1
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
2
|
Fernandes C, Forny-Germano L, Andrade MM, Lyra E Silva NM, Ramos-Lobo AM, Meireles F, Tovar-Moll F, Houzel JC, Donato J, De Felice FG. Leptin receptor reactivation restores brain function in early-life Lepr-deficient mice. Brain 2024; 147:2706-2717. [PMID: 38650574 PMCID: PMC11292908 DOI: 10.1093/brain/awae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
Obesity is a chronic disease caused by excessive fat accumulation that impacts the body and brain health. Insufficient leptin or leptin receptor (LepR) is involved in the disease pathogenesis. Leptin is involved with several neurological processes, and it has crucial developmental roles. We have previously demonstrated that leptin deficiency in early life leads to permanent developmental problems in young adult mice, including an imbalance in energy homeostasis, alterations in melanocortin and the reproductive system and a reduction in brain mass. Given that in humans, obesity has been associated with brain atrophy and cognitive impairment, it is important to determine the long-term consequences of early-life leptin deficiency on brain structure and memory function. Here, we demonstrate that leptin-deficient (LepOb) mice exhibit altered brain volume, decreased neurogenesis and memory impairment. Similar effects were observed in animals that do not express the LepR (LepRNull). Interestingly, restoring the expression of LepR in 10-week-old mice reverses brain atrophy, in addition to neurogenesis and memory impairments in older animals. Our findings indicate that leptin deficiency impairs brain development and memory, which are reversible by restoring leptin signalling in adulthood.
Collapse
Affiliation(s)
- Caroline Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayara M Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Natalia M Lyra E Silva
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernanda Meireles
- D’Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| | - Fernanda Tovar-Moll
- D’Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| | - Jean Christophe Houzel
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6, Canada
- D’Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| |
Collapse
|
3
|
Abdalla MMI. Insulin resistance as the molecular link between diabetes and Alzheimer's disease. World J Diabetes 2024; 15:1430-1447. [PMID: 39099819 PMCID: PMC11292327 DOI: 10.4239/wjd.v15.i7.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two major health concerns that have seen a rising prevalence worldwide. Recent studies have indicated a possible link between DM and an increased risk of developing AD. Insulin, while primarily known for its role in regulating blood sugar, also plays a vital role in protecting brain functions. Insulin resistance (IR), especially prevalent in type 2 diabetes, is believed to play a significant role in AD's development. When insulin signalling becomes dysfunctional, it can negatively affect various brain functions, making individuals more susceptible to AD's defining features, such as the buildup of beta-amyloid plaques and tau protein tangles. Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD. This review aims to explore the rela-tionship between DM and AD, with a focus on the role of IR. It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR. Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Harvey J. Novel Leptin-Based Therapeutic Strategies to Limit Synaptic Dysfunction in Alzheimer's Disease. Int J Mol Sci 2024; 25:7352. [PMID: 39000459 PMCID: PMC11242278 DOI: 10.3390/ijms25137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Accumulation of hyper-phosphorylated tau and amyloid beta (Aβ) are key pathological hallmarks of Alzheimer's disease (AD). Increasing evidence indicates that in the early pre-clinical stages of AD, phosphorylation and build-up of tau drives impairments in hippocampal excitatory synaptic function, which ultimately leads to cognitive deficits. Consequently, limiting tau-related synaptic abnormalities may have beneficial effects in AD. There is now significant evidence that the hippocampus is an important brain target for the endocrine hormone leptin and that leptin has pro-cognitive properties, as activation of synaptic leptin receptors markedly influences higher cognitive processes including learning and memory. Clinical studies have identified a link between the circulating leptin levels and the risk of AD, such that AD risk is elevated when leptin levels fall outwith the physiological range. This has fuelled interest in targeting the leptin system therapeutically. Accumulating evidence supports this possibility, as numerous studies have shown that leptin has protective effects in a variety of models of AD. Recent findings have demonstrated that leptin has beneficial effects in the preclinical stages of AD, as leptin prevents the early synaptic impairments driven by tau protein and amyloid β. Here we review recent findings that implicate the leptin system as a potential novel therapeutic target in AD.
Collapse
Affiliation(s)
- Jenni Harvey
- Department of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
5
|
Campolim CM, Schimenes BC, Veras MM, Kim YB, Prada PO. Air pollution accelerates the development of obesity and Alzheimer's disease: the role of leptin and inflammation - a mini-review. Front Immunol 2024; 15:1401800. [PMID: 38933275 PMCID: PMC11199417 DOI: 10.3389/fimmu.2024.1401800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Air pollution is an urgent concern linked to numerous health problems in low- and middle-income countries, where 92% of air pollution-related deaths occur. Particulate matter 2.5 (PM2.5) is the most harmful component of air pollutants, increasing inflammation and changing gut microbiota, favoring obesity, type 2 diabetes, and Alzheimer's Disease (AD). PM2.5 contains lipopolysaccharides (LPS), which can activate the Toll-like receptor 4 (TLR4) signaling pathway. This pathway can lead to the release of pro-inflammatory markers, including interleukins, and suppressor of cytokine signaling-3 (SOCS3), which inhibits leptin action, a hormone that keeps the energy homeostasis. Leptin plays a role in preventing amyloid plaque deposition and hyperphosphorylation of tau-protein (p-tau), mechanisms involved in the neurodegeneration in AD. Approximately 50 million people worldwide are affected by dementia, with a significant proportion living in low-and middle-income countries. This number is expected to triple by 2050. This mini-review focuses on the potential impact of PM2.5 exposure on the TLR4 signaling pathway, its contribution to leptin resistance, and dysbiosis that exacerbates the link between obesity and AD.
Collapse
Affiliation(s)
- Clara Machado Campolim
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, United States
| | | | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology LIM05, Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
6
|
Frago LM, Burgos-Ramos E, Rodríguez-Pérez M, Canelles S, Arilla-Ferreiro E, Argente J, López MG, Barrios V. Reduction in Hippocampal Amyloid-β Peptide (Aβ) Content during Glycine-Proline-Glutamate (Gly-Pro-Glu) Co-Administration Is Associated with Changes in Inflammation and Insulin-like Growth Factor (IGF)-I Signaling. Int J Mol Sci 2024; 25:5716. [PMID: 38891902 PMCID: PMC11172028 DOI: 10.3390/ijms25115716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition in the brain of senile plaques composed of amyloid-β peptides (Aβs) that increase inflammation. An endogenous peptide derived from the insulin-like growth factor (IGF)-I, glycine-proline-glutamate (GPE), has IGF-I-sensitizing and neuroprotective actions. Here, we examined the effects of GPE on Aβ levels and hippocampal inflammation generated by the intracerebroventricular infusion of Aβ25-35 for 2 weeks (300 pmol/day) in ovariectomized rats and the signaling-related pathways and levels of Aβ-degrading enzymes associated with these GPE-related effects. GPE prevented the Aβ-induced increase in the phosphorylation of p38 mitogen-activated protein kinase and the reduction in activation of signal transducer and activator of transcription 3, insulin receptor substrate-1, and Akt, as well as on interleukin (IL)-2 and IL-13 levels in the hippocampus. The functionality of somatostatin, measured as the percentage of inhibition of adenylate cyclase activity and the levels of insulin-degrading enzyme, was also preserved by GPE co-treatment. These findings indicate that GPE co-administration may protect from Aβ insult by changing hippocampal cytokine content and somatostatin functionality through regulation of leptin- and IGF-I-signaling pathways that could influence the reduction in Aβ levels through modulation of levels and/or activity of Aβ proteases.
Collapse
Affiliation(s)
- Laura M. Frago
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute “La Princesa”, E-28009 Madrid, Spain; (L.M.F.); (S.C.); (J.A.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Emma Burgos-Ramos
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain; (E.B.-R.); (M.R.-P.)
| | - María Rodríguez-Pérez
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain; (E.B.-R.); (M.R.-P.)
| | - Sandra Canelles
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute “La Princesa”, E-28009 Madrid, Spain; (L.M.F.); (S.C.); (J.A.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
| | - Eduardo Arilla-Ferreiro
- Department of Biological Systems, Faculty of Medicine, Universidad de Alcalá, E-28871 Alcala de Henares, Spain;
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute “La Princesa”, E-28009 Madrid, Spain; (L.M.F.); (S.C.); (J.A.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049 Madrid, Spain
| | - Manuela G. López
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Research Institute “La Princesa”, E-28029 Madrid, Spain;
| | - Vicente Barrios
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute “La Princesa”, E-28009 Madrid, Spain; (L.M.F.); (S.C.); (J.A.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn, Instituto de Salud Carlos III, E-28009 Madrid, Spain
| |
Collapse
|
7
|
Patel V, Edison P. Cardiometabolic risk factors and neurodegeneration: a review of the mechanisms underlying diabetes, obesity and hypertension in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2024; 95:581-589. [PMID: 38290839 PMCID: PMC11103343 DOI: 10.1136/jnnp-2023-332661] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
A growing body of evidence suggests that cardiometabolic risk factors play a significant role in Alzheimer's disease (AD). Diabetes, obesity and hypertension are highly prevalent and can accelerate neurodegeneration and perpetuate the burden of AD. Insulin resistance and enzymes including insulin degrading enzymes are implicated in AD where breakdown of insulin is prioritised over amyloid-β. Leptin resistance and inflammation demonstrated by higher plasma and central nervous system levels of interleukin-6 (IL-6), IL-1β and tumour necrosis factor-α, are mechanisms connecting obesity and diabetes with AD. Leptin has been shown to ameliorate AD pathology and enhance long-term potentiation and hippocampal-dependent cognitive function. The renin-aldosterone angiotensin system, involved in hypertension, has been associated with AD pathology and neurotoxic reactive oxygen species, where angiotensin binds to specific angiotensin-1 receptors in the hippocampus and cerebral cortex. This review aims to consolidate the evidence behind putative processes stimulated by obesity, diabetes and hypertension, which leads to increased AD risk. We focus on how novel knowledge can be applied clinically to facilitate recognition of efficacious treatment strategies for AD.
