1
|
Counts SE, Beck JS, Maloney B, Malek‐Ahmadi M, Ginsberg SD, Mufson EJ, Lahiri DK. Posterior cingulate cortex microRNA dysregulation differentiates cognitive resilience, mild cognitive impairment, and Alzheimer's disease. Alzheimers Dement 2025; 21:e70019. [PMID: 40008917 PMCID: PMC11863362 DOI: 10.1002/alz.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 02/27/2025]
Abstract
INTRODUCTION MicroRNA (miRNA) activity is increasingly appreciated as a key regulator of pathophysiologic pathways in Alzheimer's disease (AD). However, the role of miRNAs during the progression of AD, including resilience and prodromal syndromes such as mild cognitive impairment (MCI), remains underexplored. METHODS We performed miRNA-sequencing on samples of posterior cingulate cortex (PCC) obtained post mortem from Rush Religious Orders Study participants diagnosed ante mortem with no cognitive impairment (NCI), MCI, or AD. NCI subjects were subdivided as low pathology (Braak stage I/II) or high pathology (Braak stage III/IV), suggestive of resilience. Bioinformatics approaches included differential expression, messenger RNA (mRNA) target prediction, interactome modeling, functional enrichment, and AD risk modeling. RESULTS We identified specific miRNA groups, mRNA targets, and signaling pathways distinguishing AD, MCI, resilience, ante mortem neuropsychological test performance, post mortem neuropathological burden, and AD risk. DISCUSSION These findings highlight the potential of harnessing miRNA activity to manipulate disease-modifying pathways in AD, with implications for precision medicine. HIGHLIGHTS MicroRNA (MiRNA) dysregulation is a well-established feature of Alzheimer's disease (AD). Novel miRNAs also distinguish subjects with mild cognitive impairment and putative resilience. MiRNAs correlate with cognitive performance and neuropathological burden. Select miRNAs are associated with AD risk with age as a significant covariate. MiRNA pathways include insulin, prolactin, kinases, and neurite plasticity.
Collapse
Affiliation(s)
- Scott E. Counts
- Department of Translational NeuroscienceMichigan State University College of Human MedicineGrand RapidsMichiganUSA
- Department of Family MedicineMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - John S. Beck
- Department of Translational NeuroscienceMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - Bryan Maloney
- Departments of Psychiatry and Medical and Molecular GeneticsIndiana Alzheimer’s Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Michael Malek‐Ahmadi
- Banner Alzheimer's InstitutePhoenixArizonaUSA
- Department of Biomedical InformaticsUniversity of Arizona College of Medicine‐PhoenixPhoenixArizonaUSA
| | - Stephen D. Ginsberg
- Center for Dementia ResearchNathan Kline InstituteOrangeburgNew YorkUSA
- Departments of PsychiatryNeuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Elliott J. Mufson
- Departments of Translational Neuroscience and NeurologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixArizonaUSA
| | - Debomoy K. Lahiri
- Departments of Psychiatry and Medical and Molecular GeneticsIndiana Alzheimer’s Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
2
|
Zadrozny M, Drapich P, Gasiorowska-Bien A, Niewiadomski W, Harrington CR, Wischik CM, Riedel G, Niewiadomska G. Neuroprotection of Cholinergic Neurons with a Tau Aggregation Inhibitor and Rivastigmine in an Alzheimer's-like Tauopathy Mouse Model. Cells 2024; 13:642. [PMID: 38607082 PMCID: PMC11011792 DOI: 10.3390/cells13070642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Basal forebrain cholinergic dysfunction, most likely linked with tau protein aggregation, is a characteristic feature of Alzheimer's disease (AD). Recent evidence suggests that tau protein is a putative target for the treatment of dementia, and the tau aggregation inhibitor, hydromethylthionine mesylate (HMTM), has emerged as a potential disease-modifying treatment. However, its efficacy was diminished in patients already receiving approved acetylcholinesterase inhibitors. In this study, we ask whether this negative interaction can also be mimicked in experimental tau models of AD and whether the underlying mechanism can be understood. From a previous age profiling study, 6-month-old line 1 (L1) tau transgenic mice were characterized by a severe reduction in several cholinergic markers. We therefore assessed whether long-term pre-exposure with the acetylcholinesterase inhibitor rivastigmine alone and in conjunction with the tau aggregation inhibitor HMTM can reverse cholinergic deficits in L1. Rivastigmine and HMTM, and combinations of the two compounds were administered orally for 11 weeks to both L1 and wild-type mice. The brains were sectioned with a focus on the basal forebrain, motor cortex and hippocampus. Immunohistochemical staining and quantification of choline acetyltransferase (ChAT), tyrosine kinase A (TrkA)-positive neurons and relative optical intensity (ROI) for vesicular acetylcholine transporter (VAChT), and acetylcholinesterase (AChE) reactivity confirmed reversal of the diminished cholinergic phenotype of interneurons (nucleus accumbens, striatum) and projection neurons (medial septum, nucleus basalis magnocellularis) by HMTM, to a greater extent than by rivastigmine alone in L1 mice. Combined administration did not yield additivity but, in most proxies, led to antagonistic effects in which rivastigmine decreased the benefits shown with HMTM alone. Local markers (VAChT and AChE) in target structures of the basal forebrain, motor cortex and hippocampal CA3 seemed to be normalized by HMTM, but not by rivastigmine or the combination of both drugs. HMTM, which was developed as a tau aggregation inhibitor, strongly decreased the tau load in L1 mice, however, not in combination with rivastigmine. Taken together, these data confirm a cholinergic phenotype in L1 tau transgenic mice that resembles the deficits observed in AD patients. This phenotype is reversible by HMTM, but at the same time appears to be subject to a homeostatic regulation induced by chronic pre-treatment with an acetylcholinesterase inhibitor, which interferes with the efficacy of HMTM. The strongest phenotypic reversal coincided with a normalization of the tau load in the cortex and hippocampus of L1, suggesting that tau accumulation underpins the loss of cholinergic markers in the basal forebrain and its projection targets.
Collapse
Affiliation(s)
- Maciej Zadrozny
- Mossakowski Medical Research Institute, 02-106 Warsaw, Poland; (M.Z.); (P.D.); (A.G.-B.); (W.N.)
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, 02-106 Warsaw, Poland; (M.Z.); (P.D.); (A.G.-B.); (W.N.)
| | - Anna Gasiorowska-Bien
- Mossakowski Medical Research Institute, 02-106 Warsaw, Poland; (M.Z.); (P.D.); (A.G.-B.); (W.N.)
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, 02-106 Warsaw, Poland; (M.Z.); (P.D.); (A.G.-B.); (W.N.)
| | - Charles R. Harrington
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.R.H.); (C.M.W.); (G.R.)
- TauRx Therapeutics Ltd., Aberdeen AB24 3FX, UK
| | - Claude M. Wischik
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.R.H.); (C.M.W.); (G.R.)
- TauRx Therapeutics Ltd., Aberdeen AB24 3FX, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.R.H.); (C.M.W.); (G.R.)
| | - Grazyna Niewiadomska
- Mossakowski Medical Research Institute, 02-106 Warsaw, Poland; (M.Z.); (P.D.); (A.G.-B.); (W.N.)
