1
|
Ng LLH, Chow J, Lau KF. The AICD interactome: implications in neurodevelopment and neurodegeneration. Biochem Soc Trans 2024; 52:2539-2556. [PMID: 39670668 PMCID: PMC11668293 DOI: 10.1042/bst20241510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
The pathophysiological mechanism involving the proteolytic processing of amyloid precursor protein (APP) and the generation of amyloid plaques is of significant interest in research on Alzheimer's disease (AD). The increasing significance of the downstream AD-related pathophysiological mechanisms has sparked research interest in other products of the APP processing cascades, including the APP intracellular domain (AICD). The potential importance of AICD in various cellular processes in the central nervous system has been established through the identification of its interactors. The interaction between AICD and its physiological binding partners is implicated in cellular events including regulation of transcriptional activity, cytoskeletal dynamics, neuronal growth, APP processing and cellular apoptosis. On the contrary, AICD is also implicated in neurodegeneration, which is a potential outcome of the functional fluctuation of AICD-mediated neuronal processes within the neuronal network. In this review, we summarize the neuronal functions and pathological manifestations of the dynamic AICD interaction network.
Collapse
Affiliation(s)
- Laura Lok-Haang Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Talukdar G, Orr HT, Lei Z. The PERK pathway: beneficial or detrimental for neurodegenerative diseases and tumor growth and cancer. Hum Mol Genet 2023; 32:2545-2557. [PMID: 37384418 PMCID: PMC10407711 DOI: 10.1093/hmg/ddad103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) is one of the three major sensors in the unfolded protein response (UPR). The UPR is involved in the modulation of protein synthesis as an adaptive response. Prolonged PERK activity correlates with the development of diseases and the attenuation of disease severity. Thus, the current debate focuses on the role of the PERK signaling pathway either in accelerating or preventing diseases such as neurodegenerative diseases, myelin disorders, and tumor growth and cancer. In this review, we examine the current findings on the PERK signaling pathway and whether it is beneficial or detrimental for the above-mentioned disorders.
Collapse
Affiliation(s)
- Gourango Talukdar
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Harry T Orr
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhixin Lei
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Greenwood EK, Angelova DM, Büchner HMI, Brown DR. The AICD fragment of APP initiates a FoxO3a mediated response via FANCD2. Mol Cell Neurosci 2022; 122:103760. [PMID: 35901928 DOI: 10.1016/j.mcn.2022.103760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
The amyloid precursor protein (APP) is a cell surface protein of uncertain function that is notable for being the parent protein of beta-amyloid. Research around this protein has focussed heavily on the link to Alzheimer's disease and neurodegeneration. However, there is increasing evidence that APP may be linked to neuronal loss through mechanisms independent of beta-amyloid. FoxO3a is a transcription factor associated with neuronal longevity and apoptosis. In neurons, FoxO3a is associated with cell death through pathways that include BIM, a BCL-2 family member. In this study we have shown that APP overexpression increased the cellular levels and activity of FoxO3a. This increased expression and activity is not a result of decreased phosphorylation but is more likely a result of increased nuclear stability due to increased levels of FANCD2, a binding partner of FoxO3a. The changes caused by APP overexpression were shown to be due to the AICD fragment of APP possibly directly inducing transcription increase in FANCD2. These findings strengthen the link between APP metabolism and FoxO3a neuronal activity. This link may be crucial in better understanding the cellular role of APP and its link to neurodegeneration and aging.
Collapse
Affiliation(s)
| | | | | | - David R Brown
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
4
|
Cho Y, Bae HG, Okun E, Arumugam TV, Jo DG. Physiology and pharmacology of amyloid precursor protein. Pharmacol Ther 2022; 235:108122. [PMID: 35114285 DOI: 10.1016/j.pharmthera.2022.108122] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
Amyloid precursor protein (APP) is an evolutionarily conserved transmembrane protein and a well-characterized precursor protein of amyloid-beta (Aβ) peptides, which accumulate in the brains of individuals with Alzheimer's disease (AD)-related pathologies. Aβ has been extensively investigated since the amyloid hypothesis in AD was proposed. Besides Aβ, previous studies on APP and its proteolytic cleavage products have suggested their diverse pathological and physiological functions. However, their roles still have not been thoroughly understood. In this review, we extensively discuss the evolutionarily-conserved biology of APP, including its structure and processing pathway, as well as recent findings on the physiological roles of APP and its fragments in the central nervous system and peripheral nervous system. We have also elaborated upon the current status of APP-targeted therapeutic approaches for AD treatment by discussing inhibitors of several proteases participating in APP processing, including α-, β-, and γ-secretases. Finally, we have highlighted the future perspectives pertaining to further research and the potential clinical role of APP.
