1
|
Key J, Almaguer-Mederos LE, Kandi AR, Sen NE, Gispert S, Köpf G, Meierhofer D, Auburger G. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation. Neurobiol Dis 2025; 209:106903. [PMID: 40220918 DOI: 10.1016/j.nbd.2025.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L interactors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins, including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established interactors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1 accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of ATXN2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the maintenance of differentiated neurons.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Gabriele Köpf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany; Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Fachbereich Medizin, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Nagy ZF, Pál M, Engelhardt JI, Molnár MJ, Klivényi P, Széll M. Beyond C9orf72: repeat expansions and copy number variations as risk factors of amyotrophic lateral sclerosis across various populations. BMC Med Genomics 2024; 17:30. [PMID: 38254109 PMCID: PMC10804878 DOI: 10.1186/s12920-024-01807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder which is characterized by the loss of both upper and lower motor neurons in the central nervous system. In a significant fraction of ALS cases - irrespective of family history- a genetic background may be identified. The genetic background of ALS shows a high variability from one ethnicity to another. The most frequent genetic cause of ALS is the repeat expansion of the C9orf72 gene. With the emergence of next-generation sequencing techniques and copy number alteration calling tools the focus in ALS genetics has shifted from disease causing genes and mutations towards genetic susceptibility and risk factors.In this review we aimed to summarize the most widely recognized and studied ALS linked repeat expansions and copy number variations other than the hexanucleotide repeat expansion in the C9orf72 gene. We compare and contrast their involvement and phenotype modifying roles in ALS among different populations.
Collapse
Affiliation(s)
- Zsófia Flóra Nagy
- Department of Medical Genetics, University of Szeged, Szeged, Hungary.
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary.
| | - Margit Pál
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
- HUN-REN - SZTE Functional Clinical Genetics Research Group, Szeged, Hungary
| | | | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
- HUN-REN-SE Multiomics Neurodegeneration Research Group, Budapest, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
- HUN-REN - SZTE Functional Clinical Genetics Research Group, Szeged, Hungary
| |
Collapse
|
3
|
Zeballos C MA, Moore HJ, Smith TJ, Powell JE, Ahsan NS, Zhang S, Gaj T. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. Nat Commun 2023; 14:6492. [PMID: 37838698 PMCID: PMC10576788 DOI: 10.1038/s41467-023-42147-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
The TDP-43 proteinopathies, which include amyotrophic lateral sclerosis and frontotemporal dementia, are a devastating group of neurodegenerative disorders that are characterized by the mislocalization and aggregation of TDP-43. Here we demonstrate that RNA-targeting CRISPR effector proteins, a programmable class of gene silencing agents that includes the Cas13 family of enzymes and Cas7-11, can be used to mitigate TDP-43 pathology when programmed to target ataxin-2, a modifier of TDP-43-associated toxicity. In addition to inhibiting the aggregation and transit of TDP-43 to stress granules, we find that the in vivo delivery of an ataxin-2-targeting Cas13 system to a mouse model of TDP-43 proteinopathy improved functional deficits, extended survival, and reduced the severity of neuropathological hallmarks. Further, we benchmark RNA-targeting CRISPR platforms against ataxin-2 and find that high-fidelity forms of Cas13 possess improved transcriptome-wide specificity compared to Cas7-11 and a first-generation effector. Our results demonstrate the potential of CRISPR technology for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- M Alejandra Zeballos C
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hayden J Moore
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tyler J Smith
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jackson E Powell
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Najah S Ahsan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Zeballos C MA, Moore HJ, Smith TJ, Powell JE, Ahsan NS, Zhang S, Gaj T. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536072. [PMID: 37066174 PMCID: PMC10104115 DOI: 10.1101/2023.04.07.536072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The TDP-43 proteinopathies, which include amyotrophic lateral sclerosis and frontotemporal dementia, are a devastating group of neurodegenerative disorders that are characterized by the mislocalization and aggregation of TDP-43. Here we demonstrate that RNA-targeting CRISPR effector proteins, a programmable class of gene silencing agents that includes the Cas13 family of enzymes and Cas7-11, can be used to mitigate TDP-43 pathology when programmed to target ataxin-2, a modifier of TDP-43-associated toxicity. In addition to inhibiting the aggregation and transit of TDP-43 to stress granules, we find that the in vivo delivery of an ataxin-2-targeting Cas13 system to a mouse model of TDP-43 proteinopathy improved functional deficits, extended survival, and reduced the severity of neuropathological hallmarks. Further, we benchmark RNA-targeting CRISPR platforms against ataxin-2 and find that high-fidelity forms of Cas13 possess improved transcriptome-wide specificity compared to Cas7-11 and a first-generation effector. Our results demonstrate the potential of CRISPR technology for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- M. Alejandra Zeballos C
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hayden J. Moore
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Tyler J. Smith
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jackson E. Powell
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Najah S. Ahsan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Thomas Gaj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Hou X, Li W, Liu P, Liu Z, Yuan Y, Ni J, Shen L, Tang B, Wang J. The Clinical and Ploynucleotide Repeat Expansion Analysis of ATXN2, NOP56, AR and C9orf72 in Patients With ALS From Mainland China. Front Neurol 2022; 13:811202. [PMID: 35599735 PMCID: PMC9120572 DOI: 10.3389/fneur.2022.811202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Repeat expansions, including those in C9orf72 and ATXN2, have been implicated in amyotrophic lateral sclerosis (ALS). However, there have been few studies on the association of AR and NOP56 repeat expansion with ALS, especially in China. Accordingly, we aimed to evaluate the frequency of C9orf72 and ATXN2 repeat mutations and investigate whether NOP56 and AR repeat expansion are risk factors for ALS. Methods In this study, 736 ALS patients and several hundred healthy controls were recruited. Polymerase chain reaction (PCR) and repeat-primed PCR (RP-PCR) were performed to determine the repeat lengths in C9orf72, ATXN2, AR, and NOP56. Results GGGGCC repeats in C9orf72 were observed in six ALS patients (0.8%, 6/736) but not in any of the controls (0/365). The patients with pathogenic GGGGCC repeats showed shorter median survival times than those with a normal genotype (p = 0.006). Regarding ATXN2 CAG repeats, we identified that intermediate repeat lengths (29–34 copies) were associated with ALS (p = 0.033), and there was no difference in clinical characteristics between the groups with and without intermediate repeats (p > 0.05). Meanwhile, we observed that there was no association between the repeat size in AR and NOP56 and ALS (p > 0.05). Conclusions Our results demonstrated that pathogenetic repeats in C9orf72 are rare in China, while intermediate CAG repeats in ATXN2 are more frequent but have no effect on disease phenotypes; the repeat size in AR and NOP56 may not be a risk factor for ALS.