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Kelley CM, Ginsberg SD, Liang WS, Counts SE, Mufson EJ. Posterior cingulate cortex reveals an expression profile of resilience in cognitively intact elders. Brain Commun 2022; 4:fcac162. [PMID: 35813880 PMCID: PMC9263888 DOI: 10.1093/braincomms/fcac162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/12/2022] [Accepted: 06/17/2022] [Indexed: 12/20/2022] Open
Abstract
The posterior cingulate cortex, a key hub of the default mode network, underlies autobiographical memory retrieval and displays hypometabolic changes early in Alzheimer disease. To obtain an unbiased understanding of the molecular pathobiology of the aged posterior cingulate cortex, we performed RNA sequencing (RNA-seq) on tissue obtained from 26 participants of the Rush Religious Orders Study (11 males/15 females; aged 76-96 years) with a pre-mortem clinical diagnosis of no cognitive impairment and post-mortem neurofibrillary tangle Braak Stages I/II, III, and IV. Transcriptomic data were gathered using next-generation sequencing of RNA extracted from posterior cingulate cortex generating an average of 60 million paired reads per subject. Normalized expression of RNA-seq data was calculated using a global gene annotation and a microRNA profile. Differential expression (DESeq2, edgeR) using Braak staging as the comparison structure isolated genes for dimensional scaling, associative network building and functional clustering. Curated genes were correlated with the Mini-Mental State Examination and semantic, working and episodic memory, visuospatial ability, and a composite Global Cognitive Score. Regulatory mechanisms were determined by co-expression networks with microRNAs and an overlap of transcription factor binding sites. Analysis revealed 750 genes and 12 microRNAs significantly differentially expressed between Braak Stages I/II and III/IV and an associated six groups of transcription factor binding sites. Inputting significantly different gene/network data into a functional annotation clustering model revealed elevated presynaptic, postsynaptic and ATP-related expression in Braak Stages III and IV compared with Stages I/II, suggesting these pathways are integral for cognitive resilience seen in unimpaired elderly subjects. Principal component analysis and Kruskal-Wallis testing did not associate Braak stage with cognitive function. However, Spearman correlations between genes and cognitive test scores followed by network analysis revealed upregulation of classes of synaptic genes positively associated with performance on the visuospatial perceptual orientation domain. Upregulation of key synaptic genes suggests a role for these transcripts and associated synaptic pathways in cognitive resilience seen in elders despite Alzheimer disease pathology and dementia.
Collapse
Affiliation(s)
- Christy M Kelley
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Winnie S Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
- Department of Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| |
Collapse
|
4
|
Gonzalez S, McHugh TLM, Yang T, Syriani W, Massa SM, Longo FM, Simmons DA. Small molecule modulation of TrkB and TrkC neurotrophin receptors prevents cholinergic neuron atrophy in an Alzheimer's disease mouse model at an advanced pathological stage. Neurobiol Dis 2021; 162:105563. [PMID: 34838668 DOI: 10.1016/j.nbd.2021.105563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Degeneration of basal forebrain cholinergic neurons (BFCNs) in the nucleus basalis of Meynert (NBM) and vertical diagonal band (VDB) along with their connections is a key pathological event leading to memory impairment in Alzheimer's disease (AD). Aberrant neurotrophin signaling via Trks and the p75 neurotrophin receptor (p75NTR) contributes importantly to BFCN dystrophy. While NGF/TrkA signaling has received the most attention in this regard, TrkB and TrkC signaling also provide trophic support to BFCNs and these receptors may be well located to preserve BFCN connectivity. We previously identified a small molecule TrkB/TrkC ligand, LM22B-10, that promotes cell survival and neurite outgrowth in vitro and activates TrkB/TrkC signaling in the hippocampus of aged mice when given intranasally, but shows poor oral bioavailability. An LM22B-10 derivative, PTX-BD10-2, with improved oral bioavailability has been developed and this study examined its effects on BFCN atrophy in the hAPPLond/Swe (APPL/S) AD mouse model. Oral delivery of PTX-BD10-2 was started after appreciable amyloid and cholinergic pathology was present to parallel the clinical context, as most AD patients start treatment at advanced pathological stages. PTX-BD10-2 restored cholinergic neurite integrity in the NBM and VDB, and reduced NBM neuronal atrophy in symptomatic APPL/S mice. Dystrophy of cholinergic neurites in BF target regions, including the cortex, hippocampus, and amygdala, was also reduced with treatment. Finally, PTX-BD10-2 reduced NBM tau pathology and improved the survival of cholinergic neurons derived from human induced pluripotent stem cells (iPSCs) after amyloid-β exposure. These data provide evidence that targeting TrkB and TrkC signaling with PTX-BD10-2 may be an effective disease-modifying strategy for combating cholinergic dysfunction in AD. The potential for clinical translation is further supported by the compound's reduction of AD-related degenerative processes that have progressed beyond early stages and its neuroprotective effects in human iPSC-derived cholinergic neurons.
Collapse
Affiliation(s)
- Selena Gonzalez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Tyne L M McHugh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Wassim Syriani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Stephen M Massa
- Department of Neurology, Laboratory for Computational Neurochemistry and Drug Discovery, Veterans Affairs Health Care System and Department of Neurology, University of California-San Francisco, San Francisco, CA 94121, United States of America
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America.
| |
Collapse
|
5
|
Moloney CM, Lowe VJ, Murray ME. Visualization of neurofibrillary tangle maturity in Alzheimer's disease: A clinicopathologic perspective for biomarker research. Alzheimers Dement 2021; 17:1554-1574. [PMID: 33797838 PMCID: PMC8478697 DOI: 10.1002/alz.12321] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 12/29/2022]
Abstract
Neurofibrillary tangles, one of the neuropathologic hallmarks of Alzheimer's disease, have a dynamic lifespan of maturity that associates with progressive neuronal dysfunction and cognitive deficits. As neurofibrillary tangles mature, the biology of the neuron undergoes extensive changes that may impact biomarker recognition and therapeutic targeting. Neurofibrillary tangle maturity encompasses three levels: pretangles, mature tangles, and ghost tangles. In this review, we detail distinct and overlapping characteristics observed in the human brain regarding morphologic changes the neuron undergoes, conversion from intracellular to extracellular space, tau immunostaining patterns, and tau isoform expression changes across the lifespan of the neurofibrillary tangle. Post-translational modifications of tau such as phosphorylation, ubiquitination, conformational events, and truncations are discussed to contextualize tau immunostaining patterns. We summarize accumulated and emerging knowledge of neurofibrillary tangle maturity, discuss the current tools used to interpret the dynamic nature in the postmortem brain, and consider implications for cognitive dysfunction and tau biomarkers.