Collapse
Affiliation(s)
- Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Han-Gyu Bae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Pauld Feder Laboratory on Alzheimer's Disease Research, Israel
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
5
|
Xu CJ, Li MQ, Li-Zhao, Chen WG, Wang JL. Short-term high-fat diet favors the appearances of apoptosis and gliosis by activation of ERK1/2/p38MAPK pathways in brain. Aging (Albany NY) 2021; 13:23133-23148. [PMID: 34620734 PMCID: PMC8544319 DOI: 10.18632/aging.203607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 01/26/2023]
Abstract
High-fat diet (HFD) has been associated with neuroinflammation and apoptosis in distinct brain regions. To explore the effect of short-term (7, 14 and 21 days) high-fat overfeeding on apoptosis, inflammatory signaling proteins, APP changes and glial cell activities in cerebral cortex and cerebellum. Mice were fed with HFD for different lengths (up to 21 days) and after each time body weights of mice was tested, then the apoptotic proteins, IL-1β, APP, BACE1and MAPKs, Akt and NF-κB signaling activity were evaluated by western blots. Results demonstrate that short period of high-fat overnutrition significantly promotes apoptosis, APP expression at day 21 of cerebral cortex and at day 7 of cerebellum compared to chow diet. In addition, increased GFAP+astrocytes, Iba-1+microglia and IL-1β 30 were observed in cerebral cortex after 21 days HFD, but no changes for 7 days overfeeding of cerebellum. Serendipitously, ERK1/2 pathway was activated both in cerebral cortex and cerebellum for different time course of HFD. Furthermore, increased phospho-p38 MAPK level was observed in cerebellum only. In consistent with in vivo results, SH-SY5Y cells treatment with cholesterol (50 μM, 100 μM) for 48 h culture in vitro demonstrated that pro-apoptotic proteins were enhanced as well. In brief, short-term HFD consumption increases sensitivity to apoptosis, APP and IL-1β production as well as gliosis in cerebral cortex and cerebellum, which may be related to enhancement of ERK1/2 and p38 MAPK activation.
Collapse
Affiliation(s)
- Chao-Jin Xu
- Department of Histology and Embryology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Mei-Qi Li
- School of 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Li-Zhao
- School of 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Wei-Guang Chen
- Department of Histology and Embryology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| |
Collapse
|
6
|
Zhang L, Qian Y, Li J, Zhou X, Xu H, Yan J, Xiang J, Yuan X, Sun B, Sisodia SS, Jiang YH, Cao X, Jing N, Lin A. BAD-mediated neuronal apoptosis and neuroinflammation contribute to Alzheimer's disease pathology. iScience 2021; 24:102942. [PMID: 34430820 PMCID: PMC8369003 DOI: 10.1016/j.isci.2021.102942] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. However, the underlying molecular mechanism is incompletely understood. Here we report that the pro-apoptotic protein BAD as a key regulator for neuronal apoptosis, neuroinflammation and Aβ clearance in AD. BAD pro-apoptotic activity is significantly increased in neurons of AD patients and 5XFAD mice. Conversely, genetic disruption of Bad alleles restores spatial learning and memory deficits in 5XFAD mice. Mechanistically, phosphorylation and inactivation of BAD by neurotropic factor-activated Akt is abrogated in neurons under AD condition. Through reactive oxygen species (ROS)-oxidized mitochondrial DNA (mtDNA) axis, BAD also promotes microglial NLRP3 inflammasome activation, thereby skewing microglia toward neuroinflammatory microglia to inhibit microglial phagocytosis of Aβ in AD mice. Our results support a model in which BAD contributes to AD pathologies by driving neuronal apoptosis and neuroinflammation but suppressing microglial phagocytosis of Aβ, suggesting that BAD is a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Liansheng Zhang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Modern Biology, Nanjing University, Nanjing 210023, China
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Yun Qian
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuan Zhou
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - He Xu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jie Yan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allery & Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Jialing Xiang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Xiang Yuan
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Modern Biology, Nanjing University, Nanjing 210023, China
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Sangram S. Sisodia
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
- The Microbiome Center, The University of Chicago, Chicago, IL 60637, USA
| | - Yong-Hui Jiang
- Department of Pediatrics and Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Naihe Jing
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Center of Cell Lineage and Atlas, Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
- Corresponding author
| | - Anning Lin
- Institute of Modern Biology, Nanjing University, Nanjing 210023, China
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
- Grossman Institute for Neuroscience, Quantitative Biology, and Haman Behavior, The University of Chicago, Chicago, IL 60637, USA
- Corresponding author
| |
Collapse
|
7
|