Collapse
Affiliation(s)
- Xiaorong Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Pan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ni
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- *Correspondence: Junling Wang
| |
Collapse
|
6
|
Naruse H, Matsukawa T, Ishiura H, Mitsui J, Takahashi Y, Takano H, Goto J, Toda T, Tsuji S. Association of ATXN2 intermediate-length CAG repeats with amyotrophic lateral sclerosis correlates with the distributions of normal CAG repeat alleles among individual ethnic populations. Neurogenetics 2019; 20:65-71. [PMID: 30847648 DOI: 10.1007/s10048-019-00570-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
Intermediate-length CAG repeats in ATXN2 have been widely shown to be a risk factor for sporadic amyotrophic lateral sclerosis (SALS). To evaluate the association of ATXN2 intermediate-length CAG repeat alleles with an increased risk of SALS, we investigated distributions of CAG repeat alleles in 394 patients with SALS and 490 control individuals in the Japanese population. In the intermediate-length repeat units of 29 or more, we identified one SALS patient with 31 repeat units and two control individuals with 30 repeat units. Thus, no significant differences in the carrier frequency of intermediate-length CAG repeat alleles were detected between patients with SALS and control individuals. When we investigated the distribution of "large normal alleles" defined as ATXN2 CAG repeats ranging from 24 up to 33 in the Japanese population compared with those in other populations in previous studies, the frequency of large normal alleles was significantly higher in the European and North American series than in the Japanese series. Moreover, these frequencies in the Turkish, Chinese, Korean, and Brazilian (Latin American) series were also higher than that in the Japanese series. These results raise the possibility that the frequencies of large normal alleles in individual populations underlie the frequencies of ALS risk alleles in the corresponding populations.
Collapse
Affiliation(s)
- Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroki Takano
- Department of Neurology, Tachikawa General Hospital, Niigata, Japan
| | - Jun Goto
- Department of Neurology, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan. .,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan.
| |
Collapse
|
7
|
Nicolas G, Veltman JA. The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol 2019; 137:183-207. [PMID: 30478624 PMCID: PMC6513904 DOI: 10.1007/s00401-018-1939-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings of the most common adult-onset neurodegenerative disorders (AOND) are complex in majority of the cases. In some families, however, the disease can be inherited in a Mendelian fashion as an autosomal-dominant trait. Next to that, patients carrying mutations in the same disease genes have been reported despite a negative family history. Although challenging to demonstrate due to the late onset of the disease in most cases, the occurrence of de novo mutations can explain this sporadic presentation, as demonstrated for severe neurodevelopmental disorders. Exome or genome sequencing of patient-parent trios allows a hypothesis-free study of the role of de novo mutations in AOND and the discovery of novel disease genes. Another hypothesis that may explain a proportion of sporadic AOND cases is the occurrence of a de novo mutation after the fertilization of the oocyte (post-zygotic mutation) or even as a late-somatic mutation, restricted to the brain. Such somatic mutation hypothesis, that can be tested with the use of novel sequencing technologies, is fully compatible with the seeding and spreading mechanisms of the pathological proteins identified in most of these disorders. We review here the current knowledge and future perspectives on de novo mutations in known and novel candidate genes identified in the most common AONDs such as Alzheimer's disease, Parkinson's disease, the frontotemporal lobar degeneration spectrum and Prion disorders. Also, we review the first lessons learned from recent genomic studies of control and diseased brains and the challenges which remain to be addressed.
Collapse
Affiliation(s)
- Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, 22, Boulevard Gambetta, 76000, 76031, Rouen Cedex, France.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Liu X, He J, Gao FB, Gitler AD, Fan D. The epidemiology and genetics of Amyotrophic lateral sclerosis in China. Brain Res 2018; 1693:121-126. [PMID: 29501653 PMCID: PMC6486791 DOI: 10.1016/j.brainres.2018.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder associated with loss of motor neurons. Previous knowledge of the disease has been mainly based on studies from Caucasian ALS patients of European descent. Here we review the epidemiological characteristics of ALS among the Chinese population in order to compare the similarities and differences between Chinese ALS cases and those from other countries. We describe a potential lower incidence and prevalence of ALS, a younger age of onset and a lower proportion of familial ALS cases in the Chinese population. Additionally, we highlight potential genetic differences between Chinese and Caucasian ALS patients. Most notably, the frequency of GGGGCC repeat expansions in C9ORF72 in Chinese ALS is significantly lower than in Caucasians. Since some conclusions might not be consistent across all of the studies around China to date, we suggest that it is necessary to carry out a prospective population-based study and large-scale gene sequencing around to better define epidemiological and genetic features of Chinese ALS patients.
Collapse
Affiliation(s)
- Xiaolu Liu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, PR China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing 100191, PR China
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, PR China.
| |
Collapse
|
9
|
Analysis of ATXN2 trinucleotide repeats in Korean patients with amyotrophic lateral sclerosis. Neurobiol Aging 2018; 67:201.e5-201.e8. [DOI: 10.1016/j.neurobiolaging.2018.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 11/20/2022]
|
10
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
11
|
C9orf72 hexanucleotide repeat expansions and Ataxin 2 intermediate length repeat expansions in Indian patients with amyotrophic lateral sclerosis. Neurobiol Aging 2017; 56:211.e9-211.e14. [PMID: 28527524 DOI: 10.1016/j.neurobiolaging.2017.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/10/2017] [Accepted: 04/15/2017] [Indexed: 12/18/2022]
Abstract
Repeat expansions in the chromosome 9 open reading frame 72 (C9orf72) gene have been recognized as a major contributor to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia in the Caucasian population. Intermediate length repeat expansions of CAG (polyQ) repeat in the ATXN2 gene have also been reported to increase the risk of developing ALS in North America and Europe. We screened 131 ALS patients and 127 healthy controls from India for C9orf72 and ATXN2 repeat expansions. We found pathogenic hexanucleotide expansions in 3 of the 127 sporadic ALS patients, in 1 of the 4 familial ALS patients, and in none of the healthy controls. In addition, our findings suggest that the 10 base-pair deletion that masks detection of C9orf72 repeat expansion does not explain the low frequency of this repeat expansion among Indian ALS patients. Intermediate length polyQ expansions (27Qs-32Qs) in the ATXN2 gene were detected in 6 of the 127 sporadic ALS patients and 2 of the 127 of the healthy controls. Long ATXN2 polyQ repeats (≥33Qs) were not present in any of the ALS patients or controls. Our findings highlight the need for large-scale multicenter studies on Indian ALS patients to better understand the underlying genetic causes.