Collapse
Affiliation(s)
| | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
6
|
Pilliod J, Desjardins A, Pernègre C, Jamann H, Larochelle C, Fon EA, Leclerc N. Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion. J Biol Chem 2021; 295:17827-17841. [PMID: 33454017 DOI: 10.1074/jbc.ra120.013553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/03/2020] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer's disease (AD), tau, a microtubule-associated protein (MAP), becomes hyperphosphorylated, aggregates, and accumulates in the somato-dendritic compartment of neurons. In parallel to its intracellular accumulation in AD, tau is also released in the extracellular space, as revealed by its increased presence in cerebrospinal fluid (CSF). Consistent with this, recent studies, including ours, have reported that neurons secrete tau, and several therapeutic strategies aim to prevent the intracellular tau accumulation. Previously, we reported that late endosomes were implicated in tau secretion. Here, we explore the possibility of preventing intracellular tau accumulation by increasing tau secretion. Using neuronal models, we investigated whether overexpression of the vesicle-associated membrane protein 8 (VAMP8), an R-SNARE found on late endosomes, could increase tau secretion. The overexpression of VAMP8 significantly increased tau secretion, decreasing its intracellular levels in the neuroblastoma (N2a) cell line. Increased tau secretion by VAMP8 was also observed in murine hippocampal slices. The intracellular reduction of tau by VAMP8 overexpression correlated to a decrease of acetylated tubulin induced by tau overexpression in N2a cells. VAMP8 staining was preferentially found on late endosomes in N2a cells. Using total internal reflection fluorescence (TIRF) microscopy, the fusion of VAMP8-positive vesicles with the plasma membrane was correlated to the depletion of tau in the cytoplasm. Finally, overexpression of VAMP8 reduced the intracellular accumulation of tau mutants linked to frontotemporal dementia with parkinsonism and α-synuclein by increasing their secretion. Collectively, the present data indicate that VAMP8 could be used to increase tau and α-synuclein clearance to prevent their intracellular accumulation.
Collapse
Affiliation(s)
- Julie Pilliod
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada
| | - Alexandre Desjardins
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada
| | - Camille Pernègre
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Hélène Jamann
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Catherine Larochelle
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Edward A Fon
- McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
7
|
Zhou X, Chen X, Hong T, Zhang M, Cai Y, Cui L. TTC3-Mediated Protein Quality Control, A Potential Mechanism for Cognitive Impairment. Cell Mol Neurobiol 2021; 42:1659-1669. [PMID: 33638766 PMCID: PMC9239942 DOI: 10.1007/s10571-021-01060-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/11/2021] [Indexed: 01/14/2023]
Abstract
The tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.
Collapse
Affiliation(s)
- Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China.
| |
Collapse
|
8
|
He B, Perez SE, Lee SH, Ginsberg SD, Malek-Ahmadi M, Mufson EJ. Expression profiling of precuneus layer III cathepsin D-immunopositive pyramidal neurons in mild cognitive impairment and Alzheimer's disease: Evidence for neuronal signaling vulnerability. J Comp Neurol 2020; 528:2748-2766. [PMID: 32323319 PMCID: PMC7492791 DOI: 10.1002/cne.24929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The precuneus (PreC; Brodmann area 7), a key hub within the default mode network (DMN) displays amyloid and tau-containing neurofibrillary tangle (NFT) pathology during the onset of Alzheimer's disease (AD). PreC layer III projection neurons contain lysosomal hydrolase cathepsin D (CatD), a marker of neurons vulnerable to NFT pathology. Here we applied single population laser capture microdissection coupled with custom-designed microarray profiling to determine the genetic signature of PreC CatD-positive-layer III neurons accrued from postmortem tissue obtained from the Rush Religious Orders Study (RROS) cases with a premortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI) and AD. Expression profiling revealed significant differential expression of key transcripts in MCI and AD compared to NCI that underlie signaling defects, including dysregulation of genes within the endosomal-lysosomal and autophagy pathways, cytoskeletal elements, AD-related genes, ionotropic and metabotropic glutamate receptors, cholinergic enzymes and receptors, markers of monoamine neurotransmission as well as steroid-related transcripts. Pervasive defects in both MCI and AD were found in select transcripts within these key gene ontology categories, underscoring the vulnerability of these corticocortical projection neurons during the onset and progression of dementia. Select PreC dysregulated genes detected via custom-designed microarray analysis were validated using qPCR. In summary, expression profiling of PreC CatD -positive layer III neurons revealed significant dysregulation of a mosaic of genes in MCI and AD that were not previously appreciated in terms of their indication of systems-wide signaling defects in a key hub of the DMN.
Collapse
Affiliation(s)
- Bin He
- Department of Neurobiology and Neurology, Barrow
Neurological Institute, Phoenix, Arizona
| | - Sylvia E. Perez
- Department of Neurobiology and Neurology, Barrow
Neurological Institute, Phoenix, Arizona
| | - Sang Han Lee
- Center for Biomedical Imaging and Neuromodulation, Nathan
Kline Institute, Orangeburg, New York
- Child and Adolescent Psychiatry, New York University School
of Medicine, New York, New York
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute,
Orangeburg, New York
- Department of Psychiatry, New York University School of
Medicine, New York, New York
- Neuroscience & Physiology, New York University School
of Medicine, New York, New York
- NYU Neuroscience Institute, New York University School of
Medicine, New York, New York
| | | | - Elliott J. Mufson
- Department of Neurobiology and Neurology, Barrow
Neurological Institute, Phoenix, Arizona
| |
Collapse
|
9
|
Ginsberg SD, Malek-Ahmadi MH, Alldred MJ, Chen Y, Chen K, Chao MV, Counts SE, Mufson EJ. Brain-derived neurotrophic factor (BDNF) and TrkB hippocampal gene expression are putative predictors of neuritic plaque and neurofibrillary tangle pathology. Neurobiol Dis 2019; 132:104540. [PMID: 31349032 PMCID: PMC6834890 DOI: 10.1016/j.nbd.2019.104540] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Downregulation of brain-derived neurotrophic factor (BDNF) and its cognate neurotrophin receptor, TrkB, were observed during the progression of dementia, but whether the Alzheimer's disease (AD) pathological lesions diffuse plaques, (DPs), neuritic plaques (NPs), and neurofibrillary tangles (NFTs) are related to this alteration remains to be clarified. METHODS Negative binomial (NB) regressions were performed using gene expression data accrued from a single population of CA1 pyramidal neurons and regional hippocampal dissections obtained from participants in the Rush Religious Orders Study (RROS). RESULTS Downregulation of Bdnf is independently associated with increased entorhinal cortex NPs. Downregulation of TrkB is independently associated with increased entorhinal cortex NFTs and CA1 NPs during the progression of AD. DISCUSSION Results indicate that BDNF and TrkB dysregulation contribute to AD neuropathology, most notably hippocampal NPs and NFTs. These data suggest attenuating BDNF/TrkB signaling deficits either at the level of BDNF, TrkB, or downstream of TrkB signaling may abrogate NPs and/or NFTs.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States of America; Department of Psychiatry, New York University Langone Medical Center, New York, NY, United States of America; Department of Neuroscience & Physiology, New York University Langone Medical Center, New York, NY, United States of America; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States of America.
| | | | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States of America; Department of Psychiatry, New York University Langone Medical Center, New York, NY, United States of America
| | - Yinghua Chen
- Banner Alzheimer's Institute, Phoenix, AZ, United States of America
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, United States of America
| | - Moses V Chao
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, United States of America; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States of America; Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, NY, United States of America
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, United States of America; Department of Family Medicine, Michigan State University, East Lansing, MI, United States of America; Michigan Alzheimer's Disease Core Center, Ann Arbor, MI, United States of America; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, United States of America
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, United States of America
| |
Collapse
|
10
|
Mufson EJ, Counts SE, Ginsberg SD, Mahady L, Perez SE, Massa SM, Longo FM, Ikonomovic MD. Nerve Growth Factor Pathobiology During the Progression of Alzheimer's Disease. Front Neurosci 2019; 13:533. [PMID: 31312116 PMCID: PMC6613497 DOI: 10.3389/fnins.2019.00533] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
The current review summarizes the pathobiology of nerve growth factor (NGF) and its cognate receptors during the progression of Alzheimer's disease (AD). Both transcript and protein data indicate that cholinotrophic neuronal dysfunction is related to an imbalance between TrkA-mediated survival signaling and the NGF precursor (proNGF)/p75NTR-mediated pro-apoptotic signaling, which may be related to alteration in the metabolism of NGF. Data indicate a spatiotemporal pattern of degeneration related to the evolution of tau pathology within cholinotrophic neuronal subgroups located within the nucleus basalis of Meynert (nbM). Despite these degenerative events the cholinotrophic system is capable of cellular resilience and/or plasticity during the prodromal and later stages of the disease. In addition to neurotrophin dysfunction, studies indicate alterations in epigenetically regulated proteins occur within cholinotrophic nbM neurons during the progression of AD, suggesting a mechanism that may underlie changes in transcript expression. Findings that increased cerebrospinal fluid levels of proNGF mark the onset of MCI and the transition to AD suggests that this proneurotrophin is a potential disease biomarker. Novel therapeutics to treat NGF dysfunction include NGF gene therapy and the development of small molecule agonists for the cognate prosurvival NGF receptor TrkA and antagonists against the pan-neurotrophin p75NTR death receptor for the treatment of AD.
Collapse
Affiliation(s)
- Elliott J. Mufson
- Department of Neurobiology and Neurology, Department of Neurobiology, and Department of Neurological Sciences, Alzheimer’s Disease Laboratory, Barrow Neurological Institute, St. Joseph’s Medical Center, Phoenix, AZ, United States
| | - Scott E. Counts
- Translational Science and Molecular Medicine Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, Department of Neuroscience, and Physiology and NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
| | - Laura Mahady
- Department of Neurobiology and Neurology, Department of Neurobiology, and Department of Neurological Sciences, Alzheimer’s Disease Laboratory, Barrow Neurological Institute, St. Joseph’s Medical Center, Phoenix, AZ, United States
| | - Sylvia E. Perez
- Department of Neurobiology and Neurology, Department of Neurobiology, and Department of Neurological Sciences, Alzheimer’s Disease Laboratory, Barrow Neurological Institute, St. Joseph’s Medical Center, Phoenix, AZ, United States
| | - Stephen M. Massa
- Department of Neurology, San Francisco VA Health Care System, University of California, San Francisco, San Francisco, CA, United States
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Milos D. Ikonomovic
- Department of Neurology and Department of Psychiatry, Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Pernègre C, Duquette A, Leclerc N. Tau Secretion: Good and Bad for Neurons. Front Neurosci 2019; 13:649. [PMID: 31293374 PMCID: PMC6606725 DOI: 10.3389/fnins.2019.00649] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/06/2019] [Indexed: 01/20/2023] Open
Abstract
In Alzheimer’s disease (AD), neurofibrillary tangles (NFTs), lesions composed of hyperphosphorylated and aggregated tau, spread from the transentorhinal cortex to the hippocampal formation and neocortex. Growing evidence indicates that tau pathology propagates trans-synaptically, implying that pathological tau released by pre-synaptic neurons is taken up by post-synaptic neurons where it accumulates and aggregates. Observations such as the presence of tau in the cerebrospinal fluid (CSF) from control individuals and in the CSF of transgenic mice overexpressing human tau before the detection of neuronal death indicate that tau can be secreted by neurons. The increase of tau in the CSF in pathological conditions such as AD suggests that tau secretion is enhanced and/or other secretory pathways take place when neuronal function is compromised. In physiological conditions, extracellular tau could exert beneficial effects as observed for other cytosolic proteins also released in the extracellular space. In such a case, blocking tau secretion could have negative effects on neurons unless the mechanism of tau secretion are different in physiological and pathological conditions allowing the prevention of pathological tau secretion without affecting the secretion of physiological tau. Furthermore, distinct extracellular tau species could be secreted in physiological and pathological conditions, species having the capacity to induce tau pathology being only secreted in the latter condition. In the present review, we will focus on the mechanisms and function of tau secretion in both physiological and pathological conditions and how this information can help to elaborate an efficient therapeutic strategy to prevent tau pathology and its propagation.
Collapse
Affiliation(s)
- Camille Pernègre
- Research Centre of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Antoine Duquette
- Research Centre of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nicole Leclerc
- Research Centre of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
McKay EC, Beck JS, Khoo SK, Dykema KJ, Cottingham SL, Winn ME, Paulson HL, Lieberman AP, Counts SE. Peri-Infarct Upregulation of the Oxytocin Receptor in Vascular Dementia. J Neuropathol Exp Neurol 2019; 78:436-452. [PMID: 30990880 PMCID: PMC6467199 DOI: 10.1093/jnen/nlz023] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular dementia (VaD) is cognitive decline linked to reduced cerebral blood perfusion, yet there are few therapeutic options to protect cognitive function following cerebrovascular accidents. The purpose of this study was to profile gene expression changes unique to VaD to identify and characterize disease relevant changes that could offer clues for future therapeutic direction. Microarray-based profiling and validation studies of postmortem frontal cortex samples from VaD, Alzheimer disease, and age-matched control subjects revealed that the oxytocin receptor (OXTR) was strongly and differentially upregulated in VaD. Further characterization in fixed tissue from the same cases showed that OXTR upregulation occurs de novo around and within microinfarcts in peri-infarct reactive astrocytes as well as within vascular profiles, likely on microvascular endothelial cells. These results indicate that increased OXTR expression in peri-infarct regions may be a specific response to microvascular insults. Given the established OXTR signaling cascades that elicit antioxidant, anti-inflammatory, and pro-angiogenic responses, the present findings suggest that de novo OXTR expression in the peri-infarct space is a tissue-protective response by astroglial and vascular cells in the wake of ischemic damage that could be exploited as a therapeutic option for the preservation of cognition following cerebrovascular insults.
Collapse
Affiliation(s)
- Erin C McKay
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - John S Beck
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan
| | - Sok Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Grand Rapids, Michigan
| | - Karl J Dykema
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Sandra L Cottingham
- Department of Pathology, Spectrum Health and Helen DeVos Children’s Hospital, Grand Rapids, Michigan
| | - Mary E Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, Michigan
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, Michigan
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, Michigan
- Department of Family Medicine, Michigan State University, Grand Rapids, Michigan
- Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, Michigan
| |
Collapse
|
13
|
Modulation of the p75 neurotrophin receptor suppresses age-related basal forebrain cholinergic neuron degeneration. Sci Rep 2019; 9:5273. [PMID: 30918278 PMCID: PMC6437186 DOI: 10.1038/s41598-019-41654-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022] Open
Abstract
Age-related degeneration of basal forebrain cholinergic neurons (BFCNs) is linked to cognitive impairment. The p75 neurotrophin receptor (p75NTR) has been proposed to mediate neuronal degeneration in aging. Therefore, we tested the hypothesis that modifying p75NTR function would prevent or reverse aging-related neuronal degeneration using LM11A-31, a small molecule p75NTR modulator that downregulates degenerative and upregulates trophic receptor-associated signaling. Morphological analysis in mice showed loss of BFCN area detectable by 18 months of age. Oral administration of LM11A-31 from age 15 to 18 months resulted in a dose-related preservation of BFCN area and one month of treatment from 17 to 18 months also preserved cell area. To evaluate reversal of established neuronal atrophy, animals were treated from 21 to 25 months of age. Treatment was associated with an increase of cell size to a mean area larger than that observed at 18 months, accompanied by increases in mean MS/VDB neurite length, as well as increased cholinergic fiber density and synaptophysin pre-synaptic marker levels in the hippocampus. These findings support the idea that modulation of p75NTR activity can prevent and potentially reverse age-associated BFCN degeneration. Moreover, this may be achieved therapeutically with orally bioavailable agents such as LM11A-31.
