheimer's Disease have limited effectiveness, there is a critical need to identify new neural targets for treatments. White matter's (WM) metabolic vulnerability makes it a promising candidate for new interventions. This study examined the age and sex differences in estimates of axonal content, as well the associations of with highly prevalent modifiable health risk factors such as metabolic syndrome and adiposity. We estimated intra-axonal volume fraction (ICVF) using the Neurite Orientation Dispersion and Density Imaging (NODDI) in a sample of 89 cognitively and neurologically healthy adults (20-79 years). We showed that ICVF correlated positively with age and estimates of myelin content. The ICVF was also lower in women than men, across all ages, which difference was accounted for by intracranial volume. Finally, we found no association of metabolic risk or adiposity scores with the current estimates of ICVF. In addition, the previously observed adiposity-myelin associations (Burzynska et al., 2023) were independent of ICVF. Although our findings confirm the vulnerability of axons to aging, they suggest that metabolic dysfunction may selectively affect myelin content, at least in cognitively and neurologically healthy adults with low metabolic risk, and when using the specific MRI techniques. Future studies need to revisit our findings using larger samples and different MRI approaches, and identify modifiable factors that accelerate axonal deterioration as well as mechanisms linking peripheral metabolism with the health of myelin.
Collapse
Affiliation(s)
- Agnieszka Z Burzynska
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Charles Anderson
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - David B. Arciniegas
- Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - In-Young Choi
- Department of Neurology, Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Mendez Colmenares
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology at the University of Illinois, IL, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA, USA
| | - Kaigang Li
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael L Thomas
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
32
|
Hirschfeld LR, Deardorff R, Chumin EJ, Wu YC, McDonald BC, Cao S, Risacher SL, Yi D, Byun MS, Lee JY, Kim YK, Kang KM, Sohn CH, Nho K, Saykin AJ, Lee DY. White matter integrity is associated with cognition and amyloid burden in older adult Koreans along the Alzheimer's disease continuum. Alzheimers Res Ther 2023; 15:218. [PMID: 38102714 PMCID: PMC10725037 DOI: 10.1186/s13195-023-01369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND White matter (WM) microstructural changes in the hippocampal cingulum bundle (CBH) in Alzheimer's disease (AD) have been described in cohorts of largely European ancestry but are lacking in other populations. METHODS We assessed the relationship between CBH WM integrity and cognition or amyloid burden in 505 Korean older adults aged ≥ 55 years, including 276 cognitively normal older adults (CN), 142 with mild cognitive impairment (MCI), and 87 AD patients, recruited as part of the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's disease (KBASE) at Seoul National University. RESULTS Compared to CN, AD and MCI subjects showed significantly higher RD, MD, and AxD values (all p-values < 0.001) and significantly lower FA values (left p ≤ 0.002, right p ≤ 0.015) after Bonferroni adjustment for multiple comparisons. Most tests of cognition and mood (p < 0.001) as well as higher medial temporal amyloid burden (p < 0.001) were associated with poorer WM integrity in the CBH after Bonferroni adjustment. CONCLUSION These findings are consistent with patterns of WM microstructural damage previously reported in non-Hispanic White (NHW) MCI/AD cohorts, reinforcing existing evidence from predominantly NHW cohort studies.
Collapse
Affiliation(s)
- Lauren R Hirschfeld
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Rachael Deardorff
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Evgeny J Chumin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Yu-Chien Wu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brenna C McDonald
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sha Cao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shannon L Risacher
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080, South Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Department of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, 07061, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, 07061, South Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University School of Informatics and Computing, Indianapolis, IN, 46202, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080, South Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, South Korea
| |
Collapse
|
33
|
Brenner EK, Bangen KJ, Clark AL, Delano-Wood L, Evangelista ND, Edwards L, Sorg SF, Jak AJ, Bondi MW, Deoni SCL, Lamar M. Sex moderates the association between age and myelin water fraction in the cingulum and fornix among older adults without dementia. Front Aging Neurosci 2023; 15:1267061. [PMID: 38161592 PMCID: PMC10757372 DOI: 10.3389/fnagi.2023.1267061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Background Decreasing white matter integrity in limbic pathways including the fornix and cingulum have been reported in Alzheimer's disease (AD), although underlying mechanisms and potential sex differences remain understudied. We therefore sought to explore sex as a moderator of the effect of age on myelin water fraction (MWF), a measure of myelin content, in older adults without dementia (N = 52). Methods Participants underwent neuropsychological evaluation and 3 T MRI at two research sites. Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) quantified MWF in 3 a priori regions including the fornix, hippocampal cingulum (CgH), and cingulate cingulum (CgC). The California Verbal Learning Test-Second Edition assessed learning and delayed recall. Multiple linear regressions assessed for (1) interactions between age and sex on regional MWF and (2) associations of regional MWF and memory. Results (1) There was a significant age by sex interaction on MWF of the fornix (p = 0.002) and CgC (p = 0.005), but not the CgH (p = 0.192); as age increased, MWF decreased in women but not men. (2) Fornix MWF was associated with both learning and recall (ps < 0.01), but MWF of the two cingulum regions were not (p > 0.05). Results were unchanged when adjusting for hippocampal volume. Conclusion The current work adds to the literature by illuminating sex differences in age-related myelin decline using a measure sensitive to myelin and may help facilitate detection of AD risk for women.