Collapse
Affiliation(s)
- Vijay Patel
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK
- Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
da Costa Teixeira LA, Soares LA, Lima LP, Avelar NCP, de Moura JA, Leopoldino AAO, Figueiredo PHS, Parentoni AN, Mendonça VA, Lacerda ACR. Cognitive function is associated with performance in time up and go test and with leptin blood levels in community-dwelling older women. Sci Rep 2024; 14:9841. [PMID: 38684691 PMCID: PMC11058236 DOI: 10.1038/s41598-024-60274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
Considering the challenge that cognitive dysfunction and dementia represent to health is imperative to prioritize early diagnosis strategies and explore the pathophysiological mechanisms. There is no consensus on specific markers and physical tests that indicate cognitive decline in older. The objective of this study was to evaluate a panel of inflammatory biomarkers and physical function and investigate their association with cognitive function in community-dwelling older women. Seventy-one participants were included in this study. Cognitive function was assessed by Mini Mental State Examination, muscle strength using dynamometer, body composition using Dual X-ray absorptiometry, respiratory muscle strength using manuvacuometer, and physical function using the Short Physical Performance Battery and Time Up and Go (TUG) tests. Blood samples were collected to analyze a panel of inflammatory biomarkers. The cognitive function was associated with TUG (β = - 0.48; 95%IC = - 0.54 to - 0.21; p < 0.001), inspiratory muscle strength (β = 0.30; 95%IC = 0.005-0.03; p = 0.009), and leptin concentrations (β = 0.32; 95% IC = 0.001-0.006; 0.007). Time spent on TUG test and leptin levels accounted for 27% of variability in cognitive function independent of age. Poorer physical function with leptin plasma levels is associated with decreased cognitive function in older women. These findings contribute to comprehension of pathophysiology underlying cognitive decline and informing the development of new approaches to prevent, diagnose, monitoring and treat cognitive decline in aging.
Collapse
Affiliation(s)
- Leonardo Augusto da Costa Teixeira
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
- Departamento de Fisioterapia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Luana Aparecida Soares
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
- Departamento de Fisioterapia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Liliana Pereira Lima
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
- Departamento de Fisioterapia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | | | - Julia Araújo de Moura
- Programa de Pós-Graduação em Educação Física (PPGEF-UnB), Universidade de Brasília, Brasília, DF, Brazil
| | | | - Pedro Henrique Scheidt Figueiredo
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
- Departamento de Fisioterapia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Adriana Netto Parentoni
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
- Departamento de Fisioterapia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
- Departamento de Fisioterapia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
- Departamento de Fisioterapia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
| |
Collapse
|
9
|
Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci 2023; 17:1294420. [PMID: 38026693 PMCID: PMC10665538 DOI: 10.3389/fncel.2023.1294420] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is a global epidemic, affecting roughly 30% of the world's population and predicted to rise. This disease results from genetic, behavioral, societal, and environmental factors, leading to excessive fat accumulation, due to insufficient energy expenditure. The adipose tissue, once seen as a simple storage depot, is now recognized as a complex organ with various functions, including hormone regulation and modulation of metabolism, inflammation, and homeostasis. Obesity is associated with a low-grade inflammatory state and has been linked to neurodegenerative diseases like multiple sclerosis (MS), Alzheimer's (AD), and Parkinson's (PD). Mechanistically, reduced adipose expandability leads to hypertrophic adipocytes, triggering inflammation, insulin and leptin resistance, blood-brain barrier disruption, altered brain metabolism, neuronal inflammation, brain atrophy, and cognitive decline. Obesity impacts neurodegenerative disorders through shared underlying mechanisms, underscoring its potential as a modifiable risk factor for these diseases. Nevertheless, further research is needed to fully grasp the intricate connections between obesity and neurodegeneration. Collaborative efforts in this field hold promise for innovative strategies to address this complex relationship and develop effective prevention and treatment methods, which also includes specific diets and physical activities, ultimately improving quality of life and health.
Collapse
Affiliation(s)
- Alexandre Neto
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Hamilton K, Morrow K, Markantoni E, Harvey J. Leptin prevents aberrant targeting of tau to hippocampal synapses via PI 3 kinase driven inhibition of GSK3β. J Neurochem 2023; 167:520-537. [PMID: 37822142 DOI: 10.1111/jnc.15980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Amyloid-β (Aβ) and hyper-phosphorylated tau are key hallmarks of Alzheimer's disease (AD), with an accumulation of both proteins linked to hippocampal synaptic dysfunction. Recent evidence indicates that Aβ drives mis-localisation of tau from axons to synapses, resulting in AMPA receptor (AMPAR) internalisation and impaired excitatory synaptic function. These tau-driven synaptic impairments are thought to underlie the cognitive deficits in AD. Consequently, limiting the synapto-toxic effects of tau may prevent AD-related cognitive deficits. Increasing evidence links leptin dysfunction with higher AD risk, and numerous studies have identified neuroprotective properties of leptin in AD models of Aβ-induced toxicity. However, it is unclear if leptin protects against tau-related synaptic dysfunction. Here we show that Aβ1-42 significantly increases dendritic and synaptic levels of tau and p-tau in hippocampal neurons, and these effects were blocked by leptin. In accordance with GSK-3β being involved in tau phosphorylation, the protective effects of leptin involve PI 3-kinase (PI3K) activation and inhibition of GSK-3β. Aβ1-42 -driven synaptic targeting of tau was associated with the removal of GluA1-containing AMPARs from synapses, which was also inhibited by leptin-driven inhibition of GSK-3β. Direct application of oligomeric tau to hippocampal neurons caused internalisation of GluA1-containing AMPARs and this effect was blocked by prior application of leptin. Similarly, leptin prevented the ability of tau to block induction of activity-dependent long-term potentiation (LTP) at hippocampal SC-CA1 synapses. These findings increase our understanding of the neuroprotective actions of leptin in the early pre-clinical stages of AD and further validate the leptin system as a therapeutic target in AD.
Collapse
Affiliation(s)
- Kirsty Hamilton
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Kate Morrow
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Ermione Markantoni
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Jenni Harvey
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
11
|
Huang J, Huang N, Cui D, Shi J, Qiu Y. Clinical antidiabetic medication used in Alzheimer's disease: From basic discovery to therapeutics development. Front Aging Neurosci 2023; 15:1122300. [PMID: 36845652 PMCID: PMC9950577 DOI: 10.3389/fnagi.2023.1122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. Type 2 diabetes mellitus (T2DM) appears to increase and contributing to the risk of AD. Therefore, there is increasing concern about clinical antidiabetic medication used in AD. Most of them show some potential in basic research, but not in clinical research. So we reviewed the opportunities and challenges faced by some antidiabetic medication used in AD from basic to clinical research. Based on existing research progress, this is still the hope of some patients with special types of AD caused by rising blood glucose or/and insulin resistance.
Collapse
Affiliation(s)
- Juan Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nanqu Huang
- The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Di Cui
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Jingshan Shi,
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Yu Qiu,
| |
Collapse
|
12
|
Liu CC, Wang QH, Xin JY, Liu YH, Zeng F, Chen DW, Li HY, Yi X, Zeng GH, Wang YJ, Xiang Y, Chen Y. Association of Adipokines with Alzheimer's Disease in a Chinese Cohort. J Alzheimers Dis 2023; 96:523-533. [PMID: 37807776 DOI: 10.3233/jad-220860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND The correlation between plasma adipose factor levels and Alzheimer's patients is not entirely clear. OBJECTIVE We aimed to investigate associations between AD and plasma levels of three adipokines including plasma adiponectin, leptin, and resistin. METHODS A single-center, cross-sectional study recruited AD patients (n = 148) and cognitively normal (CN) controls (n = 110). The multivariate logistic regression analysis was applied to determine associations of adiponectin, leptin, and resistin with the presence of AD. The receiver operating characteristic (ROC) analysis was employed to determine the diagnostic power of adiponectin, leptin and resistin for AD. RESULTS After adjusted for the conventional risk factors, plasma levels of leptin (OR = 0.417, 95% CI: 0.272-0.638, p < 0.0001) and adiponectin (OR = 1.249, 95% CI: 1.151-1.354, p < 0.0001) were associated with the presence of AD. In total participants, the plasma adiponectin level was negatively correlated with MMSE scores (p < 0.0001) and was positively with CDR scores (p < 0.0001) and age (p < 0.0001). The plasma level of leptin was negatively correlated with CDR scores (p < 0.0001) and positively correlated with MMSE scores (p < 0.0001). Both adiponectin (p < 0. 0001) and leptin (p < 0. 0001) featured higher AUC than the random chance. CONCLUSIONS Plasma adiponectin and leptin were associated with the presence, symptomatic severity, and diagnostic power of AD, suggesting a potential role of adipokines in the pathogenesis of AD.