Collapse
|
14
|
Perez SE, Miguel JC, He B, Malek-Ahmadi M, Abrahamson EE, Ikonomovic MD, Lott I, Doran E, Alldred MJ, Ginsberg SD, Mufson EJ. Frontal cortex and striatal cellular and molecular pathobiology in individuals with Down syndrome with and without dementia. Acta Neuropathol 2019; 137:413-436. [PMID: 30734106 PMCID: PMC6541490 DOI: 10.1007/s00401-019-01965-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
Abstract
Although, by age 40, individuals with Down syndrome (DS) develop amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles (NFTs) linked to cognitive impairment in Alzheimer's disease (AD), not all people with DS develop dementia. Whether Aβ plaques and NFTs are associated with individuals with DS with (DSD +) and without dementia (DSD -) is under-investigated. Here, we applied quantitative immunocytochemistry and fluorescent procedures to characterize NFT pathology using antibodies specific for tau phosphorylation (pS422, AT8), truncation (TauC3, MN423), and conformational (Alz50, MC1) epitopes, as well as Aβ and its precursor protein (APP) to frontal cortex (FC) and striatal tissue from DSD + to DSD - cases. Expression profiling of single pS422 labeled FC layer V and VI neurons was also determined using laser capture microdissection and custom-designed microarray analysis. Analysis revealed that cortical and striatal Aβ plaque burdens were similar in DSD + and DSD - cases. In both groups, most FC plaques were neuritic, while striatal plaques were diffuse. By contrast, FC AT8-positive NFTs and neuropil thread densities were significantly greater in DSD + compared to DSD -, while striatal NFT densities were similar between groups. FC pS422-positive and TauC3 NFT densities were significantly greater than Alz50-labeled NFTs in DSD + , but not DSD - cases. Putaminal, but not caudate pS422-positive NFT density, was significantly greater than TauC3-positive NFTs. In the FC, AT8 + pS422 + Alz50, TauC3 + pS422 + Alz50, pS422 + Alz50, and TauC3 + pS422 positive NFTs were more frequent in DSD + compared to DSD- cases. Single gene-array profiling of FC pS422 positive neurons revealed downregulation of 63 of a total of 864 transcripts related to Aβ/tau biology, glutamatergic, cholinergic, and monoaminergic metabolism, intracellular signaling, cell homeostasis, and cell death in DSD + compared DSD - cases. These observations suggest that abnormal tau aggregation plays a critical role in the development of dementia in DS.
Collapse
Affiliation(s)
- Sylvia E Perez
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jennifer C Miguel
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA
| | - Bin He
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA
| | | | - Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, 15213, USA
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, 15213, USA
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ira Lott
- Departments of Pediatrics and Neurology, University of California, Irvine, CA, 92697, USA
| | - Eric Doran
- Departments of Pediatrics and Neurology, University of California, Irvine, CA, 92697, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10021, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10021, USA
- Departments of Neuroscience and Physiology, The NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10021, USA
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA.
| |
Collapse
|
15
|
Christensen KR, Beach TG, Serrano GE, Kanaan NM. Pathogenic tau modifications occur in axons before the somatodendritic compartment in mossy fiber and Schaffer collateral pathways. Acta Neuropathol Commun 2019; 7:29. [PMID: 30819250 PMCID: PMC6394076 DOI: 10.1186/s40478-019-0675-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
The deposition of tau pathology in Alzheimer's disease (AD) may occur first in axons of neurons and then progress back into the cell bodies to form neurofibrillary tangles, however, studies have not directly analyzed this relationship in relatively discrete circuits within the human hippocampus. In the early phases of tau deposition, both AT8 phosphorylation and exposure of the amino terminus of tau occurs in tauopathies, and these modifications are linked to mechanisms of synaptic and axonal dysfunction. Here, we examined the localization of these tau pathologies in well-characterized post-mortem human tissue samples from the hippocampus of 44 cases ranging between non-demented and mild cognitively impaired to capture a time at which intrahippocampal pathways show a range in the extent of tau deposition. The tissue sections were analyzed for AT8 (AT8 antibody), amino terminus exposure (TNT2 antibody), and amyloid-β (MOAB2 antibody) pathology in hippocampal strata containing the axons and neuronal cell bodies of the CA3-Schaffer collateral and dentate granule-mossy fiber pathways. We show that tau pathology first appears in the axonal compartment of affected neurons in the absence of observable tau pathology in the corresponding cell bodies in several cases. Additionally, deposition of tau in these intrahippocampal pathways was independent of the presence of Aβ plaques. We confirmed that the majority of tau pathology positive neuropil threads were axonal in origin and not dendritic using an axonal marker (i.e. SMI312 antibody) and somatodendritic marker (i.e. MAP2 antibody). Taken together, these results support the hypothesis that AT8 phosphorylation and amino terminus exposure are early pathological events and that the deposition of tau pathology, at least in the studied pathways, occurs first in the axonal compartment prior to observable pathology in the somata. These findings highlight the importance on targeting tau deposition, ideally in the initial phases of its deposition in axons.
Collapse
Affiliation(s)
- Kyle R Christensen
- Department of Translational Science and Molecular Medicine, Michigan State University, College of Human Medicine, 400 Monroe Ave NW, Grand Rapids, MI, 49053, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | | | | | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, College of Human Medicine, 400 Monroe Ave NW, Grand Rapids, MI, 49053, USA.
- Neuroscience Program, Michigan State University, East Lansing, MI, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
16
|
Fu H, Hardy J, Duff KE. Selective vulnerability in neurodegenerative diseases. Nat Neurosci 2018; 21:1350-1358. [PMID: 30250262 DOI: 10.1038/s41593-018-0221-2] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases have two general characteristics that are so fundamental we usually take them for granted. The first is that the pathology associated with the disease only affects particular neurons ('selective neuronal vulnerability'); the second is that the pathology worsens with time and impacts more regions in a stereotypical and predictable fashion. The mechanisms underpinning selective neuronal and regional vulnerability have been difficult to dissect, but the recent application of whole-genome technologies, the development of mouse models that reproduce spatial and temporal features of the pathology, and the identification of intrinsic morphological, electrophysiological, and biochemical properties of vulnerable neurons are beginning to shed some light on these fundamental features of neurodegenerative diseases. Here we detail our emerging understanding of the underlying biology of selective neuronal vulnerability and outline some of the areas in which our understanding is incomplete.