Collapse
Affiliation(s)
- Einat K. Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Katherine J. Bangen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Alexandra L. Clark
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicole D. Evangelista
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Lauren Edwards
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, CA, United States
| | - Scott F. Sorg
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, United States
| | - Amy J. Jak
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Mark W. Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | | | - Melissa Lamar
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
34
|
Olveda GE, Barasa MN, Hill RA. Microglial phagocytosis of single dying oligodendrocytes is mediated by CX3CR1 but not MERTK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.570620. [PMID: 38168326 PMCID: PMC10760041 DOI: 10.1101/2023.12.11.570620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Oligodendrocyte death is common in aging and neurodegenerative diseases. In these conditions, single dying oligodendrocytes must be efficiently removed to allow remyelination and prevent a feed-forward degenerative cascade. Here we used a single-cell cortical demyelination model combined with longitudinal intravital imaging of dual-labeled transgenic mice to investigate the cellular dynamics underlying how brain resident microglia remove these cellular debris. Following phagocytic engagement, single microglia cleared the targeted oligodendrocyte and its myelin sheaths in one day via a precise, rapid, and stereotyped sequence. Deletion of the fractalkine receptor, CX3CR1, delayed microglia engagement with the cell soma but unexpectedly did not affect the clearance of myelin sheaths. Furthermore, and in contrast to previous reports in other demyelination models, deletion of the phosphatidylserine receptor, MERTK, did not affect oligodendrocyte or myelin sheath clearance. Thus, distinct molecular signals are used to detect, engage, and clear sub-compartments of dying oligodendrocytes to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Genaro E. Olveda
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Maryanne N. Barasa
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Robert A. Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
35
|
Gómez-Carballa A, Navarro L, Pardo-Seco J, Bello X, Pischedda S, Viz-Lasheras S, Camino-Mera A, Currás MJ, Ferreirós I, Mallah N, Rey-Vázquez S, Redondo L, Dacosta-Urbieta A, Caamaño-Viña F, Rivero-Calle I, Rodriguez-Tenreiro C, Martinón-Torres F, Salas A. Music compensates for altered gene expression in age-related cognitive disorders. Sci Rep 2023; 13:21259. [PMID: 38040763 PMCID: PMC10692168 DOI: 10.1038/s41598-023-48094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Extensive literature has explored the beneficial effects of music in age-related cognitive disorders (ACD), but limited knowledge exists regarding its impact on gene expression. We analyzed transcriptomes of ACD patients and healthy controls, pre-post a music session (n = 60), and main genes/pathways were compared to those dysregulated in mild cognitive impairment (MCI) and Alzheimer's disease (AD) as revealed by a multi-cohort study (n = 1269 MCI/AD and controls). Music was associated with 2.3 times more whole-genome gene expression, particularly on neurodegeneration-related genes, in ACD than in controls. Co-expressed gene-modules and pathways analysis demonstrated that music impacted autophagy, vesicle and endosome organization, biological processes commonly dysregulated in MCI/AD. Notably, the data indicated a strong negative correlation between musically-modified genes/pathways in ACD and those dysregulated in MCI/AD. These findings highlight the compensatory effect of music on genes/biological processes affected in MCI/AD, providing insights into the molecular mechanisms underlying the benefits of music on these disorders.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Laura Navarro
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
| | - Jacobo Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Sara Pischedda
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Sandra Viz-Lasheras
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Alba Camino-Mera
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - María José Currás
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Isabel Ferreirós
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Narmeen Mallah
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
- Department of Preventive Medicine, University of Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
| | - Sara Rey-Vázquez
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Lorenzo Redondo
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Ana Dacosta-Urbieta
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Fernando Caamaño-Viña
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Carmen Rodriguez-Tenreiro
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706, Santiago de Compostela, Galicia, Spain.
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Santiago de Compostela, Galicia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain.
| |
Collapse
|
36
|
Moallemian S, Salmon E, Bahri MA, Beliy N, Delhaye E, Balteau E, Degueldre C, Phillips C, Bastin C. Multimodal imaging of microstructural cerebral alterations and loss of synaptic density in Alzheimer's disease. Neurobiol Aging 2023; 132:24-35. [PMID: 37717552 DOI: 10.1016/j.neurobiolaging.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 09/19/2023]
Abstract
Multiple neuropathological events are involved in Alzheimer's disease (AD). The current study investigated the concurrence of neurodegeneration, increased iron content, atrophy, and demyelination in AD. Quantitative multiparameter magnetic resonance imaging (MRI) maps providing neuroimaging biomarkers for myelination and iron content along with synaptic density measurements using [18F] UCB-H PET were acquired in 24 AD and 19 Healthy controls (19 males). The whole brain voxel-wise group comparison revealed demyelination in the right hippocampus, while no significant iron content difference was detected. Bilateral atrophy and synaptic density loss were observed in the hippocampus and amygdala. The multivariate GLM (mGLM) analysis shows a bilateral difference in the hippocampus and amygdala, right pallidum, left fusiform and temporal lobe suggesting that these regions are the most affected despite the diverse differences in brain tissue properties in AD. Demyelination was identified as the most affecting factor in the observed differences. Here, the mGLM is introduced as an alternative for multiple comparisons between different modalities, reducing the risk of false positives while informing about the co-occurrence of neuropathological processes in AD.