Collapse
Affiliation(s)
- Cheng-Chun Liu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Qing-Hua Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jia-Yan Xin
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yu-Hao Liu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Fan Zeng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Dong-Wan Chen
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Hui-Yun Li
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xu Yi
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Gui-Hua Zeng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yang Xiang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Chen
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| |
Collapse
|
13
|
Corrigan RR, Labrador L, Grizzanti J, Mey M, Piontkivska H, Casadesús G. Neuroprotective Mechanisms of Amylin Receptor Activation, Not Antagonism, in the APP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 91:1495-1514. [PMID: 36641678 DOI: 10.3233/jad-221057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Amylin, a pancreatic amyloid peptide involved in energy homeostasis, is increasingly studied in the context of Alzheimer's disease (AD) etiology. To date, conflicting pathogenic and neuroprotective roles for this peptide and its analogs for AD pathogenesis have been described. OBJECTIVE Whether the benefits of amylin are associated with peripheral improvement of metabolic tone/function or directly through the activation of central amylin receptors is also unknown and downstream signaling mechanisms of amylin receptors are major objectives of this study. METHODS To address these questions more directly we delivered the amylin analog pramlintide systemically (IP), at previously identified therapeutic doses, while centrally (ICV) inhibiting the receptor using an amylin receptor antagonist (AC187), at doses known to impact CNS function. RESULTS Here we show that pramlintide improved cognitive function independently of CNS receptor activation and provide transcriptomic data that highlights potential mechanisms. Furthermore, we show than inhibition of the amylin receptor increased amyloid-beta pathology in female APP/PS1 mice, an effect than was mitigated by peripheral delivery of pramlintide. Through transcriptomic analysis of pramlintide therapy in AD-modeled mice we found sexual dimorphic modulation of neuroprotective mechanisms: oxidative stress protection in females and membrane stability and reduced neuronal excitability markers in males. CONCLUSION These data suggest an uncoupling of functional and pathology-related events and highlighting a more complex receptor system and pharmacological relationship that must be carefully studied to clarify the role of amylin in CNS function and AD.
Collapse
Affiliation(s)
| | - Luis Labrador
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - John Grizzanti
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Megan Mey
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Gemma Casadesús
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Manuel Sánchez DM, Limón D, Silva Gómez AB. Obese male Zucker rats exhibit dendritic remodeling in neurons of the hippocampal trisynaptic circuit as well as spatial memory deficits. Hippocampus 2022; 32:828-838. [PMID: 36177907 DOI: 10.1002/hipo.23473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 01/07/2023]
Abstract
Obesity is characterized by excessive fat accumulation. The Zucker rat displays genetic obesity due to a mutation in the leptin receptor gene; this model is of great interest because of its similarity to human obesity. Brain regions may be affected by obesity, but detailed information is lacking. In the present study, we analyzed the morphology of neurons in the hippocampal trisynaptic circuit as well as the spatial memory of obese Zucker rats. We performed two experiments. Each experiment contained two experimental groups: the control group (male Long Evans rats) and the study group (obese male Zucker rats). We monitored the body weights of all rats over 4 weeks. In the first experiment, we analyzed the morphology of hippocampal neurons. Under anesthesia, we measured the abdominal and hip circumferences and collected at least 1 ml of blood to assess serum glucose (GLU), triglyceride (TGC), and cholesterol (COL) concentrations. We perfused the brains of these rats with 0.9% saline solution, incubated the brains in Golgi-Cox solution, and subsequently evaluated the morphology of pyramidal neurons in the hippocampus (the CA1-CA3 regions) and the entorhinal cortex as well as the morphology of granule neurons in the dentate gyrus. In the second experiment, we assessed the spatial memory of animals with the Morris water maze. The Zucker rats had an obese phenotype, as indicated by their elevated body weight and increased abdominal and hip circumferences as well as elevated GLU, COL, and TGC concentrations. Analysis of neurons from the specified regions in obese male Zucker rats indicated reduced dendritic arborization and reduced dendritic spine density. In terms of spatial learning and memory, the obese Zucker rats exhibited intact spatial learning (i.e., of platform location) but deficits in spatial memory. These data provide evidence that obesity alters the morphology and function of hippocampal neurons.
Collapse
Affiliation(s)
- Dulce María Manuel Sánchez
- Laboratorio de Neurofisiología Experimental, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Adriana Berenice Silva Gómez
- Laboratorio de Neurofisiología Experimental, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
15
|
Harvey J. Food for Thought: Leptin and Hippocampal Synaptic Function. Front Pharmacol 2022; 13:882158. [PMID: 35784728 PMCID: PMC9247348 DOI: 10.3389/fphar.2022.882158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
It is well documented that the endocrine hormone, leptin controls energy homeostasis by providing key signals to specific hypothalamic nuclei. However, our knowledge of leptin’s central actions has advanced considerably over the last 20 years, with the hippocampus now established as an important brain target for this hormone. Leptin receptors are highly localised to hippocampal synapses, and increasing evidence reveals that activation of synaptically located leptin receptors markedly impacts cognitive processes, and specifically hippocampal-dependent learning and memory. Here, we review the recent actions of leptin at hippocampal synapses and explore the consequences for brain health and disease.
Collapse
|
16
|
Grasso P. Harnessing the Power of Leptin: The Biochemical Link Connecting Obesity, Diabetes, and Cognitive Decline. Front Aging Neurosci 2022; 14:861350. [PMID: 35527735 PMCID: PMC9072663 DOI: 10.3389/fnagi.2022.861350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
In this review, the current understanding of leptin’s role in energy balance, glycemic regulation, and cognitive function is examined, and its involvement in maintaining the homeostatic “harmony” of these physiologies is explored. The effects of exercise on circulating leptin levels are summarized, and the results of clinical application of leptin to metabolic disease and neurologic dysfunction are reviewed. Finally, pre-clinical evidence is presented which suggests that synthetic peptide leptin mimetics may be useful in resolving not only the leptin resistance associated with common obesity and other elements of metabolic syndrome, but also the peripheral insulin resistance characterizing type 2 diabetes mellitus, and the central insulin resistance associated with certain neurologic deficits in humans.
Collapse
Affiliation(s)
- Patricia Grasso
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
- *Correspondence: Patricia Grasso,
| |
Collapse
|
17
|
A review of glucoregulatory hormones potentially applicable to the treatment of Alzheimer’s disease: mechanism and brain delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Harvey J. Leptin regulation of synaptic function at hippocampal TA-CA1 and SC-CA1 synapses. VITAMINS AND HORMONES 2022; 118:315-336. [PMID: 35180931 DOI: 10.1016/bs.vh.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Increasing evidence indicates that the metabolic hormone, leptin markedly influences the functioning of the hippocampus. In particular, exposure to leptin results in persistent changes in synaptic efficacy at both temporoammonic (TA) and Schaffer Collateral (SC) inputs to hippocampal CA1 neurons. The ability of leptin to regulate TA-CA1 and SC-CA1 synapses has important functional implications, as both synaptic connections play important roles in hippocampal-dependent learning and memory. Here we review the modulatory actions of the hormone leptin at these hippocampal CA1 synapses and explore the impact on learning and memory processes.
Collapse
Affiliation(s)
- Jenni Harvey
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
19
|
Lei Q, Tian H, Xiao Z, Wu W, Liang X, Zhao Q, Ding D, Deng W. Association Between Body Mass Index and Incident Dementia Among Community-Dwelling Older Adults: The Shanghai Aging Study. J Alzheimers Dis 2022; 86:919-929. [PMID: 35147546 DOI: 10.3233/jad-215517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The relationship between body mass index (BMI) and dementia is inconclusive. Undesirable loss of fat-free mass is a risk factor for cognitive decline while obesity is also a risk factor for cardio-metabolic disorders among the older adults. OBJECTIVE This study aimed to examine the association between BMI and incident all-cause dementia among Chinese older adults using a prospective study. METHODS Participants were 1,627 community residents aged 60 or older without dementia from the Shanghai Aging Study. Cox regression models, incorporated with restricted cubic splines, were used to explore a nonlinear association between baseline BMI and risk of all-cause dementia as measured by hazard ratio (HR) using both frequentist and Bayesian approach. RESULTS We diagnosed 136 incident dementia cases during the mean follow-up of 5.3 years. Compared with moderate BMI (18.5-24.0 kg/m2), low BMI (< 18.5 kg/m2) were related to an increased risk of dementia with the HR as 3.38 (95% CI 1.50-7.63), while high BMI (≥24.0 kg/m2) showed a decreased risk of dementia without statistical significance (HR = 0.91, 95% CI 0.60 to 1.39). Sensitivity analysis in participants without central obesity indicated that the association was still significant with even higher HR. Bayesian approach presented the similar results. CONCLUSION Our result indicates that low BMI may contribute to high risk of incident dementia, even in individuals without central obesity.
Collapse
Affiliation(s)
- Qiqi Lei
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China.,NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Hongdou Tian
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zhenxu Xiao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Wu
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Deng
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China.,NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Cente M, Zorad S, Smolek T, Fialova L, Paulenka Ivanovova N, Krskova K, Balazova L, Skrabana R, Filipcik P. Plasma Leptin Reflects Progression of Neurofibrillary Pathology in Animal Model of Tauopathy. Cell Mol Neurobiol 2022; 42:125-136. [PMID: 32997211 PMCID: PMC11441179 DOI: 10.1007/s10571-020-00972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
The close relationship between Alzheimer's disease (AD) and obesity was recognized many years ago. However, complete understanding of the pathological mechanisms underlying the interactions between degeneration of CNS and fat metabolism is still missing. The leptin a key adipokine of white adipose tissue has been suggested as one of the major mediators linking the obesity and AD. Here we investigated the association between peripheral levels of leptin, general metabolic status and stage of the pathogenesis in rat transgenic model of AD. We demonstrate significantly decreased levels of plasma leptin in animals with experimentally induced progressive neurofibrillary pathology, which represents only 62.3% (P = 0.0015) of those observed in normal wild type control animals. More detailed analysis showed a strong and statistically significant inverse correlation between the load of neurofibrillary pathology and peripheral levels of leptin (r = - 0.7248, P = 0.0177). We also observed a loss of body weight during development of neurodegeneration (about 14% less than control animals, P = 0.0004) and decrease in several metabolic parameters such as glucose, insulin, triglycerides and VLDL in plasma of the transgenic animals. Our data suggest that plasma leptin could serve as a convenient peripheral biomarker for tauopathies and Alzheimer's disease. Decrease in gene expression of leptin in fat tissue and its plasma level was found as one of the consequences of experimentally induced neurodegeneration. Our data may help to design rational diagnostic and therapeutic strategies for patients suffering from Alzheimer's disease or other forms of tauopathy.