Ma Y, Gong Z, Nan K, Qi S, Chen Y, Ding C, Wang D, Ru L. Apolipoprotein-J blocks increased cell injury elicited by ox-LDL via inhibiting ROS-CaMKII pathway. Lipids Health Dis 2019; 18:117. [PMID: 31113434 PMCID: PMC6530009 DOI: 10.1186/s12944-019-1066-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Background Oxidized low-density lipoprotein (ox-LDL) is crucial in cardiac injury. Apolipoprotein-J (ApoJ) contributes to antiapoptotic effects in the heart. We aimed to evaluate the protective effects of ApoJ against ox-LDL cytotoxicity in Neonatal rat ventricular cells (NRVCs). Methods and results NRVCs were damaged by exposure to ox-LDL, as shown by increased caspase-3/7 activity, enhanced caspase-3 expression, and decreased cell viability. ApoJ overexpression, using an adenovirus vector, significantly reduced ox-LDL-induced cell injury. ApoJ also prevented ox-LDL from augmenting reactive oxygen species (ROS) production, as demonstrated by elevated Nox2/gp91phox and P47 expression. Furthermore, ApoJ overexpression reduced CaMKIIδ expression elicited by ox-LDL in cultured NRVCs. Upregulating CaMKIIδ activity, mediated by ox-LDL, was significantly inhibited by ApoJ overexpression. A CaMKIIδ inhibitor, KN93, prevented ApoJ’s protective effect against ox-LDL cytotoxicity. A ROS scavenger, Mn (III)meso-tetrakis (4-benzoic acid) porphyrin (Mn (III)TBAP), also attenuated CaMKIIδ’s increased expression and activity, induced by ox-LDL, and showed similar results to ApoJ by attenuating ox-LDL-induced cell damage, as ApoJ did. Conclusions ApoJ confers cytoprotection to NRVCs against ox-LDL cytotoxicity through the ROS-CaMKII pathways.
Collapse
Affiliation(s)
- Yanzhuo Ma
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Zhi Gong
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Kai Nan
- Health and Medical Development Research Center of Hebei Province, Shijiazhuang, Hebei, China
| | - Shuying Qi
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Yu Chen
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Chao Ding
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Dongmei Wang
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Leisheng Ru
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China.
| |
Collapse
|
8
|
Oxidative stress in the neurodegenerative brain following lifetime exposure to lead in rats: Changes in lifespan profiles. Toxicology 2019; 411:101-109. [DOI: 10.1016/j.tox.2018.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
|
9
|
Notch signaling and neuronal death in stroke. Prog Neurobiol 2018; 165-167:103-116. [PMID: 29574014 DOI: 10.1016/j.pneurobio.2018.03.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and death, with the outcome largely determined by the amount of hypoxia-related neuronal death in the affected brain regions. Cerebral ischemia and hypoxia activate the Notch1 signaling pathway and four prominent interacting pathways (NF-κB, p53, HIF-1α and Pin1) that converge on a conserved DNA-associated nuclear multi-protein complex, which controls the expression of genes that can determine the fate of neurons. When neurons experience a moderate level of ischemic insult, the nuclear multi-protein complex up-regulates adaptive stress response genes encoding proteins that promote neuronal survival, but when ischemia is more severe the nuclear multi-protein complex induces genes encoding proteins that trigger and execute a neuronal death program. We propose that the nuclear multi-protein transcriptional complex is a molecular mediator of neuronal hormesis and a target for therapeutic intervention in stroke.
Collapse
|
10
|
Martin-Jiménez CA, García-Vega Á, Cabezas R, Aliev G, Echeverria V, González J, Barreto GE. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol 2017; 158:45-68. [DOI: 10.1016/j.pneurobio.2017.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
|
11
|
Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer’s disease. Prog Neurobiol 2017; 156:189-213. [DOI: 10.1016/j.pneurobio.2017.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
|
12
|
Membrane tethering of APP c-terminal fragments is a prerequisite for T668 phosphorylation preventing nuclear sphere generation. Cell Signal 2016; 28:1725-34. [DOI: 10.1016/j.cellsig.2016.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 01/11/2023]
|
13
|
Extensive nuclear sphere generation in the human Alzheimer's brain. Neurobiol Aging 2016; 48:103-113. [PMID: 27644079 DOI: 10.1016/j.neurobiolaging.2016.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Nuclear spheres are protein aggregates consisting of FE65, TIP60, BLM, and other yet unknown proteins. Generation of these structures in the cellular nucleus is putatively modulated by the amyloid precursor protein (APP), either by its cleavage or its phosphorylation. Nuclear spheres were preferentially studied in cell culture models and their existence in the human brain had not been known. Existence of nuclear spheres in the human brain was studied using immunohistochemistry. Cell culture experiments were used to study regulative mechanisms of nuclear sphere generation. The comparison of human frontal cortex brain samples from Alzheimer's disease (AD) patients to age-matched controls revealed a dramatically and highly significant enrichment of nuclear spheres in the AD brain. Costaining demonstrated that neurons are distinctly affected by nuclear spheres, but astrocytes never are. Nuclear spheres were predominantly found in neurons that were negative for threonine 668 residue in APP phosphorylation. Cell culture experiments revealed that JNK3-mediated APP phosphorylation reduces the amount of sphere-positive cells. The study suggests that nuclear spheres are a new APP-derived central hallmark of AD, which might be of crucial relevance for the molecular mechanisms in neurodegeneration.