Collapse
Affiliation(s)
- Soodeh Moallemian
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Nikita Beliy
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Emma Delhaye
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Evelyne Balteau
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Christian Degueldre
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.
| |
Collapse
|
37
|
de Blank P, Nishiyama A, López-Juárez A. A new era for myelin research in Neurofibromatosis type 1. Glia 2023; 71:2701-2719. [PMID: 37382486 PMCID: PMC10592420 DOI: 10.1002/glia.24432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Evidence for myelin regulating higher-order brain function and disease is rapidly accumulating; however, defining cellular/molecular mechanisms remains challenging partially due to the dynamic brain physiology involving deep changes during development, aging, and in response to learning and disease. Furthermore, as the etiology of most neurological conditions remains obscure, most research models focus on mimicking symptoms, which limits understanding of their molecular onset and progression. Studying diseases caused by single gene mutations represents an opportunity to understand brain dys/function, including those regulated by myelin. Here, we discuss known and potential repercussions of abnormal central myelin on the neuropathophysiology of Neurofibromatosis Type 1 (NF1). Most patients with this monogenic disease present with neurological symptoms diverse in kind, severity, and onset/decline, including learning disabilities, autism spectrum disorders, attention deficit and hyperactivity disorder, motor coordination issues, and increased risk for depression and dementia. Coincidentally, most NF1 patients show diverse white matter/myelin abnormalities. Although myelin-behavior links were proposed decades ago, no solid data can prove or refute this idea yet. A recent upsurge in myelin biology understanding and research/therapeutic tools provides opportunities to address this debate. As precision medicine moves forward, an integrative understanding of all cell types disrupted in neurological conditions becomes a priority. Hence, this review aims to serve as a bridge between fundamental cellular/molecular myelin biology and clinical research in NF1.
Collapse
Affiliation(s)
- Peter de Blank
- Department of Pediatrics, The Cure Starts Now Brain Tumor Center, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Alejandro López-Juárez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
38
|
Lee SY, Paolillo EW, Saloner R, Cobigo Y, Diaz VE, Gontrum EQ, VandeBunte A, Chatterjee A, Tucker M, Kramer JH, Casaletto KB. Moderating role of physical activity on hippocampal iron deposition and memory outcomes in typically aging older adults. Neurobiol Aging 2023; 131:124-131. [PMID: 37633118 PMCID: PMC11424099 DOI: 10.1016/j.neurobiolaging.2023.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Physical activity (PA) is linked to better cognitive and brain health, though its mechanisms are unknown. While brain iron is essential for normal function, levels increase with age and, when excessive, can cause detrimental neural effects. We examined how objectively measured PA relates to cerebral iron deposition and memory functioning in normal older adults. Sixty-eight cognitively unimpaired older adults from the UCSF Memory and Aging Center completed neuropsychological testing and brain magnetic resonance imaging, followed by 30-day Fitbit monitoring. Magnetic resonance imaging quantitative susceptibility mapping (QSM) quantified iron deposition. PA was operationalized as average daily steps. Linear regression models examined memory as a function of hippocampal QSM, PA, and their interaction. Higher bilateral hippocampal iron deposition correlated with worse memory but was not strongly related to PA. Covarying for demographics, PA moderated the relationship between bilateral hippocampal iron deposition and memory such that the negative effect of hippocampal QSM on memory performances was no longer significant above 9120 daily steps. PA may mitigate adverse iron-related pathways for memory health.