Collapse
Affiliation(s)
- Martin Cente
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Lubica Fialova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | | | - Katarina Krskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Balazova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia.
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia.
| |
Collapse
|
21
|
Du F, Yu Q, Yan S, Zhang Z, Vangavaragu JR, Chen D, Yan SF, Yan SS. Gain of PITRM1 peptidase in cortical neurons affords protection of mitochondrial and synaptic function in an advanced age mouse model of Alzheimer's disease. Aging Cell 2021; 20:e13368. [PMID: 33951271 PMCID: PMC8135081 DOI: 10.1111/acel.13368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/24/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunction is one of the early pathological features of Alzheimer's disease (AD). Accumulation of cerebral and mitochondrial Aβ links to mitochondrial and synaptic toxicity. We have previously demonstrated the mechanism by which presequence peptidase (PITRM1)‐mediated clearance of mitochondrial Aβ contributes to mitochondrial and cerebral amyloid pathology and mitochondrial and synaptic stress in adult transgenic AD mice overexpressing Aβ up to 12 months old. Here, we investigate the effect of PITRM1 in an advanced age AD mouse model (up to 19–24 months) to address the fundamental unexplored question of whether restoration/gain of PITRM1 function protects against mitochondrial and synaptic dysfunction associated with Aβ accumulation and whether this protection is maintained even at later ages featuring profound amyloid pathology and synaptic failure. Using newly developed aged PITRM1/Aβ‐producing AD mice, we first uncovered reduction in PITRM1 expression in AD‐affected cortex of AD mice at 19–24 months of age. Increasing neuronal PITRM1 activity/expression re‐established mitochondrial respiration, suppressed reactive oxygen species, improved synaptic function, and reduced loss of synapses even at advanced ages (up to 19–24 months). Notably, loss of PITRM1 proteolytic activity resulted in Aβ accumulation and failure to rescue mitochondrial and synaptic function, suggesting that PITRM1 activity is required for the degradation and clearance of mitochondrial Aβ and Aβ deposition. These data indicate that augmenting PITRM1 function results in persistent life‐long protection against Aβ toxicity in an AD mouse model. Therefore, augmenting PITRM1 function may enhance Aβ clearance in mitochondria, thereby maintaining mitochondrial integrity and ultimately slowing the progression of AD.
Collapse
Affiliation(s)
- Fang Du
- Department of Surgery Columbia University New York NY USA
| | - Qing Yu
- Department of Surgery Columbia University New York NY USA
| | - Shijun Yan
- Department of Pharmacology and Toxicology and Higuchi bioscience Center University of Kansas Lawrence KS USA
| | - Zhihua Zhang
- Department of Pharmacology and Toxicology and Higuchi bioscience Center University of Kansas Lawrence KS USA
| | - Jhansi Rani Vangavaragu
- Department of Pharmacology and Toxicology and Higuchi bioscience Center University of Kansas Lawrence KS USA
| | - Doris Chen
- Department of Pharmacology and Toxicology and Higuchi bioscience Center University of Kansas Lawrence KS USA
| | - Shi Fang Yan
- Department of Surgery Columbia University New York NY USA
| | - Shirley ShiDu Yan
- Department of Surgery Columbia University New York NY USA
- Department of Molecular Pharmacology & Therapeutics Columbia University New York NY USA
| |
Collapse
|
22
|
Irving A, Harvey J. Regulation of hippocampal synaptic function by the metabolic hormone leptin: Implications for health and disease. Prog Lipid Res 2021; 82:101098. [PMID: 33895229 DOI: 10.1016/j.plipres.2021.101098] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Significant advances have been made in our understanding of the hormone, leptin and its CNS actions in recent years. It is now evident that leptin has a multitude of brain functions, that extend beyond its established role in the hypothalamic control of energy balance. Additional brain regions including the hippocampus are important targets for leptin, with a high density of leptin receptors (LepRs) expressed in specific hippocampal regions and localised to CA1 synapses. Extensive evidence indicates that leptin has pro-cognitive actions, as it rapidly modifies synaptic efficacy at excitatory Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 synapses and enhances performance in hippocampal-dependent memory tasks. There is a functional decline in hippocampal responsiveness to leptin with age, with significant reductions in the modulatory effects of leptin at SC-CA1 and TA-CA1 synapses in aged, compared to adult hippocampus. As leptin has pro-cognitive effects, this decline in leptin sensitivity is likely to have negative consequences for cognitive function during the aging process. Here we review how evaluation of the hippocampal actions of leptin has improved our knowledge of the regulatory brain functions of leptin in health and provided significant insight into the impact of leptin in age-related neurodegenerative disorders linked to cognitive decline.
Collapse
Affiliation(s)
- Andrew Irving
- School of Biomolecular and Biomedical Science, The Conway Institute, University College Dublin, Dublin, Ireland
| | - Jenni Harvey
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom.
| |
Collapse
|
23
|
Hamilton K, Harvey J. Leptin regulation of hippocampal synaptic function in health and disease. VITAMINS AND HORMONES 2021; 115:105-127. [PMID: 33706945 DOI: 10.1016/bs.vh.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is widely accepted that the metabolic hormone leptin regulates food intake and body weight via activation of hypothalamic leptin receptors. However, as leptin receptors are also highly expressed in other brain regions, such as the hippocampus, alterations in leptin responsiveness also impacts on key functions of the hippocampus, like learning and memory. Within the hippocampus, high levels of leptin receptors are expressed at excitatory synapses, and in accordance with a synaptic localization, leptin potently regulates synaptic transmission at both Schaffer collateral (SC) and temporoammonic (TA) inputs to CA1 pyramidal neurons. Increasing evidence from cellular and behavioral studies examining leptin action at CA1 synapses support the notion that leptin is a potential cognitive enhancer. However, the capacity of leptin to regulate synaptic efficacy at SC-CA1 and TA-CA1 synapses declines in an age-dependent manner. Moreover, clinical evidence that supports a link between circulating leptin levels and the risk of the age-related neurodegenerative disorder, Alzheimer's disease (AD) is accumulating. Consequently, it has been proposed that the leptin system is a potential therapeutic target in AD, and that boosting the hippocampal actions of leptin may be beneficial in the treatment of AD. Here we review recent progress in our understanding of the neuronal and hippocampal synaptic functions that are regulated by leptin and how alterations in the leptin system influence age-related CNS-related disorders like AD.
Collapse
Affiliation(s)
- Kirsty Hamilton
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jenni Harvey
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
24
|
Bravo Durán DA, Barreda Guzmán SJ, Trujillo Hernández A, Silva Gómez AB. Obese female Zucker rats (fa/fa) exhibit dendritic retraction in neurons in the ventromedial hypothalamic nucleus. J Chem Neuroanat 2021; 113:101919. [PMID: 33497806 DOI: 10.1016/j.jchemneu.2021.101919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/21/2020] [Accepted: 01/16/2021] [Indexed: 11/17/2022]
Abstract
The ventromedial hypothalamic nucleus (VMH) is located in the tuberal region of the hypothalamus and is traditionally considered the satiety center. In obese Zucker rats, which express a mutation in the leptin receptor gene and exhibit obesity from the first weeks of life, the morphology of VMH neurons is unknown. In the present study, we found that the dendritic length of VMH neurons in obese Zucker rats was significantly shorter than that in Long Evans rats. This finding allows us to suggest that obese Zucker rats exhibit both neuronal metabolic alterations related to leptin and a reduction in the flow of information within the neuronal circuits in which the VMH nucleus participates to regulate foraging.
Collapse
Affiliation(s)
- Dolores Adriana Bravo Durán
- Laboratorio de Neurofisiología Experimental, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Puebla, CP, 72520, Mexico
| | - Selina Jocelyn Barreda Guzmán
- Laboratorio de Neurofisiología Experimental, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Puebla, CP, 72520, Mexico
| | - Angélica Trujillo Hernández
- Laboratorio de Neuroendocrinología, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Puebla, CP, 72520, Mexico
| | - Adriana Berenice Silva Gómez
- Laboratorio de Neurofisiología Experimental, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Puebla, CP, 72520, Mexico.
| |
Collapse
|
25
|
Hamilton K, Harvey J. The Neuronal Actions of Leptin and the Implications for Treating Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:ph14010052. [PMID: 33440796 PMCID: PMC7827292 DOI: 10.3390/ph14010052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
It is widely accepted that the endocrine hormone leptin controls food intake and energy homeostasis via activation of leptin receptors expressed on hypothalamic arcuate neurons. The hippocampal formation also displays raised levels of leptin receptor expression and accumulating evidence indicates that leptin has a significant impact on hippocampal synaptic function. Thus, cellular and behavioural studies support a cognitive enhancing role for leptin as excitatory synaptic transmission, synaptic plasticity and glutamate receptor trafficking at hippocampal Schaffer collateral (SC)-CA1 synapses are regulated by leptin, and treatment with leptin enhances performance in hippocampus-dependent memory tasks. Recent studies indicate that hippocampal temporoammonic (TA)-CA1 synapses are also a key target for leptin. The ability of leptin to regulate TA-CA1 synapses has important functional consequences as TA-CA1 synapses are implicated in spatial and episodic memory processes. Moreover, degeneration is initiated in the TA pathway at very early stages of Alzheimer's disease, and recent clinical evidence has revealed links between plasma leptin levels and the incidence of Alzheimer's disease (AD). Additionally, accumulating evidence indicates that leptin has neuroprotective actions in various AD models, whereas dysfunctions in the leptin system accelerate AD pathogenesis. Here, we review the data implicating the leptin system as a potential novel target for AD, and the evidence that boosting the hippocampal actions of leptin may be beneficial.