Collapse
Affiliation(s)
- Hongjun Fu
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain; and Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John Hardy
- Department of Molecular Neuroscience and Reta Lilla Weston Laboratories, Institute of Neurology, London, UK
| | - Karen E Duff
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain; and Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA. .,Department of Psychiatry, Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
17
|
Tiernan CT, Ginsberg SD, He B, Ward SM, Guillozet-Bongaarts AL, Kanaan NM, Mufson EJ, Counts SE. Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer's disease. Neurobiol Dis 2018; 117:125-136. [PMID: 29859871 PMCID: PMC6278831 DOI: 10.1016/j.nbd.2018.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/30/2018] [Indexed: 01/22/2023] Open
Abstract
Cholinergic basal forebrain neurons of the nucleus basalis of Meynert (nbM) regulate attentional and memory function and are exquisitely prone to tau pathology and neurofibrillary tangle (NFT) formation during the progression of Alzheimer's disease (AD). nbM neurons require the neurotrophin nerve growth factor (NGF), its cognate receptor TrkA, and the pan-neurotrophin receptor p75NTR for their maintenance and survival. Additionally, nbM neuronal activity and cholinergic tone are regulated by the expression of nicotinic (nAChR) and muscarinic (mAChR) acetylcholine receptors as well as receptors modulating glutamatergic and catecholaminergic afferent signaling. To date, the molecular and cellular relationships between the evolution of tau pathology and nbM neuronal survival remain unknown. To address this knowledge gap, we profiled cholinotrophic pathway genes within nbM neurons immunostained for pS422, a pretangle phosphorylation event preceding tau C-terminal truncation at D421, or dual-labeled for pS422 and TauC3, a later stage tau neo-epitope revealed by this same C-terminal truncation event, via single-population custom microarray analysis. nbM neurons were obtained from postmortem tissues from subjects who died with an antemortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or mild/moderate AD. Quantitative analysis revealed significant downregulation of mRNAs encoding TrkA as well as TrkB, TrkC, and the Trk-mediated downstream pro-survival kinase Akt in pS422+ compared to unlabeled, pS422-negative nbM neurons. In addition, pS422+ neurons displayed a downregulation of transcripts encoding NMDA receptor subunit 2B, metabotropic glutamate receptor 2, D2 dopamine receptor, and β1 adrenoceptor. By contrast, transcripts encoding p75NTR were downregulated in dual-labeled pS422+/TauC3+ neurons. Appearance of the TauC3 epitope was also associated with an upregulation of the α7 nAChR subunit and differential downregulation of the β2 nAChR subunit. Notably, we found that gene expression patterns for each cell phenotype did not differ with clinical diagnosis. However, linear regression revealed that global cognition and Braak stage were predictors of select transcript changes within both unlabeled and pS422+/TauC3- neurons. Taken together, these cell phenotype-specific gene expression profiling data suggest that dysregulation of neurotrophic and neurotransmitter signaling is an early pathogenic mechanism associated with NFT formation in vulnerable nbM neurons and cognitive decline in AD, which may be amenable to therapeutic intervention early in the disease process.
Collapse
Affiliation(s)
- Chelsea T Tiernan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA; Department of Physiology & Neuroscience, NYU Langone School of Medicine, New York, NY, USA; NYU Neuroscience Institute, NYU Langone School of Medicine, New York, NY, USA
| | - Bin He
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sarah M Ward
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA; Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA; Michigan Alzheimer's Disease Core Center, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Mufson EJ, He B, Ginsberg SD, Carper BA, Bieler GS, Crawford F, Alvarez VE, Huber BR, Stein TD, McKee AC, Perez SE. Gene Profiling of Nucleus Basalis Tau Containing Neurons in Chronic Traumatic Encephalopathy: A Chronic Effects of Neurotrauma Consortium Study. J Neurotrauma 2018; 35:1260-1271. [PMID: 29338612 PMCID: PMC5962931 DOI: 10.1089/neu.2017.5368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Military personnel and athletes exposed to traumatic brain injury may develop chronic traumatic encephalopathy (CTE). Brain pathology in CTE includes intracellular accumulation of abnormally phosphorylated tau proteins (p-tau), the main constituent of neurofibrillary tangles (NFTs). Recently, we found that cholinergic basal forebrain (CBF) neurons within the nucleus basalis of Meynert (nbM), which provide the major cholinergic innervation to the cortex, display an increased number of NFTs across the pathological stages of CTE. However, molecular mechanisms underlying nbM neurodegeneration in the context of CTE pathology remain unknown. Here, we assessed the genetic signature of nbM neurons containing the p-tau pretangle maker pS422 from CTE subjects who came to autopsy and received a neuropathological CTE staging assessment (Stages II, III, and IV) using laser capture microdissection and custom-designed microarray analysis. Quantitative analysis revealed dysregulation of key genes in several gene ontology groups between CTE stages. Specifically, downregulation of the nicotinic cholinergic receptor subunit β-2 gene (CHRNB2), monoaminergic enzymes catechol-O-methyltransferase (COMT) and dopa decarboxylase (DDC), chloride channels CLCN4 and CLCN5, scaffolding protein caveolin 1 (CAV1), cortical development/cytoskeleton element lissencephaly 1 (LIS1), and intracellular signaling cascade member adenylate cyclase 3 (ADCY3) was observed in pS422-immunreactive nbM neurons in CTE patients. By contrast, upregulation of calpain 2 (CAPN2) and microtubule-associated protein 2 (MAP2) transcript levels was found in Stage IV CTE patients. These single-population data in vulnerable neurons indicate alterations in gene expression associated with neurotransmission, signal transduction, the cytoskeleton, cell survival/death signaling, and microtubule dynamics, suggesting novel molecular pathways to target for drug discovery in CTE.
Collapse
Affiliation(s)
- Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Bin He
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York and NYU Medical Center, New York, New York
| | | | | | | | - Victor E. Alvarez
- VA Boston HealthCare System, Boston University School of Medicine, Boston, Massachusetts
- Alzheimer Disease Center and CTE Center Program, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Bertrand R. Huber
- VA Boston HealthCare System, Boston University School of Medicine, Boston, Massachusetts
- Alzheimer Disease Center and CTE Center Program, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Thor D. Stein
- VA Boston HealthCare System, Boston University School of Medicine, Boston, Massachusetts
- Alzheimer Disease Center and CTE Center Program, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Ann C. McKee
- VA Boston HealthCare System, Boston University School of Medicine, Boston, Massachusetts
- Alzheimer Disease Center and CTE Center Program, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Sylvia E. Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
19
|
Tiernan CT, Mufson EJ, Kanaan NM, Counts SE. Tau Oligomer Pathology in Nucleus Basalis Neurons During the Progression of Alzheimer Disease. J Neuropathol Exp Neurol 2018; 77:246-259. [PMID: 29378005 PMCID: PMC6251641 DOI: 10.1093/jnen/nlx120] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although tau is the primary constituent of neurofibrillary tangles (NFTs), evidence suggests that its toxic moiety is oligomeric in Alzheimer disease (AD). In this regard, tau oligomers correlate more strongly with neuronal loss than NFTs and exhibit neurotoxicity in preclinical AD models. Here, we investigated the spatiotemporal progression of oligomeric tau accumulation within the highly vulnerable cholinergic neurons of the nucleus basalis of Meynert (nbM) in AD. Tissue from subjects who died with a clinical diagnosis of no cognitive impairment, mild cognitive impairment, or AD was immunostained with the tau oligomeric complex 1 (TOC1) antibody, a marker of tau oligomers, and p75NTR, a cholinergic cell marker. Stereological estimates revealed a significant increase in the number of TOC1 nbM immunopositive (+) neurons with a concomitant decrease in p75NTR+ nbM neurons during the transition from mild cognitive impairment to AD. Immunofluorescence identified TOC1+ neurons that colocalized with the pretangle tau marker phospho-Ser422, which persisted into late stage NFTs immunoreactive for MN423. Analysis of the nbM subfields revealed a topographical caudal to rostral gradient of TOC1+ neurons during disease progression. Taken together, these data suggest that toxic tau oligomers accumulate caudorostrally in selectively vulnerable nbM neurons during the onset of AD.