Collapse
Affiliation(s)
- Shannon Y Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Emily W Paolillo
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Rowan Saloner
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Yann Cobigo
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Valentina E Diaz
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Eva Q Gontrum
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Anna VandeBunte
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ankita Chatterjee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Miwa Tucker
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Kaitlin B Casaletto
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
39
|
Cerneckis J, Shi Y. Myelin organoids for the study of Alzheimer's disease. Front Neurosci 2023; 17:1283742. [PMID: 37942133 PMCID: PMC10628225 DOI: 10.3389/fnins.2023.1283742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
40
|
Qiu D, Zhou S, Donnelly J, Xia D, Zhao L. Aerobic exercise attenuates abnormal myelination and oligodendrocyte differentiation in 3xTg-AD mice. Exp Gerontol 2023; 182:112293. [PMID: 37730187 DOI: 10.1016/j.exger.2023.112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Pathological features of Alzheimer's Disease (AD) include alterations in the structure and function of neurons as well as of myelin sheaths. Accumulated evidence shows that aerobic type of exercise can enhance neuroplasticity in mouse models of AD. However, whether and how aerobic exercise can affect myelin sheath repair and neuroprotection in the AD models remains unclear. In this study we tested the hypotheses that 1) myelin structural alterations in 3xTg-AD mice would be related to abnormalities in oligodendrocyte lineage cells, resulting in impaired learning and memory, and 2) a 6-month aerobic exercise intervention would have beneficial effects on such alterations. Two-month-old male 3xTg-AD mice were randomly assigned to a control (AC) or an exercise (AE) group, and age-matched male C57BL/6;129 mice were also randomly assigned to a normal control (NC) or an exercise (NE) group, with n = 12 in each group. Mice in the exercise groups were trained on a motor-drive treadmill, 60 min per day, 5 days per week for 6 months. Cognitive function was assessed at the end of the intervention period. Then, brain specimens were obtained for assessments of morphological and oligodendrocyte lineage cell changes. The results of electron microscopy showed that myelin ultrastructure demonstrated a higher percentage of loose and granulated myelin sheath around axons in the temporal lobe in the AC, as compared with the NC group, along with greater cognitive dysfunction at 8-months of age. These differences were accompanied by significantly greater myelin basic protein (MBP) expression and less neuron-glial antigen-2 (NG2) protein and mRNA levels in the AC, compared to the NC. However, there were no significant between-group differences in the G-ratio (the ratio of axon diameter to axon plus myelin sheath diameter) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) protein and mRNA levels. The aerobic exercise ameliorated cognitive deterioration and appeared to keep components of myelin sheath and oligodendrocyte precursor cells stabilized, resulting in a decrease in the percentage of loose and granulated myelin sheath and MBP protein, and an increase in NG2 protein and mRNA levels in the AE group. Therefore, the 6-month exercise intervention demonstrated beneficial effects on myelin lesions, abnormal differentiation of oligodendrocytes and general brain function in the 3xTg-AD mice, providing further insights into the role of aerobic exercise in management of neurodegeneration in AD by maintaining intact myelination.
Collapse
Affiliation(s)
- Dan Qiu
- Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou 014030, China; Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China; Physical Activity, Sport and Exercise Research Theme, Faculty of Health, Southern Cross University, Lismore, NSW, Australia
| | - Shi Zhou
- Physical Activity, Sport and Exercise Research Theme, Faculty of Health, Southern Cross University, Lismore, NSW, Australia.
| | | | - Dongdong Xia
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China.
| |
Collapse
|
41
|
Prajjwal P, Shree A, Das S, Inban P, Ghosh S, Senthil A, Gurav J, Kundu M, Marsool Marsool MD, Gadam S, Marsool Marsoo AD, Vora N, Amir Hussin O. Vascular multiple sclerosis: addressing the pathogenesis, genetics, pro-angiogenic factors, and vascular abnormalities, along with the role of vascular intervention. Ann Med Surg (Lond) 2023; 85:4928-4938. [PMID: 37811110 PMCID: PMC10553029 DOI: 10.1097/ms9.0000000000001177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/05/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction in the epithelium, breakdown of the blood-brain barrier, and consequent leukocyte and T-cell infiltration into the central nervous system define Vascular Multiple Sclerosis. Multiple sclerosis (MS) affects around 2.5 million individuals worldwide, is the leading cause of neurological impairment in young adults, and can have a variety of progressions and consequences. Despite significant discoveries in immunology and molecular biology, the root cause of MS is still not fully understood, as do the immunological triggers and causative pathways. Recent research into vascular anomalies associated with MS suggests that a vascular component may be pivotal to the etiology of MS, and there can be actually a completely new entity in the already available classification of MS, which can be called 'vascular multiple sclerosis'. Unlike the usual other causes of MS, vascular MS is not dependent on autoimmune pathophysiologic mechanisms, instead, it is caused due to the blood vessels pathology. This review aims to thoroughly analyze existing information and updates about the scattered available findings of genetics, pro-angiogenetic factors, and vascular abnormalities in this important spectrum, the vascular facets of MS.