Collapse
|
14
|
Killing Me Softly: Connotations to Unfolded Protein Response and Oxidative Stress in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1805304. [PMID: 26881014 PMCID: PMC4736771 DOI: 10.1155/2016/1805304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/28/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022]
Abstract
This review is focused on the possible causes of mitochondrial dysfunction in AD, underlying molecular mechanisms of this malfunction, possible causes and known consequences of APP, Aβ, and hyperphosphorylated tau presence in mitochondria, and the contribution of altered lipid metabolism (nonsterol isoprenoids) to pathological processes leading to increased formation and accumulation of the aforementioned hallmarks of AD. Abnormal protein folding and unfolded protein response seem to be the outcomes of impaired glycosylation due to metabolic disturbances in geranylgeraniol intermediary metabolism. The origin and consecutive fate of APP, Aβ, and tau are emphasized on intracellular trafficking apparently influenced by inaccurate posttranslational modifications. We hypothesize that incorrect intracellular processing of APP determines protein translocation to mitochondria in AD. Similarly, without obvious reasons, the passage of Aβ and tau to mitochondria is observed. APP targeted to mitochondria blocks the activity of protein translocase complex resulting in poor import of proteins central to oxidative phosphorylation. Besides, APP, Aβ, and neurofibrillary tangles of tau directly or indirectly impair mitochondrial biochemistry and bioenergetics, with concomitant generation of oxidative/nitrosative stress. Limited protective mechanisms are inadequate to prevent the free radical-mediated lesions. Finally, neuronal loss is observed in AD-affected brains typically by pathologic apoptosis.
Collapse
|
15
|
Ma Y, Kong L, Nan K, Qi S, Ru L, Ding C, Wang D. Apolipoprotein-J prevents angiotensin II-induced apoptosis in neonatal rat ventricular cells. Lipids Health Dis 2015; 14:114. [PMID: 26391229 PMCID: PMC4578334 DOI: 10.1186/s12944-015-0118-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/10/2015] [Indexed: 11/22/2022] Open
Abstract
Background Up-regulation of angiotensin II (AngII) occurs in cardiac diseases, such as congestive heart failure, cardiac hypertrophy, myocardial ischemia and atrial fibrillation, which represent major health problems. Evidence from in vivo studies suggests that the level of Apolipoprotein-J (ApoJ) is also elevated but plays a protective role in cardiovascular disease. This study aimed to evaluate the protective effects of ApoJ against cytotoxicity of AngII in neonatal rat ventricular cells (NRVCs). Methods and results In culture, NRVCs were damaged by exposure to AngII, and ApoJ overexpression using an adenovirus vector significantly reduced the AngII-induced cell injury. ApoJ also prevented AngII from augmenting Nox2/gp91phox expression. The reactive oxygen species (ROS) scavenger, Mn(III)TBAP, showed similar results of attenuating AngII-induced cell damage. Furthermore, ApoJ overexpression increased phosphorylation of Akt, and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 diminished the antioxidant effects of ApoJ, and prevented the protective effect of ApoJ against the cytotoxicity of AngII. Moreover, upregulation of nuclear factor κB (NF-κB) p65 expression and phosphorylation of p38 mitogen-activated protein kinase (MAPK) mediated by AngII in cultured NRVCs were significantly inhibited by overexpression of ApoJ. The p38 MAPK inhibitor SB203580 and the NF-κB inhibitor PDTC protected NRVCs from injury caused by AngII. Conclusions ApoJ serves as a cytoprotective protein in NRVCs against cytotoxicity of AngII through the PI3K-Akt-ROS and MAPK/ NF-κB pathways.