Collapse
|
26
|
Cecon E, Lhomme T, Maurice T, Luka M, Chen M, Silva A, Wauman J, Zabeau L, Tavernier J, Prévot V, Dam J, Jockers R. Amyloid Beta Peptide Is an Endogenous Negative Allosteric Modulator of Leptin Receptor. Neuroendocrinology 2021; 111:370-387. [PMID: 32335558 DOI: 10.1159/000508105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Metabolic dysfunction is now recognized as a pivotal component of Alzheimer's disease (AD), the most common dementia worldwide. However, the precise molecular mechanisms linking metabolic dysfunction to AD remain elusive. OBJECTIVE Here, we investigated the direct impact of soluble oligomeric amyloid beta (Aβ) peptides, the main molecular hallmark of AD, on the leptin system, a major component of central energy metabolism regulation. METHODS We developed a new time-resolved fluorescence resonance energy transfer-based Aβ binding assay for the leptin receptor (LepR) and studied the effect of Aβ on LepR function in several in vitro assays. The in vivo effect of Aβ on LepR function was studied in an Aβ-specific AD mouse model and in pro-opiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus. RESULTS We revealed specific and high-affinity (Ki = 0.1 nM) binding of Aβ to LepR. Pharmacological characterization of this interaction showed that Aβ binds allosterically to the extracellular domain of LepR and negatively affects receptor function. Negative allosteric modulation of LepR by Aβ was detected at the level of signaling pathways (STAT-3, AKT, and ERK) in vitroand in vivo. Importantly, the leptin-induced response of POMC neurons, key players in the regulation of metabolic function, was completely abolished in the presence of Aβ. CONCLUSION Our data indicate that Aβ is a negative allosteric modulator of LepR, resulting in impaired leptin action, and qualify LepR as a new and direct target of Aβ oligomers. Preventing the interaction of Aβ with LepR might improve both the metabolic and cognitive dysfunctions in AD condition.
Collapse
Affiliation(s)
- Erika Cecon
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Tori Lhomme
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, EGID, DistAlz, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| | - Marine Luka
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Min Chen
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Anisia Silva
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Joris Wauman
- VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
| | - Lennart Zabeau
- VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, EGID, DistAlz, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Julie Dam
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Ralf Jockers
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France,
| |
Collapse
|
27
|
Leptin enhances adult neurogenesis and reduces pathological features in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2020; 148:105219. [PMID: 33301880 DOI: 10.1016/j.nbd.2020.105219] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide and is characterized by the presence of senile plaques by amyloid-beta (Aβ) and neurofibrillary tangles of hyperphosphorylated Tau protein. These changes lead to progressive neuronal degeneration and dysfunction, resulting in severe brain atrophy and cognitive deficits. With the discovery that neurogenesis persists in the adult mammalian brain, including brain regions affected by AD, studies of the use of neural stem cells (NSCs) for the treatment of neurodegenerative diseases to repair or prevent neuronal cell loss have increased. Here we demonstrate that leptin administration increases the neurogenic process in the dentate gyrus of the hippocampus as well as in the subventricular zone of lateral ventricles of adult and aged mice. Chronic treatment with leptin increased NSCs proliferation with significant effects on proliferation and differentiation of newborn cells. The expression of the long form of the leptin receptor, LepRb, was detected in the neurogenic niches by reverse qPCR and immunohistochemistry. Moreover, leptin modulated astrogliosis, microglial cell number and the formation of senile plaques. Additionally, leptin led to attenuation of Aβ-induced neurodegeneration and superoxide anion production as revealed by Fluoro-Jade B and dihydroethidium staining. Our study contributes to the understanding of the effects of leptin in the brain that may lead to the development of new therapies to treat Alzheimer's disease.
Collapse
|
28
|
George EK, Reddy PH. Can Healthy Diets, Regular Exercise, and Better Lifestyle Delay the Progression of Dementia in Elderly Individuals? J Alzheimers Dis 2020; 72:S37-S58. [PMID: 31227652 DOI: 10.3233/jad-190232] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and multiple cognitive impairments. Current healthcare costs for over 50 million people afflicted with AD are about $818 million and are projected to be $2 billion by 2050. Unfortunately, there are no drugs currently available that can delay and/or prevent the progression of disease in elderly individuals and in AD patients. Loss of synapses and synaptic damage are largely correlated with cognitive decline in AD patients. Women are at a higher lifetime risk of developing AD encompassing two-thirds of the total AD afflicted population. Only about 1-2% of total AD patients can be explained by genetic mutations in APP, PS1, and PS2 genes. Several risk factors have been identified, such as Apolipoprotein E4 genotype, type 2 diabetes, traumatic brain injury, depression, and hormonal imbalance, are reported to be associated with late-onset AD. Strong evidence reveals that antioxidant enriched diets and regular exercise reduces toxic radicals, enhances mitochondrial function and synaptic activity, and improves cognitive function in elderly populations. Current available data on the use of antioxidants in mouse models of AD and antioxidant(s) supplements in diets of elderly individuals were investigated. The use of antioxidants in randomized clinical trials in AD patients was also critically assessed. Based on our survey of current literature and findings, we cautiously conclude that healthy diets, regular exercise, and improved lifestyle can delay dementia progression and reduce the risk of AD in elderly individuals and reverse subjects with mild cognitive impairment to a non-demented state.
Collapse
Affiliation(s)
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Lubbock, TX, USA
| |
Collapse
|
29
|
Effects of intrahippocampal injection of Leptin on seizure-induced cognitive impairment in male rats. LEARNING AND MOTIVATION 2020. [DOI: 10.1016/j.lmot.2020.101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Cheng Y, Buchan M, Vitanova K, Aitken L, Gunn-Moore FJ, Ramsay RR, Doherty G. Neuroprotective actions of leptin facilitated through balancing mitochondrial morphology and improving mitochondrial function. J Neurochem 2020; 155:191-206. [PMID: 32157699 DOI: 10.1111/jnc.15003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has a recognised role in the progression of Alzheimer's disease (AD) pathophysiology. Cerebral perfusion becomes increasingly inefficient throughout ageing, leading to unbalanced mitochondrial dynamics. This effect is exaggerated by amyloid β (Aβ) and phosphorylated tau, two hallmark proteins of AD pathology. A neuroprotective role for the adipose-derived hormone, leptin, has been demonstrated in neuronal cells. However, its effects with relation to mitochondrial function in AD remain largely unknown. To address this question, we have used both a glucose-serum-deprived (CGSD) model of ischaemic stroke in SH-SY5Y cells and a Aβ1-42 -treatment model of AD in differentiated hippocampal cells. Using a combination of 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and MitoRed staining techniques, we show that leptin prevents depolarisation of the mitochondrial membrane and excessive mitochondrial fragmentation induced by both CGSD and Aβ1-42 . Thereafter, we used ELISAs and a number of activity assays to reveal the biochemical underpinnings of these processes. Specifically, leptin was seen to inhibit up-regulation of the mitochondrial fission protein Fis1 and down-regulation of the mitochondrial fusion protein, Mfn2. Furthermore, leptin was seen to up-regulate the expression and activity of the antioxidant enzyme, monoamine oxidase B. Herein we provide the first demonstration that leptin is sufficient to protect against aberrant mitochondrial dynamics and resulting loss of function induced by both CGSD and Aβ1-42 . We conclude that the established neuroprotective actions of leptin may be facilitated through regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Ying Cheng
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Matthew Buchan
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Karina Vitanova
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Laura Aitken
- School of Biology, University of St Andrews, St Andrews, UK
| | | | - Rona R Ramsay
- School of Biology, University of St Andrews, St Andrews, UK
| | - Gayle Doherty
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
31
|
Adeli A, Zendehdel M, Babapour V, Panahi N. Interaction between leptin and glutamatergic system on food intake regulation in neonatal chicken: role of NMDA and AMPA receptors. Int J Neurosci 2020; 130:713-721. [PMID: 31813315 DOI: 10.1080/00207454.2019.1702983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Objective: The aim of the current study was to determine the possible interaction of the central leptin and Glutamatergic systems on feeding behavior in neonatal 3-hours food deprived (FD3) broilers chickens.Methods: In experiment 1, FD3 chicken received intracerebroventricular (ICV) injection of control solution (group i) and 2.5, 5 and 10 µg of Leptin (groups ii-iv). In experiment 2, FD3 chicken were ICV injected with (group i) control solution and groups ii-iv with 2.5, 5 and 10 nmol of AG-490 (JAK2 antagonist). In experiment 3, injections were (i) control solution, (ii) Leptin (10 µg), (iii) AG-490 (2.5 nmol) and (iv) Leptin + AG-490. In experiment 4, broiler chickens were ICV injected with (i) control solution, (ii) Leptin (10 µg), (iii) MK-801 (NMDA glutamate receptors antagonist; 15 nmol) and (iv) Leptin + MK-801. Experiments 5-9 were similar to experiment 1, except chicken were ICV injected with CNQX (AMPA receptor antagonist, 390 nmol), UBP-302 (Kainate receptor antagonist, 390 nmol), AIDA (mGluR1 antagonist, 2 nmol), LY341495 (mGluR2 antagonist, 150 nmol) and UBP1112 (mGluR3 antagonist, 2 nmol) instead of MK-801. Then, food intake was measured until 120 min after injection.Results: ICV injection of leptin (2.5, 5 and 10 µg) significantly decreased food intake in a dose dependent manner (p < 0.05). Also, ICV injection of the JAK2 antagonist (2.5, 5 and 10 nmol) had hyperphagic effect in chicken (p < 0.05). Co-administration of leptin + AG-490, partially decreased leptin-induced hypophagia in broiler chicken (p < 0.05). In addition, co-injection of leptin + MK-801 significalty inhibited leptin-induced hypophagia in neonatal chicken (p < 0.05). Also, co-administration of leptin + CNQX partially attenuated hypophagic effect of leptin in chicken (p < 0.05).Conclusion: The results of present study suggest that leptin has hypophagic effect in neonatal chicken and this effect is probably mediated via NMDA and AMPA glutamatergic receptors.