Collapse
|
12
|
Carmo-Silva S, Nobrega C, Pereira de Almeida L, Cavadas C. Unraveling the Role of Ataxin-2 in Metabolism. Trends Endocrinol Metab 2017; 28:309-318. [PMID: 28117213 DOI: 10.1016/j.tem.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022]
Abstract
Ataxin-2 is a polyglutamine protein implicated in several biological processes such as RNA metabolism and cytoskeleton reorganization. Ataxin-2 is highly expressed in various tissues including the hypothalamus, a brain region that controls food intake and energy balance. Ataxin-2 expression is influenced by nutritional status. Emerging studies discussed here now show that ataxin-2 deficiency correlates with insulin resistance and dyslipidemia, an action mediated via the mTOR pathway, suggesting that ataxin-2 might play key roles in metabolic homeostasis including body weight regulation, insulin sensitivity, and cellular stress responses. In this review we also discuss the relevance of ataxin-2 in the hypothalamic regulation of energy balance, and its potential as a therapeutic target in metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Sara Carmo-Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clevio Nobrega
- Department of Biomedical Sciences and Medicine, Center for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Claudia Cavadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
13
|
Sproviero W, Shatunov A, Stahl D, Shoai M, van Rheenen W, Jones AR, Al-Sarraj S, Andersen PM, Bonini NM, Conforti FL, Van Damme P, Daoud H, Del Mar Amador M, Fogh I, Forzan M, Gaastra B, Gellera C, Gitler AD, Hardy J, Fratta P, La Bella V, Le Ber I, Van Langenhove T, Lattante S, Lee YC, Malaspina A, Meininger V, Millecamps S, Orrell R, Rademakers R, Robberecht W, Rouleau G, Ross OA, Salachas F, Sidle K, Smith BN, Soong BW, Sorarù G, Stevanin G, Kabashi E, Troakes C, van Broeckhoven C, Veldink JH, van den Berg LH, Shaw CE, Powell JF, Al-Chalabi A. ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiol Aging 2017; 51:178.e1-178.e9. [PMID: 28017481 PMCID: PMC5302215 DOI: 10.1016/j.neurobiolaging.2016.11.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
We investigated a CAG trinucleotide repeat expansion in the ATXN2 gene in amyotrophic lateral sclerosis (ALS). Two new case-control studies, a British dataset of 1474 ALS cases and 567 controls, and a Dutch dataset of 1328 ALS cases and 691 controls were analyzed. In addition, to increase power, we systematically searched PubMed for case-control studies published after 1 August 2010 that investigated the association between ATXN2 intermediate repeats and ALS. We conducted a meta-analysis of the new and existing studies for the relative risks of ATXN2 intermediate repeat alleles of between 24 and 34 CAG trinucleotide repeats and ALS. There was an overall increased risk of ALS for those carrying intermediate sized trinucleotide repeat alleles (odds ratio 3.06 [95% confidence interval 2.37-3.94]; p = 6 × 10-18), with an exponential relationship between repeat length and ALS risk for alleles of 29-32 repeats (R2 = 0.91, p = 0.0002). No relationship was seen for repeat length and age of onset or survival. In contrast to trinucleotide repeat diseases, intermediate ATXN2 trinucleotide repeat expansion in ALS does not predict age of onset but does predict disease risk.
Collapse
Affiliation(s)
- William Sproviero
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Aleksey Shatunov
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Daniel Stahl
- Department of Biostatistics, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Maryam Shoai
- Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK
| | - Wouter van Rheenen
- Department of Neurology, Brain Center Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ashley R Jones
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, UK
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Philip Van Damme
- Neurology Department, University Hospitals Leuven, Leuven, Belgium; Vesalius Research Center, VIB, Leuven, Belgium; Disease (LIND), KU Leuven - University of Leuven, Leuven, Belgium
| | - Hussein Daoud
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Maria Del Mar Amador
- Department of Nervous System Diseases, ALS Paris ALS Center for Rare Diseases, Groupe Hospitalier Pitié Salpêtrière, APHP, Paris, France
| | - Isabella Fogh
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Monica Forzan
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Ben Gaastra
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Cinzia Gellera
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - John Hardy
- Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK
| | - Pietro Fratta
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, UK
| | - Vincenzo La Bella
- ALS Clinical Research Center, Bio. Ne. C., University of Palermo, Palermo, Italy
| | - Isabelle Le Ber
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS1127, Paris, France; AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Centre de Référence des Démences Rares, Departement de Neurologie, Paris, France
| | - Tim Van Langenhove
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Insititute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Serena Lattante
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS1127, Paris, France
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Andrea Malaspina
- North-East London and Essex MND Care Centre - Neuroscience and Trauma Centre, Blizard, Institute of Cell and Molecular Medicine, Barts & the London School of Medicine & Dentistry, Barts Health NHS Trust, London, UK
| | - Vincent Meininger
- Hôpital de la Pitié-Salpêtrière, institut de recherche translationnelle en neurosciences (A-ICM), Paris, France; Hôpital de la Pitié-Salpêtrière, réseau SLA IdF, Paris, France
| | - Stéphanie Millecamps
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS1127, Paris, France
| | - Richard Orrell
- Department of Clinical Neuroscience, University College London (UCL) Institute of Neurology, London, UK
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Wim Robberecht
- Vesalius Research Center, VIB, Leuven, Belgium; Disease (LIND), KU Leuven - University of Leuven, Leuven, Belgium
| | - Guy Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Francois Salachas
- Department of Nervous System Diseases, ALS Paris ALS Center for Rare Diseases, Groupe Hospitalier Pitié Salpêtrière, APHP, Paris, France; Institut du Cerveau et de la Moelle épinière (ICM), Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS1127, Paris, France