Collapse
Affiliation(s)
- Yanzhuo Ma
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Lingfeng Kong
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Kai Nan
- Health and Medical Development Research Center of Hebei Province, Shijiazhuang, Hebei, China.
| | - Shuying Qi
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Leisheng Ru
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Chao Ding
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Dongmei Wang
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
16
|
Moussavi Nik SH, Newman M, Wilson L, Ebrahimie E, Wells S, Musgrave I, Verdile G, Martins RN, Lardelli M. Alzheimer's disease-related peptide PS2V plays ancient, conserved roles in suppression of the unfolded protein response under hypoxia and stimulation of γ-secretase activity. Hum Mol Genet 2015; 24:3662-78. [PMID: 25814654 DOI: 10.1093/hmg/ddv110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/23/2015] [Indexed: 12/30/2022] Open
Abstract
The PRESENILIN1 and PRESENILIN2 genes encode structurally related proteases essential for γ-secretase activity. Of nearly 200 PRESENILIN mutations causing early onset, familial Alzheimer's disease (FAD) only the K115Efx10 mutation of PSEN2 causes truncation of the open reading frame. If translated, the truncated product would resemble a naturally occurring isoform of PSEN2 named PS2V that is induced by hypoxia and found at elevated levels in late onset Alzheimer's disease (AD) brains. The function of PS2V is largely unexplored. We show that zebrafish possess a PS2V-like isoform, PS1IV, produced from the fish's PSEN1 rather than PSEN2 orthologous gene. The molecular mechanism controlling formation of PS2V/PS1IV was probably present in the ancient common ancestor of the PSEN1 and PSEN2 genes. Human PS2V and zebrafish PS1IV have highly divergent structures but conserved abilities to stimulate γ-secretase activity and to suppress the unfolded protein response (UPR) under hypoxia. The putative protein truncation caused by K115Efx10 resembles PS2V in its ability to increase γ-secretase activity and suppress the UPR. This supports increased Aβ levels as a common link between K115Efx10 early onset AD and sporadic, late onset AD. The ability of mutant variants of PS2V to stimulate γ-secretase activity partially correlates with their ability to suppress the UPR. The cytosolic, transmembrane and luminal domains of PS2V are all critical to its γ-secretase and UPR-suppression activities. Our data support a model in which chronic hypoxia in aged brains promotes excessive Notch signalling and accumulation of Aβ that contribute to AD pathogenesis.
Collapse
Affiliation(s)
| | - Morgan Newman
- Department of Genetics and Evolution, School of Biological Sciences
| | - Lachlan Wilson
- Department of Genetics and Evolution, School of Biological Sciences
| | | | - Simon Wells
- Department of Genetics and Evolution, School of Biological Sciences
| | - Ian Musgrave
- Clinical and Experimental Pharmacology, University of Adelaide, Adelaide, SA 5005, Australia
| | - Giuseppe Verdile
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia and School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia and School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Michael Lardelli
- Department of Genetics and Evolution, School of Biological Sciences,
| |
Collapse
|
17
|
Plácido A, Pereira C, Duarte A, Candeias E, Correia S, Santos R, Carvalho C, Cardoso S, Oliveira C, Moreira P. The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: Implications for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1444-53. [DOI: 10.1016/j.bbadis.2014.05.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022]
|
18
|
Holo-APP and G-protein-mediated signaling are required for sAPPα-induced activation of the Akt survival pathway. Cell Death Dis 2014; 5:e1391. [PMID: 25165877 PMCID: PMC4454324 DOI: 10.1038/cddis.2014.352] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/10/2014] [Accepted: 07/21/2014] [Indexed: 01/29/2023]
Abstract
Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPPα (soluble APPα), which is generated by cleavage of APP by α-secretase along the non-amyloidogenic pathway. Recombinant sAPPα protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-depleted SH-SY5Y cells, but not in APP-like protein 1- and 2- (APLP1 and APLP2) depleted cells, indicating that expression of membrane-bound holo-APP is required for sAPPα-dependent neuroprotection. Trophic factor deprivation diminished the activity of the Akt survival pathway. Strikingly, both recombinant sAPPα and the APP-E1 domain were able to stimulate Akt activity in wild-type (wt) fibroblasts, SH-SY5Y cells and neurons, but failed to rescue in APP-deficient neurons or fibroblasts. The ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) inhibitor GI254023X exacerbated neuron death in organotypic (hippocampal) slice cultures of wt mice subjected to trophic factor and glucose deprivation. This cell death-enhancing effect of GI254023X could be completely rescued by applying exogenous sAPPα. Interestingly, sAPPα-dependent Akt induction was unaffected in neurons of APP-ΔCT15 mice that lack the C-terminal YENPTY motif of the APP intracellular region. In contrast, sAPPα-dependent rescue of Akt activation was completely abolished in APP mutant cells lacking the G-protein interaction motif located in the APP C-terminus and by blocking G-protein-dependent signaling with pertussis toxin. Collectively, our data provide new mechanistic insights into the physiologic role of APP in antagonizing neurotoxic stress: they suggest that cell surface APP mediates sAPPα-induced neuroprotection via G-protein-coupled activation of the Akt pathway.