Collapse
Affiliation(s)
- Amin Adeli
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Negar Panahi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
32
|
Potential exerkines for physical exercise-elicited pro-cognitive effects: Insight from clinical and animal research. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:361-395. [PMID: 31607361 DOI: 10.1016/bs.irn.2019.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A sedentary lifestyle is now known as a critical risk factor for accelerated aging-related neurodegenerative disorders. In contract, having regular physical exercise has opposite effects. Clinical findings have suggested that physical exercise can promote brain plasticity, particularly the hippocampus and the prefrontal cortex, that are important for learning and memory and mood regulations. However, the underlying mechanisms are still unclear. Animal studies reveal that the effects of physical exercise on promoting neuroplasticity could be mediated by different exerkines derived from the peripheral system and the brain itself. This book chapter summarizes the recent evidence from clinical and pre-clinical studies showing the emerging mediators for exercise-promoted brain health, including myokines secreted from skeletal muscles, adipokines from adipose tissues, and other factors secreted from the bone and liver.
Collapse
|
33
|
Lloret A, Monllor P, Esteve D, Cervera-Ferri A, Lloret MA. Obesity as a Risk Factor for Alzheimer's Disease: Implication of Leptin and Glutamate. Front Neurosci 2019; 13:508. [PMID: 31191220 PMCID: PMC6540965 DOI: 10.3389/fnins.2019.00508] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
Obesity is known to induce leptin and insulin resistance. Leptin is a peptide hormone synthesized in adipose tissue that mainly regulates food intake. It has been shown that insulin stimulates the production of leptin when adipocytes are exposed to glucose to encourage satiety; while leptin, via a negative feedback, decreases the insulin release and enhances tissue sensitivity to it, leading to glucose uptake for energy utilization or storage. Therefore, resistance to insulin is closely related to leptin resistance. Obesity in middle age has also been related to Alzheimer's disease (AD). In recent years, the relation between impaired leptin signaling pathway and the onset of AD has been studied. In all this context the role of the blood brain barrier (BBB) is crucial. Slow excitotoxicity happens in AD due to an excess of the neurotransmitter glutamate. Since leptin has been shown to regulate N-methyl-D-aspartate (NMDA) receptors, we want to review the link between these pathological pathways, and how they are affected by other AD triggering factors and its role in the onset of AD.
Collapse
Affiliation(s)
- Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Paloma Monllor
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Daniel Esteve
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Ana Cervera-Ferri
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Maria-Angeles Lloret
- Department of Clinic Neurophysiology, University Clinic Hospital of Valencia, Valencia, Spain
| |
Collapse
|
34
|
Yin Y, Cha C, Wu F, Li J, Li S, Zhu X, Zhang J, Guo G. Endophilin 1 knockdown prevents synaptic dysfunction induced by oligomeric amyloid β. Mol Med Rep 2019; 19:4897-4905. [PMID: 31059028 PMCID: PMC6522965 DOI: 10.3892/mmr.2019.10158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 04/03/2019] [Indexed: 12/18/2022] Open
Abstract
Amyloid β (Aβ) has been reported to have an important role in the cognitive deficits of Alzheimer's disease (AD), as oligomeric Aβ promotes synaptic dysfunction and triggers neuronal death. Recent evidence has associated an endocytosis protein, endophilin 1, with AD, as endophilin 1 levels have been reported to be markedly increased in the AD brain. The increase in endophilin 1 levels in neurons is associated with an increase in the activation of the stress kinase JNK, with subsequent neuronal death. In the present study, whole-cell patch-clamp recording demonstrated that oligomeric Aβ caused synaptic dysfunction and western blotting revealed that endophilin 1 was highly expressed prior to neuronal death of cultured hippocampal neurons. Furthermore, RNA interference and electrophysiological recording techniques in cultured hippocampal neurons demonstrated that knockdown of endophilin 1 prevented synaptic dysfunction induced by Aβ. Thus, a potential role for endophilin 1 in Aβ-induced postsynaptic dysfunction has been identified, indicating a possible direction for the prevention of postsynaptic dysfunction in cognitive impairment and suggesting that endophilin may be a potential target for the clinical treatment of AD.
Collapse
Affiliation(s)
- Yichen Yin
- Department of Neurology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Caihui Cha
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Fengming Wu
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Jiong Li
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Sumei Li
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaonan Zhu
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Jifeng Zhang
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Guoqing Guo
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
35
|
McGregor G, Harvey J. Leptin Regulation of Synaptic Function at Hippocampal TA-CA1 and SC-CA1 Synapses: Implications for Health and Disease. Neurochem Res 2019; 44:650-660. [PMID: 28819795 PMCID: PMC6420429 DOI: 10.1007/s11064-017-2362-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 12/16/2022]
Abstract
Growing evidence indicates that the endocrine hormone leptin regulates hippocampal synaptic function in addition to its established role as a hypothalamic satiety signal. Indeed, numerous studies show that leptin facilitates the cellular events that underlie hippocampal learning and memory including activity-dependent synaptic plasticity and glutamate receptor trafficking, indicating that leptin may be a potential cognitive enhancer. Although there has been extensive investigation into the modulatory role of leptin at hippocampal Schaffer collateral (SC)-CA1 synapses, recent evidence indicates that leptin also potently regulates excitatory synaptic transmission at the anatomically distinct temporoammonic (TA) input to hippocampal CA1 neurons. The cellular mechanisms underlying activity-dependent synaptic plasticity at TA-CA1 synapses differ from those at SC-CA1 synapses and the TA input is implicated in spatial and episodic memory formation. Furthermore, the TA input is an early target for neurodegeneration in Alzheimer's disease (AD) and aberrant leptin function is linked to AD. Here, we review the evidence that leptin regulates hippocampal synaptic function at both SC- and TA-CA1 synapses and discuss the consequences for neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Jenni Harvey
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
36
|
Maletínská L, Popelová A, Železná B, Bencze M, Kuneš J. The impact of anorexigenic peptides in experimental models of Alzheimer's disease pathology. J Endocrinol 2019; 240:R47-R72. [PMID: 30475219 DOI: 10.1530/joe-18-0532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the elderly population. Numerous epidemiological and experimental studies have demonstrated that patients who suffer from obesity or type 2 diabetes mellitus have a higher risk of cognitive dysfunction and AD. Several recent studies demonstrated that food intake-lowering (anorexigenic) peptides have the potential to improve metabolic disorders and that they may also potentially be useful in the treatment of neurodegenerative diseases. In this review, the neuroprotective effects of anorexigenic peptides of both peripheral and central origins are discussed. Moreover, the role of leptin as a key modulator of energy homeostasis is discussed in relation to its interaction with anorexigenic peptides and their analogs in AD-like pathology. Although there is no perfect experimental model of human AD pathology, animal studies have already proven that anorexigenic peptides exhibit neuroprotective properties. This phenomenon is extremely important for the potential development of new drugs in view of the aging of the human population and of the significantly increasing incidence of AD.
Collapse
Affiliation(s)
- Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Michal Bencze
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
- Institute of Physiology AS CR, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
- Institute of Physiology AS CR, Prague, Czech Republic
| |
Collapse
|
37
|
Forny-Germano L, De Felice FG, Vieira MNDN. The Role of Leptin and Adiponectin in Obesity-Associated Cognitive Decline and Alzheimer's Disease. Front Neurosci 2019; 12:1027. [PMID: 30692905 PMCID: PMC6340072 DOI: 10.3389/fnins.2018.01027] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Cross-talk between adipose tissue and central nervous system (CNS) underlies the increased risk of obese people to develop brain diseases such as cognitive and mood disorders. Detailed mechanisms for how peripheral changes caused by adipose tissue accumulation in obesity impact the CNS to cause brain dysfunction are poorly understood. Adipokines are a large group of substances secreted by the white adipose tissue to regulate a wide range of homeostatic processes including, but not limited to, energy metabolism and immunity. Obesity is characterized by a generalized change in the levels of circulating adipokines due to abnormal accumulation and dysfunction of adipose tissue. Altered adipokine levels underlie complications of obesity as well as the increased risk for the development of obesity-related comorbidities such as type 2 diabetes, cardiovascular and neurodegenerative diseases. Here, we review the literature for the role of adipokines as key mediators of the communication between periphery and CNS in health and disease. We will focus on the actions of leptin and adiponectin, two of the most abundant and well studied adipokines, in the brain, with particular emphasis on how altered signaling of these adipokines in obesity may lead to cognitive dysfunction and augmented risk for Alzheimer's disease. A better understanding of adipokine biology in brain disorders may prove of major relevance to diagnostic, prevention and therapy.