| | - Katie Sidle
- Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK
| | - Bradley N Smith
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Bing-Wen Soong
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Giovanni Stevanin
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS1127, Paris, France; Neurogenetics team, Ecole Pratique des Hautes Etudes, Paris, France
| | - Edor Kabashi
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS1127, Paris, France
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Christine van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Insititute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - John F Powell
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| |
Collapse
|
14
|
Janssens J, Philtjens S, Kleinberger G, Van Mossevelde S, van der Zee J, Cacace R, Engelborghs S, Sieben A, Banzhaf-Strathmann J, Dillen L, Merlin C, Cuijt I, Robberecht C, Schmid B, Santens P, Ivanoiu A, Vandenbulcke M, Vandenberghe R, Cras P, De Deyn PP, Martin JJ, Maudsley S, Haass C, Cruts M, Van Broeckhoven C. Investigating the role of filamin C in Belgian patients with frontotemporal dementia linked to GRN deficiency in FTLD-TDP brains. Acta Neuropathol Commun 2015; 3:68. [PMID: 26555887 PMCID: PMC4641381 DOI: 10.1186/s40478-015-0246-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) inclusions are pathological hallmarks of patients with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Loss of TDP-43 in zebrafish engenders a severe muscle and vascular phenotype with a concomitant elevation of filamin C (FLNC) levels, an observation confirmed in the frontal cortex of FTLD-TDP patients. Here, we aimed to further assess the contribution of FLNC to frontotemporal dementia (FTD) etiology. We conducted a mutational screening of FLNC in a cohort of 529 unrelated Belgian FTD and FTD-ALS patients, and a control cohort of 920 unrelated and age-matched individuals. Additionally we performed an in-depth characterization of FLNC expression levels in FTD patients and a murine FTD model. In total 68 missense variants were identified of which 19 (MAF < 1 %) were patient-only. Gene burden analysis demonstrated a significant association between the presence of rare variants in FLNC and disease (P = 0.0349, RR = 1.46 [95 % CI 1.03–2.07]). Furthermore, elevated FLNC expression levels, observed previously in FTLD-TDP patients, were mainly attributable to FTD patients with the progranulin (GRN) p.0(IVS1 + 5G > C) loss-of-function mutation. Increased FLNC levels were, to a lesser extent, also identified in a FLNC p.V831I variant carrier and in FTD patients with the p.R159H mutation in valosin-containing protein (VCP). The GRN-associated increase of FLNC was confirmed in the frontal cortex of aged Grn knockout mice starting at 16–18 months of age. Combined quantitative proteomic and bioinformatic analyses of the frontal cortex of FTD patients possessing elevated FLNC levels, identified multiple altered protein factors involved in accelerated aging, neurodegeneration and synaptogenesis. Our findings further support the involvement of aberrant FLNC expression levels in FTD pathogenesis. Identification of increased FLNC levels in aged Grn mice and impaired pathways related to aging and neurodegeneration, implies a potential role for FLNC in mediating or accelerating the aging process.
Collapse
|
15
|
Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Trends Genet 2015; 31:263-73. [DOI: 10.1016/j.tig.2015.03.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022]
|
16
|
Neuenschwander AG, Thai KK, Figueroa KP, Pulst SM. Amyotrophic lateral sclerosis risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis. JAMA Neurol 2015; 71:1529-34. [PMID: 25285812 DOI: 10.1001/jamaneurol.2014.2082] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE Repeats of CAG in the ataxin 2 gene (ATXN2) in the long-normal range (sometimes referred to as intermediate) have been identified as modifiers of amyotrophic lateral sclerosis (ALS) risk. Prior studies have used thresholding considering various cutoffs for ATXN2 repeat length. OBJECTIVE To calculate association between ATXN2 CAG repeat alleles and increased risk of ALS across multiple ethnic groups. DATA SOURCES The MEDLINE database was searched for studies published by December 29, 2013, reporting ATXN2 CAG repeat length in patients with ALS and controls. STUDY SELECTION Studies were included if they reported original data on relative risks or odds ratios (ORs) from ALS and control populations for individual ATXN2 alleles. Review articles that reported no new data were not included in the analysis. DATA EXTRACTION AND SYNTHESIS Analysis of allele distribution was performed to ensure that all studies followed identical allele sizing. The ORs, 95% confidence intervals, and population attributable risk percentages were calculated according to standard procedures. MAIN OUTCOMES AND MEASURES Occurrence of ALS associated with ATXN2 repeat alleles, expressed as ORs. RESULTS Nine studies were analyzed, including 7505 controls and 6151 sporadic ALS cases. The ALS and control cohorts were recruited from different geographical and ethnic regions including the United States, French Canada/Canada, Belgium and the Netherlands, Germany, Italy, mainland China, Turkey, and Flanders-Belgium. The ATXN2 CAG repeat lengths ranged from 13 to 39 in patients with ALS and from 13 to 34 in controls. The ORs were less than 1.00 for alleles with 25 to 28 repeats. The OR was 1.55 for 30 repeats, but this elevation was not statistically significant (95% CI, 0.88-2.73). The ORs were 2.70 (95% CI, 1.47-4.93) for 31 CAG repeats, 11.09 (95% CI, 4.16-29.57) for 32 repeats, and 5.76 (95% CI, 1.79-18.57) for 33 repeats. CONCLUSIONS AND RELEVANCE In contrast to prior studies with smaller numbers, risk for ALS associated with long-normal alleles is complex. Alleles with 27 and 28 repeats lower ALS risk slightly. The risk for ALS increases beginning with 29 repeats and reaches a maximum at 32 and 33 repeats. Of note, alleles with repeats of these lengths are known to be predisposed to meiotic expansion to full-penetrance mutant alleles. In patients with ALS, alleles with 31 to 33 repeats may have undergone preferential expansion in motor neurons during mitosis or DNA repair. Our meta-analysis provides a framework for counseling individuals with long-normal ATXN2 repeats.