Collapse
|
19
|
Abstract
The olfactory system has a rich cortical representation, including a large archicortical component present in most vertebrates, and in mammals neocortical components including the entorhinal and orbitofrontal cortices. Together, these cortical components contribute to normal odor perception and memory. They help transform the physicochemical features of volatile molecules inhaled or exhaled through the nose into the perception of odor objects with rich associative and hedonic aspects. This chapter focuses on how olfactory cortical areas contribute to odor perception and begins to explore why odor perception is so sensitive to disease and pathology. Odor perception is disrupted by a wide range of disorders including Alzheimer's disease, Parkinson's disease, schizophrenia, depression, autism, and early life exposure to toxins. This olfactory deficit often occurs despite maintained functioning in other sensory systems. Does the unusual network of olfactory cortical structures contribute to this sensitivity?
Collapse
|
20
|
Grimm MOW, Mett J, Stahlmann CP, Haupenthal VJ, Zimmer VC, Hartmann T. Neprilysin and Aβ Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer's Disease. Front Aging Neurosci 2013; 5:98. [PMID: 24391587 PMCID: PMC3870290 DOI: 10.3389/fnagi.2013.00098] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/09/2013] [Indexed: 12/18/2022] Open
Abstract
One of the characteristic hallmarks of Alzheimer's disease (AD) is an accumulation of amyloid β (Aβ) leading to plaque formation and toxic oligomeric Aβ complexes. Besides the de novo synthesis of Aβ caused by amyloidogenic processing of the amyloid precursor protein (APP), Aβ levels are also highly dependent on Aβ degradation. Several enzymes are described to cleave Aβ. In this review we focus on one of the most prominent Aβ degrading enzymes, the zinc-metalloprotease Neprilysin (NEP). In the first part of the review we discuss beside the general role of NEP in Aβ degradation the alterations of the enzyme observed during normal aging and the progression of AD. In vivo and cell culture experiments reveal that a decreased NEP level results in an increased Aβ level and vice versa. In a pathological situation like AD, it has been reported that NEP levels and activity are decreased and it has been suggested that certain polymorphisms in the NEP gene result in an increased risk for AD. Conversely, increasing NEP activity in AD mouse models revealed an improvement in some behavioral tests. Therefore it has been suggested that increasing NEP might be an interesting potential target to treat or to be protective for AD making it indispensable to understand the regulation of NEP. Interestingly, it is discussed that the APP intracellular domain (AICD), one of the cleavage products of APP processing, which has high similarities to Notch receptor processing, might be involved in the transcriptional regulation of NEP. However, the mechanisms of NEP regulation by AICD, which might be helpful to develop new therapeutic strategies, are up to now controversially discussed and summarized in the second part of this review. In addition, we review the impact of AICD not only in the transcriptional regulation of NEP but also of further genes.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Experimental Neurology, Saarland University , Homburg, Saar , Germany ; Neurodegeneration and Neurobiology, Saarland University , Homburg, Saar , Germany ; Deutsches Institut für DemenzPrävention, Saarland University , Homburg, Saar , Germany
| | - Janine Mett
- Experimental Neurology, Saarland University , Homburg, Saar , Germany
| | | | | | - Valerie C Zimmer
- Experimental Neurology, Saarland University , Homburg, Saar , Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University , Homburg, Saar , Germany ; Neurodegeneration and Neurobiology, Saarland University , Homburg, Saar , Germany ; Deutsches Institut für DemenzPrävention, Saarland University , Homburg, Saar , Germany
| |
Collapse
|
21
|
Reinhardt S, Schuck F, Grösgen S, Riemenschneider M, Hartmann T, Postina R, Grimm M, Endres K. Unfolded protein response signaling by transcription factor XBP-1 regulates ADAM10 and is affected in Alzheimer's disease. FASEB J 2013; 28:978-97. [PMID: 24165480 DOI: 10.1096/fj.13-234864] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Alzheimer's disease (AD), disturbed homeostasis of the proteases competing for amyloid precursor protein processing has been reported: a disintegrin and metalloproteinase 10 (ADAM10), the physiological α-secretase, is decreased in favor of the amyloid-β-generating enzyme BACE-1. To identify transcription factors that modulate the expression of either protease, we performed a screening approach: 48 transcription factors significantly interfered with ADAM10/BACE-1-promoter activity. One selective inducer of ADAM10 gene expression is the X-box binding protein-1 (XBP-1). This protein regulates the unfolded protein-response pathway. We demonstrate that particularly the spliced XBP-1 variant dose dependently regulates ADAM10 expression, which can be synergistically enhanced by 100 nM insulin. Analysis of 2 different transgenic mouse models (APP/PS1 and 5xFAD) revealed that at early time points in pathology XBP-1 metabolism is induced. This is accompanied by a 2-fold augmented ADAM10 amount as compared with nontransgenic littermates (P=0.011). Along with aging of the mice, the system is counterregulated, and XBP-1 together with ADAM10 expression level decreased to ∼50% as compared with control animals. Analyses of expression levels in human AD brains showed that ADAM10 mRNA correlated with active XBP-1 (r=0.3120), but expression did not reach levels of healthy age-matched controls, suggesting deregulation of XBP-1 signaling. Our results demonstrate that XBP-1 is a driver of ADAM10 gene expression and that disturbance of this pathway might contribute to development or progression of AD.