Collapse
Affiliation(s)
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine
- Mercy Health Saint Mary’s Hospital, Hauenstein Neurosciences Center, Grand Rapids
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine
- Department of Family Medicine, Michigan State University, Grand Rapids, Michigan
- Mercy Health Saint Mary’s Hospital, Hauenstein Neurosciences Center, Grand Rapids
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, Michigan
| |
Collapse
|
20
|
Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H, D'Amico D, Moullan N, Potenza F, Schmid AW, Rietsch S, Counts SE, Auwerx J. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 2017; 552:187-193. [PMID: 29211722 PMCID: PMC5730497 DOI: 10.1038/nature25143] [Citation(s) in RCA: 473] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is a common and devastating disease characterized by aggregation of the amyloid-β peptide. However, we know relatively little about the underlying molecular mechanisms or how to treat patients with Alzheimer's disease. Here we provide bioinformatic and experimental evidence of a conserved mitochondrial stress response signature present in diseases involving amyloid-β proteotoxicity in human, mouse and Caenorhabditis elegans that involves the mitochondrial unfolded protein response and mitophagy pathways. Using a worm model of amyloid-β proteotoxicity, GMC101, we recapitulated mitochondrial features and confirmed that the induction of this mitochondrial stress response was essential for the maintenance of mitochondrial proteostasis and health. Notably, increasing mitochondrial proteostasis by pharmacologically and genetically targeting mitochondrial translation and mitophagy increases the fitness and lifespan of GMC101 worms and reduces amyloid aggregation in cells, worms and in transgenic mouse models of Alzheimer's disease. Our data support the relevance of enhancing mitochondrial proteostasis to delay amyloid-β proteotoxic diseases, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Mario Romani
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Laurent Mouchiroud
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - John S Beck
- Department of Translational Science and Molecular Medicine, Department of Family Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA
| | - Hongbo Zhang
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Davide D'Amico
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Norman Moullan
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Francesca Potenza
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Adrien W Schmid
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Solène Rietsch
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Department of Family Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Ginsberg SD, Malek-Ahmadi MH, Alldred MJ, Che S, Elarova I, Chen Y, Jeanneteau F, Kranz TM, Chao MV, Counts SE, Mufson EJ. Selective decline of neurotrophin and neurotrophin receptor genes within CA1 pyramidal neurons and hippocampus proper: Correlation with cognitive performance and neuropathology in mild cognitive impairment and Alzheimer's disease. Hippocampus 2017; 29:422-439. [PMID: 28888073 DOI: 10.1002/hipo.22802] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 01/02/2023]
Abstract
Hippocampal CA1 pyramidal neurons, a major component of the medial temporal lobe memory circuit, are selectively vulnerable during the progression of Alzheimer's disease (AD). The cellular mechanism(s) underlying degeneration of these neurons and the relationship to cognitive performance remains largely undefined. Here, we profiled neurotrophin and neurotrophin receptor gene expression within microdissected CA1 neurons along with regional hippocampal dissections from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or AD using laser capture microdissection (LCM), custom-designed microarray analysis, and qPCR of CA1 subregional dissections. Gene expression levels were correlated with cognitive test scores and AD neuropathology criteria. We found a significant downregulation of several neurotrophin genes (e.g., Gdnf, Ngfb, and Ntf4) in CA1 pyramidal neurons in MCI compared to NCI and AD subjects. In addition, the neurotrophin receptor transcripts TrkB and TrkC were decreased in MCI and AD compared to NCI. Regional hippocampal dissections also revealed select neurotrophic gene dysfunction providing evidence for vulnerability within the hippocampus proper during the progression of dementia. Downregulation of several neurotrophins of the NGF family and cognate neurotrophin receptor (TrkA, TrkB, and TrkC) genes correlated with antemortem cognitive measures including the Mini-Mental State Exam (MMSE), a composite global cognitive score (GCS), and Episodic, Semantic, and Working Memory, Perceptual Speed, and Visuospatial domains. Significant correlations were found between select neurotrophic expression downregulation and neuritic plaques (NPs) and neurofibrillary tangles (NFTs), but not diffuse plaques (DPs). These data suggest that dysfunction of neurotrophin signaling complexes have profound negative sequelae within vulnerable hippocampal cell types, which play a role in mnemonic and executive dysfunction during the progression of AD.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York.,Department of Psychiatry, New York University Langone Medical Center, New York, New York.,Department of Neuroscience & Physiology, New York University Langone Medical Center, New York, New York.,Neuroscience Institute, New York University Langone Medical Center, New York, New York
| | | | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York.,Department of Psychiatry, New York University Langone Medical Center, New York, New York
| | - Shaoli Che
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York.,Department of Psychiatry, New York University Langone Medical Center, New York, New York
| | - Irina Elarova
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York
| | | | - Freddy Jeanneteau
- Inserm, U1191, Institute of Functional Genomics, Montpellier, F-34000, France.,CNRS, UMR-5203, Montpellier, F-34000, France.,Université de Montpellier, Montpellier, F-34000, France
| | - Thorsten M Kranz
- Department of Psychiatry, New York University Langone Medical Center, New York, New York.,Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York
| | - Moses V Chao
- Department of Psychiatry, New York University Langone Medical Center, New York, New York.,Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Family Medicine, Michigan State University, East Lansing, Michigan.,Michigan Alzheimer's Disease Core Center, Ann Arbor, Michigan.,Mercy Health Saint Mary's Hospital, Hauenstein Neurosciences Center, Grand Rapids, Michigan
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
22
|
Rodriguez L, Mohamed NV, Desjardins A, Lippé R, Fon EA, Leclerc N. Rab7A regulates tau secretion. J Neurochem 2017; 141:592-605. [PMID: 28222213 DOI: 10.1111/jnc.13994] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 12/20/2022]
Abstract
The axonal microtubule-associated protein TAU, involved in Alzheimer's disease (AD), can be found in the extracellular space where it could be taken up by neurons, an event that is believed to contribute to the propagation of tau pathology in the brain. Since the small GTPase Rab7A is involved in the trafficking of endosomes, autophagosomes, and lysosomes, and RAB7A gene expression and protein levels are up-regulated in AD patients, we tested the hypothesis that Rab7A was involved in tau secretion. We previously reported that both primary cortical neurons and HeLa cells over-expressing human TAU can release tau. Using these two cellular systems, we demonstrated that Rab7A regulates tau secretion. Upon Rab7A deletion, tau secretion was decreased. Consistent with this, the over-expression of a dominant negative and a constitutively active form of Rab7A decreased and increased tau secretion, respectively. A partial co-localization of tau and Rab7-positive structures in both neurons and HeLa cells indicated that a late endosomal compartment could be involved in its secretion. Collectively, the present data indicate that Rab7A regulates tau secretion and therefore the up-regulation of RAB7A reported in AD, could contribute to the extracellular accumulation of pathological TAU species that could result in the propagation of tau pathology in the AD brain.