Collapse
Affiliation(s)
| | - Khanh K Thai
- Department of Neurology, University of Utah, Salt Lake City
| | | | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City
| |
Collapse
|
17
|
Linkage analysis and whole-exome sequencing exclude extra mutations responsible for the parkinsonian phenotype of spinocerebellar ataxia-2. Neurobiol Aging 2015; 36:545.e1-7. [DOI: 10.1016/j.neurobiolaging.2014.07.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/27/2014] [Indexed: 12/14/2022]
|
18
|
Ng ASL, Rademakers R, Miller BL. Frontotemporal dementia: a bridge between dementia and neuromuscular disease. Ann N Y Acad Sci 2014; 1338:71-93. [PMID: 25557955 DOI: 10.1111/nyas.12638] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The concept that frontotemporal dementia (FTD) is a purely cortical dementia has largely been refuted by the recognition of its close association with motor neuron disease, and the identification of transactive response DNA-binding protein 43 (TDP-43) as a major pathological substrate underlying both diseases. Genetic findings have transformed this field and revealed connections between disorders that were previous thought clinically unrelated. The discovery that the C9ORF72 locus is responsible for the majority of hereditary FTD, amyotrophic lateral sclerosis (ALS), and FTD-ALS cases and the understanding that repeat-containing RNA plays a crucial role in pathogenesis of both disorders has paved the way for the development of potential biomarkers and therapeutic targets for these devastating diseases. In this review, we summarize the historical aspects leading up to our current understanding of the genetic, clinical, and neuropathological overlap between FTD and ALS, and include brief discussions on chronic traumatic encephalopathy (CTE), given its association with TDP-43 pathology, its associated increased dementia risk, and reports of ALS in CTE patients. In addition, we describe other genetic associations between dementia and neuromuscular disease, such as inclusion body myositis with Paget's disease and FTD.
Collapse
Affiliation(s)
- Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Novena, Singapore
| | | | | |
Collapse
|
19
|
Poly-A binding protein-1 localization to a subset of TDP-43 inclusions in amyotrophic lateral sclerosis occurs more frequently in patients harboring an expansion in C9orf72. J Neuropathol Exp Neurol 2014; 73:837-45. [PMID: 25111021 DOI: 10.1097/nen.0000000000000102] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease in which the loss of spinal cord motor neurons leads to paralysis and death within a few years of clinical disease onset. In almost all cases of ALS, transactive response DNA binding protein of 43 kDa (TDP-43) forms cytoplasmic neuronal inclusions. A second causative gene for a subset of ALS is fused in sarcoma, an RNA binding protein that also forms cytoplasmic inclusions in spinal cord motor neurons. Poly-A binding protein-1 (PABP-1) is a marker of stress granules (i.e. accumulations of proteins and RNA indicative of translational arrest in cells under stress). We report on the colocalization of PABP-1 to both TDP-43 and fused-in-sarcoma inclusions in 4 patient cohorts: ALS without a mutation, ALS with an intermediate polyglutamine repeat expansion in ATXN2, ALS with a GGGGCC hexanucleotide repeat expansion in C9orf72, and ALS with basophilic inclusion body disease. Notably, PABP-1 colocalization to TDP-43 was twice as frequent in ALS with C9orf72 expansions compared to ALS with no mutation. This study highlights PABP-1 as a protein that is important to the pathology of ALS and indicates that the proteomic profile of TDP-43 inclusions in ALS may differ depending on the causative genetic mutation.
Collapse
|
20
|
Lu HP, Gan SR, Chen S, Li HF, Liu ZJ, Ni W, Wang N, Wu ZY. Intermediate-length polyglutamine in ATXN2 is a possible risk factor among Eastern Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging 2014; 36:1603.e11-4. [PMID: 25457026 DOI: 10.1016/j.neurobiolaging.2014.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
An effective treatment for amyotrophic lateral sclerosis (ALS) has not yet been found because the pathogenesis of this fatal disease is not well understood. A number of previous studies demonstrated that intermediate-length polyglutamine repeats within the ataxin-2 gene (ATXN2) might be a risk factor among patients with ALS in Western countries. Here, we aim to determine whether this sequence is a risk factor in Eastern Chinese ALS patients. Therefore, 379 unrelated sporadic ALS patients, 15 unrelated familial ALS patients, and 900 neurologically normal controls were studied. The ATXN2 CAG repeats were amplified using polymerase chain reaction. The products were separated on an 8% polyacrylamide gel and confirmed using Sanger sequencing. The results were evaluated using SPSS 17.0. We found that ATXN2 intermediate-length polyglutamine expansions greater than 24 and 27 repeats were associated with sporadic ALS. Our finding supports the hypothesis that ATXN2 plays an important role in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Hai-Peng Lu
- Department of Neurology and Institute of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Neurology, Jinhua Hospital, Zhejiang University, Jinhua, China
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hong-Fu Li
- Department of Neurology and Institute of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Jun Liu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wang Ni
- Department of Neurology and Institute of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Institute of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
FTLD-ALS of TDP-43 type and SCA2 in a family with a full ataxin-2 polyglutamine expansion. Acta Neuropathol 2014; 128:597-604. [PMID: 24718895 DOI: 10.1007/s00401-014-1277-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/29/2014] [Indexed: 12/13/2022]
Abstract
Polyglutamine expansions in the ataxin-2 gene (ATXN2) cause autosomal dominant spinocerebellar ataxia type 2 (SCA2), but have recently also been associated with amyotrophic lateral sclerosis (ALS). We present clinical and pathological features of a family in which a pathological ATXN2 expansion led to frontotemporal lobar degeneration with ALS (FTLD-ALS) in the index case, but typical SCA2 in a son, and compare the neuropathology with a case of typical SCA2. The index case shares the molecular signature of SCA2 with prominent polyglutamine and p62-positive intranuclear neuronal inclusions mainly in the pontine nuclei, while harbouring more pronounced neocortical and spinal TDP-43 pathology. We conclude that ATXN2 mutations can cause not only ALS, but also a neuropathological overlap syndrome of SCA2 and FTLD presenting clinically as pure FTLD-ALS without ataxia. The cause of the phenotypic heterogeneity remains unexplained, but the presence of a CAA-interrupted CAG repeat in the FTLD case in this family suggests that one potential mechanism may be variation in repeat tract composition between members of the same family.