Collapse
Affiliation(s)
- Sven Reinhardt
- 1Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Untere Zahlbacher Strasse 8, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The accumulation of intracellular β amyloid (Aβ) may be one of the factors leading to neuronal cell death in Alzheimer's disease (AD). Using a pyrazole called CNB-001, which was selected for its ability to reduce intracellular Aβ, we show that the activation of the eIF2α/ATF4 arm of the unfolded protein response is sufficient to degrade aggregated intracellular Aβ. CNB-001 is a potent inhibitor of 5-lipoxygenase (5-LOX), decreases 5-LOX expression, and increases proteasome activity. 5-LOX inhibition induces eIF2α and PERK (protein kinase R-like extracellular signal-regulated kinase) phosphorylation, and HSP90 and ATF4 levels. When fed to AD transgenic mice, CNB-001 also increases eIF2α phosphorylation and HSP90 and ATF4 levels, and limits the accumulation of soluble Aβ and ubiquitinated aggregated proteins. Finally, CNB-001 maintains the expression of synapse-associated proteins and improves memory. Therefore, 5-LOX metabolism is a key element in the promotion of endoplasmic reticulum dysfunction, and its inhibition under conditions of stress is sufficient to reduce proteotoxicity both in vivo and in vitro.
Collapse
|
23
|
Zamarbide M, Martinez-Pinilla E, Ricobaraza A, Aragón T, Franco R, Pérez-Mediavilla A. Phenyl acyl acids attenuate the unfolded protein response in tunicamycin-treated neuroblastoma cells. PLoS One 2013; 8:e71082. [PMID: 23976981 PMCID: PMC3744558 DOI: 10.1371/journal.pone.0071082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/26/2013] [Indexed: 01/12/2023] Open
Abstract
Understanding how neural cells handle proteostasis stress in the endoplasmic reticulum (ER) is important to decipher the mechanisms that underlie the cell death associated with neurodegenerative diseases and to design appropriate therapeutic tools. Here we have compared the sensitivity of a human neuroblastoma cell line (SH-SY5H) to the ER stress caused by an inhibitor of protein glycosylation with that observed in human embryonic kidney (HEK-293T) cells. In response to stress, SH-SY5H cells increase the expression of mRNA encoding downstream effectors of ER stress sensors and transcription factors related to the unfolded protein response (the spliced X-box binding protein 1, CCAAT-enhancer-binding protein homologous protein, endoplasmic reticulum-localized DnaJ homologue 4 and asparagine synthetase). Tunicamycin-induced death of SH-SY5H cells was prevented by terminal aromatic substituted butyric or valeric acids, in association with a decrease in the mRNA expression of stress-related factors, and in the accumulation of the ATF4 protein. Interestingly, this decrease in ATF4 protein occurs without modifying the phosphorylation of the translation initiation factor eIF2α. Together, these results show that when short chain phenyl acyl acids alleviate ER stress in SH-SY5H cells their survival is enhanced.