Collapse
Affiliation(s)
| | - Anagha Shree
- SGT Medical College Hospital and Research Institute, Gurgaon
| | - Soumyajit Das
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar
| | - Pugazhendi Inban
- Internal Medicine, Government Medical College, Omandurar, Chennai
| | | | | | | | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar
| | | | - Srikanth Gadam
- Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Neel Vora
- Internal Medicine, B.J. Medical College, Ahmedabad, India
| | | |
Collapse
|
42
|
Lee JY, Harney DJ, Teo JD, Kwok JB, Sutherland GT, Larance M, Don AS. The major TMEM106B dementia risk allele affects TMEM106B protein levels, fibril formation, and myelin lipid homeostasis in the ageing human hippocampus. Mol Neurodegener 2023; 18:63. [PMID: 37726834 PMCID: PMC10510131 DOI: 10.1186/s13024-023-00650-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The risk for dementia increases exponentially from the seventh decade of life. Identifying and understanding the biochemical changes that sensitize the ageing brain to neurodegeneration will provide new opportunities for dementia prevention and treatment. This study aimed to determine how ageing and major genetic risk factors for dementia affect the hippocampal proteome and lipidome of neurologically-normal humans over the age of 65. The hippocampus was chosen as it is highly susceptible to atrophy with ageing and in several neurodegenerative diseases. METHODS Mass spectrometry-based proteomic and lipidomic analysis of CA1 hippocampus samples from 74 neurologically normal human donors, aged 66-104, was used in combination with multiple regression models and gene set enrichment analysis to identify age-dependent changes in the proteome and lipidome. ANOVA was used to test the effect of major dementia risk alleles in the TMEM106B and APOE genes on the hippocampal proteome and lipidome, adjusting for age, gender, and post-mortem interval. Fibrillar C-terminal TMEM106B fragments were isolated using sarkosyl fractionation and quantified by immunoblotting. RESULTS Forty proteins were associated with age at false discovery rate-corrected P < 0.05, including proteins that regulate cell adhesion, the cytoskeleton, amino acid and lipid metabolism, and ribosomal subunits. TMEM106B, a regulator of lysosomal and oligodendrocyte function, was regulated with greatest effect size. The increase in TMEM106B levels with ageing was specific to carriers of the rs1990622-A allele in the TMEM106B gene that increases risk for frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and hippocampal sclerosis with ageing. Rs1990622-A was also associated with higher TMEM106B fibril content. Hippocampal lipids were not significantly affected by APOE genotype, however levels of myelin-enriched sulfatides and hexosylceramides were significantly lower, and polyunsaturated phospholipids were higher, in rs1990622-A carriers after controlling for APOE genotype. CONCLUSIONS Our study demonstrates that TMEM106B protein abundance is increased with brain ageing in humans, establishes that dementia risk allele rs1990622-A predisposes to TMEM106B fibril formation in the hippocampus, and provides the first evidence that rs1990622-A affects brain lipid homeostasis, particularly myelin lipids. Our data suggests that TMEM106B is one of a growing list of major dementia risk genes that affect glial lipid metabolism.
Collapse
Affiliation(s)
- Jun Yup Lee
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Dylan J Harney
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Jonathan D Teo
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - John B Kwok
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Greg T Sutherland
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Mark Larance
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
43
|
Yamashita S, Miyazawa T, Higuchi O, Kinoshita M, Miyazawa T. Marine Plasmalogens: A Gift from the Sea with Benefits for Age-Associated Diseases. Molecules 2023; 28:6328. [PMID: 37687157 PMCID: PMC10488995 DOI: 10.3390/molecules28176328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Aging increases oxidative and inflammatory stress caused by a reduction in metabolism and clearance, thus leading to the development of age-associated diseases. The quality of our daily diet and exercise is important for the prevention of these diseases. Marine resources contain various valuable nutrients, and unique glycerophospholipid plasmalogens are found abundantly in some marine invertebrates, including ascidians. One of the major classes, the ethanolamine class (PlsEtn), exists in a high ratio to phospholipids in the brain and blood, while decreased levels have been reported in patients with age-associated diseases, including Alzheimer's disease. Animal studies have shown that the administration of marine PlsEtn prepared from marine invertebrates improved PlsEtn levels in the body and alleviated inflammation. Animal and human studies have reported that marine PlsEtn ameliorates cognitive impairment. In this review, we highlight the biological significance, relationships with age-associated diseases, food functions, and healthcare materials of plasmalogens based on recent knowledge and discuss the contribution of marine plasmalogens to health maintenance in aging.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (S.Y.); (M.K.)
| | - Taiki Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.)
| | - Ohki Higuchi
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.)
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (S.Y.); (M.K.)
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.)
| |
Collapse
|
44
|
Liu Z, Chao J, Wang C, Sun G, Roeth D, Liu W, Chen X, Li L, Tian E, Feng L, Davtyan H, Blurton-Jones M, Kalkum M, Shi Y. Astrocytic response mediated by the CLU risk allele inhibits OPC proliferation and myelination in a human iPSC model. Cell Rep 2023; 42:112841. [PMID: 37494190 PMCID: PMC10510531 DOI: 10.1016/j.celrep.2023.112841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/05/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
The C allele of rs11136000 variant in the clusterin (CLU) gene represents the third strongest known genetic risk factor for late-onset Alzheimer's disease. However, whether this single-nucleotide polymorphism (SNP) is functional and what the underlying mechanisms are remain unclear. In this study, the CLU rs11136000 SNP is identified as a functional variant by a small-scale CRISPR-Cas9 screen. Astrocytes derived from isogenic induced pluripotent stem cells (iPSCs) carrying the "C" or "T" allele of the CLU rs11136000 SNP exhibit different CLU expression levels. TAR DNA-binding protein-43 (TDP-43) preferentially binds to the "C" allele to promote CLU expression and exacerbate inflammation. The interferon response and CXCL10 expression are elevated in cytokine-treated C/C astrocytes, leading to inhibition of oligodendrocyte progenitor cell (OPC) proliferation and myelination. Accordingly, elevated CLU and CXCL10 but reduced myelin basic protein (MBP) expression are detected in human brains of C/C carriers. Our study uncovers a mechanism underlying reduced white matter integrity observed in the CLU rs11136000 risk "C" allele carriers.