Collapse
|
22
|
Wang MD, Gomes J, Cashman NR, Little J, Krewski D. Intermediate CAG repeat expansion in the ATXN2 gene is a unique genetic risk factor for ALS--a systematic review and meta-analysis of observational studies. PLoS One 2014; 9:e105534. [PMID: 25148523 PMCID: PMC4141758 DOI: 10.1371/journal.pone.0105534] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/24/2014] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare degenerative condition of the motor neurons. Over 10% of ALS cases are linked to monogenic mutations, with the remainder thought to be due to other risk factors, including environmental factors, genetic polymorphisms, and possibly gene-environmental interactions. We examined the association between ALS and an intermediate CAG repeat expansion in the ATXN2 gene using a meta-analytic approach. Observational studies were searched with relevant disease and gene terms from MEDLINE, EMBASE, and PsycINFO from January 2010 through to January 2014. All identified articles were screened using disease terms, gene terms, population information, and CAG repeat information according to PRISMA guidelines. The final list of 17 articles was further evaluated based on the study location, time period, and authors to exclude multiple usage of the same study populations: 13 relevant articles were retained for this study. The range 30-33 CAG repeats in the ATXN2 gene was most strongly associated with ALS. The meta-analysis revealed that the presence of an intermediate CAG repeat (30-33) in the ATXN2 gene was associated with an increased risk of ALS [odds ratio (OR) = 4.44, 95%CI: 2.91-6.76)] in Caucasian ALS patients. There was no significant difference in the association of this CAG intermediate repeat expansion in the ATXN2 gene between familial ALS cases (OR = 3.59, 1.58-8.17) and sporadic ALS cases (OR = 3.16, 1.88-5.32). These results indicate that the presence of intermediate CAG repeat expansion in the ATXN2 gene is a specific genetic risk factor for ALS, unlike monogenic mutations with an autosomal dominant transmission mode, which cause a more severe phenotype of ALS, with a higher prevalence in familial ALS.
Collapse
Affiliation(s)
- Ming-Dong Wang
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - James Gomes
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Neil R. Cashman
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Julian Little
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Krewski
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Lattante S, Millecamps S, Stevanin G, Rivaud-Péchoux S, Moigneu C, Camuzat A, Da Barroca S, Mundwiller E, Couarch P, Salachas F, Hannequin D, Meininger V, Pasquier F, Seilhean D, Couratier P, Danel-Brunaud V, Bonnet AM, Tranchant C, LeGuern E, Brice A, Le Ber I, Kabashi E. Contribution of ATXN2 intermediary polyQ expansions in a spectrum of neurodegenerative disorders. Neurology 2014; 83:990-5. [PMID: 25098532 DOI: 10.1212/wnl.0000000000000778] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The aim of this study was to establish the frequency of ATXN2 polyglutamine (polyQ) expansion in large cohorts of patients with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), and to evaluate whether ATXN2 could act as a modifier gene in patients carrying the C9orf72 expansion. METHODS We screened a large cohort of French patients (1,144 ALS, 203 FTD, 168 FTD-ALS, and 109 PSP) for ATXN2 CAG repeat length. We included in our cohort 322 carriers of the C9orf72 expansion (202 ALS, 63 FTD, and 57 FTD-ALS). RESULTS We found a significant association with intermediate repeat size (≥29 CAG) in patients with ALS (both familial and sporadic) and, for the first time, in patients with familial FTD-ALS. Of interest, we found the co-occurrence of pathogenic C9orf72 expansion in 23.2% of ATXN2 intermediate-repeat carriers, all in the FTD-ALS and familial ALS subgroups. In the cohort of C9orf72 carriers, 3.1% of patients also carried an intermediate ATXN2 repeat length. ATXN2 repeat lengths in patients with PSP and FTD were found to be similar to the controls. CONCLUSIONS ATXN2 intermediary repeat length is a strong risk factor for ALS and FTD-ALS. Furthermore, we propose that ATXN2 polyQ expansions could act as a strong modifier of the FTD phenotype in the presence of a C9orf72 repeat expansion, leading to the development of clinical signs featuring both FTD and ALS.
Collapse
Affiliation(s)
- Serena Lattante
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Stéphanie Millecamps
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Giovanni Stevanin
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Sophie Rivaud-Péchoux
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Carine Moigneu
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Agnès Camuzat
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Sandra Da Barroca
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Emeline Mundwiller
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Philippe Couarch
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - François Salachas
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Didier Hannequin
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Vincent Meininger
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Florence Pasquier
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Danielle Seilhean
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Philippe Couratier
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Véronique Danel-Brunaud
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Anne-Marie Bonnet
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Christine Tranchant
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Eric LeGuern
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Alexis Brice
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Isabelle Le Ber
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France
| | - Edor Kabashi
- From the Institut du Cerveau et de la Moelle épinière (ICM) (S.L., S.M., G.S., S.R.-P., C.M., A.C., S.D., E.M., P.C., A.B., I.L., E.K.), Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, F-75013, Paris; Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, ICM (G.S.), HéSam Université, GHU Pitié-Salpêtrière, F-75013, Paris; Fédération des Maladies du Système Nerveux, Centre de référence maladies rares SLA (F.S., V.M.), Département de Neuropathologie (D.S.), Department of Neurology (A.-M.B.), Unité Fonctionnelle de neurogénétique moléculaire et cellulaire (E.L.), Département de Génétique et Cytogénétique (A.B.), and Centre de référence Démences Rares (I.L.), AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris; Inserm U1079 (D.H.), Rouen; Centre mémoire (F.P.), Université Lille Nord de France, EA1046, CHU, Lille; Neuroépidémiologie Tropicale (P.C.), Université de Limoges INSERM UMR1094, Limoges; Service de Neurologie et Pathologie du Mouvement (V.D.-B.), Hôpital Roger Salengro, CHRU Lille; and Service de neurologie (C.T.), Hôpital de Hautepierre, CHU de Strasbourg, 1 Avenue Molière, Strasbourg, France.
| | | |
Collapse
|
24
|
van Blitterswijk M, Mullen B, Heckman MG, Baker MC, DeJesus-Hernandez M, Brown PH, Murray ME, Hsiung GYR, Stewart H, Karydas AM, Finger E, Kertesz A, Bigio EH, Weintraub S, Mesulam M, Hatanpaa KJ, White CL, Neumann M, Strong MJ, Beach TG, Wszolek ZK, Lippa C, Caselli R, Petrucelli L, Josephs KA, Parisi JE, Knopman DS, Petersen RC, Mackenzie IR, Seeley WW, Grinberg LT, Miller BL, Boylan KB, Graff-Radford NR, Boeve BF, Dickson DW, Rademakers R. Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiol Aging 2014; 35:2421.e13-7. [PMID: 24866401 DOI: 10.1016/j.neurobiolaging.2014.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/20/2014] [Accepted: 04/23/2014] [Indexed: 12/13/2022]
Abstract
Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are an important cause of both motor neuron disease (MND) and frontotemporal dementia (FTD). Currently, little is known about factors that could account for the phenotypic heterogeneity detected in C9ORF72 expansion carriers. In this study, we investigated 4 genes that could represent genetic modifiers: ataxin-2 (ATXN2), non-imprinted in Prader-Willi/Angelman syndrome 1 (NIPA1), survival motor neuron 1 (SMN1), and survival motor neuron 2 (SMN2). Assessment of these genes, in a unique cohort of 331 C9ORF72 expansion carriers and 376 control subjects, revealed that intermediate repeat lengths in ATXN2 possibly act as disease modifier in C9ORF72 expansion carriers; no evidence was provided for a potential role of NIPA1, SMN1, or SMN2. The effects of intermediate ATXN2 repeats were most profound in probands with MND or FTD/MND (2.1% vs. 0% in control subjects, p = 0.013), whereas the frequency in probands with FTD was identical to control subjects. Though intermediate ATXN2 repeats were already known to be associated with MND risk, previous reports did not focus on individuals with clear pathogenic mutations, such as repeat expansions in C9ORF72. Based on our present findings, we postulate that intermediate ATXN2 repeat lengths may render C9ORF72 expansion carriers more susceptible to the development of MND; further studies are needed, however, to validate our findings.