Collapse
Affiliation(s)
- Marta Zamarbide
- Cell and Molecular Neuropharmacology Laboratory, Neurosciences Division, Center for Applied Medical Research - CIMA, University of Navarra, Pamplona, Spain
| | - Eva Martinez-Pinilla
- Cell and Molecular Neuropharmacology Laboratory, Neurosciences Division, Center for Applied Medical Research - CIMA, University of Navarra, Pamplona, Spain
| | - Ana Ricobaraza
- Cell and Molecular Neuropharmacology Laboratory, Neurosciences Division, Center for Applied Medical Research - CIMA, University of Navarra, Pamplona, Spain
- Laboratoire de Neurobiologie, ESPCI-CNRS UMR 7637, ESPCI-ParisTech, Paris, France
| | - Tomás Aragón
- Gene Therapy Division, Center for Applied Medical Research – CIMA, University of Navarra, Pamplona, Spain
| | - Rafael Franco
- Cell and Molecular Neuropharmacology Laboratory, Neurosciences Division, Center for Applied Medical Research - CIMA, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Alberto Pérez-Mediavilla
- Cell and Molecular Neuropharmacology Laboratory, Neurosciences Division, Center for Applied Medical Research - CIMA, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetic, University of Navarra, Pamplona, Spain
| |
Collapse
|
24
|
Ollivier A, Grougnet R, Cachet X, Meriane D, Ardisson J, Boutefnouchet S, Deguin B. Large scale purification of the SERCA inhibitor Thapsigargin from Thapsia garganica L. roots using centrifugal partition chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 926:16-20. [DOI: 10.1016/j.jchromb.2013.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
25
|
Viana RJS, Nunes AF, Rodrigues CMP. Endoplasmic reticulum enrollment in Alzheimer's disease. Mol Neurobiol 2012; 46:522-34. [PMID: 22815194 DOI: 10.1007/s12035-012-8301-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/05/2012] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) poses a huge challenge for society and health care worldwide as molecular pathogenesis of the disease is poorly understood and curative treatment does not exist. The mechanisms leading to accelerated neuronal cell death in AD are still largely unknown, but accumulation of misfolded disease-specific proteins has been identified as potentially involved. In the present review, we describe the essential role of endoplasmic reticulum (ER) in AD. Despite the function that mitochondria may play as the central major player in the apoptotic process, accumulating evidence highlights ER as a critical organelle in AD. Stress that impairs ER physiology leads to accumulation of unfolded or misfolded proteins, such as amyloid β (Aβ) peptide, the major component of amyloid plaques. In an attempt to ameliorate the accumulation of unfolded proteins, ER stress triggers a protective cellular mechanism, which includes the unfolded protein response (UPR). However, when activation of the UPR is severe or prolonged enough, the final cellular outcome is pathologic apoptotic cell death. Distinct pathways can be activated in this process, involving stress sensors such as the JNK pathway or ER chaperones such as Bip/GRP94, stress modulators such as Bcl-2 family proteins, or even stress effectors such as caspase-12. Here, we detail the involvement of the ER and associated stress pathways in AD and discuss potential therapeutic strategies targeting ER stress.
Collapse
Affiliation(s)
- Ricardo J S Viana
- Research Institute for Medicines and Pharmaceutical Sciences, University of Lisbon, Lisbon 1649-003, Portugal
| | | | | |
Collapse
|
26
|
Pardossi-Piquard R, Checler F. The physiology of the β-amyloid precursor protein intracellular domain AICD. J Neurochem 2011; 120 Suppl 1:109-124. [PMID: 22122663 DOI: 10.1111/j.1471-4159.2011.07475.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The amyloid-β precursor protein (βAPP) undergoes several cleavages by enzymatic activities called secretases. Numerous studies aimed at studying the biogenesis and catabolic fate of Aβ peptides, the proteinaceous component of the senile plaques that accumulate in Alzheimer's disease-affected brains. Relatively recently, another secretase-mediated β-APP-derived catabolite called APP IntraCellular Domain (AICD) entered the game. Whether AICD corresponded to a biologically inert by-pass product of βAPP processing or whether it could harbor its own function remained questionable. In this study, we review the mechanisms by which AICD is generated and how its production is regulated. Furthermore, we discuss the degradation mechanism underlying its rapid catabolic fate. Finally, we review putative AICD-related functions and more particularly, the numerous studies indicating that AICD could translocate to the nucleus and control at a transcriptional level, the expression of a series of proteins involved in various functions including the control of cell death and Aβ degradation.
Collapse
Affiliation(s)
- Raphaëlle Pardossi-Piquard
- Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire UMR6097 CNRS, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire UMR6097 CNRS, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
27
|
Roles of amyloid precursor protein family members in neuroprotection, stress signaling and aging. Exp Brain Res 2011; 217:471-9. [PMID: 22086493 DOI: 10.1007/s00221-011-2932-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/28/2011] [Indexed: 12/24/2022]
Abstract
The roles of amyloid precursor protein (APP) family members in normal brain function are poorly understood. Under physiological conditions the majority of APP appears to be processed along the non-amyloidogenic pathway leading to the formation of the secreted N-terminal APP fragment sAPPα. This cleavage product of APP has been implicated in several physiological processes such as neuroprotection, synaptic plasticity, neurite outgrowth and synaptogenesis. In this review we focus on the role of APP family members in neuroprotection and summarize the cellular and molecular mechanisms which are believed to mediate this effect. We propose that a reduction of APP processing along the non-amyloidogenic pathway during brain aging could result in an enhanced susceptibility of neurons to cellular stress and could contribute to neurodegeneration in Alzheimer's disease.
Collapse
|