Collapse
Affiliation(s)
- Zhenqing Liu
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jianfei Chao
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Cheng Wang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guihua Sun
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Daniel Roeth
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Wei Liu
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xianwei Chen
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Li Li
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - E Tian
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lizhao Feng
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Hayk Davtyan
- Department of Neurobiology & Behavior, Institute for Memory Impairments & Neurological Disorders and Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, Institute for Memory Impairments & Neurological Disorders and Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
45
|
Burzynska AZ, Anderson C, Arciniegas DB, Calhoun V, Choi IY, Colmenares AM, Hiner G, Kramer AF, Li K, Lee J, Lee P, Oh SH, Umland S, Thomas ML. Metabolic syndrome and adiposity: Risk factors for decreased myelin in cognitively healthy adults. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100180. [PMID: 38162292 PMCID: PMC10757180 DOI: 10.1016/j.cccb.2023.100180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 01/03/2024]
Abstract
Metabolic syndrome (MetS) is a cluster of conditions that affects ∼25% of the global population, including excess adiposity, hyperglycemia, dyslipidemia, and elevated blood pressure. MetS is one of major risk factors not only for chronic diseases, but also for dementia and cognitive dysfunction, although the underlying mechanisms remain poorly understood. White matter is of particular interest in the context of MetS due to the metabolic vulnerability of myelin maintenance, and the accumulating evidence for the importance of the white matter in the pathophysiology of dementia. Therefore, we investigated the associations of MetS risk score and adiposity (combined body mass index and waist circumference) with myelin water fraction measured with myelin water imaging. In 90 cognitively and neurologically healthy adults (20-79 years), we found that both high MetS risk score and adiposity were correlated with lower myelin water fraction in late-myelinating prefrontal and associative fibers, controlling for age, sex, race, ethnicity, education and income. Our findings call for randomized clinical trials to establish causality between MetS, adiposity, and myelin content, and to explore the potential of weight loss and visceral adiposity reduction as means to support maintenance of myelin integrity throughout adulthood, which could open new avenues for prevention or treatment of cognitive decline and dementia.
Collapse
Affiliation(s)
- Agnieszka Z Burzynska
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Charles Anderson
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - David B Arciniegas
- Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - In-Young Choi
- Department of Neurology, Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Mendez Colmenares
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Grace Hiner
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology at the University of Illinois, IL, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA, USA
| | - Kaigang Li
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea
| | - Samantha Umland
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Michael L Thomas
- Michael Thomas, Department of Psychology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
46
|
Cerneckis J, Bu G, Shi Y. Pushing the boundaries of brain organoids to study Alzheimer's disease. Trends Mol Med 2023; 29:659-672. [PMID: 37353408 PMCID: PMC10374393 DOI: 10.1016/j.molmed.2023.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Progression of Alzheimer's disease (AD) entails deterioration or aberrant function of multiple brain cell types, eventually leading to neurodegeneration and cognitive decline. Defining how complex cell-cell interactions become dysregulated in AD requires novel human cell-based in vitro platforms that could recapitulate the intricate cytoarchitecture and cell diversity of the human brain. Brain organoids (BOs) are 3D self-organizing tissues that partially resemble the human brain architecture and can recapitulate AD-relevant pathology. In this review, we highlight the versatile applications of different types of BOs to model AD pathogenesis, including amyloid-β and tau aggregation, neuroinflammation, myelin breakdown, vascular dysfunction, and other phenotypes, as well as to accelerate therapeutic development for AD.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
47
|