Collapse
Affiliation(s)
| | - Bianca Mullen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Ging-Yuek R Hsiung
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heather Stewart
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna M Karydas
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Andrew Kertesz
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Eileen H Bigio
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kimmo J Hatanpaa
- Department of Pathology and Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles L White
- Department of Pathology and Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Manuela Neumann
- Department of Neuropathology, University of Tübingen and German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Michael J Strong
- Molecular Brain Research Group, Robarts Research Institute, London, Ontario, Canada
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | - Carol Lippa
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | - Ian R Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin B Boylan
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
25
|
Abstract
Pathogenic CAG repeat expansion in the ataxin-2 gene (ATXN2) is the genetic cause of spinocerebellar ataxia type 2 (SCA2). Recently, it has been associated with Parkinsonism and increased genetic risk for amyotrophic lateral sclerosis (ALS). Here we report the association of de novo mutations in ATXN2 with autosomal dominant ALS. These findings support our previous conjectures based on population studies on the role of large normal ATXN2 alleles as the source for new mutations being involved in neurodegenerative pathologies associated with CAG expansions. The de novo mutations expanded from ALS/SCA2 non-risk alleles as proven by meta-analysis method. The ALS risk was associated with SCA2 alleles as well as with intermediate CAG lengths in the ATXN2. Higher risk for ALS was associated with pathogenic CAG repeat as revealed by meta-analysis.
Collapse
|
26
|
ATXN2 CAG repeat expansions increase the risk for Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging 2013; 34:2236.e5-8. [PMID: 23635656 DOI: 10.1016/j.neurobiolaging.2013.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with unclear etiology. Recently, intermediate CAG repeat expansions in ATXN2, the gene responsible for spinocerebellar ataxia type 2 (SCA2), have been identified as a possible genetic risk factor for ALS. In this study, we analyzed the ATXN2 CAG repeat length in Chinese patients with ALS to evaluate the relationship between the genotype and phenotype. We studied 1,067 patients with ALS and 506 controls from mainland China (excluding Tibet). We collected clinical data and analyzed fluorescent PCR products to assess ATXN2 CAG repeat length in all of the samples. We observed that intermediate CAG repeat expansions in ATXN2 (CAG repeat length >30) were associated with ALS (p = 0.004). There was no significant difference in clinical characteristics between the groups with and without intermediate CAG repeat expansions in ATXN2. Our data indicate that, for ALS patients from mainland China, intermediate CAG repeat expansions in ATXN2 increase the risk of ALS but have no effect on disease phenotype.
Collapse
|
27
|
Thomas M, Alegre-Abarrategui J, Wade-Martins R. RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum. Brain 2013; 136:1345-60. [DOI: 10.1093/brain/awt030] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Van Langenhove T, van der Zee J, Van Broeckhoven C. The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 2012; 44:817-28. [PMID: 22420316 PMCID: PMC3529157 DOI: 10.3109/07853890.2012.665471] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 02/07/2012] [Indexed: 01/21/2023] Open
Abstract
There is increasing evidence that frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) represent a continuum of neurodegenerative diseases. FTLD is complicated by ALS in a significant proportion of patients, and neuropsychological studies have demonstrated frontotemporal dysfunction in up to 50% of ALS patients. More recently, advances in neuropathology and molecular genetics have started to disclose the biological basis for the observed clinical concurrence. TDP-43 and FUS have been discovered as key pathological proteins in both FTLD and ALS. The most recent discovery of a pathological hexanucleotide repeat expansion in the gene C9orf72 as a frequent cause of both FTLD and ALS has eventually confirmed the association of these two at first sight distinct neurodegenerative diseases. Mutations in the TARDBP, FUS, and VCP genes had previously been associated with different phenotypes of the FTLD-ALS spectrum, although in these cases one end of the spectrum predominates. Whilst on the one hand providing evidence for overlap, these discoveries have also highlighted that FTLD and ALS are etiologically diverse. In this review, we review the recent advances that support the existence of an FTLD-ALS spectrum, with particular emphasis on the molecular genetic aspect.
Collapse
Affiliation(s)
- Tim Van Langenhove
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerpen, Belgium
| | | | | |
Collapse
|
29
|
ALS-associated ataxin 2 polyQ expansions enhance stress-induced caspase 3 activation and increase TDP-43 pathological modifications. J Neurosci 2012; 32:9133-42. [PMID: 22764223 DOI: 10.1523/jneurosci.0996-12.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease caused by the loss of motor neurons. The degenerating motor neurons of ALS patients are characterized by the accumulation of cytoplasmic inclusions containing phosphorylated and truncated forms of the RNA-binding protein TDP-43. Ataxin 2 intermediate-length polyglutamine (polyQ) expansions were recently identified as a risk factor for ALS; however, the mechanism by which they contribute to disease is unknown. Here, we show that intermediate-length ataxin 2 polyQ expansions enhance stress-induced TDP-43 C-terminal cleavage and phosphorylation in human cells. We also connect intermediate-length ataxin 2 polyQ expansions to the stress-dependent activation of multiple caspases, including caspase 3. Caspase activation is upstream of TDP-43 cleavage and phosphorylation since caspase inhibitors block these pathological modifications. Analysis of the accumulation of activated caspase 3 in motor neurons revealed a striking association with ALS cases harboring ataxin 2 polyQ expansions. These findings indicate that activated caspase 3 defines a new pathological feature of ALS with intermediate-length ataxin 2 polyQ expansions. These results provide mechanistic insight into how ataxin 2 intermediate-length polyQ expansions could contribute to ALS--by enhancing stress-induced TDP-43 pathological modifications via caspase activation. Because longer ataxin 2 polyQ expansions are associated with a different disease, spinocerebellar ataxia 2, these findings help explain how different polyQ expansions in the same protein can have distinct cellular consequences, ultimately resulting in different clinical features. Finally, since caspase inhibitors are effective at reducing TDP-43 pathological modifications, this pathway could be pursued as a therapeutic target in ALS.