Collapse
Affiliation(s)
- Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Centre for Neuroscience Studies, Department of Psychiatry, Queen’s University, Kingston, ON, Canada
| | | |
Collapse
|
38
|
Ni H, Chen SH, Li LL, Jin MF. Alterations in the Neurobehavioral Phenotype and ZnT3/CB-D28k Expression in the Cerebral Cortex Following Lithium-Pilocarpine-Induced Status Epilepticus: the Ameliorative Effect of Leptin. Biol Trace Elem Res 2019; 187:100-106. [PMID: 29687372 DOI: 10.1007/s12011-018-1343-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/10/2018] [Indexed: 12/31/2022]
Abstract
Zinc transporter 3 (ZnT3)-dependent "zincergic" vesicular zinc accounts for approximately 20% of the total zinc content of the mammalian telencephalon. Elevated hippocampal ZnT3 expression is acknowledged to be associated with mossy fiber sprouting and cognitive deficits. However, no studies have compared the long-term neurobehavioral phenotype with the expression of ZnT3 in the cerebral cortex following status epilepticus (SE). The aim of this study was to investigate changes in the long-term neurobehavioral phenotype as well as the expression of ZnT3 and calcium homeostasis-related CB-D28k in the cerebral cortex of rats subjected to neonatal SE and to determine the effects of leptin treatment immediately after neonatal SE. Fifty Sprague-Dawley rats (postnatal day 6, P6) were randomly assigned to two groups: the pilocarpine hydrochloride-induced status epilepticus group (RS, n = 30) and control group (n = 20). Rats were further divided into the control group without leptin (Control), control-plus-leptin treatment group (Leptin), RS group without leptin treatment (RS), and RS-plus-leptin treatment group (RS + Leptin). On P6, all rats in the RS group and RS + Leptin group were injected intraperitoneally (i.p.) with lithium chloride (5 mEq/kg). Pilocarpine (320 mg/kg, i.p.) was administered 30 min after the scopolamine methyl chloride (1 mg/kg) injection on P7. From P8 to P14, animals of the Leptin group and RS + Leptin group were given leptin (4 mg/kg/day, i.p.). The neurological behavioral parameters (negative geotaxis reaction reflex, righting reflex, cliff avoidance reflex, forelimb suspension reflex, and open field test) were observed from P23 to P30. The protein levels of ZnT3 and CB-D28k in the cerebral cortex were detected subsequently by the western blot method. Pilocarpine-treated neonatal rats showed long-term abnormal neurobehavioral parameters. In parallel, there was a significantly downregulated protein level of CB-D28k and upregulated protein level of ZnT3 in the cerebral cortex of the RS group. Leptin treatment soon after epilepticus for 7 consecutive days counteracted these abnormal changes. Taken together with the results from our previous reports on another neonatal seizure model, which showed a significant positive inter-relationship between ZnT3 and calcium/calmodulin-dependent protein kinase IIα (CaMKIIα), the data here suggest that ZnT3/CB-D28k-associated Zn (2+)/Ca(2+) signaling might be involved in neonatal SE-induced long-term brain damage in the aspects of neurobehavioral impairment. Moreover, consecutive leptin treatment is effect at counteracting these hyperexcitability-related changes, suggesting a potential clinical significance.
Collapse
Affiliation(s)
- Hong Ni
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China.
| | - Su-Hong Chen
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China
| | - Li-Li Li
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China
| | - Mei-Fang Jin
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China
| |
Collapse
|
39
|
Leptin in depression: a potential therapeutic target. Cell Death Dis 2018; 9:1096. [PMID: 30367065 PMCID: PMC6203758 DOI: 10.1038/s41419-018-1129-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/02/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022]
Abstract
Leptin, produced and secreted by white adipose tissue, plays a critical role in regulating body weight, food intake, and energy metabolism. Recently, several studies have identified an underlying role for leptin in regulation of mood and cognition via regulation of synaptic changes in the brain that have been associated with antidepressant-like actions. Brain neural plasticity occurs in response to a range of intrinsic and extrinsic stimuli, including those that may mediate the effects of antidepressants. Neural plasticity theories of depression are thought to explain multiple aspects of depression and the effects of antidepressants. It is also well documented that leptin has effects on neural plasticity. This review summarizes the recent literature on the role of leptin in neural plasticity in order to elaborate the possible mechanism of leptin’s antidepressant-like effects. Recent findings provide new insights into the underlying mechanisms of neural plasticity in depression. Leptin may influence these mechanisms and consequently constitute a possible target for novel therapeutic approaches to the treatment of depression.
Collapse
|
40
|
McGregor G, Harvey J. Regulation of Hippocampal Synaptic Function by the Metabolic Hormone, Leptin: Implications for Health and Neurodegenerative Disease. Front Cell Neurosci 2018; 12:340. [PMID: 30386207 PMCID: PMC6198461 DOI: 10.3389/fncel.2018.00340] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022] Open
Abstract
The role of the endocrine hormone leptin in controlling energy homeostasis in the hypothalamus are well documented. However the CNS targets for leptin are not restricted to the hypothalamus as a high density of leptin receptors are also expressed in several parts of the brain involved in higher cognitive functions including the hippocampus. Numerous studies have identified that in the hippocampus, leptin has cognitive enhancing actions as exogenous application of this hormone facilitates hippocampal-dependent learning and memory, whereas lack or insensitivity to leptin results in significant memory deficits. Leptin also markedly influences some of the main cellular changes that are involved in learning and memory including NMDA-receptor dependent synaptic plasticity and glutamate receptor trafficking. Like other metabolic hormones, there is a significant decline in neuronal sensitivity to leptin during the ageing process. Indeed, the capacity of leptin to modulate the functioning of hippocampal synapses is substantially reduced in aged compared to adult tissue. Clinical studies have also identified an association between circulating leptin levels and the risk of certain neurodegenerative disorders such as Alzheimer’s disease (AD). In view of this, targeting leptin and/or its receptor/signaling mechanisms may be an innovative approach for developing therapies to treat AD. In support of this, accumulating evidence indicates that leptin has cognitive enhancing and neuroprotective actions in various models of AD. Here we assess recent evidence that supports an important regulatory role for leptin at hippocampal CA1 synapses, and we discuss how age-related alterations in this hormonal system influences neurodegenerative disease.
Collapse
Affiliation(s)
- Gemma McGregor
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jenni Harvey
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
41
|
McGregor G, Clements L, Farah A, Irving AJ, Harvey J. Age-dependent regulation of excitatory synaptic transmission at hippocampal temporoammonic-CA1 synapses by leptin. Neurobiol Aging 2018; 69:76-93. [PMID: 29860205 PMCID: PMC6075472 DOI: 10.1016/j.neurobiolaging.2018.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/17/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
Abstract
The hippocampus is a key target for the hormone leptin and leptin regulation of excitatory synaptic transmission at Schaffer-collateral-CA1 synapses during aging are well documented. However, little is known about the age-dependent actions of leptin at the temporoammonic (TA) input to CA1 neurons. Here we show that leptin induces a novel form of N-methyl-D-aspartate receptor-dependent long-term depression (LTD) at adult (12-24 weeks old) TA-CA1 synapses. Leptin-induced LTD requires activation of canonical Janus tyrosine kinase 2- signal transducer and activator of transcription signaling and removal of GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors from synapses. Moreover, leptin-induced LTD is occluded by activity-dependent LTD at TA-CA1 synapses. By contrast, leptin has no effect on excitatory synaptic transmission at aged (12-14 months old) TA-CA1 synapses, and low-frequency stimulation also fails to induce LTD at this age. These findings demonstrate clear age-related alterations in the leptin sensitivity of TA-CA1 synapses and provide valuable information on how the leptin system alters with age. As leptin has been linked to Alzheimer's disease, these findings have important implications for understanding of age-related disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Leigh Clements
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Adham Farah
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Andrew J Irving
- School of Biomolecular and Biomedical Science, The Conway Institute, University College Dublin, Dublin, Ireland
| | - Jenni Harvey
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
| |
Collapse
|
42
|
Overexpression of endophilin A1 exacerbates synaptic alterations in a mouse model of Alzheimer's disease. Nat Commun 2018; 9:2968. [PMID: 30061577 PMCID: PMC6065365 DOI: 10.1038/s41467-018-04389-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 04/27/2018] [Indexed: 02/05/2023] Open
Abstract
Endophilin A1 (EP) is a protein enriched in synaptic terminals that has been linked to Alzheimer's disease (AD). Previous in vitro studies have shown that EP can bind to a variety of proteins, which elicit changes in synaptic transmission of neurotransmitters and spine formation. Additionally, we previously showed that EP protein levels are elevated in AD patients and AD transgenic animal models. Here, we establish the in vivo consequences of upregulation of EP expression in amyloid-β peptide (Aβ)-rich environments, leading to changes in both long-term potentiation and learning and memory of transgenic animals. Specifically, increasing EP augmented cerebral Aβ accumulation. EP-mediated signal transduction via reactive oxygen species (ROS)/p38 mitogen-activated protein (MAP) kinase contributes to Aβ-induced mitochondrial dysfunction, synaptic injury, and cognitive decline, which could be rescued by blocking either ROS or p38 MAP kinase activity.