Cheng GWY, Ma IWT, Huang J, Yeung SHS, Ho P, Chen Z, Mak HKF, Herrup K, Chan KWY, Tse KH. Cuprizone drives divergent neuropathological changes in different mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.547147. [PMID: 37546935 PMCID: PMC10402084 DOI: 10.1101/2023.07.24.547147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Myelin degradation is a normal feature of brain aging that accelerates in Alzheimer's disease (AD). To date, however, the underlying biological basis of this correlation remains elusive. The amyloid cascade hypothesis predicts that demyelination is caused by increased levels of the β-amyloid (Aβ) peptide. Here we report on work supporting the alternative hypothesis that early demyelination is upstream of amyloid. We challenged two different mouse models of AD (R1.40 and APP/PS1) using cuprizone-induced demyelination and tracked the responses with both neuroimaging and neuropathology. In oppose to amyloid cascade hypothesis, R1.40 mice, carrying only a single human mutant APP (Swedish; APP SWE ) transgene, showed a more abnormal changes of magnetization transfer ratio and diffusivity than in APP/PS1 mice, which carry both APP SWE and a second PSEN1 transgene (delta exon 9; PSEN1 dE9 ). Although cuprizone targets oligodendrocytes (OL), magnetic resonance spectroscopy and targeted RNA-seq data in R1.40 mice suggested a possible metabolic alternation in axons. In support of alternative hypotheses, cuprizone induced significant intraneuronal amyloid deposition in young APP/PS1, but not in R1.40 mice, and it suggested the presence of PSEN deficiencies, may accelerate Aβ deposition upon demyelination. In APP/PS1, mature OL is highly vulnerable to cuprizone with significant DNA double strand breaks (53BP1 + ) formation. Despite these major changes in myelin, OLs, and Aβ immunoreactivity, no cognitive impairment or hippocampal pathology was detected in APP/PS1 mice after cuprizone treatment. Together, our data supports the hypothesis that myelin loss can be the cause, but not the consequence, of AD pathology. SIGNIFICANCE STATEMENT The causal relationship between early myelin loss and the progression of Alzheimer's disease remains unclear. Using two different AD mouse models, R1.40 and APP/PS1, our study supports the hypothesis that myelin abnormalities are upstream of amyloid production and deposition. We find that acute demyelination initiates intraneuronal amyloid deposition in the frontal cortex. Further, the loss of oligodendrocytes, coupled with the accelerated intraneuronal amyloid deposition, interferes with myelin tract diffusivity at a stage before any hippocampus pathology or cognitive impairments occur. We propose that myelin loss could be the cause, not the consequence, of amyloid pathology during the early stages of Alzheimer's disease.
Collapse
|
48
|
Baruch EN, Nagarajan P, Gleber-Netto FO, Rao X, Xie T, Akhter S, Adewale A, Shajedul I, Mattson BJ, Ferrarotto R, Wong MK, Davies MA, Jindal S, Basu S, Harwood C, Leigh I, Ajami N, Futreal A, Castillo M, Gunaratne P, Goepfert RP, Khushalani N, Wang J, Watowich S, Calin GA, Migden MR, Vermeer P, D’Silva N, Yaniv D, Burks JK, Gomez J, Dougherty PM, Tsai KY, Allison JP, Sharma P, Wargo J, Myers JN, Gross ND, Amit M. Inflammation induced by tumor-associated nerves promotes resistance to anti-PD-1 therapy in cancer patients and is targetable by interleukin-6 blockade. RESEARCH SQUARE 2023:rs.3.rs-3161761. [PMID: 37503252 PMCID: PMC10371163 DOI: 10.21203/rs.3.rs-3161761/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While the nervous system has reciprocal interactions with both cancer and the immune system, little is known about the potential role of tumor associated nerves (TANs) in modulating anti-tumoral immunity. Moreover, while peri-neural invasion is a well establish poor prognostic factor across cancer types, the mechanisms driving this clinical effect remain unknown. Here, we provide clinical and mechniastic association between TANs damage and resistance to anti-PD-1 therapy. Using electron microscopy, electrical conduction studies, and tumor samples of cutaneous squamous cell carcinoma (cSCC) patients, we showed that cancer cells can destroy myelin sheath and induce TANs degeneration. Multi-omics and spatial analyses of tumor samples from cSCC patients who underwent neoadjuvant anti-PD-1 therapy demonstrated that anti-PD-1 non-responders had higher rates of peri-neural invasion, TANs damage and degeneration compared to responders, both at baseline and following neoadjuvant treatment. Tumors from non-responders were also characterized by a sustained signaling of interferon type I (IFN-I) - known to both propagate nerve degeneration and to dampen anti-tumoral immunity. Peri-neural niches of non-responders were characterized by higher immune activity compared to responders, including immune-suppressive activity of M2 macrophages, and T regulatory cells. This tumor promoting inflammation expanded to the rest of the tumor microenvironment in non-responders. Anti-PD-1 efficacy was dampened by inducing nerve damage prior to treatment administration in a murine model. In contrast, anti-PD-1 efficacy was enhanced by denervation and by interleukin-6 blockade. These findings suggested a potential novel anti-PD-1 resistance drived by TANs damage and inflammation. This resistance mechanism is targetable and may have therapeutic implications in other neurotropic cancers with poor response to anti-PD-1 therapy such as pancreatic, prostate, and breast cancers.