Collapse
|
30
|
The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 2012; 124:339-52. [PMID: 22903397 DOI: 10.1007/s00401-012-1022-4] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons leading to death from respiratory failure within about 3 years of symptom onset. A family history of ALS is obtained in about 5 % but the distinction between familial and apparently sporadic ALS is artificial and genetic factors play a role in all types. For several years, only one gene was known to have a role in ALS pathogenesis, SOD1. In the last few years there has been a rapid advance in our genetic knowledge of the causes of ALS, and the relationship of the genetic subtypes with pathological subtypes and clinical phenotype. Mutations in the gene for TDP-43 protein, TARDBP, highlight this, with pathology mimicking closely that found in other types of ALS, and a phenotypic spectrum that includes frontotemporal dementia. Mutations in the FUS gene, closely related to TDP-43, lead to a similar clinical phenotype but distinct pathology, so that the three pathological groups represented by SOD1, TARDBP, and FUS are distinct. In this review, we explore the genetic architecture of ALS, highlight some of the genes implicated in pathogenesis, and describe their phenotypic range and overlap with other diseases.
Collapse
|
31
|
Lahut S, Ömür Ö, Uyan Ö, Ağım ZS, Özoğuz A, Parman Y, Deymeer F, Oflazer P, Koç F, Özçelik H, Auburger G, Başak AN. ATXN2 and its neighbouring gene SH2B3 are associated with increased ALS risk in the Turkish population. PLoS One 2012; 7:e42956. [PMID: 22916186 PMCID: PMC3423429 DOI: 10.1371/journal.pone.0042956] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/16/2012] [Indexed: 01/14/2023] Open
Abstract
Expansions of the polyglutamine (polyQ) domain (≥ 34) in Ataxin-2 (ATXN2) are the primary cause of spinocerebellar ataxia type 2 (SCA2). Recent studies reported that intermediate-length (27-33) expansions increase the risk of Amyotrophic Lateral Sclerosis (ALS) in 1-4% of cases in diverse populations. This study investigates the Turkish population with respect to ALS risk, genotyping 158 sporadic, 78 familial patients and 420 neurologically healthy controls. We re-assessed the effect of ATXN2 expansions and extended the analysis for the first time to cover the ATXN2 locus with 18 Single Nucleotide Polymorphisms (SNPs) and their haplotypes. In accordance with other studies, our results confirmed that 31-32 polyQ repeats in the ATXN2 gene are associated with risk of developing ALS in 1.7% of the Turkish ALS cohort (p=0.0172). Additionally, a significant association of a 136 kb haplotype block across the ATXN2 and SH2B3 genes was found in 19.4% of a subset of our ALS cohort and in 10.1% of the controls (p=0.0057, OR: 2.23). ATXN2 and SH2B3 encode proteins that both interact with growth receptor tyrosine kinases. Our novel observations suggest that genotyping of SNPs at this locus may be useful for the study of ALS risk in a high percentage of individuals and that ATXN2 and SH2B3 variants may interact in modulating the disease pathway.
Collapse
Affiliation(s)
- Suna Lahut
- Boğaziçi University, Molecular Biology and Genetics Department, Neurodegeneration Research Laboratory, Istanbul, Turkey
| | - Özgür Ömür
- Boğaziçi University, Molecular Biology and Genetics Department, Neurodegeneration Research Laboratory, Istanbul, Turkey
| | - Özgün Uyan
- Boğaziçi University, Molecular Biology and Genetics Department, Neurodegeneration Research Laboratory, Istanbul, Turkey
| | - Zeynep Sena Ağım
- Boğaziçi University, Molecular Biology and Genetics Department, Neurodegeneration Research Laboratory, Istanbul, Turkey
| | - Aslihan Özoğuz
- Boğaziçi University, Molecular Biology and Genetics Department, Neurodegeneration Research Laboratory, Istanbul, Turkey
| | - Yeşim Parman
- Istanbul University, Istanbul Medical School, Neurology Department, Istanbul, Turkey
| | - Feza Deymeer
- Istanbul University, Istanbul Medical School, Neurology Department, Istanbul, Turkey
| | - Piraye Oflazer
- Istanbul University, Istanbul Medical School, Neurology Department, Istanbul, Turkey
| | - Filiz Koç
- Çukurova University, Medical School, Neurology Department, Adana, Turkey
| | - Hilmi Özçelik
- University of Toronto, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada
| | - Georg Auburger
- Goethe University, Experimental Neurology, Frankfurt am Main, Germany
| | - A. Nazlı Başak
- Boğaziçi University, Molecular Biology and Genetics Department, Neurodegeneration Research Laboratory, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
32
|
Hart MP, Brettschneider J, Lee VMY, Trojanowski JQ, Gitler AD. Distinct TDP-43 pathology in ALS patients with ataxin 2 intermediate-length polyQ expansions. Acta Neuropathol 2012; 124:221-30. [PMID: 22526021 DOI: 10.1007/s00401-012-0985-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 01/27/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease characterized by degeneration of motor neurons, resulting in paralysis and death. A pathological hallmark of the degenerating motor neurons in most ALS patients is the presence of cytoplasmic inclusions containing the protein TDP-43. The morphology and type of TDP-43 pathological inclusions is variable and can range from large round Lewy body-like inclusions to filamentous skein-like inclusions. The clinical significance of this variable pathology is unclear. Intermediate-length polyglutamine (polyQ) expansions in ataxin 2 were recently identified as a genetic risk factor for ALS. Here we have analyzed TDP-43 pathology in a series of ALS cases with or without ataxin 2 intermediate-length polyQ expansions. The motor neurons of ALS cases harboring ataxin 2 polyQ expansions (n = 6) contained primarily skein-like or filamentous TDP-43 pathology and only rarely, if ever, contained large round inclusions, whereas the ALS cases without ataxin 2 polyQ expansions (n = 13) contained abundant large round and skein-like TDP-43 pathology. The paucity of large round TDP-43 inclusions in ALS cases with ataxin 2 polyQ expansions suggests a distinct pathological subtype of ALS and highlights the possibility for distinct pathogenic mechanisms.
Collapse
|