Collapse
Affiliation(s)
- Lilia Rodriguez
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Québec, Canada.,CNS Research Group (GRSNC), Montreal, Québec, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Nguyen-Vi Mohamed
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Québec, Canada.,CNS Research Group (GRSNC), Montreal, Québec, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Alexandre Desjardins
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Québec, Canada.,CNS Research Group (GRSNC), Montreal, Québec, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Roger Lippé
- Département de pathologie et biologie cellulaire, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Edward A Fon
- McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Québec, Canada.,CNS Research Group (GRSNC), Montreal, Québec, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
23
|
Kelly SC, He B, Perez SE, Ginsberg SD, Mufson EJ, Counts SE. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease. Acta Neuropathol Commun 2017; 5:8. [PMID: 28109312 PMCID: PMC5251221 DOI: 10.1186/s40478-017-0411-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 01/30/2023] Open
Abstract
A major feature of Alzheimer’s disease (AD) is the loss of noradrenergic locus coeruleus (LC) projection neurons that mediate attention, memory, and arousal. However, the extent to which the LC projection system degenerates during the initial stages of AD is still under investigation. To address this question, we performed tyrosine hydroxylase (TH) immunohistochemistry and unbiased stereology of noradrenergic LC neurons in tissue harvested postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), amnestic mild cognitive impairment (aMCI, a putative prodromal AD stage), or mild/moderate AD. Stereologic estimates of total LC neuron number revealed a 30% loss during the transition from NCI to aMCI, with an additional 25% loss of LC neurons in AD. Decreases in noradrenergic LC neuron number were significantly associated with worsening antemortem global cognitive function as well as poorer performance on neuropsychological tests of episodic memory, semantic memory, working memory, perceptual speed, and visuospatial ability. Reduced LC neuron numbers were also associated with increased postmortem neuropathology. To examine the cellular and molecular pathogenic processes underlying LC neurodegeneration in aMCI, we performed single population microarray analysis. These studies revealed significant reductions in select functional classes of mRNAs regulating mitochondrial respiration, redox homeostasis, and neuritic structural plasticity in neurons accessed from both aMCI and AD subjects compared to NCI. Specific gene expression levels within these functional classes were also associated with global cognitive deterioration and neuropathological burden. Taken together, these observations suggest that noradrenergic LC cellular and molecular pathology is a prominent feature of prodromal disease that contributes to cognitive dysfunction. Moreover, they lend support to a rational basis for targeting LC neuroprotection as a disease modifying strategy.
Collapse
|
24
|
Counts SE, Ikonomovic MD, Mercado N, Vega IE, Mufson EJ. Biomarkers for the Early Detection and Progression of Alzheimer's Disease. Neurotherapeutics 2017; 14:35-53. [PMID: 27738903 PMCID: PMC5233625 DOI: 10.1007/s13311-016-0481-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The recent failures of potential disease-modifying drugs for Alzheimer's disease (AD) may reflect the fact that the enrolled participants in clinical trials are already too advanced to derive a clinical benefit. Thus, well-validated biomarkers for the early detection and accurate diagnosis of the preclinical stages of AD will be crucial for therapeutic advancement. The combinatorial use of biomarkers derived from biological fluids, such as cerebrospinal fluid (CSF), with advanced molecular imaging and neuropsychological testing may eventually achieve the diagnostic sensitivity and specificity necessary to identify people in the earliest stages of the disease when drug modification is most likely possible. In this regard, positive amyloid or tau tracer retention on positron emission tomography imaging, low CSF concentrations of the amyloid-β 1-42 peptide, high CSF concentrations in total tau and phospho-tau, mesial temporal lobe atrophy on magnetic resonance imaging, and temporoparietal/precuneus hypometabolism or hypoperfusion on 18F-fluorodeoxyglucose positron emission tomography have all emerged as biomarkers for the progression to AD. However, the ultimate AD biomarker panel will likely involve the inclusion of novel CSF and blood biomarkers more precisely associated with confirmed pathophysiologic mechanisms to improve its reliability for detecting preclinical AD. This review highlights advancements in biological fluid and imaging biomarkers that are moving the field towards achieving the goal of a preclinical detection of AD.
Collapse
Affiliation(s)
- Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Natosha Mercado
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Irving E Vega
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
25
|
THD-Module Extractor: An Application for CEN Module Extraction and Interesting Gene Identification for Alzheimer's Disease. Sci Rep 2016; 6:38046. [PMID: 27901073 PMCID: PMC5128915 DOI: 10.1038/srep38046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023] Open
Abstract
There exist many tools and methods for construction of co-expression network from gene expression data and for extraction of densely connected gene modules. In this paper, a method is introduced to construct co-expression network and to extract co-expressed modules having high biological significance. The proposed method has been validated on several well known microarray datasets extracted from a diverse set of species, using statistical measures, such as p and q values. The modules obtained in these studies are found to be biologically significant based on Gene Ontology enrichment analysis, pathway analysis, and KEGG enrichment analysis. Further, the method was applied on an Alzheimer’s disease dataset and some interesting genes are found, which have high semantic similarity among them, but are not significantly correlated in terms of expression similarity. Some of these interesting genes, such as MAPT, CASP2, and PSEN2, are linked with important aspects of Alzheimer’s disease, such as dementia, increase cell death, and deposition of amyloid-beta proteins in Alzheimer’s disease brains. The biological pathways associated with Alzheimer’s disease, such as, Wnt signaling, Apoptosis, p53 signaling, and Notch signaling, incorporate these interesting genes. The proposed method is evaluated in regard to existing literature.
Collapse
|
26
|
Mufson EJ, Ikonomovic MD, Counts SE, Perez SE, Malek-Ahmadi M, Scheff SW, Ginsberg SD. Molecular and cellular pathophysiology of preclinical Alzheimer's disease. Behav Brain Res 2016; 311:54-69. [PMID: 27185734 PMCID: PMC4931948 DOI: 10.1016/j.bbr.2016.05.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
Although the two pathological hallmarks of Alzheimer's disease (AD), senile plaques composed of amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs) consisting of hyperphosphorylated tau, have been studied extensively in postmortem AD and relevant animal and cellular models, the pathogenesis of AD remains unknown, particularly in the early stages of the disease where therapies presumably would be most effective. We and others have demonstrated that Aβ plaques and NFTs are present in varying degrees before the onset and throughout the progression of dementia. In this regard, aged people with no cognitive impairment (NCI), mild cognitive impairment (MCI, a presumed prodromal AD transitional state, and AD all present at autopsy with varying levels of pathological hallmarks. Cognitive decline, a requisite for the clinical diagnosis of dementia associated with AD, generally correlates better with NFTs than Aβ plaques. However, correlations are even higher between cognitive decline and synaptic loss. In this review, we illustrate relevant clinical pathological research in preclinical AD and throughout the progression of dementia in several areas including Aβ and tau pathobiology, single population expression profiling of vulnerable hippocampal and basal forebrain neurons, neuroplasticity, neuroimaging, cerebrospinal fluid (CSF) biomarker studies and their correlation with antemortem cognitive endpoints. In each of these areas, we provide evidence for the importance of studying the pathological hallmarks of AD not in isolation, but rather in conjunction with other molecular, cellular, and imaging markers to provide a more systematic and comprehensive assessment of the multiple changes that occur during the transition from NCI to MCI to frank AD.
Collapse
Affiliation(s)
- Elliott J Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, United States.
| | - Milos D Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, and Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Department of Family Medicine, Hauenstien Neuroscience Institute, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, United States
| | - Sylvia E Perez
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| | | | - Stephen W Scheff
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Department of Psychiatry, Department of Neuroscience & Physiology, New York University Langone Medical Center, Orangeburg, NY, United States
| |
Collapse
|