Collapse
|
43
|
Malekizadeh Y, Holiday A, Redfearn D, Ainge JA, Doherty G, Harvey J. A Leptin Fragment Mirrors the Cognitive Enhancing and Neuroprotective Actions of Leptin. Cereb Cortex 2018; 27:4769-4782. [PMID: 27600840 DOI: 10.1093/cercor/bhw272] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/02/2016] [Indexed: 01/22/2023] Open
Abstract
A key pathology of Alzheimer's disease (AD) is amyloid β (Aβ) accumulation that triggers synaptic impairments and neuronal death. Metabolic disruption is common in AD and recent evidence implicates impaired leptin function in AD. Thus the leptin system may be a novel therapeutic target in AD. Indeed, leptin has cognitive enhancing properties and it prevents the aberrant effects of Aβ on hippocampal synaptic function and neuronal viability. However, as leptin is a large peptide, development of smaller leptin-mimetics may be the best therapeutic approach. Thus, we have examined the cognitive enhancing and neuroprotective properties of known bioactive leptin fragments. Here we show that the leptin (116-130) fragment, but not leptin (22-56), mirrored the ability of leptin to promote AMPA receptor trafficking to synapses and facilitate activity-dependent hippocampal synaptic plasticity. Administration of leptin (116-130) also mirrored the cognitive enhancing effects of leptin as it enhanced performance in episodic-like memory tests. Moreover, leptin (116-130) prevented hippocampal synaptic disruption and neuronal cell death in models of amyloid toxicity. These findings establish further the importance of the leptin system as a therapeutic target in AD.
Collapse
Affiliation(s)
- Yasaman Malekizadeh
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Alison Holiday
- School of Psychology and Neuroscience, St Mary's Quad, University of St Andrews, St Andrews, FifeKY16 9TS, UK
| | - Devon Redfearn
- School of Psychology and Neuroscience, St Mary's Quad, University of St Andrews, St Andrews, FifeKY16 9TS, UK
| | - James A Ainge
- School of Psychology and Neuroscience, St Mary's Quad, University of St Andrews, St Andrews, FifeKY16 9TS, UK
| | - Gayle Doherty
- School of Psychology and Neuroscience, St Mary's Quad, University of St Andrews, St Andrews, FifeKY16 9TS, UK
| | - Jenni Harvey
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, DundeeDD1 9SY, UK
| |
Collapse
|
44
|
Down Syndrome, Obesity, Alzheimer's Disease, and Cancer: A Brief Review and Hypothesis. Brain Sci 2018; 8:brainsci8040053. [PMID: 29587359 PMCID: PMC5924389 DOI: 10.3390/brainsci8040053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
Down syndrome (trisomy 21), a complex mix of physical, mental, and biochemical issues, includes an increased risk of Alzheimer’s disease and childhood leukemia, a decreased risk of other tumors, and a high frequency of overweight/obesity. Certain features related to the third copy of chromosome 21 (which carries the APP gene and several anti-angiogenesis genes) create an environment favorable for Alzheimer’s disease and unfavorable for cancer. This environment may be enhanced by two bioactive compounds from fat cells, leptin, and adiponectin. This paper outlines these fat-related disease mechanisms and suggests new avenues of research to reduce disease risk in Down syndrome.
Collapse
|
45
|
Vieira MNN, Lima-Filho RAS, De Felice FG. Connecting Alzheimer's disease to diabetes: Underlying mechanisms and potential therapeutic targets. Neuropharmacology 2017; 136:160-171. [PMID: 29129775 DOI: 10.1016/j.neuropharm.2017.11.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a risk factor for type 2 diabetes and vice versa, and a growing body of evidence indicates that these diseases are connected both at epidemiological, clinical and molecular levels. Recent studies have begun to reveal common pathogenic mechanisms shared by AD and type 2 diabetes. Impaired neuronal insulin signaling and endoplasmic reticulum (ER) stress are present in animal models of AD, similar to observations in peripheral tissue in T2D. These findings shed light into novel diabetes-related mechanisms leading to brain dysfunction in AD. Here, we review the literature on selected mechanisms shared between these diseases and discuss how the identification of such mechanisms may lead to novel therapeutic targets in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Marcelo N N Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
46
|
McGregor G, Harvey J. Food for thought: Leptin regulation of hippocampal function and its role in Alzheimer's disease. Neuropharmacology 2017; 136:298-306. [PMID: 28987937 DOI: 10.1016/j.neuropharm.2017.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 01/08/2023]
Abstract
Accumulating evidence indicates that diet and body weight are important factors associated with Alzheimer's disease (AD), with a significant increase in AD risk linked to mid-life obesity, and weight loss frequently occurring in the early stages of AD. This has fuelled interest in the hormone leptin, as it is an important hypothalamic regulator of food intake and body weight, but leptin also markedly influences the functioning of the hippocampus; a key brain region that degenerates in AD. Increasing evidence indicates that leptin has cognitive enhancing properties as it facilitates the cellular events that underlie hippocampal-dependent learning and memory. However, significant reductions in leptin's capacity to regulate hippocampal synaptic function occurs with age and dysfunctions in the leptin system are associated with an increased risk of AD. Moreover, leptin is a potential novel target in AD as leptin treatment has beneficial effects in various models of AD. Here we summarise recent advances in leptin neurobiology with particular focus on regulation of hippocampal synaptic function by leptin and the implications of this for neurodegenerative disorders like AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Jenni Harvey
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom.
| |
Collapse
|
47
|
McGregor G, Irving AJ, Harvey J. Canonical JAK‐STAT signaling is pivotal for long‐term depression at adult hippocampal temporoammonic‐CA1 synapses. FASEB J 2017; 31:3449-3466. [DOI: 10.1096/fj.201601293rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Gemma McGregor
- Division of NeuroscienceSchool of MedicineNinewells Hospital and Medical SchoolUniversity of Dundee Dundee United Kingdom
| | - Andrew J. Irving
- School of Biomolecular and Biomedical ScienceThe Conway InstituteUniversity College Dublin Dublin Ireland
| | - Jenni Harvey
- Division of NeuroscienceSchool of MedicineNinewells Hospital and Medical SchoolUniversity of Dundee Dundee United Kingdom
| |
Collapse
|
48
|
Franx BAA, Arnoldussen IAC, Kiliaan AJ, Gustafson DR. Weight Loss in Patients with Dementia: Considering the Potential Impact of Pharmacotherapy. Drugs Aging 2017; 34:425-436. [PMID: 28478593 DOI: 10.1007/s40266-017-0462-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unintentional body weight loss is common in patients with dementia and is linked to cognitive impairment and poorer disease outcomes. It is proposed that some dementia medications with market approval, while aiming to improve cognitive and functional outcomes of a patient with dementia, are associated with reported body weight or body mass index loss. This review presents evidence in the published literature on body weight loss in dementia, describes selected theories behind body weight loss, evaluates the potential impact of approved dementia pharmacotherapies on body weight, considers the potential role for medical foods, understands the potential influence of treatments for neuropsychiatric symptoms and signs, and finally, summarizes this important area.
Collapse
Affiliation(s)
- Bart A A Franx
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse A C Arnoldussen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amanda J Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Deborah R Gustafson
- Department of Neurology, Section for NeuroEpidemiology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Box 1213, Brooklyn, NY, 11203, USA. .,Neuropsychiatric Epidemiology Unit (EPINEP), Institute for Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. .,Department of Health and Education, University of Skövde, Skövde, Sweden.
| |
Collapse
|
49
|
Abstract
Our understanding of adipose tissue as an endocrine organ has been transformed over the last 20 years. During this time, a number of adipocyte-derived factors or adipokines have been identified. This article will review evidence for how adipokines acting via the central nervous system (CNS) regulate normal physiology and disease pathology. The reported CNS-mediated effects of adipokines are varied and include the regulation of energy homeostasis, autonomic nervous system activity, the reproductive axis, neurodevelopment, cardiovascular function, and cognition. Due to the wealth of information available and the diversity of their known functions, the archetypal adipokines leptin and adiponectin will be focused on extensively. Other adipokines with established CNS actions will also be discussed. Due to the difficulties associated with studying CNS function on a molecular level in humans, the majority of our knowledge, and as such the studies described in this paper, comes from work in experimental animal models; however, where possible the relevant data from human studies are also highlighted. © 2017 American Physiological Society. Compr Physiol 7:1359-1406, 2017.
Collapse
Affiliation(s)
- Craig Beall
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Lydia Hanna
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Kate L J Ellacott
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| |
Collapse
|
50
|
Mainardi M, Spinelli M, Scala F, Mattera A, Fusco S, D'Ascenzo M, Grassi C. Loss of Leptin-Induced Modulation of Hippocampal Synaptic Trasmission and Signal Transduction in High-Fat Diet-Fed Mice. Front Cell Neurosci 2017; 11:225. [PMID: 28804449 PMCID: PMC5532388 DOI: 10.3389/fncel.2017.00225] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022] Open
Abstract
Hippocampal plasticity is triggered by a variety of stimuli including sensory inputs, neurotrophins and inflammation. Leptin, whose primary function is to regulate food intake and energy expenditure, has been recently shown to affect hippocampal neurogenesis and plasticity. Interestingly, mice fed a high-fat diet (HFD) exhibit impaired hippocampal function, but the underlying mechanisms are poorly understood. To address this issue, we compared leptin responsiveness of hippocampal neurons in control and HFD-fed mice by combining single-cell electrophysiology and biochemical assays. We found that leptin modulated spontaneous and evoked synaptic transmission in control, but not HFD, mice. This functional impairment was paralleled by blunted activation of STAT-3, one of the key signal transduction pathways controlled by the fully functional isoform of the leptin receptor, ObRb. In addition, SOCS-3 expression was non-responsive to leptin, indicating that modulation of negative feedback impinging on ObRb was also altered. Our results advance the understanding of leptin action on hippocampal plasticity and, more importantly, suggest that leptin resistance is a key determinant of hippocampal dysfunction associated with hypercaloric diet.
Collapse
Affiliation(s)
- Marco Mainardi
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| | - Matteo Spinelli
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| | - Federico Scala
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| | - Andrea Mattera
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| | - Salvatore Fusco
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| | - Marcello D'Ascenzo
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| |
Collapse
|