Collapse
Affiliation(s)
- Erez N. Baruch
- Division of Cancer Medicine, Hematology and Oncology Fellowship program, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Frederico O. Gleber-Netto
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tongxin Xie
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shamima Akhter
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adebayo Adewale
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Islam Shajedul
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi J Mattson
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renata Ferrarotto
- Department of Head and Neck Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael K. Wong
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonali Jindal
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sreyashi Basu
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Catherine Harwood
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, Centre for Cell Biology and Cutaneous Research, Blizard Institute Barts and the London School of Medicine and Dentistry Queen Mary University of London, UK
| | - Irene Leigh
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, Centre for Cell Biology and Cutaneous Research, Blizard Institute Barts and the London School of Medicine and Dentistry Queen Mary University of London, UK
| | - Nadim Ajami
- Department of Genomic Medicine, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Micah Castillo
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX, USA
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston Sequencing and Gene Editing Core, University of Houston, Houston, TX, USA
| | - Ryan P. Goepfert
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jing Wang
- Department of Bioinformatics and Computational Biology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie Watowich
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael R. Migden
- Department of Dermatology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paola Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Nisha D’Silva
- Department of Dentistry & Pathology, the University of Michigan, Ann Arbor, MI, USA
| | - Dan Yaniv
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared K Burks
- Department of Leukemia, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Javier Gomez
- Department of Leukemia, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, Division of Anesthesiology, Critical Care, and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth Y. Tsai
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, USA
| | - James P Allison
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Wargo
- Department of Genomic Medicine, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neil D. Gross
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Moran Amit
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| |
Collapse
|
49
|
Gong Z, Bilgel M, Kiely M, Triebswetter C, Ferrucci L, Resnick SM, Spencer RG, Bouhrara M. Lower myelin content is associated with more rapid cognitive decline among cognitively unimpaired individuals. Alzheimers Dement 2023; 19:3098-3107. [PMID: 36720000 PMCID: PMC10387505 DOI: 10.1002/alz.12968] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The influence of myelination on longitudinal changes in cognitive performance remains unclear. METHODS For each participant (N = 123), longitudinal cognitive scores were calculated. Myelin content was probed using myelin water fraction (MWF) or longitudinal relaxation rate (R1 ); both are MRI measures sensitive to myelin, with MWF being specific. RESULTS Lower MWF was associated with steeper declines in executive function (p < .02 in all regions) and lower R1 was associated with steeper declines in verbal fluency (p < .03 in all regions). Additionally, lower R1 was associated with steeper declines in executive function (p < .02 in all regions) and memory (p < .04 in occipital and cerebral white matter) but did not survive Bonferroni correction. DISCUSSION We demonstrate significant relationships between myelin content and the rates of change in cognitive performance among cognitively normal individuals. These findings highlight the importance of myelin in cognitive functioning and suggest MWF and R1 as imaging biomarkers to predict cognitive changes.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Magnetic Resonance Physics of Aging and Dementia (MRPAD) Unit, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Murat Bilgel
- Brain Aging and Behavior Section, NIA, NIH, Baltimore, Maryland, USA
| | - Matthew Kiely
- Magnetic Resonance Physics of Aging and Dementia (MRPAD) Unit, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Curtis Triebswetter
- Magnetic Resonance Physics of Aging and Dementia (MRPAD) Unit, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, NIA, NIH, Baltimore, Maryland, USA
| | - Susan M. Resnick
- Brain Aging and Behavior Section, NIA, NIH, Baltimore, Maryland, USA
| | - Richard G. Spencer
- Magnetic Resonance Imaging and Spectroscopy Section, NIA, NIH, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia (MRPAD) Unit, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| |
Collapse
|
50
|
Hu YY, Ding XS, Yang G, Liang XS, Feng L, Sun YY, Chen R, Ma QH. Analysis of the influences of social isolation on cognition and the therapeutic potential of deep brain stimulation in a mouse model. Front Psychiatry 2023; 14:1186073. [PMID: 37409161 PMCID: PMC10318365 DOI: 10.3389/fpsyt.2023.1186073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Background Social interaction is a fundamental human need. Social isolation (SI) can have negative effects on both emotional and cognitive function. However, it is currently unclear how age and the duration of SI affect emotion and recognition function. In addition, there is no specific treatment for the effects of SI. Methods The adolescence or adult mice were individually housed in cages for 1, 6 or 12 months and for 2 months to estabolish SI mouse model. We investigated the effects of SI on behavior in mice at different ages and under distinct durations of SI, and we explored the possible underlying mechanisms. Then we performed deep brain stimulation (DBS) to evaluate its influences on SI induced behavioral abnormalities. Results We found that social recognition was affected in the short term, while social preference was damaged by extremely long periods of SI. In addition to affecting social memory, SI also affects emotion, short-term spatial ability and learning willingness in mice. Myelin was decreased significantly in the medial prefrontal cortex (mPFC) and dorsal hippocampus of socially isolated mice. Cellular activity in response to social stimulation in both areas was impaired by social isolation. By stimulating the mPFC using DBS, we found that DBS alleviated cellular activation disorders in the mPFC after long-term SI and improved social preference in mice. Conclusion Our results suggest that the therapeutic potential of stimulating the mPFC with DBS in individuals with social preference deficits caused by long-term social isolation, as well as the effects of DBS on the cellular activity and density of OPCs.
Collapse
Affiliation(s)
- Yun-Yun Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Respiratory Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xuan-Si Ding
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, China
| | - Xue-Song Liang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Second Clinical College, Dalian Medical University, Dalian, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, China
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Rui Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Respiratory Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|